TW202240038A - Biologically degradable multi-component polymer fibres - Google Patents

Biologically degradable multi-component polymer fibres Download PDF

Info

Publication number
TW202240038A
TW202240038A TW111101733A TW111101733A TW202240038A TW 202240038 A TW202240038 A TW 202240038A TW 111101733 A TW111101733 A TW 111101733A TW 111101733 A TW111101733 A TW 111101733A TW 202240038 A TW202240038 A TW 202240038A
Authority
TW
Taiwan
Prior art keywords
component
astm
fiber
copolymer
additive
Prior art date
Application number
TW111101733A
Other languages
Chinese (zh)
Inventor
索倫 科林特
普瑞宣 狄賽
波恩 派德森
費堤 爾格尼
李楚生
狄安 尼爾森
尼克 卡特
詹姆士 坎貝爾
派翠克 佳特曼
華納 葛雷瑟
裘格 達林格
班德 布雷奇
彼得 恩格哈德
Original Assignee
泰商因多拉瑪創投公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰商因多拉瑪創投公司 filed Critical 泰商因多拉瑪創投公司
Publication of TW202240038A publication Critical patent/TW202240038A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/082Melt spinning methods of mixed yarn
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/12Physical properties biodegradable

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Woven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The invention relates to a biologically degradable multi-component polymer fibre, in particular bi-component fibres, with advantageous physical properties, to a process for its production, as well as to its use.

Description

可生物降解的多組分聚合物纖維Biodegradable Multicomponent Polymer Fibers

本發明係關於一種具有有利的物理性質之可生物降解的聚合物纖維,關於其製造方法,以及關於其用途。The present invention relates to a biodegradable polymer fiber having advantageous physical properties, to a method for its manufacture, and to its use.

聚合物纖維(亦即基於合成聚合物之纖維)係極大規模地被工業製造。在這方面,使用熔體紡絲方法加工該基礎合成聚合物。為此,該熱塑性聚合材料被熔化,且利用擠出機,呈液態饋至紡絲束(beam)中。從該紡絲束,將該熔化的材料饋至已知為紡嘴者。該紡嘴經常包含配備多個孔的紡嘴板,該纖維之個別毛細管(長絲)係從該等孔擠出。在該熔體紡絲方法之外,濕式紡絲或溶劑紡絲方法也用於製造紡絲纖維。在此,並非熔體而是合成聚合物之高黏稠溶液被擠出經過具有細孔的模具。當藉由聚合物熔體之該流動,同時且平行地填充眾多個別紡嘴時,該技術之技術人員稱該方法為多重紡絲方法。 使用以此方式製造之聚合物纖維於紡織品及/或技術應用。在這些應用中,有利的是,該聚合物纖維具有高機械強度,以致能無問題地進行該等纖維之後處理,例如藉由利用輥軋機拉伸。也有利的是,該聚合物纖維尤其是呈非織物時,具有低的熱收縮性。 用於個別最後用途或用於必須的中間處理步驟(例如拉伸及/或捲曲)之改質或配置聚合物纖維經常藉由施加合適軟化劑或敷料(其經施加至所製備之聚合物纖維或待處理之聚合物纖維的表面)來進行。 改質之另一可能性是該聚合物主幹本身的化學改質,例如藉由將阻燃的共單體合併於該聚合物主鏈及/或支鏈中。 再者,在多重紡絲方法的過程中,能將添加劑(例如抗靜電劑或著色顏料)導至該熔化的熱塑性聚合物中或導至該聚合物纖維中。 近來,已急切地愈加發展纖維系統,其一方面滿足上列需要且進一步具有良好生物降解性,而且另一方面需要甚少改變或不需要改變,以致現有的方法和設備仍能被使用。 近來,已另外急切地愈加發展纖維系統,其一方面滿足上列需要且進一步較佳能至少部分地從永續原料製造,而且另一方面需要甚少改變或不需要改變,以致現有的方法和設備仍能被使用。 在可生物降解之纖維中,因為受不同因素所影響之該降解過程的時間次序,在該產物之最長使用壽命與所預期之生物降解所持續經過的時間之間常有不良的且不好控制的關係。 因此,有需要使聚合物纖維所具有之可生物降解性係能根據所要之最終用途被修改的纖維所具有的且也與現有的纖維後處理相容的。 Polymer fibers, ie fibers based on synthetic polymers, are produced industrially on a very large scale. In this regard, the base synthetic polymer is processed using a melt spinning method. For this purpose, the thermoplastic polymer material is melted and fed in liquid state into a beam by means of an extruder. From the spin bundle, the molten material is fed to what is known as a spinneret. The spinneret often comprises a spinneret plate equipped with holes from which individual capillaries (filaments) of the fiber are extruded. In addition to the melt spinning method, wet spinning or solvent spinning methods are also used to produce spun fibers. Here, not a melt but a highly viscous solution of a synthetic polymer is extruded through a die with fine holes. When a plurality of individual spinning nozzles are filled simultaneously and in parallel by this flow of the polymer melt, those skilled in the art refer to this method as a multi-spinning method. The polymer fibers produced in this way are used in textile and/or technical applications. In these applications, it is advantageous if the polymer fibers have a high mechanical strength, so that subsequent processing of the fibers can be carried out without problems, for example by stretching with a rolling mill. It is also advantageous that the polymer fibers have low thermal shrinkage, especially in the form of non-wovens. Modification or configuration of polymeric fibers for individual end uses or for necessary intermediate processing steps such as drawing and/or crimping is often accomplished by applying suitable softeners or dressings which are applied to the prepared polymeric fibers Or the surface of the polymer fiber to be treated). Another possibility for modification is the chemical modification of the polymer backbone itself, for example by incorporating flame-retardant comonomers into the polymer backbone and/or branches. Furthermore, additives such as antistatic agents or coloring pigments can be introduced into the molten thermoplastic polymer or into the polymer fibers during the multiple spinning process. Recently, there has been an urgency to increasingly develop fiber systems which on the one hand fulfill the above-mentioned needs and further have good biodegradability and on the other hand require little or no changes so that existing methods and equipment can still be used. Recently, there has been an additional urgency to increasingly develop fiber systems which, on the one hand, meet the above-mentioned needs and are furthermore preferably at least partially manufactured from sustainable raw materials, and on the other hand require little or no changes, so that existing methods and equipment can still be used. In biodegradable fibers, because of the chronological sequence of the degradation process, which is influenced by different factors, there is often a poor and poorly controlled gap between the maximum useful life of the product and the elapsed time over which biodegradation is expected to continue. Relationship. Therefore, there is a need for polymeric fibers to have biodegradable properties that can be tailored to the desired end use of the fiber and that are also compatible with existing fiber post-processing.

