TW202242170A - 卷材邊緣計量 - Google Patents

卷材邊緣計量 Download PDF

Info

Publication number
TW202242170A
TW202242170A TW110146350A TW110146350A TW202242170A TW 202242170 A TW202242170 A TW 202242170A TW 110146350 A TW110146350 A TW 110146350A TW 110146350 A TW110146350 A TW 110146350A TW 202242170 A TW202242170 A TW 202242170A
Authority
TW
Taiwan
Prior art keywords
continuous sheet
flexible material
lithium metal
film
coating
Prior art date
Application number
TW110146350A
Other languages
English (en)
Inventor
大衛正幸 石川
吉瑞許庫瑪 戈帕拉克瑞許納奈爾
伊利姆拉岡 蘭加斯米
戴維 阿爾瓦雷斯
求景 趙
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202242170A publication Critical patent/TW202242170A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • G01N2021/8433Comparing coated/uncoated parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Vapour Deposition (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

提供了一種用於連續鋰離子電池(LIB)陽極預鋰化及固態金屬陽極保護的計量系統及處理方法。在一些實施例中,計量系統集成至少一個互補的非接觸式感測器以測量表面組成物、塗層厚度及奈米級粗糙度中的至少一者。計量系統及處理方法可以用來解決陽極邊緣品質的問題。計量系統及方法可以促進高品質及高產量的閉合迴路陽極預鋰化及陽極保護層沉積、合金型陽極預鋰化階段控制改進LIB庫侖效率且具有無針孔及電化活性保護層的陽極塗層防止枝狀晶體形成。