本發明使纖維之降解行為能藉由使用二種具有彼此不同的降解行為的組分得以控制。 該需要被依據本發明之多組分聚合物纖維所滿足,其中該聚合物纖維: (i)    包含至少一種組分A及至少一種組分B, (ii)   該組分A包含熱塑性聚合物A, (iii)  該組分B包含熱塑性聚合物B, 其特徵在於 (iv)  該組分A額外具有至少一種提高該多組分纖維之可生物降解性之添加劑A且該組分B不具有提高該多組分纖維之可生物降解性之添加劑B, 或 (v)   該組分B額外具有至少一種提高該多組分纖維之可生物降解性之添加劑B且該組分A不具有提高該多組分纖維之可生物降解性之添加劑A, 或 (vi)  該組分A額外具有至少一種添加劑A且該組分B額外具有至少一種添加劑B,該等添加劑一起提高該多組分纖維之可生物降解性,先決條件是當(i)該熱塑性聚合物A和該熱塑性聚合物B相同時,該等添加劑A和B是不同的,或(ii)當該添加劑A和B相同時,該熱塑性聚合物A和該熱塑性聚合物B是不同的。 在本發明之上下文中,該多組分纖維之提高的可生物降解性意指:與不含有添加劑A及/或B的多組分纖維相比,該多組分纖維更快速地降解,其中依據選自下列群組的至少一種方法進行測定:(i) ASTM D5338-15(2021)(用於測定在合併嗜熱溫度之經控制的堆肥條件下塑膠材料之需氧生物降解性的標準試驗方法(DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org),(ii) ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範) (DOI:10.1520/D6400-12),(iii) ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/D5511-18),(iv) ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17),(v) ASTM D5210-92(在汙泥之存在下的厭氧降解)(DOI:10.1520/D5210-92),(vi) PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31,(vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI: 10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/ D5988-18),用於測定在土壤中之塑膠材或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI:10.1520/D5988-03),(viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000 (DOI:10.31030/9010637),(ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法),(x) EN 14995: 2007-03-塑膠-堆肥性之評估(DOI:10.31030/9730527)或(xi) ISO 17088:2021-04 (對於可堆肥之塑膠的規範)(ICS 83.080.01)。 當使用(短纖維)紡絲方法加工時,依據本發明之多組分聚合物纖維經常被沉積成纖維束且後續利用輥軋機且使用一般方法被拉伸且然後被後處理。該纖維束也能進一步直接被加工,且因此能完全或部分地不用將該纖維素放置在已知為罐者。 當使用(長絲)紡絲方法加工時,依據本發明之多組分聚合物纖維能在從該紡嘴離開後,直接被冷卻且拉伸且沉積在收集帶上或纏繞在捲絲管上。該等長絲可進一步被拉伸以供進一步加工,以提高分子鏈之定向,尤其是在0.5與3之間的拉伸比之下。再者,可能將該長絲調質。 對於組分A和B之不同的可生物降解性的結合意指由這些多組分聚合物纖維所得的產物的可生物降解性能被設計且訂作。 紡織織物(例如非織物)能從依據本發明之多組分聚合物纖維製造。當該紡織織物(尤其是非織物)係使用熱黏合所固結時,對於在組分A中之熱塑性聚合物的熔點,有利的是比在組分B中之熱塑性聚合物的熔點高至少5℃。在該具體例中,該多組分聚合物纖維較佳是雙組分纖維,其中組分A形成核且組分B形成殼。特佳地,在組分A中之熱塑性聚合物之熔點比在組分B中之熱塑性聚合物的熔點高至少10℃。 在熱黏合期間,該等纖維在接點或交越點上被黏合在一起。當由熱塑性聚合物B與添加劑B所形成之組分B具有比由熱塑性聚合物A與添加劑A所形成之組分A高的可生物降解性,該等纖維之接觸點或交越點首先一同被降解且該紡織織物(例如非織物)更快速崩解,總降解性隨之增加。 再者,可能提供一種多組分纖維,其包含可極快生物降解之組分A與至少另一組分B,其中組分B具有比組分A低之可生物降解速率。以此方式,能獲得該等纖維之分階段生物降解,產生技術優點,例如機械故障的警示、該等纖維之相對高的殘餘穩定性與先進的生物降解等。 除了該核/殼結構(其中該核可與該殼同心或也可不同心)之外,在該多組分纖維中,該等組分之進一步可能的配置是並排結構、基質-原纖維結構以及塊的切片(slice-of-cake)結構或橙的切片結構。 再者,可能提供多組分聚合物纖維(尤其是雙組分聚合物纖維),其結合由熱塑性聚合物A及隨意之添加劑A所製造的可極快生物降解的核(組分A)與由熱塑性聚合物B與添加劑B所製造之可同等生物降解的殼(組分B),以致該組分A僅是在組分B已經生物降解時被生物降解。這是要加速該降解,該加速是在組分B已經降解至足夠程度後立即開始。 因此,在另一態樣中,本發明提供一種具有核/殼結構之雙組分纖維,其中 (i)    該組分A形成該核且該組分B形成該纖維之殼, (ii)   在該核中之組分A包含熱塑性聚合物A, (iii)  該組分B包含熱塑性聚合物B, (iv)  在該核之該組分A中之該熱塑性聚合物的熔點比在該殼之該組分B中之該熱塑性聚合物的熔點高至少5℃,且較佳地該熔點高至少10℃, 其特徵在於 (v)   該組分A具有比該組分B高的可生物降解性;較佳地,該組分A具有至少一種添加劑A, 或 (vi)  該組分B具有比該組分A高之可生物降解性;較佳地,該組分B具有至少一種添加劑B。 