Description

卷材邊緣計量
本文中所述的實施例大致與用於處理撓性基板的真空沉積系統及方法相關。更具體而言,本文中所描述及論述的實施例與用於監測及控制材料沉積的輥對輥(roll-to-roll)真空沉積系統及方法相關。
可再充電電化儲存系統對於日常生活的許多領域來說越來越重要。高容量能量儲存元件(例如鋰離子(Li離子)電池及電容器)被用於越來越多的應用中,包括可攜式電子元件、醫療、運輸、並網(grid-connected)大型能量儲存器、可再生能源儲存器及不間斷電源(UPS)。在這些應用中的每一者中,能量儲存元件的充電/放電時間及容量是基本參數。此外,此類能量儲存元件的尺寸、重量及/或成本也是基本參數。進一步地,低的內電阻對於高效能而言是不可或缺的。電阻越低,能量儲存元件在遞送電能時遇到的限制就越少。例如,在電池的情況下,內電阻藉由減少由電池所儲存的有用能量的總量以及減少電池遞送高電流的能力來影響效能。
有效的輥對輥沉積製程不僅提供高沉積速率,而且還提供缺乏小尺度粗糙度、包含最少缺乏且平坦(例如缺乏大尺度地形)的膜表面。此外,有效的輥對輥沉積製程也提供一致的沉積結果或「可重複性」。相對於沉積源以不受控制的、失準的或不正確地定位的卷材材料在卷材基板上的沉積材料可能對最終電池的製程結果及內電阻有不利的影響。
因此,需要一種改進的裝置及方法來監測及控制輥對輥拋光系統中的材料的沉積。
本文中所述的實施例大致與用於處理撓性基板的真空沉積系統及方法相關。更具體而言,本文中所描述及論述的實施例與用於監測及控制材料沉積的輥對輥(roll-to-roll)真空沉積系統及方法相關。
在一或更多個實施例中,提供了一種撓性基板塗覆系統,該撓性基板塗覆系統包括:處理模組,具有:複數個腔室,依序佈置,每個腔室被配置為對連續撓性材料片執行一個或多個處理操作。該處理模組進一步包括:塗覆鼓,能夠將該連續撓性材料片沿著行進方向引導過該複數個腔室,其中該等腔室圍繞該塗覆鼓徑向地設置。該處理模組進一步包括計量模組。該計量模組包括:複數個非接觸式感測器,沿著橫向方向並排定位,其中該橫向方向與該行進方向垂直。
在其他的實施例中,該複數個非接觸式感測器包括光譜感測器組件,該光譜感測器組件可操作來捕捉該連續撓性材料片的塗覆的及未塗覆的部分的光譜影像。該光譜感測器包括頻閃光源及成像器。該成像器是電荷耦合元件(CCD)陣列。該複數個非接觸式感測器包括第一渦電流感測器及第二渦電流感測器,該第一渦電流感測器可操作來測量該連續撓性材料片的塗覆部分的厚度,該第二渦電流感測器可操作來測量該連續撓性材料片的未塗覆部分的厚度。該塗覆系統進一步包括光學輪廓儀,該光學輪廓儀可操作來測量該連續撓性材料片的卷材顫動。該複數個非接觸式感測器包括卷材粗糙度感測器,該卷材粗糙度感測器可操作來測量該連續撓性材料片的塗覆部分及該連續撓性材料片的未塗覆部分的表面粗糙度。該卷材粗糙度感測器包括氬雷射及CMOS攝影機。該塗覆系統進一步包括:展開模組,收容能夠提供該連續撓性材料片的饋送捲軸;及纏繞模組,收容能夠儲存該連續撓性材料片的捲取捲軸。該連續撓性材料片包括銅基板,鋰金屬層形成於該銅基板上。該連續撓性材料片包括銅基板,鋰化陽極膜形成於該銅基板上。該陽極膜選自石墨陽極膜、矽-石墨陽極膜或矽膜。該複數個腔室包括濺射源、熱蒸發源及電子束源中的至少一者。
在一些實施例中,該方法包括以下步驟:將連續撓性材料片從展開腔室中的饋送捲軸傳輸到佈置在該展開腔室的下游的沉積模組,該沉積模組包括第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元。該方法進一步包括以下步驟:將該連續撓性材料片沿著行進方向引導過該複數個沉積單元,同時經由該第一複數個沉積單元在該撓性基板上沉積鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置。該方法進一步包括以下步驟:將該連續撓性材料片引導過計量模組,該計量模組包括沿著橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的行進路徑重合的視場,且該橫向方向與該行進方向垂直。該方法進一步包括以下步驟:使頻閃燈在該視場中閃爍,同時將該連續撓性材料片引導過該視場。該方法進一步包括以下步驟:獲得該視場中的該連續撓性材料片的靜止影像。該方法進一步包括以下步驟:將從該影像的相應影像元素反射的光通道相應的光通道元件引導到光譜分光器的相應位置。該方法進一步包括以下步驟:記錄該視場內的每個影像元素處的波譜分佈。
在一或更多個實施例中,該方法進一步包括以下步驟:搜尋彼此類似的分佈,並將該等分佈分組成互相類似的分佈的群組。該方法進一步包括以下步驟:按照每個群組中所包含的分佈數量來分類該等群組。該方法進一步包括以下步驟:選擇最大的群組中的至少一者,並將該群組的該等分佈組合在一起,並提供該組合分佈作為該連續撓性材料片的一個區域的該波譜分佈。該方法進一步包括以下步驟:依據波譜分析過程處理該組合分佈。該連續撓性材料片包括銅基板,且該鋰金屬膜形成於該銅基板上。該連續撓性材料片包括銅基板,陽極膜形成於該銅基板上,且該鋰金屬膜形成於該陽極膜上。該陽極膜選自石墨陽極膜、矽-石墨陽極膜或矽膜。
在其他的實施例中,該方法包括以下步驟:將連續撓性材料片從展開腔室中的饋送捲軸傳輸到佈置在該展開腔室的下游的沉積模組,該沉積模組包括第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元。該方法進一步包括以下步驟:將該連續撓性材料片沿著行進方向引導過該複數個沉積單元,同時經由該第一複數個沉積單元在該撓性基板上沉積鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置。該方法進一步包括以下步驟:將該連續撓性材料片引導過計量模組,該計量模組包括沿著橫向方向並排定位的複數個非接觸式光學感測器。該等光學感測器具有與由該連續撓性材料片穿過的行進路徑重合的視場,且該橫向方向與該行進方向垂直。該方法進一步包括以下步驟:獲得該視場中的該連續撓性材料片上的該鋰金屬膜的第一非接觸式電阻率測量。該方法進一步包括以下步驟:使用該第一非接觸式電阻率測量來決定該鋰金屬膜的第一厚度。
實施例可以包括以下潛在優點中的一或更多者。決定該鋰金屬膜的該第一厚度的步驟包括將該第一非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的先前決定的相關性進行比較。該方法進一步包括以下步驟:獲得該視場中的該連續撓性材料片的非接觸式雷射干涉測量。該方法進一步包括以下步驟:基於該連續撓性材料片的該非接觸式雷射干涉測量來決定該連續撓性材料片的卷材顫動。該方法進一步包括以下步驟:基於該卷材顫動來調整該鋰金屬膜的該第一厚度測量以決定該鋰金屬膜的校正的第一厚度。該方法進一步包括以下步驟:使該鋰金屬膜老化一段時間。該方法進一步包括以下步驟:在使該鋰金屬膜老化該段時間之後,獲得該視場中的該連續撓性材料片上的該鋰金屬膜的第二非接觸式電阻率測量。該方法進一步包括以下步驟:使用該第二非接觸式電阻率測量來決定該鋰金屬膜的第二厚度。決定該鋰金屬膜的該第二厚度的步驟包括將該第二非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的先前決定的相關性進行比較。該方法進一步包括以下步驟:藉由將該鋰金屬膜的該第一厚度與該鋰金屬膜的該第二厚度進行比較,來決定沉積於該連續撓性材料片上的陽極膜的預鋰化量。該連續撓性材料片包括銅基板,且該鋰金屬膜形成於該銅基板上。該連續撓性材料片包括銅基板,陽極膜形成於該銅基板上,且該鋰金屬膜形成於該陽極膜上。該陽極膜選自石墨陽極膜、矽-石墨陽極膜或矽膜。
在一些實施例中,該方法包括以下步驟:將連續撓性材料片從展開腔室中的饋送捲軸傳輸到佈置在該展開腔室的下游的沉積模組,該沉積模組包括第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元。該方法進一步包括以下步驟:將該連續撓性材料片沿著行進方向引導過該複數個沉積單元,同時經由該第一複數個沉積單元在該撓性基板上沉積鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置。該方法進一步包括以下步驟:將該連續撓性材料片引導過計量模組,該計量模組包括沿著橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的行進路徑重合的視場,且該橫向方向與該行進方向垂直。該方法進一步包括以下步驟:將偏振結構光的三個或更多個條紋圖案投射到該視場中的該連續撓性材料片上。該方法進一步包括以下步驟:針對每個條紋偏移記錄該視場內的每個影像元素處的強度。該方法進一步包括以下步驟:根據該影像元素強度分佈來決定塗層粗糙度的測量。
在其他的實施例中,一種非暫時性電腦可讀取媒體具有儲存在其上的指令,該等指令在由處理器執行時使得該處理器執行上面的裝置及/或方法的操作。
以下揭示內容描述在撓性基板上形成至少兩個層的輥對輥真空沉積系統、計量系統及方法。某些細節被闡述在以下說明中及圖1-10中,以提供對本揭示內容的各種實施例的徹底瞭解。在以下揭示內容中不闡述描述通常與卷材塗覆、塗層計量系統、電化電池及二次電池相關聯的眾所周知的結構及系統的其他細節,以避免不必要地使各種實施例的說明變得模糊。
圖式中所示的許多細節、尺度、角度及其他特徵僅說明特定的實施例。因此,在不脫離本揭示內容的精神或範圍的情況下,其他的實施例可以具有其他的細節、部件、尺度、角度及特徵。此外,可以在沒有下面所描述的細節中的幾個細節的情況下實行本揭示內容的另外的實施例。
能量儲存元件(例如電池)一般包括正電極(由多孔分離器分離的陽極電極)及電解質(其用作離子傳導基質)。石墨陽極是目前最先進的技術,但是該行業正在從基於石墨的陽極轉向矽混合石墨陽極以增大電池能量密度。然而,矽混合石墨陽極經常遭受在第一次循環期間發生的不可逆的容量損失。因此,需要用於補充此種第一次循環容量損失的方法。此外,也考慮了鋰金屬陽極。然而,鋰金屬陽極存在許多安全性問題。
用於陽極預鋰化及固態金屬陽極保護的真空卷材塗覆涉及在雙側塗覆及壓延的合金型石墨陽極及集電器(例如六微米或更厚的銅箔、鎳箔或金屬化的塑膠卷材)上進行厚(三到二十微米)的金屬鋰沉積。預鋰化及固態金屬陽極卷材塗覆進一步涉及薄(例如小於1微米)的保護層塗覆。在沒有保護層塗覆的情況下,金屬鋰(經由熱蒸發或軋製的箔)表面容易受到不利的腐蝕及氧化。
在一些實施例中,提供了用於連續鋰離子電池(「LIB」)電動載具(「EV」)陽極預鋰化及消費電子(「CE」)固態金屬陽極保護的計量系統及處理方法。在一些實施例中,計量系統集成至少一個互補的非接觸式感測器以測量表面組成物、塗層厚度及奈米級粗糙度中的至少一者。計量系統及處理方法可以用來解決陽極邊緣品質的問題。計量系統及方法可以促進高品質及高產量的閉合迴路陽極預鋰化及陽極保護層沉積;EV合金型陽極預鋰化階段控制改進LIB庫侖效率;具有無針孔及電化活性保護層的CE陽極塗層防止枝狀晶體形成。
用於EV陽極預鋰化及CE固態金屬陽極保護的卷材塗覆一般涉及在雙側塗覆及壓延的合金型石墨陽極及集電器(例如六微米或更厚的銅箔、鎳箔或金屬化的塑膠卷材)上進行厚(例如三到二十微米)的金屬鋰沉積。EV及CE陽極卷材塗覆進一步地一般涉及薄(<1微米)的保護層塗覆。
塗覆在反應性金屬鋰塗層上的薄保護層難以使用常規的放射性同位素卷材計量來表徵,這種計量一般依賴基礎密度改變,因此對薄鋰膜相對較不敏感。例如,大於25 g/m 2的增益的氪-85放射性同位素源敏感度是最佳的;然而,二十微米厚的鋰塗層僅導致11 g/m 2的增益。進一步地,金屬鋰及保護層卷材塗層難以使用常規的薄膜石英晶體微量天平(QMB)、雷射三角測量法(例如Keyence和Micro-Epsilon LVDT干涉儀)及電容(例如渦電流感測器(ECS))來表徵。此外,常規的薄膜感測器僅提供全域參考值;讀數不能夠用來評估局部(卷材邊緣)膜組成物(例如表面污染),且容易由於不可避免的卷材顫動(其一般是由卷材的纏繞振動所造成的)而產生雜訊。
陰極懸凸部附近的陽極邊緣處的局部膜組成物是一個因素,它影響電池的效能。對於稜柱形及果凍卷電池而言,陽極的所有側面一般比陰極大大約0.5毫米,或沿著頂部及底部大大約0.1毫米。進一步地,沿著陽極邊緣的此「懸凸部」區域內的過量金屬鋰(經由旨在預鋰化的熱蒸發的金屬鋰)可能會造成重大的安全性危害,且可能會不利地危害電池效能。
除了配製具有高十到十五百分比的電化容量的陽極以外提供懸凸部(小至0.1毫米寬)是為了在電池充電及沿著集電器邊緣鍍覆的期間避免鋰離子從陰極遷移到陽極的風險。因此,鋰離子電池製造一般涉及對金屬鋰的量進行精確的製程控制,最終涉及在陽極塗層接近懸凸部邊緣的0.5到0.1毫米時的預鋰化階段控制。
在陽極懸凸部區域附近的夾層之前需要精確的金屬鋰塗覆的一個結果是,保護層的邊緣品質也受到類似的高度關注。例如,如果在初沉積的金屬鋰上對電化絕緣的保護層材料(例如碳酸鋰)進行表面轉換以最小化電池組裝期間的金屬鋰的空氣反應性,那麼驗證碳酸鹽保護層是否不會太厚就很重要。如果表面轉換的碳酸鋰太厚,則在懸凸部附近可能存在失效(dead)的鋰(例如鋰化合物)而不是金屬鋰。沿著陽極邊緣,失效的鋰是不合需要的,因為它可能引入枝狀晶體危害,這會使陽極預鋰化的技術-經濟動機落空。
如果將電化活性保護層材料(例如氟化鋰)塗覆在初沉積的金屬鋰上,以除了最小化電池組裝期間的金屬鋰的空氣反應性以外還最小化接觸電阻並改進電解質潤濕,那麼驗證氟化鋰保護層是否不會太粗糙就很重要。如果保護層太粗糙,那麼針孔、下伏的金屬鋰表面污染及其他不良的缺陷可能會出現在懸凸部附近。
因此,需要一種能夠精確地測量金屬鋰及保護層組成物、厚度不均勻性及粗糙度的計量系統。在沒有本文中所述的卷材邊緣計量系統的情況下,需要高成本的不合需要的試誤才能最佳化陽極邊緣品質。此外,鍳於需要進行昂貴的破壞性SEM橫截面分析,以及無法將每一輥上的高品質塗覆長度與「可重新加工」長度分開,基於塗層高混合陽極設計的收費塗層業務策略將是不可行的。
本文中所描述及論述的一些實施例改進了常規的輥對輥(「R2R」)計量。如上所述,放射性同位素及其他的感測器對於鹼金屬圖案化卷材的表徵的效用有限。也就是說,一些常規感測器的態樣是有用的,但需要克服特定的限制。
一種此類的感測器是線性可變差動轉換器(LVDT)感測器。LVDT感測器對雷射源、表面與接收器之間的飛行時間進行三角測量,然後將飛行時間與校準的塗層厚度相關聯。在電池塗層應用中,塗層厚度及均勻性通常是響應於實時卷材配方設定點與LVDT厚度測量之間的計算差異而調變的。
不幸的是,僅靠LVDT沉積厚度控制不足以進行陽極預鍍,因為LVDT感測器由於解析度低而不適合奈米級的粗糙度,也不適合偵測奈米級厚保護層或表面污染的存在。LVDT感測器更不適用於陽極預鋰化,因為已知沉積在矽陽極上的金屬鋰塗層會隨著金屬鋰塗層嵌入矽及石墨中而變得越來越薄;因此,單靠LVDT感測器不足以表徵預鋰化塗層。
此外,僅就金屬鋰層厚度而言,LVDT沉積厚度控制會受到由固有卷材顫動引起的測量雜訊的阻礙。測量雜訊可以通過數值方式進行補償,但同樣,高價值問題是陽極懸凸部附近的邊緣表徵,這通常比許多LVDT感測器的光點尺寸小(例如小於0.5毫米)。