較高之可生物降解性係依據至少一種選自下列群組之方法所測定: (i)    ASTM D5338-15(2021)(用於測定在合併嗜熱溫度之經控制的堆肥條件下塑膠材料之需氧生物降解性的標準試驗方法(DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii)   ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範) (DOI:10.1520/D6400-12), (iii)  ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/D5511-18), (iv)  ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17), (v)   ASTM D5210-92 (在汙泥之存在下的厭氧降解)(DOI:10.1520/D5210-92), (vi)  PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31, (vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI:10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/D5988-18),用於測定在土壤中之塑膠材或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI:10.1520/D5988-03), (viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000 (DOI:10.31030/9010637), (ix)  ISO 14855-1:2013-04 (DOI: 10.31030/1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法), (x)   EN 14995:2007-03-塑膠-堆肥性之評估(DOI:10.31030/9730527)或 (xi)  ISO 17088:2021-04 (對於可堆肥之塑膠的規範)(ICS 83.080.01)。 依據本發明之該雙組分纖維因此能就任何所欲之目的及任何環境被修改。 因為該組分A具有比組分B高之可生物降解性,首先,抵抗生物降解性之殼組分B被生物降解且在彼已經降解後,組分A被降解。以此方式,具有高的可生物降解性以致經常不能被設計的材料能被使用以作為組分A,因為其高的可生物降解性意指彼等被認為是不穩定或不合適的。該保護殼也能具有延遲作用,亦即該殼起初至少減緩該可生物降解性且在特定的使用時間或時段之後發生快速的生物降解。 因此,例如,具有依據本發明之單一種雙組分纖維的紡織織物可用在農業中,其中該組分A具有依據ASTM D5338-15或ASTM D6400或ASTM D5988之高的可生物降解性,但起初被該殼所保護。該類型之紡織織物在所要用途之後,能利用經控制之堆肥來處置。 本發明之另一優點是能提供具有依據本發明之雙組分纖維的紡織織物,其一方面,例如在農業中,能照意圖被使用,但在不正確處置的情況下,能經由河流到達海洋。為此目的,有利的是要使用具有依據ASTM D6691之高的可生物降解性的組分A。因為不正確的處置經常破裂或損壞該保護殼,例如在海的環境中,經控制的可生物降解性被確保。 因為組分B比組分A具有高的生物降解性,起初殼組分B被降解,而導致具有依據本發明之雙組分纖維的紡織織物更快速崩解。以此方式,例如,在其所要使用之後,衛生物件能在家用廢棄物或汙水廠中,以經控制方式被堆肥。 以此方式,可以獲得逐步生物降解,隨之有技術優點,例如警示機械故障,在先進之生物降解的情況下該纖維之相對高的殘餘穩定性等。 依據本發明之雙組分纖維可為一種有限長度的纖維(例如已知為短纖維者)、或連續纖維(長絲)。對於上述短纖維並無嚴苛限制,但通常,彼等為2至200 mm,較佳為3至120 mm,特佳為4至60 mm。 依據本發明之雙組分纖維(較佳是短纖維)的個別線性密度較佳是在 0.5與30 dtex之間,尤其是0.7至13 dtex之間。對於一些應用,在0.5與3 dtex之間的線性密度及<10 mm(尤其是<8 mm,特佳是<6 mm,特佳是<5 mm)之纖維長度是特別適合的。 以該等纖維之總橫剖面的面積計,該核之橫剖面的比例是在20%與90%之間,且以該等纖維之總橫剖面的面積計,該殼之橫剖面的比例是在80%與10%之間。 組分A和組分B之橫剖面的面積的比率也可有助於微調該纖維之可生物降解行為。 特佳之雙組分聚合物纖維是下述者,其中該添加劑A及/或添加劑B係選自由(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),尤其是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii)脂族聚酯,(iii)醣類,特別是單醣,二醣及寡醣,(iv)用於轉酯化的觸媒,特別是在鹼性條件下者,(v)碳水化合物,特別是澱粉及/或纖維素,以及其混合物之群組。 特佳之雙組分聚合物纖維是下述者,其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚酯且該添加劑A及/或添加劑B係選自由(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),尤其是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii)脂族聚酯,(iii)醣類,特別是單醣,二醣及寡醣,(iv)用於轉酯化的觸媒,特別是在鹼性條件下者,(v)碳水化合物,特別是澱粉及/或纖維素,以及其混合物之群組。上述脂族聚酯與該熱塑性聚合物A和聚合物B的聚酯在化學本質上有區別,亦即該熱塑性聚合物A和聚合物B之聚酯是芳脂族聚酯或共聚酯,其係藉由聚縮合,從多元醇和脂族及/或芳香族二羧酸或其衍生物(酸酐、酯)製造。特佳之添加劑A及/或添加劑B含有至少二種物質,其中較佳之結合是: A)    鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7)(特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO)與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; B)    醣類(特別是單醣,二醣及寡醣)與碳水化合物(特別是澱粉及/或纖維素)的結合,以及其混合物, C)    脂族聚酯隨意地與醣類(特別是單醣,二醣及寡醣)與碳水化合物(特別是澱粉及/或纖維素)的結合,以及其混合物。 