本文中所描述及論述的一些實施例提供了使用發明性的基於光學及電容的計量系統來進行陽極邊緣處的0.5毫米懸凸部附近的卷材邊緣表徵,該等計量系統也受益於LVDT數值補償的厚度測量。
本文中所描述及論述的實施例可以包括以下優點中的一者或多者。可以將金屬鋰與包括保護層與污染的鋰化合物區分開來。在將金屬鋰及保護層塗層施加到預鋰化的陽極及鋰金屬陽極之後,可觀察到色彩改變。這些可由肉眼觀察到的色彩改變被發明人認為是使用寬波譜(例如頻閃燈)及窄帶(例如雷射光源)來進一步促進精確的非接觸式的基於光學的表徵的機會。
與其他電池設計相比,一些電池設計(例如快速充電的EV LIB)需要更多的矽,因此需要更多的鋰。也就是說,卷材邊緣附近的過量金屬鋰塗層及過保護存在安全性危害,並使陽極預鋰化的技術-經濟優勢消失。
本文中所描述及論述的實施例可以進一步包括以下優點中的一者或多者。可以驗證,過量的金屬鋰及失效鋰不會沿著陽極邊緣及EV陽極懸凸部出現。進一步地,可以偵測到塗層缺陷(例如不足夠的金屬鋰厚度或不足夠的保護層厚度),且卷材可以在第二次通過卷材塗覆器時重新加工以最小化廢料。此外,本文中所揭露的實施例還可以被調適為用於卷材的中心或者橫向及機器方向上的其他地方的覆面塗層表徵。例如,如果將光譜模組調整為檢視卷材的全部橫向寬度(例如相同數量的CMOS像素,但每個像素為毫米尺度),那麼可以使用光譜分析來偵測陽極上的鋰「飛濺物(splash)」。雖然飛濺物一般不能被重新加工,但是飛濺物及其他的缺陷可以被映射,使得卷材的較大部分的剩餘部分可以被人工挽救,這對於一些應用來說可能是可接受的。
對於CE LIB而言,一些用於成本不敏感的CE應用的電池設計採用了不適合EV應用的高純度的及外來的材料。CE陽極的保護層可以使用反應性化學物質來沉積(例如引火的及有毒的前驅物),以產生比單純最小化空氣反應性還更複雜的功能保護層(有時候是多層的)。對於這些正在開發的下一代保護層,本文中所描述及論述的光學元件的優點是能夠辨別卷材邊緣(及CE陽極懸凸部)附近的表面組成物及奈米級粗糙度。
如前所述,對於EV及CE LIB而言,在「夾在」基板與塗層的組合之間的鋰中可以觀察到色彩的改變。在一些實施例中,計量系統的光學元件被設計為偵測這些細微的色彩改變。本發明人認為,可觀察到的色彩改變(包括各種深淺不一的灰色及白色)是衡量卷材、製程及塗覆器健康的重要指標。例如,可觀察到的色彩改變可以藉由量化可見的膜轉變而有助於陽極開發及製造,這些轉變發生在塗覆之後,有時是幾小時到幾天到幾周之後,就在電池組裝及老化之前。
在一些實施例中,提供了用於連續鋰離子電池(「LIB」)陽極預鋰化及固態金屬陽極保護的計量系統及處理方法。計量系統包括各種模組及方法。
在一些實施例中,計量系統包括用於對初沉積的金屬鋰粗糙度、表面污染及/或保護層品質進行光譜(實時)分析的光譜計量系統。光譜計量系統可以包括一個或多個寬波譜光源。寬波譜光源用於區域性(例如圓形>Ø25 mm或矩形>25 mm寬)鏡面及波譜分析。鏡面及波譜分析可以沿著卷材邊緣集中進行。例如,如果陽極具有啟動-停止的間斷塗層,那麼寬波譜光源可以是恆定或頻閃的。
光譜計量系統可以進一步包括一個或多個影像感測器。該一個或多個影像感測器可以集中在由寬波譜光源所照射的區域內的LIB陽極上以偵測反射光發射。
光譜計量系統可以進一步包括影像感測器訊號處理器。影像感測器訊號處理器將鏡面強度轉換成校準的反射率值。例如,高的反射率可以指示「類似反射體」的金屬鋰飾面,且低的反射率可以指示「暗淡」的金屬鋰飾面。「類似反射體」的金屬鋰飾面可以是合乎需要的高金屬鋰純度的特徵,在這種情況下,在金屬鋰上方不存在不合需要的表面污染。較低的表面粗糙度可以是合乎需要的高金屬鋰沉積品質的特徵,在這種情況下,不存在小鋰離子簇凝聚及鋰的不合需要的「飛濺」或「重新熔化」。影像感測器元件也可以用來偵測邊緣尺度的漂移,例如平均直線度。影像感測器訊號處理可以用來將波譜發射特徵轉換成校準的保護層組成物。超出材料特定的建立的波譜製程控制極限的反射光的波長的偏差指示不利的保護層製程偏差。對控制器的計量系統反饋可以用來調整沉積參數。例如,如果偵測到低反射率值,則控制器記錄污染故障。污染故障可能是由真空漏氣、陽極脫氣或任何其他的氧、氫或氮(「O-H-N」)的來源引起的。計量系統反饋允許操作員停止或修改金屬鋰沉積製程以最小化浪費。如果波譜尖峰具有不同的強度(例如強度尖峰小於最小閾值,或者發生在不同的波長,例如尖峰「偏移」到小於最小波譜閾值極限或大於最大波長閾值極限),則控制器記錄保護層故障。保護層故障可能是由保護層材料源的耗盡引起的,例如氣體源或固體源耗盡、污染的金屬鋰上的沉積、不均勻(大鋰簇)的金屬鋰上的沉積或任何其他的保護層沉積製程窗偏差。計量系統反饋允許操作員調整或終止保護層沉積製程以最小化廢料。本文中所述的光譜計量可以用來監測反射體飾面及複合光譜色彩改變。進一步地,可以開發要對以作出製程調整或終止決策的材料特定波庫。
在一些實施例中,計量系統包括基於渦電流感測器(ECS)的計量系統,其用於監測初沉積的塗層厚度及保護層施加。計量系統可以進一步包括位移感測器。計量系統可以包括感測器佈置,其包括至少一對渦電流感測器,及位移感測器。位移感測器可以是線性可變差動轉換器(LVDT)輪廓儀厚度感測器。可以將感測器佈置定位在塗覆系統中以監測初沉積的金屬鋰及保護層塗層以決定金屬鋰厚度增益。從定位在卷材的塗覆的陽極部分上方的電容感測器的ECS訊號抵消或減去來自定位在卷材的未塗覆部分(例如裸銅)上方的ECS的訊號。以這種方式,僅考慮陽極塗層的電容(沒有銅箔)。訊號可以使用由LVDT輪廓儀所測得的升離距離來進一步校正卷材顫動。可以藉由跨卷材的寬度定位感測器來在橫向卷材方向上測量初沉積的金屬鋰儲層(reservoir)微米級厚度。取決於期望的測量,可以使用任何合適數量的感測器。例如,針對每個沉積源,可以將一組渦電流感測器及LVDT厚度感測器定位在沉積源之前及之後以提供橫向卷材方向上的金屬鋰厚度增益測量。在存在三個沉積源的一個示例中,可以將一組渦電流感測器及LVDT厚度感測器定位在沉積源之前及之後,一共六個感測器,這提供橫向卷材方向上三個金屬鋰厚度增益測量。
在對鋰離子嵌入有利的環境中在預定溫度下預鋰化之後,可以測量橫向卷材方向上的初沉積的金屬鋰儲層厚度微米級耗盡。測量金屬鋰儲層厚度微米級耗盡有助於決定何時沉積後續保護層。在預鋰化調節及儲層厚度微米級耗盡之前或之後施加保護層的一個優點是,產生失效鋰的可能性被最小化。由於金屬鋰嵌入到陽極中的過程緩慢,在金屬鋰嵌入之前施加保護層可能將金屬鋰捕集在表面上。因此,最好在金屬鋰儲層被可控制地穩定化或嵌入到陽極中之後施加保護層。
在一些實施例中,計量系統包括偏振結構光(PSL)產生器及影像感測器。可以將PSL產生器及影像感測器配置為用於監測金屬鋰邊緣清晰度。計量系統包括感測器佈置,其包括PSL產生器及影像感測器。感測器佈置可以集中在陽極的一個或多個邊緣上。可以將感測器佈置定位在金屬鋰及保護層塗覆源之後。PSL產生器可以將狹窄的光帶投射到三維陽極邊緣上。三維陽極邊緣附近的塗層一般具有固有的奈米級粗糙度,這導致反射的偏振光散射及消偏振。散射及消偏振的光由影像感測器記錄。使用兩個參考波與來自陽極的發射之間的對比來計算與偏振光源成比例的粗糙度。在一個示例中,偏振光源可以是雷射源,例如488奈米雷射源。
連續地或間歇地沿著卷材長度記錄近及遠的初沉積的金屬鋰幾何形狀。結構光可以藉由將視場收緊到邊緣(對於預鋰化的陽極而言不是在石墨階梯的內側就是在外側,對於鋰金屬陽極而言不是在純鋰階梯的內側就是在外側)來補充常規的雷射輪廓儀。可以與本文中所述的實施例一起使用的雷射輪廓儀的示例包括Keyence LJ-X8020(它可以測量7.5mm寬度內的陽極邊緣清晰度,且對於Z軸線及X軸線而言都具有0.3μm內的邊緣厚度(Z軸線)及直線度(X軸線)可重複性)及Keyence CL-PT010(它可以測量10mm寬度內的陽極邊緣清晰度,且對於兩個軸線而言都具有0.2 μm的邊緣厚度及直線度可重複性)。偏振結構光受益於使用常規輪廓儀來決定的鼓形跳動(runout)補償的厚度測量,並藉由提供陽極懸凸部附近的塗覆區域內部或外部的奈米級粗糙度來收緊視場。
對於預鋰化陽極而言,如果金屬鋰在漿鑄陽極塗層外側,則控制器記錄塗層故障。如果將感測點集中在軋製退火(RA)或電沉積(ED)的銅上,則可以偵測在漿鑄陽極外側的金屬鋰。對於鋰金屬陽極而言,如果金屬鋰在優選的塗層邊界之外,則控制器記錄塗層故障且可以終止處理。因為重新加工或移除優選的塗層覆蓋區域之外的金屬鋰塗層可能是有挑戰性的,所以控制器可以記錄塗層故障以促進挽救卷材的符合塗層規格的部分。
對於預鋰化的陽極及鋰金屬陽極而言,若優選的塗層邊界之內的金屬鋰品質太薄及/或太粗糙,則控制器可以記錄塗層故障並調整塗層配方。對於大多數PVD系統而言,邊緣清晰度是使用常規(加熱)的溫度受控的掩模襯墊來控制的。然而,若掩模襯墊太熱,則對邊緣的直接輻射會大於最佳值,金屬鋰塗層可能重新熔化,且表面粗糙度增大而整體厚度減小。因此,若PSL及輪廓儀指示高邊緣粗糙度或邊緣變薄,則可以對溫度受控的掩模進行主動流體冷卻或加熱器功率調變,以按比例減少掩模溫度。
對於預鋰化的陽極及鋰金屬陽極而言,若金屬鋰厚度太薄且平滑,則控制器可以記錄塗層故障並試圖調整塗層配方。對於大多數PVD系統而言,塗層厚度是由蒸氣源溫度、卷材速度及卷材間隙壓力所決定的。若卷材速度太高或蒸氣源溫度太低,則塗層可能太薄。因此,若PSL及輪廓儀指示低邊緣粗糙度且邊緣變薄,則可以增大蒸氣功率源及/或可以減小卷材速度。
注意,雖然可以在其上實行本文中所述的實施例的特定基板不受限制,但是在撓性基板(包括例如基於卷材的基板、面板及離散片)上實行實施例特別有益。基板也可以呈箔、膜或薄板的形式。
這裡也注意,本文中所述的實施例內所使用的撓性基板或卷材一般可以被表徵為是可彎曲的。可以與用語「條帶」或用語「撓性基板」同義地使用用語「卷材」。例如,本文中的實施例中所描述的卷材可以是箔。
進一步注意,在基板是垂直定向的基板的一些實施例中,垂直定向的基板可以相對於垂直面成角度。例如,在一些實施例中,基板可以相對於垂直面成約1度到約20度的角度。在基板是水平定向的基板的一些實施例中,水平定向的基板可以相對於水平面成角度。例如,在一些實施例中,基板可以相對於水平面成約1度到約20度的角度。如本文中所使用的,用語「垂直」被界定為相對於水平線垂直的撓性導電基板的主表面或沉積表面。如本文中所使用的,用語「水平」被界定為相對於水平線平行的撓性導電基板的主表面或沉積表面。
進一步注意,在本揭示內容中,可以將「輥」或「滾筒」瞭解為一種元件,其提供表面,基板(或基板的一部分)可以在處理系統中存在基板的期間與該表面接觸。如本文中所指稱的「輥」或「滾筒」的至少一部分可以包括類似圓形的形狀以供接觸待處理或已處理的基板。在一些實施例中,「輥」或「滾筒」可以具有圓柱形或實質圓柱形的形狀。實質圓柱形的形狀可以圍繞直線的縱軸線形成,或者可以圍繞彎曲的縱軸線形成。依據一些實施例,如本文中所述的「輥」或「滾筒」可以被調適為用於與撓性基板接觸。例如,如本文中所指稱的「輥」或「滾筒」可以是:引導滾筒,被調適為在基板被處理的同時(例如在沉積製程期間)或在基板存在於處理系統中的同時引導基板;展延器滾筒,被調適為用於為要塗覆的基板提供界定的張力;偏轉滾筒,用於依據界定的行進路徑偏轉基板;處理滾筒,用於在處理期間支撐基板,例如製程鼓,例如塗覆滾筒或塗覆鼓;調整滾筒、供應輥、捲取輥等等。如本文中所述的「輥」或「滾筒」可以包括金屬。在一或更多個實施例中,滾筒元件的與基板接觸的表面可以被調適為用於要塗覆的相應基板。進一步地,要瞭解,依據一些實施例,可以將如本文中所述的滾筒安裝到低摩擦滾筒軸承,特別是具有雙軸承滾筒架構的低摩擦滾筒軸承。因此,可以實現如本文中所述的運輸佈置的滾筒平行度,且可以消除基板運輸期間的橫向基板「漂移」。
圖1示出依據本文中所述的一個或多個實施例形成的撓性層堆疊100的一個示例的示意橫截面圖。撓性層堆疊100可以由條塗製程所形成。撓性層堆疊100可以使用本文中所述的計量系統來形成。撓性層堆疊100可以是鋰金屬陽極結構。圖1中所示的撓性層堆疊100包括連續撓性基板110,複數個膜堆疊112a-d(統稱112)形成在連續撓性基板110上。每個膜堆疊112a-d界定一個條帶,其與由相鄰的膜堆疊112a-d所形成的條帶分離。例如,第一膜堆疊112a界定第一沉積材料條帶,第二膜堆疊112b界定第二沉積材料條帶,第三膜堆疊112c界定第三材料條帶,且第四膜堆疊112d界定第四材料條帶。膜堆疊112a-d的圖案留下沿著連續撓性基板110的近邊緣113暴露的連續撓性基板110的未塗覆條帶、沿著連續撓性基板110的遠邊緣117的未塗覆條帶及界定在第一沉積材料條帶112a與第二沉積材料條帶112b之間的未塗覆條帶115。
每個膜堆疊112a-d包括第一層120a-d(統稱120)及第二層130a-d。雖然在圖1中將撓性層堆疊100示為連續撓性基板110的每一側有兩個層,但本領域中的通常技術人員將瞭解,撓性層堆疊100也可以包括更大或更小數量的層,該等層可以被提供在圖1中所示的連續撓性基板110、第一層120及/或第二層130上方、下方及/或之間。雖然示為雙側結構,但本領域中的通常技術人員將瞭解,撓性層堆疊100也可以是具有連續撓性基板110、第一層120及第二層130的單側結構。
依據本文中所述的一些示例,連續撓性基板110可以包括第一材料,及/或第一層120可以包括第二材料。進一步地,第二層130可以包括第三材料。例如,第一材料可以是導電材料,一般是金屬,例如銅(Cu)或鎳(Ni)。而且,連續撓性基板110還可以包括一個或多個子層。第二材料可以是低熔點金屬,例如鹼金屬,例如鋰。第三材料可以是可操作來保護低熔點金屬的保護膜或夾層膜。
一般而言,在稜柱形電池中,耳片由與集電器相同的材料所形成,且可以在堆疊的製造期間形成,或在之後添加。在一些實施例中,如圖1中所示,集電器延伸到膜堆疊之外,且集電器延伸到堆疊之外的部分可以用作耳片。例如,沿著連續撓性基板110的近邊緣113暴露的連續撓性基板110的未塗覆條帶、沿著連續撓性基板110的遠邊緣117的未塗覆條帶及界定在第一膜堆疊112a與第二膜堆疊112b之間的未塗覆條帶115中的任一者可以用來形成耳片。
依據本文中所述的一些示例,連續撓性基板110的厚度可以等於或小於約25 μm,一般等於或小於20 μm,具體等於或小於15 μm,及/或一般等於或大於3 μm,具體等於或大於5 μm。連續撓性基板110可以厚到足以提供預期的功能,且可以薄到足以保持撓性。具體而言,連續撓性基板110可以儘可能地薄,使得連續撓性基板110仍然可以提供其預期功能。
依據本文中所述的一些示例,第一層120的厚度可以等於或小於10 μm,一般等於或小於8 μm,有益地等於或小於7 μm,具體等於或小於6 μm,特別是等於或小於5 μm。依據一些示例,第一層120的厚度可以等於或小於4 μm,或等於或小於3 μm,或等於或小於2 μm。
依據本文中所述的一些示例,第二層130的厚度可以等於或小於10 μm,一般等於或小於8 μm,有益地等於或小於7 μm,具體等於或小於6 μm,特別是等於或小於5 μm。依據一些示例,第二層130的厚度可以等於或小於4 μm,或等於或小於3 μm,或等於或小於2 μm。
圖1中所示的撓性層堆疊100可以例如是二次電池的負電極,例如鋰電池的負電極或陽極。依據本文中所述的一些示例,鋰電池的撓性負電極包括連續撓性基板110,連續撓性基板110可以是包括銅的集電器,且厚度等於或小於10 μm,一般等於或小於8 μm,有益地等於或小於7 μm,具體等於或小於6 μm,特別是等於或小於5 μm。撓性負電極進一步包括第一層120及第二層130,第一層包括鋰,且厚度等於或大於5 μm及/或等於或小於15 μm,第二層130包括厚度等於或大於5 μm及/或等於或小於15 μm的保護膜。
圖2示出依據本文中所述的一個或多個實施例形成的撓性層堆疊200的另一個示例的示意橫截面圖。撓性層堆疊200與圖1中所描繪的撓性層堆疊100類似。撓性層堆疊200可以由條塗製程所形成。撓性層堆疊200可以使用本文中所述的計量系統來形成。撓性層堆疊200可以是預鋰化的陽極結構。圖2中所示的撓性層堆疊200包括連續撓性基板110,複數個膜堆疊212a-d(統稱212)形成在連續撓性基板110上。每個膜堆疊212a-d界定一個條帶,其與由相鄰的膜堆疊212a-d所形成的條帶分離。每個膜堆疊212a-d進一步包括第三層210a-d(統稱210),第三層210a-d被夾在連續撓性基板110與第一層120之間。第三層210可以包括第四材料。第三層210的厚度可以為約10 μm到約200 μm(例如從約1 μm到約100 μm;從約10 μm到約30 μm;從約20 μm到約30 μm;從約1 μm到約20 μm;或從約50 μm到約100 μm)。第四材料可以包括由石墨、矽、含矽石墨、鋰金屬、鋰金屬箔或鋰合金箔(例如鋰鋁合金)或鋰金屬及/或鋰合金與諸如碳(例如焦炭、石墨)、鎳、銅、錫、銦、矽、上述項目的氧化物之類的材料的混合物或上述項目的組合構成的陽極材料。第四材料可以進一步包括黏合材料。例如,第一材料可以是導電材料,一般是金屬,例如銅(Cu)或鎳(Ni)。第四材料可以是石墨、矽或含矽石墨。第二材料可以是低熔點金屬,例如鹼金屬,例如鋰。第三材料可以是可操作來保護低熔點金屬的保護膜或夾層膜。
圖3示出依據本文中所描述及論述的一個或多個實施例併入一個或多個計量模組的撓性基板塗覆系統300的示意側視圖。撓性基板塗覆系統300包括第一計量模組370及可選的第二計量模組380。第一計量模組370可以是光譜計量模組、基於電容的計量模組或厚度計量模組中的至少一者。第二計量模組380可以是光譜計量模組、基於電容的計量模組或厚度計量模組中的至少一者。在一個示例中,第一計量模組370是厚度計量模組,且第二計量模組380是光譜計量模組。厚度計量模組可以被配置為測量連續撓性基板上沉積的材料的厚度。光譜計量模組可以被配置為測量表面粗糙度、表面污染及保護層品質中的至少一者。
撓性基板塗覆系統300可以是由應用材料公司所製造的SMARTWEB®系統,其被調適為用於依據本文中所述的實施例製造含鋰陽極膜堆疊。撓性基板塗覆系統300可以用於製造含鋰陽極,特別是用於含鋰陽極的膜堆疊,例如撓性層堆疊100及撓性層堆疊200。撓性基板塗覆系統300包括共同處理環境301,用於製造含鋰陽極的處理動作中的一些或全部可以在共同處理環境301中執行。在一個示例中,共同處理環境301可操作為真空環境。在另一個示例中,共同處理環境301可操作為惰性氣體環境。
撓性基板塗覆系統300被構成為輥對輥系統,其包括用於供應連續撓性基板的展開模組302、用於處理連續撓性基板的處理模組304及用於收集連續撓性基板的纏繞模組308。處理模組304包括界定共同處理環境301的腔室主體305。
在一些實施例中,處理模組304包括依序佈置的複數個處理模組或子腔室310、320、330,其各自被配置為對連續撓性基板110或材料卷材執行一個處理操作。在一個示例中,如圖3中所描繪,子腔室310、320、330圍繞塗覆鼓355徑向地設置。此外,還考慮徑向以外的佈置。例如,在另一個實施例中,子腔室310、320、330可以以線性配置定位。子腔室310、320、330由分隔壁312a-312d(統稱312)分離。例如,第一子腔室310由分隔壁312a及312b所界定,第二子腔室320由分隔壁312b及312c所界定,且第三子腔室330由分隔壁312c及312d所界定。在一個示例中,除了狹窄的弧狀間隙以外,子腔室310、320、330由分隔壁312封閉。雖然子腔室310、320、330各自被描繪為具有單個沉積源,但每個子腔室310-330也可以被分成兩個或更多個隔室,每個隔室包括單獨的沉積源。除了允許在塗覆鼓355上沉積的狹窄開口以外,隔室相對於相鄰的隔室可以是封閉或隔離的。
在一些實施例中,子腔室310、320、330是獨立模組化子腔室,其中每個模組化處理腔室在結構上與其他模組化子腔室分離。因此,可以獨立地佈置、重新佈置、替換或維護獨立模組化子腔室中的每一者而不會影響彼此。雖然示出了三個子腔室310、320、330,但應瞭解,撓性基板塗覆系統300中可以包括任何數量的子腔室。
子腔室310、320、330可以包括任何合適的結構、配置、佈置及/或部件,其允許撓性基板塗覆系統300依據本文中所描述及論述的實施例沉積含鋰陽極膜堆疊。例如,但不限此,子腔室可以包括合適的沉積系統,其包括塗覆源、電源、個別的壓力控制、沉積控制系統及溫度控制。在一些實施例中,子腔室310、320、330被提供為具有個別的氣體供應器。如本文中所述,子腔室310、320、330一般彼此分離以供提供良好的氣體分離。雖然描繪了三個子腔室310、320、330,但應瞭解,取決於處理需要,處理模組304可以包括任何數量的子腔室。例如,撓性基板塗覆系統300可以包括但不限於3、6或12個子腔室。
子腔室310、320、330中的每一者可以包括一個或多個沉積源。例如,第一子腔室310包括第一沉積源313,第二子腔室320包括第二沉積源315,且第三子腔室330包括第三沉積源317。一般而言,如本文中所述的該一個或多個沉積源包括電子束源及附加源,該等附加源可以選自CVD源、PECVD源及各種PVD源的群組。示例性PVD源包括濺射源、電子束蒸發源及熱蒸發源。在一或更多個實施例中,蒸發源是鋰(Li)源。進一步地,蒸發源也可以是兩種或更多種金屬的合金。可以將要沉積的材料(例如鋰)提供在坩堝中。可以例如藉由熱蒸發技術或藉由電子束蒸發技術來將鋰蒸發。
在一個示例中,第一沉積源313是濺射源,第二沉積源315是電子束蒸發源,且第三沉積源317是熱蒸發源。
在一些實施例中,子腔室310、320、330被配置為處理連續撓性基板110的兩側。雖然撓性基板塗覆系統300被配置為處理水平定向的連續撓性基板110,但撓性基板塗覆系統300也可以被配置為處理以不同定向定位的基板,例如,連續撓性基板110可以是垂直定向的。在一些實施例中,連續撓性基板110是撓性導電基板。在一些實施例中,連續撓性基板110包括在其上形成有一個或多個層的導電基板。在一些實施例中,導電基板是銅基板。
在一些實施例中,撓性基板塗覆系統300包括基板運輸佈置352。基板運輸佈置352可以包括任何能夠將連續撓性基板110移過子腔室310、320、330的傳輸機構。基板運輸佈置352可以包括卷對卷(reel-to-reel)系統,該卷對卷系統具有定位在纏繞模組308中的共同捲取捲軸354、定位在處理模組304中的塗覆鼓355及定位在展開模組302中的饋送捲軸356。捲取捲軸354、塗覆鼓355及饋送捲軸356可以被個別加熱。捲取捲軸354、塗覆鼓355及饋送捲軸356可以使用定位在每個捲軸內的內部熱源或者外部熱源來個別加熱。基板運輸佈置352可以進一步包括定位在捲取捲軸354、塗覆鼓355與饋送捲軸356之間的一個或多個輔助傳輸捲軸353a、353b。依據一個態樣,該一個或多個輔助傳輸捲軸353a、353b、捲取捲軸354、塗覆鼓355及饋送捲軸356中的至少一者可以由馬達驅動及旋轉。
在一些實施例中,第一計量模組370定位在該複數個子腔室310、320、330的下游及捲取捲軸354的上游。在一些實施例中,如圖3所描繪,第一計量模組370定位在處理模組304中。也考慮用於第一計量模組370的其他位置。在一個示例中,可以將第一計量模組370定位在纏繞模組308中。在另一個示例中,第一計量模組370定位在單獨的模組中,且該單獨的模組定位在處理模組304與纏繞模組308之間。
在一些實施例中,第二計量模組380定位在該複數個子腔室310、320、330的下游及捲取捲軸354的上游。在一些實施例中,如圖3所描繪,第二計量模組380定位在處理模組304中。也考慮用於第二計量模組380的其他位置。在一個示例中,可以將第二計量模組380定位在纏繞模組308中。在另一個示例中,第二計量模組380定位在單獨的模組中,且該單獨的模組定位在處理模組304與纏繞模組308之間。
撓性基板塗覆系統300包括饋送捲軸356及捲取捲軸354以供將連續撓性基板110移過不同的子腔室310、320、330。操作時,如由箭頭309所示的基板行進方向所指示地從饋送捲軸356展開連續撓性基板110。可以經由該一個或多個輔助傳輸捲軸353a、353b引導連續撓性基板110。也有可能,藉由一個或多個基板引導控制單元(未示出)來引導連續撓性基板110,該一個或多個基板引導控制單元應例如藉由微調連續撓性基板110的定向來控制連續撓性基板110的正確運行。
在從饋送捲軸356展開及在輔助傳輸捲軸353a上運行之後,連續撓性基板110接著被移過提供在塗覆鼓355處且與該一個或多個沉積源313、315及317的位置對應的沉積區域。在經過該一個或多個沉積源313、315及317之後,處理的連續撓性基板110接著經過第一計量模組370及第二計量模組380,在那裡,可以決定沉積的材料的厚度及品質。
在操作期間,塗覆鼓355圍繞軸線351旋轉,使得撓性基板在由箭頭309所代表的行進方向上移動。
撓性基板塗覆系統300進一步包括可操作來控制撓性基板塗覆系統300的各種態樣的系統控制器360。系統控制器360促進對撓性基板塗覆系統300的控制及自動化,且可以包括中央處理單元(CPU)、記憶體及支援電路(或I/O)。軟體指令及資料可被編碼及儲存在記憶體內以供指示CPU。系統控制器360可以經由例如系統匯流排來與撓性基板塗覆系統300的部件中的一者或多者通訊。由系統控制器360可讀取的程式(或電腦指令)決定哪些任務在基板上可執行。在一些態樣中,程式是由系統控制器360可讀取的軟體,其可以包括用來控制多段環的移除及替換的代碼。雖然示出單個系統控制器(系統控制器360),但應理解,也可以將多個系統控制器與本文中所述的態樣一起使用。
圖4示出依據本文中所描述及論述的一個或多個實施例併入第二計量模組380的圖3的撓性基板塗覆系統300的一部分的透視圖。第二計量模組380可以用在撓性基板塗覆系統300中。第二計量模組380被描繪為與撓性基板塗覆系統300的塗覆鼓355及第三子腔室330相鄰,連續撓性基板110被設置在塗覆鼓355上。雖然被描繪為是撓性基板塗覆系統300的一部分,但第二計量模組380也可以與其他的塗覆系統一起使用。
在一些實施例中,第三子腔室330由子腔室主體420所界定,邊緣屏蔽件430或掩模定位在子腔室主體420上方。第三子腔室330包括複數個第三沉積源317a-317d(統稱317)。第三沉積源317a-317d中的每一者發射蒸發材料418a-418d(統稱418)的羽流,該等羽流被抽吸到連續撓性基板110,在那裡,沉積材料440的圖案化膜形成於連續撓性基板110上。邊緣屏蔽件430包括一個或多個孔,其界定沉積於連續撓性基板110上的蒸發材料的圖案。在一個示例中,邊緣屏蔽件430包括兩個孔432a、432b(統稱432)。如圖4中所描繪,邊緣屏蔽件430界定連續撓性基板110上的沉積材料440的圖案化膜。沉積材料440的圖案化膜包括第一沉積材料條帶442a及第二沉積材料條帶422b,它們都在連續撓性基板110的由箭頭309所示的基板行進方向上延伸。邊緣屏蔽件430留下沿著連續撓性基板110的近邊緣443的未塗覆條帶、沿著連續撓性基板110的遠邊緣445的未塗覆條帶及界定在第一沉積材料條帶442a與第二沉積材料條帶442b之間的未塗覆條帶447。在一個示例中,第一孔432a界定第一沉積材料條帶442a,且第二孔432b界定第二沉積材料條帶442b。
第二計量模組380包括設置在第一模組主體460中的複數個非接觸式感測器462a-462c。在一些實施例中,如圖4中所描繪,該複數個非接觸式感測器462a-462c沿著由箭頭450所代表的橫向方向並排定位,該橫向方向與由箭頭309所代表的行進方向垂直。沿著由箭頭450所代表的橫向方向定位該複數個非接觸式感測器462a-462c允許感測器跨連續撓性基板110的寬度進行監測。該複數個非接觸式感測器462a-462c可以包括任何數量的影像感測器、渦電流感測器(ECS)及/或厚度感測器。
圖5描繪依據本文中所描述及論述的一個或多個實施例的光譜計量模組500。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中採用光譜計量模組500。在一個示例中,光譜計量模組500定位在由第一計量模組370所佔據的位置中。在另一個示例中,光譜計量模組500定位在由第二計量模組380所佔據的位置中。
光譜計量模組500包括感測器佈置505。感測器佈置505可以定位在由殼體572所界定的大氣隔室570中,如圖5中所示。殼體572包括至少一個窗口510a、510b及510c(統稱510)。雖然示出三個窗口510a、510b、510c,但應瞭解,也可以使用多於三個或少於三個的窗口510。窗口510的數量一般與感測器佈置505內的非接觸式感測器的數量對應。窗口510可以由任何合適的材料組成,該材料可以耐得住塗覆系統內的處理化學物質以及允許光學感測器監測沉積材料。大氣隔室570可以被調整尺寸為配合在塗覆系統(例如撓性基板塗覆系統300)內。
在一些實施例中,感測器佈置505包括頻閃燈503,以及光學件501a、501b及501c(統稱501)的不同集合。雖然示出三個光學件501a、501b及501c集合,但應瞭解,也可以使用多於三個或少於三個的光學件集合。每個光學件501集合包括透鏡502、分束器504、聚集透鏡506及準直透鏡508。光學件501a、501b、501c定位在連續撓性基板110的不同位置上方以分別捕捉單獨的二維影像522a、522b、522c。感測器佈置505進一步包括光譜繞射光柵512或稜鏡,其用作波長分散元件。光通道元件516的陣列514將由透鏡508所形成的影像的個別影像元素(像素)映射到沿著光譜繞射光柵512的線性狹縫520的相應位置。如下面將描述的,光通道元件516的陣列514可以以各種方式實施,例如一束光纖纜線(在該情況下,每個光通道元件516是光纖)或微透鏡陣列(在該情況下,光通道元件516是微透鏡)。在圖5中所示出的實施例中,陣列514將來自連續撓性基板110的包括影像元素523a、523b、523c(統稱523)的陣列的二維影像522沿著線性狹縫520映射成有序影像元素線。每個影像元素523由光通道元件516中一個對應的光通道元件所捕捉。