對於作為熱塑性聚合物A之部分芳香族『芳脂族』聚酯或共聚酯,最佳添加劑A含有至少 -鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7)(特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO),較佳與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; 以及 -脂族聚酯(尤其是不具有側鏈碳原子之脂族聚酯),隨意地與(i)醣類,尤其是單醣、二醣及寡醣,(ii)碳水化合物,尤其是澱粉及/或(iii)纖維素之結合,以及其混合物。 屬於上述特佳雙組分聚合物纖維的是那些較佳者,其中該熱塑性聚合物A是聚酯且該熱塑性聚合物B是與聚合物A中的聚酯不同的聚酯,且較佳是共聚酯,且該添加劑A和該添加劑B分別獨立地選自以下的結合: -鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7)(特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO),較佳與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; 以及 -脂族聚酯(尤其是不具有側鏈碳原子之脂族聚酯),隨意地與(i)醣類,尤其是單醣、二醣及寡醣,(ii)碳水化合物,尤其是澱粉及/或(iii)纖維素之結合,以及其混合物。 特佳之雙組分聚合物纖維是下述者,其中該熱塑性聚合物B是聚烯烴,尤其是聚丙烯聚合物,其包含作為添加劑B之至少(i)金屬化合物,尤其是過渡金屬化合物,以及其鹽,較佳是至少二種在化學上不同的過渡金屬化合物以及(ii)不飽和羧酸或其酸酐/酯/醯胺,較佳與合成橡膠及/或天然橡膠結合,以及隨意地,進一步包含(iii)醣類,特別是單醣、二醣及寡醣,(iv)碳水化合物,特別是澱粉及/或(v)纖維素,以及其混合物。再者,能含有苯酚抗氧化穩定劑及CaO。 該可生物降解性能藉由在組分A中之添加劑A或在組分B中之添加劑B的量來微調。添加劑之量以組分A或組分B之總量計,經常是在0.005重量%與20重量%之間,特佳在0.01重量%與5重量%之間。 在上述添加劑之間,下列者特別適合:(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),尤其是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3,(ii)醣類,特別是單醣,二醣及寡醣,以及(iii)碳水化合物,特別是澱粉及/或纖維素,以及其混合物,以及上述結合A)、B)或C),因為依據ASTM D6691或依據ASTM D5338-15、ASTM D6400或ASTM D5988之其可降解性能具體地被調節。 熱塑性聚合物依據本發明所用之聚合物是熱塑性聚合物。 在本發明中所用之『熱塑性聚合物』一詞意指一種合成材料,其在特定之溫度範圍內,較佳在25℃至350℃之範圍內能變形(熱塑性)。該程序是可逆的,亦即彼能藉由冷卻及再次加熱任何次數而處於其黏稠狀態,只要該材料不因過熱而造成已知之熱分解或在機械負荷下運送該材料而被破壞太過。這是在熱塑性聚合物和熱固物和彈性體之間的差異。 依據本發明所用之熱塑性聚合物較佳是選自下列所形成之群組中的聚合物:丙烯腈-乙烯-丙烯-(二烯)-苯乙烯共聚物、丙烯腈-甲基丙烯酸酯共聚物、丙烯腈-甲基丙烯酸甲酯共聚物、氯化丙烯腈、聚乙烯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-乙烯-丙烯-苯乙烯共聚物、纖維素乙醯基丁酸酯、纖維素乙醯基丙酸酯、水合纖維素、羧甲基纖維素、纖維素硝酸酯、纖維素丙酸酯、纖維素三乙酸酯、聚氯乙烯、乙烯-丙烯酸共聚物、乙烯-丙烯酸丁酯共聚物、乙烯-氯三氟乙烯共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-甲基丙烯酸酯共聚物、乙烯-甲基丙烯酸共聚物、乙烯-四氟乙烯共聚物、乙烯-乙烯醇共聚物、乙烯-丁烯共聚物、乙基纖維素、聚苯乙烯、聚氟乙烯-丙烯、甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、甲基纖維素、聚醯胺11、聚醯胺12、聚醯胺46、聚醯胺6、聚醯胺6-3-T、聚醯胺6-對苯二甲酸共聚物、聚醯胺66、聚醯胺69、聚醯胺610、聚醯胺612、聚醯胺6I、聚醯胺MXD 6、聚醯胺PDA-T、聚醯胺、聚芳醚、聚芳醚酮、聚醯胺醯亞胺、聚芳醯胺、聚胺基-雙順丁烯二醯亞胺、聚芳酯(polyarylate)、聚丁烯-1、聚丙烯酸丁酯、聚苯並咪唑、聚雙順丁烯二醯亞胺、聚氧雜二偶氮苯並咪唑、聚對苯二甲酸丁酯、聚碳酸酯、聚氯三氟乙烯、聚乙烯、聚酯碳酸酯、聚芳醚酮、聚醚醚酮、聚醚醯亞胺、聚醚酮、聚氧化乙烯、聚芳醚碸、聚對苯二甲酸乙二酯、聚醯亞胺、聚異丁烯、聚異氰尿酸酯、聚醯亞胺碸、聚甲基丙烯醯亞胺、聚甲基丙烯酸酯、聚-4-甲基戊烯、聚縮醛、聚丙烯、聚氧化苯基、聚氧化丙烯、聚苯硫(polyphenylene sulphide)、聚苯碸、聚苯乙烯、聚碸、聚四氟乙烯、聚胺酯、聚乙酸乙烯酯、聚乙烯醇、聚乙烯丁醛、聚氯乙烯、聚偏二氯乙烯、聚偏二氟乙烯、聚氟乙烯、聚乙烯基甲醚、聚乙烯吡咯啶酮、苯乙烯-丁二烯共聚物、苯乙烯-異戊二烯共聚物、苯乙烯-順丁烯二酸酐共聚物、苯乙烯-順丁烯二酸酐-丁二烯共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、苯乙烯-甲基苯乙烯共聚物、苯乙烯-丙烯腈共聚物、氯乙烯-乙烯共聚物、氯乙烯-甲基丙烯酸酯共聚物、氯乙烯-順丁烯二酸酐共聚物、氯乙烯-順丁烯二醯亞胺共聚物、氯乙烯-甲基丙烯酸甲酯共聚物、氯乙烯-丙烯酸辛酯共聚物、氯乙烯-乙酸乙烯酯共聚物、氯乙烯-偏二氯乙烯共聚物、氯乙烯-偏二氯乙烯-丙烯腈共聚物。 在該等熱塑性聚合物之間,可熔體紡絲之合成的生物聚合物是較佳的,特佳是由生質原料所製造之聚縮物及聚合物。 在本發明中所用之『合成的生物聚合物』一詞指明一種主要由生物來源的原料(永續原料)所組成之物質。這使彼等與常見的礦油系物質或塑膠(例如聚乙烯(PE)、聚丙烯(PP)及聚氯乙烯(PVC)不同,只要其進料不是可再生的(例如生物PE/綠色PE (bio-PE/green PE))。 