在一些實施例中,諸如電荷耦合元件(CCD)陣列之類的成像器陣列530捕捉由光譜繞射光柵512所形成的光譜影像。表示為透鏡組件532的透鏡組件將來自光譜繞射光柵512的光聚焦到成像器陣列530上。成像器陣列530上的影像依據行索引號碼「i」在像素536的行534中排序,每個行534由光通道元件516中一個相應的光通道元件的光所形成。如圖5中所指示,每個行534的個別像素536按波長λ增大的順序對準。因此,捕捉的二維影像522中的每個影像元素523被映射到成像器陣列530上的像素536的行534,每個行534構成一個影像元素523的光譜影像。在圖5的實施例中,陣列514中有三列光通道元件516(標記為ROW1、ROW2及ROW3),其面向透鏡508,且透鏡組件532聚焦光,使得三個列跨成像器陣列530從左到右依序排序,每個影像元素523被映射到成像器陣列530上的一個波長分散行。保持在成像器陣列530中的影像資料被供給到影像處理器550,影像處理器550可以是系統控制器360的一部分。影像處理器550根據資料推斷光通道元件516中的哪些光通道元件僅對準在連續撓性基板110的感興趣的同質區域上,並組合它們的輸出以產生增強的波譜。可以是系統控制器360的一部分的波譜分析處理器560分析增強的波譜以提供對連續撓性材料片的該同質區域的特性(例如膜厚度)的測量。
如圖5中所描繪,不同的光通道元件516列(標記為ROW1、ROW2及ROW3)分別單獨耦接到不同的光學件501a、501b、501c集合。光學件501a、501b、501c定位在連續撓性基板110的不同位置上方以分別捕捉單獨的二維影像522a、522b、522c。共同頻閃燈503照射光學件501a、501b及501c。圖5的實施例可以用來在連續撓性基板110的不同間隔的區域中進行同時測量。
圖6示出依據本文中所描述及論述的一個或多個實施例的處理序列600的流程圖。處理序列600可以使用光譜計量模組(例如圖5中所描繪的光譜計量模組500)來執行。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中定位光譜計量模組500。
在操作610處,在將連續撓性基板110傳輸過感測器佈置505的期間,頻閃燈503在界定的視場中閃爍一次。在操作620處,記錄視場內的每個影像元素處的生成的波譜分佈。在操作630處,比較每個分佈對以決定它們是否類似。相似性的決定可以基於常規的計算,例如均方差、絕對差總和或方差總和。然後,處理器將該等分佈分組成互相類似的分佈的群組。接下來,按每個群組中所包含的分佈的數量分類群組。在操作640處,驗證n個最大的群組,其中n是視場內的連續撓性材料片的內部均勻區域的數量,或小於該數量的數量。在一個示例中,每當兩個分佈之間的方差的總和小於預定閾值,就可以在操作630處推論任該兩個分佈之間存在相似性。可以在試誤程序中變化此預定閾值,直到在操作630處所找出的群組數量(n)與感測器的視場內的同質區域的數量匹配為止。在操作650處,處理器使未在操作630處被驗證的群組無效,並丟棄它們的分佈。在操作660處,針對有效群組中的每個有效群組,處理器將該群組的分佈組合在一起,並輸出組合分佈作為連續撓性材料片的對應區域的波譜分佈。在操作670處,波譜分析處理器560依據常規的波譜分析過程處理每個組合分佈。然後,可以報告沉積的膜的品質。
光譜計量模組500可以用來偵測沉積材料中的色彩改變。在將金屬鋰及保護層塗層施加到預鋰化的陽極及鋰金屬陽極之後,可觀察到這些色彩改變。因此,色彩改變可以用來進一步促進精確的非接觸式的基於光學的表徵。
圖7示出依據本文中所描述及論述的一個或多個實施例的渦電流感測器(ECS)模組700。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中採用ECS模組700。在一個示例中,ECS模組700定位在由第一計量模組370所佔據的位置中。在另一個示例中,ECS模組700定位在由第二計量模組380所佔據的位置中。
ECS模組700包括感測器佈置706。感測器佈置706可以定位在由殼體772所界定的大氣隔室770中,如圖7中所示。殼體772包括至少一個窗口780a、780b(統稱780)。雖然示出兩個窗口780a、780b,但應瞭解,也可以使用多於兩個或少於兩個的窗口780。窗口780的數量一般與感測器佈置706內的非接觸式感測器的數量對應。窗口780可以由任何合適的材料組成,該材料可以耐得住塗覆系統內的處理化學物質以及允許光學感測器監測沉積材料。大氣隔室770可以被調整尺寸為配合在塗覆系統(例如撓性基板塗覆系統300)內。
ECS模組700一般依據法拉第感應定律及冷次定律操作。感測器佈置706至少包括一對ECS感測器710a、710b(統稱710)。在一些實施例中,第一ECS感測器710a定位在形成於基板704上的膜材料702上方,且第二ECS感測器定位在基板704上方。在一個示例中,膜材料702包括其上形成有薄鋰金屬層的陽極材料。在另一個示例中,膜材料702是鋰金屬陽極。在一個示例中,基板704是連續撓性基板110。
每個ECS感測器710a、710b具有線圈712a、712b(統稱712)及諸如交流電流(AC)訊號源之類的訊號振盪器714a、714b(統稱714)。AC驅動線圈與諸如膜材料702或基板704之類的導電物體之間藉由在該物體內部產生渦電流進行的電磁交互作用一般受到多個變數的影響。這些變數包括線圈到樣本的距離、線圈驅動訊號的AC頻率、線圈幾何形狀及尺度、物體的材料的導電率及在膜樣本的情況下的膜厚度,特別是在厚度小於電磁場的穿透深度的那些實例中。在涉及膜厚度測量的典型應用中,頻率、線圈幾何形狀及尺度以及膜導電率通常不變。其結果是,距離及膜厚度的變數通常是影響線圈-樣本交互作用的主要變數。
在一些實施例中,線圈712及訊號振盪器714由控制器(例如系統控制器360)所控制。在圖7的示出的實施例中,線圈712可以由訊號振盪器714例如以1 kHz到10 MHz的範圍中的頻率驅動。然而,應理解,所利用的特定頻率可以取決於特定應用,包括膜厚度範圍、材料性質、升離距離限制等等。
由振盪的訊號振盪器714來驅動的線圈712產生振盪磁場,其在鄰近的導電材料(例如膜材料702或基板704)內部感應圓形電流。誘發的渦電流轉而產生它們自己的磁場,該等磁場與由線圈712所產生的磁場相反。應理解,除了導電金屬膜以外,ECS模組還可以與其他的導電膜一起使用。
產生的磁場與感應的磁場之間的交互作用變更線圈712的複阻抗。複阻抗的變更可以由耦接到線圈712且由系統控制器360所控制的感測電路716a、716b(統稱716)所偵測到。在此示例中,感測電路716輸出諸如電阻損耗之類的單個參數輸出訊號「S」,作為變更的複阻抗的函數。應理解,取決於特定應用,ECS模組700可以具有其他類型的單個及多個參數感測電路。感測電路716的輸出「S」可以被處理器740或由系統控制器360所控制的其他計算元件解譯以提供對膜材料702的有用測量。輸出S可以呈類比或數位形式。若呈類比形式,則處理器740可以包括合適的類比轉數位轉換電路系統。在一些實施例中,以毫伏為單位測量電阻損耗訊號。應理解,取決於特定應用,可以利用其他的測量單位。處理器740可以是系統控制器360的一部分。
線圈712的複阻抗變更的程度一般是由膜材料702中的渦電流所感應的磁場的強度的函數。反過來,感應的渦電流720的強度是膜材料702的導電率及線圈712與膜材料702的材料之間的升離距離「L」的函數。在膜材料702的膜厚度T(如由箭頭所指示)小於訊號振盪器714的驅動頻率下外部磁場的穿透深度時,感應的渦電流也是材料膜厚度T的函數。
依據本說明的一個態樣,諸如升離距離L及膜材料702的膜厚度「T」之類的至少兩個未知值可以藉由將感測電路716的訊號「S」輸出與由ECS模組700的校準生成的先前獲得的校準資料進行比較來決定。
ECS模組700可以進一步包括至少一個雷射輪廓儀790。在圖7的實施例中,雷射輪廓儀790定位在殼體772內。雷射輪廓儀790的掃描場由箭頭794所描繪。在另一個實施例中,雷射輪廓儀790定位在殼體772外部。雷射輪廓儀790可以是LVDT輪廓儀厚度感測器。雷射輪廓儀790可以用來測量卷材的升離距離。來自雷射輪廓儀790的訊號792可以被傳送到處理器740。由雷射輪廓儀790所測得的升離距離可以用來校正移動連續撓性基板110的卷材顫動。
圖8示出依據本文中所描述及論述的一個或多個實施例的處理序列800的流程圖。處理序列800可以使用計量模組(例如圖7中所描繪的ECS模組700)來執行。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中定位ECS模組700。
在操作810處,在連續撓性基板110被傳輸過感測器佈置706的期間,對形成在連續撓性基板110上方的鋰塗層進行非接觸式電阻率測量。在一個示例中,鋰塗層可以是鋰金屬陽極,例如圖1中所描繪的撓性層堆疊100的第一層120。在另一個示例中,鋰塗層可以是預鋰化層,例如圖2中所描繪的撓性層堆疊200的第一層120。在操作820處,在電阻率測量期間進行非接觸式雷射干涉測量。雷射干涉測量用來調整兩個線圈的升離距離,從而校正連續撓性基板110的卷材顫動。雷射干涉測量可以使用雷射輪廓儀790來進行。在操作830處,使用電阻率測量的值以及電阻率測量值與進一步使用雷射干涉測量被校正卷材顫動的鋰塗層的電阻厚度之間的先前決定的相關性來決定塗層的第一鋰厚度。在操作840處,重新纏繞連續撓性基板110,然後保持住以進行被動或主動老化。在操作850處,在連續撓性基板110經過感測器的纏繞期間,重複非接觸式電阻率測量及雷射干涉測量,並決定第二鋰厚度。第二鋰厚度也可以使用雷射干涉測量來校正升離。在操作860處,將第二鋰厚度與第一鋰厚度進行比較,以決定嵌入到陽極中的鋰的量。
圖9示出依據本文中所描述及論述的一個或多個實施例的粗糙度計量模組900。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中採用粗糙度計量模組900。在一個示例中,粗糙度計量模組900定位在由第一計量模組370所佔據的位置中。在另一個示例中,粗糙度計量模組900定位在由第二計量模組380所佔據的位置中。
在一些實施例中,粗糙度計量模組900基於邁克生干涉儀設計。粗糙度計量模組900包括感測器佈置901。感測器佈置901可以定位在由殼體904所界定的大氣隔室902中,如圖9中所示。殼體904包括至少一個窗口906。雖然示出一個窗口906,但應瞭解,也可以使用多於一個的窗口906。窗口906的數量一般與感測器佈置901內的非接觸式感測器的數量對應。窗口906可以由任何合適的材料組成,該材料可以耐得住塗覆系統內的處理化學物質以及允許光學感測器監測沉積材料。大氣隔室902可以被調整尺寸為配合在塗覆系統(例如撓性基板塗覆系統300)內。
在一些實施例中,粗糙度計量模組900被定位為獲得形成於基板704上的膜材料702的影像。在一個示例中,膜材料702包括其上形成有薄鋰金屬層的陽極材料。在另一個示例中,膜材料702是鋰金屬陽極。在一個示例中,基板704是連續撓性基板110。感測器佈置901可以集中在膜材料702的一個或多個邊緣705上。感測器佈置901可以定位在金屬鋰及塗覆系統中的保護層塗覆源之後。
在一些實施例中,感測器佈置901包括更多偏振結構光(PSL)源910中的一者,其可以將窄光帶投射到膜材料702的三維邊緣705(例如三維陽極邊緣)上。三維邊緣705附近的塗層一般具有固有的奈米級粗糙度,這導致反射的偏振光散射及消偏振。散射及消偏振的光由影像感測器940記錄。使用兩個參考波與來自膜材料702的發射之間的對比來計算與偏振光源成比例的粗糙度。在一個示例中,偏振結構光源910可以是雷射源,例如488奈米雷射源。
在一些實施例中,粗糙度計量模組900包括用於產生輸入光束的偏振結構光源910、分束器920及影像感測器940。在一個示例中,偏振結構光源910是氬雷射源。可以使用其他合適的光源。在一個示例中,影像感測器940是二維(2D)偵測器,例如CCD或CMOS攝影機。可以使用其他合適的2D偵測器。在一些實施例中,偏振器912可以定位在偏振結構光源910的輸出處以提供線性偏振束。粗糙度計量模組900進一步包括分束器920。來自偏振結構光源910的輸入光束在通過可選的偏振器912及分束器920之後照射粗糙的表面(例如膜材料702的表面703)。輸入光束撞擊粗糙表面,且散射光因為粗糙表面的粗糙度而改變偏振狀態。分束器920將從粗糙表面回來的光的一部分藉由聚焦透鏡930反射到影像感測器940上。在一個示例中,聚焦透鏡930是消色差透鏡。在一些實施例中,可調整孔950定位在聚焦透鏡930與影像感測器940之間。分束器920將從粗糙表面回來的光的另一個部分反射到反射體960(例如平面反射體)上。反射鏡960可以傾斜。在一些實施例中,四分之一波板970定位在反射體960與分束器920之間。由於四分之一波板970的定位,可以將由反射體960所反射的光的電場分成提供兩個平面參考波的兩個部分。
粗糙度計量模組900可以進一步包括至少一個雷射輪廓儀990。在圖9的實施例中,雷射輪廓儀990定位在殼體904內。在另一個實施例中,雷射輪廓儀990定位在殼體904外部。雷射輪廓儀990可以是LVDT輪廓儀厚度感測器。雷射輪廓儀990的掃描場由箭頭994所描繪。雷射輪廓儀990可以用來測量卷材的升離距離。來自雷射輪廓儀990的訊號992可以被傳送到系統控制器360。由雷射輪廓儀990所測得的升離距離可以用來校正移動連續撓性基板110的卷材顫動。
圖10示出依據本文中所描述及論述的一個或多個實施例的處理序列1000的流程圖。處理序列1000可以使用粗糙度計量模組(例如圖9中所描繪的粗糙度計量模組900)來執行。可以在塗覆系統(例如圖3及圖4中所描繪的撓性基板塗覆系統300)中定位粗糙度計量模組900。
在操作1010處,在連續撓性基板110經過感測器佈置901的傳輸期間,將偏振結構光的一個或多個條紋圖案(例如三個或更多個條紋圖案)投射在界定的視場中。在操作1020處,針對每個條紋偏移記錄視場內的每個影像元素處的強度。在操作1030處,根據影像元素強度分佈來決定塗層粗糙度的測量。在操作1040處,在視場內部進行非接觸式雷射干涉測量。可以在粗糙度測量期間進行非接觸式雷射干涉測量。雷射干涉測量可以用來調整卷材升離距離。雷射干涉測量可以使用雷射輪廓儀990來進行。在操作1050處,使用影像元素強度分佈的值以及影像元素強度與使用雷射輪廓儀測量進一步校正卷材升離的相應邊緣厚度過渡之間的先前決定的相關性來決定邊緣塗層滾落(roll-off)的測量。在操作1060處,調整PVD源及屏蔽件溫度以解決邊緣清晰度不符合性。
可以用數位電子電路系統、或用電腦軟體、韌體或硬體(包括此說明書中所揭露的結構性手段及其結構等效物)或用上述項目的組合實施實施例及此說明書中所述的所有功能性操作。可以將本文中所述的實施例實施為一個或多個非暫時性電腦程式產品(例如有形地實施在機器可讀取儲存元件中的一個或多個電腦程式)以供由資料處理裝置(例如可程式化處理器、電腦或多個處理器或電腦)執行或控制該資料處理裝置的操作。
可以藉由執行一個或多個電腦程式以藉由對輸入資料進行操作及產生輸出執行功能的一個或多個可程式化處理器,來執行此說明書中所述的過程及邏輯流程。也可以藉由以下項目來執行過程及邏輯流程,且可以將裝置實施為以下項目:特殊用途邏輯電路系統(例如FPGA(現場可程式化邏輯閘陣列)或ASIC(應用特定集成電路))。