在一較佳具體例中,依據本發明之多組分纖維係由可生物降解之合成的生物聚合物所製造,其中『可生物降解』一詞可例如依據至少一種選自下列所形成之群組的方法所指明、試驗及/或測定:(i) ASTM D5338-15(2021),用於測定在合併嗜熱溫度之經控制的堆肥條件下塑膠材料之需氧生物降解性的標準試驗方法(DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org),(ii) ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範) (DOI:10.1520/D6400-12),(iii) ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/D5511-18),(iv) ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17),(v) ASTM D5210-92 (在汙泥之存在下的厭氧降解)(DOI:10.1520/D5210-92),(vi) PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31,(vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI: 10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/ D5988-18),用於測定在土壤中之塑膠材或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI:10.1520/D5988-03),(viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000 (DOI:10.31030/9010637),(ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法),(x) EN 14995: 2007-03-塑膠-堆肥性之評估(DOI:10.31030/9730527)或(xi) ISO 17088:2021-04 (對於可堆肥之塑膠的規範)(ICS 83.080.01)。 在本發明之上下文中的較佳合成的生物聚合物是藉由聚縮合而從多元醇、及脂族及/或芳香族二羧酸或其衍生物(酸酐、酯)所製造之脂族、芳脂族聚酯或共聚酯,其中該多元醇可以經取代或未經取代,且該多元醇可為直鏈型或支鏈型多元醇。 較佳的多元醇是含有2至8個碳原子之多元醇、含有2至8個碳原子之聚伸烷基醚二醇及含有4至12個碳原子之環脂族二醇。可被使用之多元醇的非限制性實例包含乙二醇、二乙二醇、丙二醇、1,3-丙二醇、2,2-二甲基-1,3-丙二醇、2-甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、聚乙二醇、二乙二醇、2,2,4-三甲基-1,6-己二醇、硫二乙醇、1,3-環己烷二甲醇、1,4-環己烷二甲醇、2,2,4,4-四甲基-1,3-環丁二醇、三乙二醇及四乙二醇。較佳之多元醇包含1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二乙二醇、異山梨醇及1,4-環己烷二甲醇。 較佳之脂族二羧酸包含選自由含有2至12個碳原子之脂族二羧酸及含有5至10個碳原子之環脂族二羧酸所形成之群組的經取代或未取代之直鏈型或支鏈型的非芳香族二羧酸,其中該環脂族二羧酸也可在環中含有雜原子。 該經取代之非芳香族二羧酸一般含有1至4個選自鹵素、C6-C10芳基及C1-C4烷氧基之取代基。脂族及環脂族二羧酸之非限制性實例包含順丁烯二酸、丁二酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、反丁烯二酸、2,2-二甲基戊二酸、辛二酸、1,3-環戊烷二羧酸、1,4-環己烷二羧酸、3-環己烷二羧酸、縮二羥乙酸、依康酸、順丁烯二酸、2,5-降

Figure 111101733-001
烷二羧酸。 較佳之芳香族二羧酸包含選自由含有6至12個碳原子之芳香族二羧酸所形成之群組的經取代或未取代之芳香族二羧酸,其中該等羧酸也可在其芳香族環及/或在其取代基中包含雜原子。 該經取代之芳香族二羧酸一般可含有1至4個選自由鹵素、C6-C10芳基及C1-C4烷氧基之取代基。芳香族二羧酸之非限制性實例包含苯二甲酸、異苯二甲酸、對苯二甲酸、萘二羧酸及呋喃二羧酸。 上述脂族二羧酸也可與上述芳香族二羧酸一同呈共聚物或三元聚合物形式;非限制性實例是聚丁烯-己二酸酯-對苯二甲酸酯及生質PTA。 在本發明之上下文中,特佳之合成的生物聚合物是具有至少4個碳原子之重複單元的脂族聚酯,例如聚羥基烷酸酯,諸如聚羥基戊酸酯及聚羥基丁酸酯-羥基戊酸酯共聚物、聚己內酯、呋喃二羧酸、及丁二酸酯系脂族聚合物(例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯)。特殊實例可以選自聚草酸乙二酯、聚丙二酸乙二酯、聚丁二酸乙二酯、聚草酸丙二酯、聚丙二酸丙二酯、聚丁二酸丙二酯、聚草酸丁二酯,聚丙二酸丁二酯、聚丁二酸丁二酯及該等化合物之摻合物和共聚物。 尤其,該較佳合成的生物聚合物是脂族聚酯,其包含乳酸(PLA)、羥基脂肪酸(PHF)(也已知為聚羥基烷酸酯PHA)、尤其是羥基丁酸(PHB)之重複單元,以及丁二酸酯系脂族聚合物,例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯。 應了解該『脂族聚酯』是意指那些一般具有至少約50莫耳%,較佳至少約60莫耳%,特佳至少約70莫耳%,特佳至少95莫耳%之脂族單體。 再者,在本發明之上下文中,具有高於-125℃,有利地高於-30℃,較佳地高於30℃,特佳地高於50℃,尤其高於70℃之玻璃轉換溫度之熱塑性聚合物是極有利的。在本發明之更特佳具體例的文中,該聚合物之玻璃轉換溫度是在-125℃至200℃之範圍內,尤其在-125℃至100℃之範圍內。 在該熱塑性之合成的生物聚合物之間,該玻璃轉換溫度較佳是高於20℃,有利地高於25℃,較佳地高於30℃,特佳地高於35℃,尤其是高於40℃。在本發明之更特佳具體例的上下文中,該聚合物之玻璃轉換溫度是在35℃至55℃之範圍內,尤其在40℃至50℃之範圍內。 特佳之聚酯是具有至高70℃之玻璃轉換溫度的PET、具有在40℃至70℃之範圍內的玻璃轉換溫度的PLA以及具有在-40℃至62℃之範圍內的玻璃轉換溫度的PHA和PHB、PBS、以及PBS共聚物諸如具有在-45℃至45℃之範圍內的玻璃轉換溫度的PBSA和具有在-75℃至45℃之範圍內的玻璃轉換溫度的聚己內酯。 對在25℃之二氯乙酸中的溶液所測得的,聚酯(尤其是聚對苯二甲酸乙二酯)經常具有對應於0.4至1.4 (dl/g)的特性黏度(IV)的分子量。 特佳之聚酯是諸如PET、PEN、PLA、PBS、PEIT者,其較佳藉由相對具有窄分布之聚苯乙烯標準的凝膠滲透層析法且或藉由端基(end group)滴定所測定的,具有至少20000 g/mol之數目平均分子量(Mn)。還更好地,這些聚合物之多分散性是至少1.7。 