用語「資料處理裝置」包含用於處理資料的所有裝置、元件及機器,藉由示例的方式包括可程式化處理器、電腦或多個處理器或電腦。該裝置除了硬體以外還可以包括代碼,該代碼針對所討論的電腦程式產生執行環境,例如構成處理器韌體、協定堆疊、資料庫管理系統、作業系統或它們中的一者或多者的組合的代碼。適於執行電腦程式的處理器藉由示例的方式包括一般及特殊用途微處理器兩者以及任何種類的數位電腦的任何一個或多個處理器。
適於儲存電腦程式指令及資料的電腦可讀取媒體包括所有形式的非依電性記憶體、媒體、及記憶元件,藉由示例的方式包括:半導體記憶元件,例如EPROM、EEPROM及快閃記憶元件;磁碟,例如內部硬碟或可移除式磁碟;磁光碟;及CD ROM及DVD-ROM光碟。可以由特殊用途邏輯電路系統輔助處理器及記憶體或將處理器及記憶體併入該特殊用途邏輯電路系統中。
本文中所描述及論述的實施例進一步與以下示例1-31中的任一者或多者相關:
1.  一種撓性基板塗覆系統,包括:處理模組,包括:複數個腔室,依序佈置,每個腔室被配置為對連續撓性材料片執行一個或多個處理操作;及塗覆鼓,能夠將該連續撓性材料片沿著行進方向引導過該複數個腔室,其中該等腔室圍繞該塗覆鼓徑向地設置;及計量模組,包括:複數個非接觸式感測器,沿著橫向方向並排定位,其中該橫向方向與該行進方向垂直。
2.  如示例1所述的撓性基板塗覆系統,其中該複數個非接觸式感測器包括光譜感測器組件,該光譜感測器組件可操作來捕捉該連續撓性材料片的塗覆的及未塗覆的部分的光譜影像。
3.  如示例1或2所述的撓性基板塗覆系統,其中該光譜感測器組件包括頻閃光源及成像器。
4.  如示例1-3中的任一者所述的撓性基板塗覆系統,其中該成像器是電荷耦合元件(CCD)陣列。
5.  如示例1-4中的任一者所述的撓性基板塗覆系統,其中該複數個非接觸式感測器包括第一渦電流感測器及第二渦電流感測器,該第一渦電流感測器可操作來測量該連續撓性材料片的塗覆部分的厚度,該第二渦電流感測器可操作來測量該連續撓性材料片的未塗覆部分的厚度。
6.  如示例1-5中的任一者所述的撓性基板塗覆系統,進一步包括光學輪廓儀,該光學輪廓儀可操作來測量該連續撓性材料片的卷材顫動。
7.  如示例1-6中的任一者所述的撓性基板塗覆系統,其中該複數個非接觸式感測器包括卷材粗糙度感測器,該卷材粗糙度感測器可操作來測量該連續撓性材料片的塗覆部分及該連續撓性材料片的未塗覆部分的表面粗糙度。
8.  如示例1-7中的任一者所述的撓性基板塗覆系統,其中該卷材粗糙度感測器包括氬雷射及CMOS攝影機。
9.  如示例1-8中的任一者所述的撓性基板塗覆系統,進一步包括:展開模組,收容能夠提供該連續撓性材料片的饋送捲軸;及纏繞模組,收容能夠儲存該連續撓性材料片的捲取捲軸。
10.  如示例1-9中的任一者所述的撓性基板塗覆系統,其中該連續撓性材料片包括銅基板,鋰金屬層形成於該銅基板上。
11.  如示例1-10中的任一者所述的撓性基板塗覆系統,其中該連續撓性材料片包括銅基板,鋰化陽極膜形成於該銅基板上。
12.  如示例1-11中的任一者所述的撓性基板塗覆系統,其中該鋰化陽極膜包括石墨陽極膜、矽-石墨陽極膜或矽膜。
13.  如示例1-12中的任一者所述的撓性基板塗覆系統,其中該複數個腔室包括濺射源、熱蒸發源及電子束源中的至少一者。
14.  一種方法,包括以下步驟:將連續撓性材料片從展開腔室中的饋送捲軸傳輸到佈置在該展開腔室的下游的沉積模組,該沉積模組包括第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元;將該連續撓性材料片沿著行進方向引導過該複數個沉積單元,同時經由該複數個沉積單元在該連續撓性材料片上沉積鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置;將該連續撓性材料片引導過計量模組,該計量模組包括沿著橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的行進路徑重合的視場,且該橫向方向與該行進方向垂直;使頻閃燈在該視場中閃爍,同時將該連續撓性材料片引導過該視場;獲得該視場中的該連續撓性材料片的靜止影像;將從該靜止影像的相應影像元素反射的光通道相應的光通道元件引導到光譜分光器的相應位置;及記錄該視場內的每個影像元素處的波譜分佈。
15.  如示例14所述的方法,進一步包括以下步驟:搜尋彼此類似的分佈,並將該等分佈分組成互相類似的分佈的群組;按照每個群組中所包含的分佈數量來分類該等群組;選擇最大的群組中的至少一者,並將該群組的該等分佈組合在一起,並提供該組合分佈作為該連續撓性材料片的一個區域的該波譜分佈;及依據波譜分析過程處理該組合分佈。
16.  如示例14或15所述的方法,其中該連續撓性材料片包括銅基板,且該鋰金屬膜形成於該銅基板上。
17.  如示例14-16中的任一者所述方法,其中該連續撓性材料片包括銅基板,陽極膜形成於該銅基板上,且該鋰金屬膜形成於該陽極膜上。
18.  如示例14-17中的任一者所述方法,其中該陽極膜選自石墨陽極膜、矽-石墨陽極膜或矽膜。
19.  一種方法,包括以下步驟:將連續撓性材料片從展開腔室中的饋送捲軸傳輸到佈置在該展開腔室的下游的沉積模組,該沉積模組包括第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元;將該連續撓性材料片沿著行進方向引導過該複數個沉積單元,同時經由該複數個沉積單元在該連續撓性材料片上沉積鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置;將該連續撓性材料片引導過計量模組,該計量模組包括沿著橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的行進路徑重合的視場,且該橫向方向與該行進方向垂直;及獲得該視場中的該連續撓性材料片上的該鋰金屬膜的第一非接觸式電阻率測量。
20.  如示例19所述的方法,進一步包括以下步驟:使用該第一非接觸式電阻率測量來決定該鋰金屬膜的第一厚度。
21.  如示例19或20所述的方法,其中決定該鋰金屬膜的該第一厚度的步驟包括將該第一非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的先前決定的相關性進行比較。
22.  如示例19-21中的任一者所述方法,進一步包括以下步驟:獲得該視場中的該連續撓性材料片的非接觸式雷射干涉測量。
23.  如示例19-22中的任一者所述方法,進一步包括以下步驟:基於該連續撓性材料片的該非接觸式雷射干涉測量來決定該連續撓性材料片的卷材顫動。
24.  如示例19-23中的任一者所述方法,進一步包括以下步驟:基於該卷材顫動來調整該鋰金屬膜的該第一厚度測量以決定該鋰金屬膜的校正的第一厚度。
25.  如示例19-24中的任一者所述方法,進一步包括以下步驟:使該鋰金屬膜老化一段時間。
26.  如示例19-25中的任一者所述方法,進一步包括以下步驟:在使該鋰金屬膜老化一段時間之後,獲得該視場中的該連續撓性材料片上的該鋰金屬膜的第二非接觸式電阻率測量;及使用該第二非接觸式電阻率測量來決定該鋰金屬膜的第二厚度。
27.  如示例19-26中的任一者所述方法,其中決定該鋰金屬膜的該第二厚度的步驟包括將該第二非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的先前決定的相關性進行比較。
28.  如示例19-27中的任一者所述方法,進一步包括以下步驟:藉由將該鋰金屬膜的該第一厚度與該鋰金屬膜的該第二厚度進行比較,來決定沉積於該連續撓性材料片上的陽極膜的預鋰化量。
29.  如示例19-28中的任一者所述方法,其中該連續撓性材料片包括銅基板,且該鋰金屬膜形成於該銅基板上。
30.  如示例19-29中的任一者所述方法,其中該連續撓性材料片包括銅基板,陽極膜形成於該銅基板上,且該鋰金屬膜形成於該陽極膜上。
31.  如示例19-30中的任一者所述方法,其中該陽極膜選自石墨陽極膜、矽-石墨陽極膜或矽膜。
雖然前述內容涉及本揭示內容的實施例,但也可以在不脫離本揭示內容的基本範圍的情況下設計其他的及另外的實施例,且本揭示內容的範圍是由以下的請求項所決定的。本文中所述的所有文件皆以引用方式併入本文中,包括任何優先權文件及/或測試程序,條件是它們與本文不矛盾。如根據前述的一般說明及具體實施例所理解的,雖然已經說明及描述了本揭示內容的形式,但也可以在不脫離本揭示內容的精神及範圍的情況下作出各種修改。因此,本揭示內容不旨在受限於此。同樣地,就法律而言,用語「包括」或「具有」被認為與用語「包含」同義。同樣地,每當組成物、元素、或元素群組的前面加上過渡短語「包括」時,應瞭解,在組成物、元素、或多個元素的敘述的前面加上過渡短語「基本上由……組成」、「由……組成」、「選自由……所組成的群組」或「是」的相同組成物或元素群組是被考慮的,反之亦然。在介紹本揭示內容或其示例性態樣或實施例的元素時,冠詞「一」、「該」及「所述」旨在意指存在著該等元素中的一者或多者。
已經使用一組數值上限及一組數值下限來描述某些實施例及特徵。應理解,除非另有指示,否則考慮包括任兩個值的組合(例如任何下限值與任何上限值的組合、任兩個下限值的組合及/或任兩個上限值的組合)的範圍。某些下限、上限及範圍出現在以下的一個或多個請求項中。
100:撓性層堆疊 110:連續撓性基板 113:邊緣 115:未塗覆條帶 117:邊緣 200:撓性層堆疊 300:撓性基板塗覆系統 301:共同處理環境 302:展開模組 304:處理模組 305:腔室主體 308:纏繞模組 309:箭頭 310:第一子腔室 313:第一沉積源 315:第二沉積源 317:第三沉積源 320:第二子腔室 330:第三子腔室 352:基板運輸佈置 354:捲取捲軸 355:塗覆鼓 356:饋送捲軸 360:系統控制器 370:第一計量模組 380:第二計量模組 420:子腔室主體 430:邊緣屏蔽件 440:沉積材料 443:邊緣 445:邊緣 447:未塗覆條帶 450:箭頭 460:第一模組主體 500:光譜計量模組 502:透鏡 503:頻閃燈 504:分束器 505:感測器佈置 506:聚集透鏡 508:準直透鏡 512:光譜繞射光柵 514:陣列 516:光通道元件 520:線性狹縫 530:成像器陣列 532:透鏡組件 534:行 536:像素 550:影像處理器 560:波譜分析處理器 570:大氣隔室 572:殼體 600:處理序列 610:操作 620:操作 630:操作 640:操作 650:操作 660:操作 670:操作 700:渦電流感測器(ECS)模組 702:膜材料 703:表面 704:基板 705:三維邊緣 706:感測器佈置 720:感應的渦電流 740:處理器 770:大氣隔室 772:殼體 790:雷射輪廓儀 792:訊號 794:箭頭 800:處理序列 810:操作 820:操作 830:操作 840:操作 850:操作 860:操作 900:粗糙度計量模組 901:感測器佈置 902:大氣隔室 904:殼體 906:窗口 910:結構光源 912:偏振器 920:分束器 930:聚焦透鏡 940:影像感測器 950:可調整孔 960:反射體 970:四分之一波板 990:雷射輪廓儀 992:訊號 994:箭頭 1000:處理序列 1010:操作 1020:操作 1030:操作 1040:操作 1050:操作 1060:操作 112a:第一膜堆疊 112b:第二膜堆疊 112c:第三膜堆疊 112d:第四膜堆疊 120a:第一層 120b:第一層 120c:第一層 120d:第一層 130a:第二層 130b:第二層 130c:第二層 130d:第二層 210a:第三層 210b:第三層 210c:第三層 210d:第三層 212a:膜堆疊 212b:膜堆疊 312a:分隔壁 312b:分隔壁 312c:分隔壁 312d:分隔壁 317a:第三沉積源 317b:第三沉積源 317c:第三沉積源 317d:第三沉積源 353a:輔助傳輸捲軸 353b:輔助傳輸捲軸 418a:蒸發材料 418b:蒸發材料 418c:蒸發材料 418d:蒸發材料 432a:孔 432b:孔 442a:第一沉積材料條帶 442b:第二沉積材料條帶 462a:非接觸式感測器 462b:非接觸式感測器 462c:非接觸式感測器 501a:光學件 501b:光學件 501c:光學件 510a:第一窗口 510b:第二窗口 510c:第三窗口 522a:二維影像 522b:二維影像 522c:二維影像 523a:影像元素 523b:影像元素 523c:影像元素 710a:第一ECS感測器 710b:第二ECS感測器 712a:線圈 712b:線圈 714a:訊號振盪器 714b:訊號振盪器 716a:感測電路 716b:感測電路 780a:窗口 780b:窗口 L:升離距離 T:膜厚度
可以藉由參照實施例來獲得上面所簡要概述的實施例的更詳細說明以及可以用來詳細瞭解本揭示內容的上述特徵的方式,附圖中示出了該等實施例中的一些。然而,要注意,附圖僅示出此揭示內容的典型實施例,且因此不要將該等附圖視為對本揭示內容的範圍的限制,因為本揭示內容可以容許其他同等有效的實施例。
圖1示出依據本文中所述的一個或多個實施例形成的撓性層堆疊的一個示例的示意橫截面圖。
圖2示出依據本文中所述的一個或多個實施例形成的撓性層堆疊的另一個示例的示意橫截面圖。
圖3示出併入依據本文中所描述及論述的一個或多個實施例的計量的真空處理系統的示意側視圖。
圖4示出依據本文中所描述及論述的一個或多個實施例的圖3的真空處理系統的一部分的示意圖。
圖5示出依據本文中所描述及論述的一個或多個實施例的光譜計量系統。
圖6示出依據本文中所描述及論述的一個或多個實施例的製程的流程圖。
圖7示出依據本文中所描述及論述的一個或多個實施例的渦電流感測器(ECS)計量系統。
圖8示出依據本文中所描述及論述的一個或多個實施例的製程的流程圖。
圖9示出依據本文中所描述及論述的一個或多個實施例的粗糙度感測器計量系統。
圖10示出依據本文中所描述及論述的一個或多個實施例的製程的流程圖。
為了促進瞭解,已儘可能使用相同的附圖標記來標誌該等圖式共有的相同元件。可以預期,可以有益地將一個實施例的元件及特徵併入其他實施例而無需另外敘述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
309:箭頭
330:第三子腔室
360:系統控制器
380:第二計量模組
420:子腔室主體
430:邊緣屏蔽件
440:沉積材料
443:邊緣
445:邊緣
447:未塗覆條帶
450:箭頭
460:第一模組主體
317a:第三沉積源
317b:第三沉積源
317c:第三沉積源
317d:第三沉積源
418a:蒸發材料
418b:蒸發材料
418c:蒸發材料
418d:蒸發材料
432a:孔
432b:孔
442a:第一沉積材料條帶
442b:第二沉積材料條帶
462a:非接觸式感測器
462b:非接觸式感測器
462c:非接觸式感測器