特別受關注的聚酯是諸如具有在250℃與260℃之間的熔點的PET者。 特別受關注的聚酯是諸如具有(80%:43 J/g;100%晶體/理論):115 J/g之熔化焓的PET者。 特別受關注的聚酯是諸如具有至少125℃之結晶溫度及至少31 J/g之結晶焓(125℃)的PET者。 特別受關注的聚酯是商業上由Trevira GmbH所得者,例如Trevira® T298。 特佳之聚醯胺之玻璃轉換溫度係在30℃至80℃範圍內,尤其在35℃至65℃範圍內,特佳在50℃至60℃範圍內,其中該等值尤其是要對PA 6.6及PA 6。 特別受關注之聚醯胺是諸如PA 6.6和PA 6者,其較佳藉由相對具有窄分布之聚苯乙烯標準的凝膠滲透層析法或藉由端基滴定所測定的,具有至少10000 g/mol之數目平均分子量(Mn)。 特別受關注之聚醯胺是諸如具有在170℃與280℃之間,更佳在200℃與260℃之間的熔點的PA 6.6和PA 6者。特別受關注之聚醯胺是諸如具有190℃之晶體熔化焓(100%晶體)的PA 6.6和PA 6者。 特別受關注之聚醯胺是諸如具有204℃之軟化溫度的PA 6.6和PA 6者。 市售之聚醯胺諸如Nylon、Perlon或Grilon是特別受關注的。 特別受關注之聚烯烴是諸如聚乙烯(PE)或聚丙烯(PP)均聚物者,以及包含至少50 mol%之乙烯及/或丙烯重複單元之共聚物或三元聚合物。 特別受關注之聚乙烯是低密度聚乙烯(LDPE)、線性低密度聚乙烯(LLDPE)、極低密度聚乙烯(VLDPE)、超低密度聚乙烯(ULDPE)、中密度聚乙烯(MDPE)、聚甲基戊烯(PMP)、聚丁烯-1(PB-1);乙烯-辛烯共聚物、立體嵌段PP、烯烴嵌段共聚物、丙烯-丁烷共聚物。 特佳的聚烯烴是那些具有在-100℃至-35℃之範圍內的玻璃轉換溫度的PE以及具有在-10℃至-5℃之範圍內的玻璃轉換溫度的PP。 特別受關注之聚乙烯是那些具有在120℃與135℃之間的熔點者且聚丙烯是那些具有在158℃與170℃之間的熔點者。 特別受關注之聚乙烯是那些具有290 J/g之晶體熔化焓(100%晶體)者且聚丙烯是那些具有190 J/g之晶體熔化焓者。 市售之聚烯烴諸如LDPE(PE Aspun 6834, Dow)、HDPE (SKGC MK 910)、PP(Braskem)諸如Braskem HSP 165G是特別受關注的。 另外適合的聚合物是那些具有高於50℃,有利地至少75℃,較佳地高於150℃之熔化溫度者。特佳地,該熔化溫度是在120℃至285℃之範圍內,尤其在150℃至270℃之範圍內,特佳在175℃至270℃之範圍內。 在此方面,該聚合物之玻璃轉換溫度和熔化溫度較佳利用微差掃描熱量法(DSC)測定。 依據本發明之特佳的合成的生物聚合物是基於已知為生物聚合物的熱塑性聚縮物,其含有乳酸、羥基丁酸、丁二酸、乙醇酸及/或呋喃二羧酸之重複單元,較佳是乳酸及/或乙醇酸,尤其是乳酸。在這點上,聚乳酸是特佳的。 在本發明中可使用多種高熔點之合成的生物聚合物(熔點在110℃與270℃之間,較佳在140℃與270℃之間,更佳在180℃與270℃之間),諸如聚酯,諸如聚酯醯胺、改質的聚對苯二甲酸乙二酯、聚乳酸(PLA)、基於聚乳酸之三元聚合物、聚丁二酸丁二酯、聚呋喃酸烷二酯諸如PEF、聚乙醇酸、聚碳酸烷二酯(諸如聚碳酸乙二酯)、聚羥基烷酸酯(PHA)諸如聚羥基丁酸酯(PHB)、聚羥基戊酸酯(PHV)或聚羥基丁酸酯-羥基戊酸酯共聚物(PHBV)。 在此應了解『聚乳酸』(PLA)一詞是指由乳酸單元所構成之聚合物。該等聚乳酸經常是藉由乳酸之縮合所製造,但也藉由在合適條件下之乳交酯的開環聚合所獲得。 依據本發明之特適合的聚乳酸包含聚(乙交酯-共-L-乳交酯)、聚(L-乳交酯)、聚(L-乳交酯-共-ε-己內酯)、聚(L-乳交酯-共-乙交酯)、聚(L-乳交酯-共-D,L-乳交酯)、聚(D,L-乳交酯-共-乙交酯)以及(聚二氧雜環己酮)。作為實例,該類型之聚合物是市售之得自Boehringer Ingelheim Pharma KG(德國)之品名為Resomer® GL 903、Resomer® L 206 S、Resomer® L 207 S、Resomer® L 209 S、Resomer® L 210、Resomer® L 210 S、Resomer® LC 703 S、Resomer® LG 824 S、Resomer® LG 855 S、Resomer® LG 857 S、Resomer® LR 704 S、Resomer® LR 706 S、Resomer® LR 708、Resomer® LR 927 S、Resomer® RG 509 S及Resomer® X206 S者,得自Biomer, Inc.(德國)之名稱為Biomer(TM) L9000者。其他合適的聚乳酸聚合物是市售之得自美國明尼蘇達州明尼亞波斯的Natureworks, LLC。 對於本發明之目的而言,特別有利的聚乳酸特別是聚-D-、聚-L-、或聚-D,L-乳酸。 『聚乳酸』一詞通常是指乳酸之均聚物諸如聚(L-乳酸)、聚(D-乳酸)、聚(DL-乳酸)、其混合物、及含有乳酸作為主要組分及小比例(較佳少於10莫耳%)之可共聚合之共單體的共聚物。 另外合適之材料是基於聚乳酸、聚乙醇酸、聚碳酸烷二酯(諸如聚碳酸乙二酯)、聚羥基烷酸酯(PHA)、聚羥基丁酸酯(PHB)、聚羥基戊酸酯(PHV)及聚羥基丁酸酯-羥基戊酸酯共聚物(PHBV)的共聚物或三元聚合物。 在特佳具體例中,該生物聚合物僅為基於乳酸之熱塑性聚縮物。 依據本發明所用之聚乳酸之數目平均分子量(Mn)較佳是最低500 g/mol,較佳是最低1000 g/mol,特佳是最低5000 g/mol,合適是最低10000 g/mol,尤其是最低25000 g/mol。另一方面,該數目平均較佳是最高1000000 g/mol,合適是最高500000 g/mol,有利是最高100000 g/mol,尤其是最高50000 g/mol。在本發明之文中,在最低10000 g/mol至500000 g/mol之範圍內之數目平均分子量已經證實是特別有利的。 較佳之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的質量平均分子量(Mw)較佳是在750 g/mol至5000000 g/mol之範圍內,較佳是在5000 g/mol至1000000 g/mol之範圍內,特佳是在10000 g/mol至500000 g/mol之範圍內,尤其是在30000 g/mol至500000 g/mol之範圍內,且該等聚合物之多分散性有利地在1.5至5之範圍內。 在25℃之氯仿中0.1%聚合物濃度下所測得的,特別適合之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的特性黏度是在0.5 dl/g至8.0 dl/g之範圍內,較佳是在0.8 dl/g至7.0 dl/g之範圍內,尤其是在1.5 dl/g至3.2 dl/g之範圍內。 再者,在30℃之六氟-2-丙醇中0.1%聚合物濃度下所測得的,特別適合之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的特性黏度是在1.0 dl/g至2.6 dl/g之範圍內,尤其是在1.3 dl/g至2.3 dl/g之範圍內。 特別受關注的是具有在50℃與65℃之間的玻璃轉換溫度的聚乳酸。 特別受關注的是具有在155℃與180℃之間的熔點的聚乳酸。 特別受關注的是市售之聚乳酸諸如NatureWorks PLA 6202D。 在本發明之上下文中所用之『聚羥基脂肪酸酯(PHF)』一詞較佳應被了解為意指下列聚合物:聚(3-羥基丙酸酯)(PHP)、聚(3-羥基丁酸酯)(PHB、P3HB)、聚(3-羥基戊酸酯)(PHV)、聚(3-羥基己酸酯)(PHHx)、聚(3-羥基庚酸酯)(PHH)、聚(3-羥基辛酸酯)(PHO)、聚(3-羥基壬酸酯)(PHN)、聚(3-羥基癸酸酯)(PHD)、聚(3-羥基十一酸酯)(PHUD)、聚(3-羥基十二酸酯)(PHDD)、聚(3-羥基十四酸酯)(PHTD)、聚(3-羥基十五酸酯)(PHPD)、聚(3-羥基十六酸酯)(PHHxD)、以及上述聚合物之摻合物。除了上述均聚物之外,聚羥基脂肪酸酯共聚物諸如聚(3-羥基丙酸酯-共-3-羥基丁酸酯)(P3HP-3HB)、聚(3-羥基丙酸酯-共-4-羥基丁酸酯)(P3HP-4HB)、聚(3-羥基丁酸酯-共-4-羥基丁酸酯)(P(3HB-4HB))、聚(3-羥基丁酸酯-共-3-羥基戊酸酯)(PHBV)、聚(3-羥基丁酸酯-共-3-羥基戊酸酯-共-3-羥基己酸酯)(PHBV-HHx)、以及上述共聚物之摻合物可一同被使用或與該等均聚物一同被使用。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物是市售的;實例為Mirel、Biomer P 209、Biopol Aonilex X、Proganic。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的玻璃轉換溫度較佳在-2℃至62℃之範圍內。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的熔化溫度較佳在100℃至177℃之範圍內。 依據ISO 1133-1:2011所測定的,依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物之熔體流動指數(MFI)是5至10 g/10 min (190℃, 2.16kg)。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的數目平均分子量(Mn)較佳至少200000道爾頓(Dalton),尤其至少220000道爾頓,特佳至少250000道爾頓,且最高達3000000道爾頓,尤其高達2500000道爾頓,特佳高達2000000道爾頓。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的質量平均分子量(Mw)經常是該數目平均分子量(Mn)的約2倍,較佳3倍。 『丁二酸酯系脂族聚合物』一詞應理解為意指具有下列通式之聚合物
Figure 02_image001
, 其中R 1、R 2、R 3、R 4表示由2至20個碳原子之直鏈型或支鏈型脂族烴殘基。 在此方面之實例是聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯。 依據本發明所用之熱塑性丁二酸酯系脂族聚合物是市售的;實例Bionolle 1000、BioPBS。 依據本發明所用之熱塑性丁二酸酯聚合物之玻璃轉換溫度是在-45℃至45℃之範圍內。 依據本發明所用之熱塑性丁二酸酯聚合物之結晶溫度是在70℃至90℃之範圍內。 依據本發明所用之熱塑性丁二酸酯聚合物之熔化溫度是在60℃至180℃之範圍內。 依據ISO 1133-1:2011所測定的,依據本發明所用之熱塑性丁二酸酯聚合物之熔體流動指數(MFI)是5至10 g/10min (190℃, 2.16kg)。 依據本發明所用之熱塑性丁二酸酯聚合物之數目平均分子量(Mn)較佳是至少20000道爾頓,尤其是至少30000道爾頓,特佳是至少35000道爾頓,且最高達140000道爾頓,尤其高達120000道爾頓,特佳高達110000道爾頓。 依據本發明所用之熱塑性丁二酸酯聚合物之質量平均分子量(Mw)是該數目平均分子量(Mn)的約2倍,較佳約3倍。 聚己內酯(PCL)是本發明意義內的合成的生物聚合物。 特別受關注的是具有在-45℃與45℃之間的玻璃轉換溫度的聚己內酯。 特別受關注的是具有在70℃與90℃之間的結晶溫度的聚己內酯。 特別受關注的是具有在60℃與180℃之間的熔點的聚己內酯。 特別受關注的是具有70至145 J/g的熔化焓的聚己內酯。 特別受關注的是聚己內酯,其具有較佳藉由相對具有窄分布之聚苯乙烯標準的凝膠滲透層析法或藉由端基滴定所測定之至少20000道爾頓至140000道爾頓之數目平均分子量(Mn)的聚己內酯。 特別受關注的是市售的聚己內酯諸如Resomer C 209。 熱塑性聚合物 A該熱塑性聚合物A係選自上述之熱塑性聚合物群組。 在該熱塑性聚合物A之間,可熔體紡絲之合成的生物聚合物是較佳的,特佳是由生質原料所製造之聚縮物及聚合物。該合成的生物聚合物係選自上述之合成的生物聚合物群組。 較佳之合成的生物聚合物是脂族、芳脂族聚酯或共聚酯,其係藉由聚縮合而由多元醇、及脂族及/或芳香族二羧酸或其衍生物(酸酐、酯)所製造,其中該多元醇可為經取代或未取代之直鏈型或支鏈型多元醇。 較佳之多元醇是含有2至8個碳原子之多元醇、含有2至8個碳原子之聚伸烷基醚二醇及含有4至12個碳原子之環脂族二醇。可被使用之多元醇的非限制性實例是乙二醇、二乙二醇、丙二醇、1,3-丙二醇、2,2-二甲基-1,3-丙二醇、2-甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、聚乙二醇、二乙二醇、2,2,4-三甲基-1,6-己二醇、硫二乙醇、1,3-環己烷二甲醇、1,4-環己烷二甲醇、2,2,4,4-四甲基-1,3-環丁二醇、三乙二醇及四乙二醇。較佳之多元醇包含1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二乙二醇、異山梨醇及1,4-環己烷二甲醇。 較佳之脂族二羧酸包含選自由含有2至12個碳原子之脂族二羧酸及含有5至10個碳原子之環脂族二羧酸所形成之群組的經取代或未取代之直鏈型或支鏈型的非芳香族二羧酸,其中該環脂族二羧酸也可在其環中含有雜原子。 該經取代之非芳香族二羧酸一般含有1至4個選自鹵素、C6-C10芳基及C1-C4烷氧基之取代基。脂族及環脂族二羧酸之非限制性實例包含順丁烯二酸、丁二酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、反丁烯二酸、2,2-二甲基戊二酸、辛二酸、1,3-環戊烷二羧酸、1,4-環己烷二羧酸、3-環己烷二羧酸、縮二羥乙酸、依康酸、順丁烯二酸、2,5-降