Claims (20)

  1. 一種撓性基板塗覆系統,包括: 一處理模組,包括: 複數個腔室,依序佈置,每個腔室被配置為對一連續撓性材料片執行一個或多個處理操作;及 一塗覆鼓,能夠將該連續撓性材料片沿著一行進方向引導過該複數個腔室,其中該等腔室圍繞該塗覆鼓徑向地設置;及 一計量模組,包括: 複數個非接觸式感測器,沿著一橫向方向並排定位,其中該橫向方向與該行進方向垂直。
  2. 如請求項1所述的塗覆系統,其中該複數個非接觸式感測器包括一光譜感測器組件,該光譜感測器組件可操作來捕捉該連續撓性材料片的塗覆的及未塗覆的部分的光譜影像。
  3. 如請求項2所述的塗覆系統,其中該光譜感測器組件包括一頻閃光源及一成像器。
  4. 如請求項3所述的塗覆系統,其中該成像器是一電荷耦合元件(CCD)陣列。
  5. 如請求項1所述的塗覆系統,其中該複數個非接觸式感測器包括一第一渦電流感測器及一第二渦電流感測器,該第一渦電流感測器可操作來測量該連續撓性材料片的一塗覆部分的一厚度,該第二渦電流感測器可操作來測量該連續撓性材料片的一未塗覆部分的一厚度。
  6. 如請求項1所述的塗覆系統,進一步包括一光學輪廓儀,該光學輪廓儀可操作來測量該連續撓性材料片的卷材顫動。
  7. 如請求項1所述的塗覆系統,其中該複數個非接觸式感測器包括一卷材粗糙度感測器,該卷材粗糙度感測器可操作來測量該連續撓性材料片的一塗覆部分及該連續撓性材料片的一未塗覆部分的表面粗糙度。
  8. 如請求項7所述的塗覆系統,其中該卷材粗糙度感測器包括一氬雷射及一CMOS攝影機。
  9. 如請求項1所述的塗覆系統,進一步包括: 一展開模組,收容能夠提供該連續撓性材料片的一饋送捲軸;及 一纏繞模組,收容能夠儲存該連續撓性材料片的一捲取捲軸。
  10. 如請求項9所述的塗覆系統,其中該連續撓性材料片包括一銅基板,一鋰金屬層形成於該銅基板上。
  11. 如請求項9所述的塗覆系統,其中該連續撓性材料片包括一銅基板,一鋰化陽極膜形成於該銅基板上。
  12. 如請求項11所述的塗覆系統,其中該鋰化陽極膜包括一石墨陽極膜、一矽-石墨陽極膜或一矽膜。
  13. 如請求項12所述的塗覆系統,其中該複數個腔室包括一濺射源、一熱蒸發源及一電子束源中的至少一者。
  14. 一種方法,包括以下步驟: 將一連續撓性材料片從一展開腔室中的一饋送捲軸傳輸到佈置在該展開腔室的下游的一沉積模組,該沉積模組包括一第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元; 將該連續撓性材料片沿著一行進方向引導過該複數個沉積單元,同時經由該複數個沉積單元在該連續撓性材料片上沉積一鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置; 將該連續撓性材料片引導過一計量模組,該計量模組包括沿著一橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的一行進路徑重合的一視場,且該橫向方向與該行進方向垂直; 使一頻閃燈在該視場中閃爍,同時將該連續撓性材料片引導過該視場; 獲得該視場中的該連續撓性材料片的一靜止影像; 將從該靜止影像的相應影像元素反射的光通道相應的光通道元件引導到一光譜分光器的相應位置;及 記錄該視場內的每個影像元素處的一波譜分佈。
  15. 如請求項14所述的方法,進一步包括以下步驟: 搜尋彼此類似的分佈,並將該等分佈分組成互相類似的分佈的群組; 按照每個群組中所包含的一分佈數量來分類該等群組; 選擇最大的群組中的至少一者,並將該群組的該等分佈組合在一起,並提供該組合分佈作為該連續撓性材料片的一個區域的該波譜分佈;及 依據一波譜分析過程處理該組合分佈。
  16. 如請求項15所述的方法,其中該連續撓性材料片包括一銅基板,且該鋰金屬膜形成於該銅基板上。
  17. 如請求項15所述的方法,其中該連續撓性材料片包括一銅基板,一陽極膜形成於該銅基板上,且該鋰金屬膜形成於該陽極膜上,且其中該陽極膜選自一石墨陽極膜、一矽-石墨陽極膜或一矽膜。
  18. 一種方法,包括以下步驟: 將一連續撓性材料片從一展開腔室中的一饋送捲軸傳輸到佈置在該展開腔室的下游的一沉積模組,該沉積模組包括一第一塗覆鼓,該第一塗覆鼓能夠將該連續撓性材料片引導過複數個沉積單元; 將該連續撓性材料片沿著一行進方向引導過該複數個沉積單元,同時經由該複數個沉積單元在該連續撓性材料片上沉積一鋰金屬膜,其中該等腔室圍繞該塗覆鼓徑向地設置; 將該連續撓性材料片引導過一計量模組,該計量模組包括沿著一橫向方向並排定位的複數個非接觸式光學感測器,其中該等光學感測器具有與該連續撓性材料片穿過的一行進路徑重合的一視場,且該橫向方向與該行進方向垂直;及 獲得該視場中的該連續撓性材料片上的該鋰金屬膜的一第一非接觸式電阻率測量。
  19. 如請求項18所述的方法,進一步包括以下步驟: 使用該第一非接觸式電阻率測量來決定該鋰金屬膜的一第一厚度,其中決定該鋰金屬膜的該第一厚度的步驟包括以下步驟:將該第一非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的一先前決定的相關性進行比較; 獲得該視場中的該連續撓性材料片的一非接觸式雷射干涉測量; 基於該連續撓性材料片的該非接觸式雷射干涉測量來決定該連續撓性材料片的卷材顫動; 基於該卷材顫動來調整該鋰金屬膜的該第一厚度測量以決定該鋰金屬膜的一校正的第一厚度; 使該鋰金屬膜老化一段時間。
  20. 如請求項19所述的方法,進一步包括以下步驟: 在使該鋰金屬膜老化一段時間之後,獲得該視場中的該連續撓性材料片上的該鋰金屬膜的一第二非接觸式電阻率測量; 使用該第二非接觸式電阻率測量來決定該鋰金屬膜的一第二厚度,其中決定該鋰金屬膜的該第二厚度的步驟包括以下步驟:將該第二非接觸式電阻率測量與電阻率測量與相應的鋰金屬膜厚度之間的一先前決定的相關性進行比較;及 藉由將該鋰金屬膜的該第一厚度與該鋰金屬膜的該第二厚度進行比較,來決定沉積於該連續撓性材料片上的一陽極膜的一預鋰化量。
TW110146350A 2020-12-10 2021-12-10 卷材邊緣計量 TW202242170A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063123878P 2020-12-10 2020-12-10
US63/123,878 2020-12-10

Publications (1)

Publication Number Publication Date
TW202242170A true TW202242170A (zh) 2022-11-01

Family

ID=81941873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110146350A TW202242170A (zh) 2020-12-10 2021-12-10 卷材邊緣計量

Country Status (7)

Country Link
US (1) US20220190306A1 (zh)
EP (1) EP4259842A1 (zh)
JP (1) JP2024501446A (zh)
KR (1) KR20230119176A (zh)
CN (1) CN116583620A (zh)
TW (1) TW202242170A (zh)
WO (1) WO2022125441A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832359A (en) * 1997-09-29 1998-11-03 Xerox Corporation Apparatus and method for sensing water film thickness on conditioner rolls
JP4615400B2 (ja) * 2005-09-02 2011-01-19 パナソニック株式会社 電池電極板上の多孔質膜の膜測定装置およびそれを用いる塗工装置
US7969568B2 (en) * 2008-10-24 2011-06-28 Applied Materials, Inc. Spectrographic metrology of patterned wafers
WO2016204920A1 (en) * 2015-06-18 2016-12-22 Applied Materials, Inc. In-situ metrology method for thickness measurement during pecvd processes
EP3531194A4 (en) * 2016-10-20 2020-05-06 Nikon-Essilor Co., Ltd. IMAGE PRODUCTION DEVICE, IMAGE PRODUCTION METHOD, IMAGE PRODUCTION PROGRAM, METHOD FOR DESIGNING AN EYE GLASS LENS AND METHOD FOR PRODUCING AN EYE GLASS LENS
EP3565920B1 (en) * 2017-01-06 2020-11-25 SABIC Global Technologies B.V. Apparatus for electrospinning liquid polymer into nanoscale or submicron scale fibers
US20190057272A1 (en) * 2017-08-18 2019-02-21 GM Global Technology Operations LLC Method of detecting a snow covered road surface
WO2019037785A1 (zh) * 2017-08-25 2019-02-28 北京师范大学 一种复合多孔膜及其制备方法和用途
KR102512001B1 (ko) * 2017-11-09 2023-03-21 어플라이드 머티어리얼스, 인코포레이티드 리튬 금속 애노드에 대해 칼코게나이드들을 사용하는 엑스-시튜 고체 전해질 계면 개질
JP7465219B2 (ja) * 2018-06-21 2024-04-10 アプライド マテリアルズ インコーポレイテッド リチウムの安定を可能にする拡散バリア膜
US20190390949A1 (en) * 2018-06-21 2019-12-26 Applied Materials, Inc. Methods, apparatuses and systems for conductive film layer thickness measurements

Also Published As

Publication number Publication date
CN116583620A (zh) 2023-08-11
US20220190306A1 (en) 2022-06-16
WO2022125441A1 (en) 2022-06-16
EP4259842A1 (en) 2023-10-18
JP2024501446A (ja) 2024-01-12
KR20230119176A (ko) 2023-08-16

Similar Documents

Publication Publication Date Title
US8531680B2 (en) Method of detecting the width of a coated film and detection device used in said detection method
US8351054B2 (en) Apparatus detecting a position of a functional layer on an electrode
US20080187832A1 (en) Battery, method and apparatus for manufacturing negative electrode thereof
US20110039017A1 (en) Method for manufacturing thin film
JP7013318B2 (ja) 電極層の検査方法及び電池の製造方法
JP2004063419A (ja) 薄膜の製造方法と電池
US11552283B2 (en) Method of coating a flexible substrate in a R2R deposition system, and vapor deposition system
TW202242170A (zh) 卷材邊緣計量
WO2021261254A1 (ja) 切断装置および切断方法
US20240058833A1 (en) Correlate Thermographic Image Data to Online Scanning Basis Weight Measurement
US7666490B1 (en) Functional roll film and vacuum evaporation apparatus capable of producing the functional roll film
Pat et al. Transparent nano layered Li 3 PO 4 coatings on bare and ITO coated glass by thermionic vacuum arc method
JP4798029B2 (ja) 真空蒸着装置
HakanYudar et al. Microstructural, surface and electrochemical properties of the nano layered LiCoO2 thin film cathode for Li ion battery
KR20220101158A (ko) 재료를 증착하는 방법
KR102526035B1 (ko) 에너지 저장 디바이스용 스택
Yudar et al. Effect of XRD relative intensities of the Li (002) on surface, optical and electrochemical impedance spectroscopy analyses of the deposited LiCoO 2 thin film
US20220195582A1 (en) Thin film manufacturing apparatus
EP4333089A1 (en) Battery manufacturing method and system
JP6601950B2 (ja) 膜厚検査装置、膜厚検査方法、膜構造体の製造装置、および膜構造体の製造方法
Özen et al. A new technique for transparent solid state Li 3 PO 4 electrolyte layer growth: thermionic vacuum arc technique
KR20230068783A (ko) 전극 제조 장치 및 방법
TW202346851A (zh) 用於含鹼金屬結構以及含鹼離子結構的聯機量測的系統以及方法
KR20220142595A (ko) 2차 전지용 전극 생산 시스템
JP2023178956A (ja) シート製造システムにおける機械方向位置プロファイル測定