Figure 111101733-001
烷二羧酸。 較佳之芳香族二羧酸包含選自由含有6至12個碳原子之芳香族二羧酸所形成之群組的經取代或未取代之芳香族二羧酸,其中該等羧酸也可在其芳香族環及/或在其取代基中包含雜原子。 該經取代之芳香族二羧酸一般可具有1至4個選自由鹵素、C6-C10芳基及C1-C4烷氧基之取代基。芳香族二羧酸之非限制性實例包含苯二甲酸、異苯二甲酸、對苯二甲酸、萘二羧酸及呋喃二羧酸。 上述脂族二羧酸也可與上述芳香族二羧酸一同呈共聚物或三元聚合物形式;非限制性實例是例如聚丁烯-己二酸酯對苯二甲酸酯及生質PTA。 在該熱塑性聚合物A之間,較佳之可熔體紡絲之合成的生物聚合物是具有至少4個碳原子之重複單元的脂族聚酯,例如聚羥基烷酸酯,諸如聚羥基戊酸酯及聚羥基丁酸酯-羥基戊酸酯共聚物、聚己內酯、呋喃二羧酸、及丁二酸系脂族聚合物(例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯)。特殊實例可選自聚草酸乙二酯、聚順丁烯二酸乙二酯、聚丁二酸乙二酯、聚草酸丙二酯、聚順丁烯二酸丙二酯、聚丁二酸丙二酯、聚草酸丁二酯、聚順丁烯二酸丁二酯、聚丁二酸丁二酯及該等化合物之摻合物和共聚物。 特佳之合成的生物聚合物是包含乳酸(PLA)、羥基脂肪酸(PHF)(也已知是聚羥基烷酸酯,PHA)、尤其是羥基丁酸(PHB)的重複單元的脂族聚酯,及丁二酸酯系脂族聚合物,例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯。 『脂族聚酯』應理解為意指那些一般具有至少約50莫耳%,較佳至少約60莫耳%,特佳至少約70莫耳%,特佳至少約95莫耳%之脂族單體的聚酯。 在該熱塑性聚合物A之間,具有高於-125℃,有利地高於-30℃,較佳地高於30℃,特佳地高於50℃,尤其高於70℃之玻璃轉換溫度的熱塑性聚合物是較佳的。在特佳具體例之文中,該聚合物之玻璃轉換溫度是在-125℃至200℃之範圍內,尤其是在-125℃至100℃之範圍內。 在該熱塑性聚合物A之間,較佳之熱塑性之合成的生物聚合物是那些具有較佳高於20℃,有利地高於25℃,較佳地高於30℃,特佳地高於35℃,尤其高於40℃之玻璃轉換溫度者。在特佳具體例之文中,該聚合物之玻璃轉換溫度是在35℃至55℃之範圍內,尤其是在40℃至50℃之範圍內。 特佳之聚酯是具有至少70℃之玻璃轉換溫度的PET、具有在40℃至70℃之範圍內的玻璃轉換溫度的PLA、具有在-40℃至62℃之範圍內的玻璃轉換溫度之PHA和PHB、具有在-45℃至45℃之範圍內的玻璃轉換溫度之PBS與PBS共聚物(諸如PBSA)以及具有在-75℃至45℃之範圍內的玻璃轉換溫度的聚己內酯。 對在25℃之二氯乙酸中所成的溶液所測得的,聚酯(尤其是聚對苯二甲酸乙二酯)之分子量經常對應於0.4至1.4 (dl/g)之特性黏度(IV)。 特別受關注之聚酯是諸如PET、PEN、PLA﹐PBS、PEIT者,彼等具有較佳藉由相對具有窄分布之苯乙烯標準的凝膠滲透層析法或藉由端基滴定所測得之至少20000 g/mol之數目平均分子量(Mn)。還更好地,該等聚合物之多分散性是至少1.7。 特別受關注之聚酯是那些具有在250℃與260℃之間的熔點者,諸如PET。 特別令人關注的聚酯是那些具有(80%:43 J/g;100%晶體/理論):115 J/g之熔化焓者,諸如PET。 特別受關注之聚酯是諸如具有至少125℃之結晶溫度及至少31 J/g之結晶焓(125℃)的PET。 特別受關注之聚酯是市售之得自Trevira GmbH者,例如Trevira® T298。 特佳之聚醯胺之玻璃轉換溫度是在30℃至80℃之範圍內,尤其是在35℃至65℃之範圍內,特佳是在50℃至60℃之範圍內,其中該等值尤其是要對於PA 6.6和PA 6。 特別令人關注之聚醯胺是諸如PA 6.6或PA 6,其具有較佳藉由相對具有窄分布之苯乙烯標準的凝膠滲透層析法或藉由端基滴定所測得之至少10000 g/mol之數目平均分子量(Mn)。 特別令人關注之聚醯胺是諸如具有在170℃與280℃之間,更佳在200℃與260℃之間的熔點的PA 6.6及PA 6。特別令人關注之聚醯胺是諸如具有190℃之結晶熔化焓(100%晶體)的PA 6.6及PA 6。 特別令人關注之聚醯胺是諸如具有204℃之軟化溫度的PA 6.6及PA 6。 市售之聚醯胺諸如Nylon、Perlon或Grilon是特別受人關注的。 特別令人關注之聚烯烴是諸如聚乙烯(PE)或聚丙烯(PP)均聚物,以及包含至少50莫耳%之乙烯及/或丙烯重複單元的共聚物或三元聚合物。 特別受關注之聚乙烯是低密度聚乙烯(LDPE)、線性低密度聚乙烯(LLDPE)、極低密度聚乙烯(VLDPE)、超低密度聚乙烯(ULDPE)、中密度聚乙烯(MDPE)、聚甲基戊烯(PMP)、聚丁烯-1(PB-1);乙烯-辛烯共聚物、立體嵌段PP、烯烴嵌段共聚物、丙烯-丁烷共聚物。 特佳的聚烯烴是具有在-100℃至-35℃之範圍內的玻璃轉換溫度的PE以及具有在-10℃至-5℃之範圍內的玻璃轉換溫度的PP。 特別受關注之聚乙烯是那些具有在120℃與135℃之間的熔點者且聚丙烯是那些具有在158℃與170℃之間的熔點者。 特別受關注之聚乙烯是那些具有290 J/g之結晶熔化焓(100%晶體)者且聚丙烯是那些具有190 J/g之結晶熔化焓者。 特別受關注者是市售之聚烯烴諸如LDPE (PE Aspun 6834, Dow)、HDPE (SKGC MK 910)、PP (Braskem)。 另外適合的聚合物是那些具有高於50℃,有利地至少75℃,較佳地高於150℃之熔化溫度者。特佳地,該熔化溫度是在120℃至285℃之範圍內,尤其在150℃至270℃之範圍內,特佳在175℃至270℃之範圍內。 在此方面,該聚合物之玻璃轉換溫度和熔化溫度較佳利用微差掃描熱量法(DSC)測定。 依據本發明之特佳的合成的生物聚合物是基於已知為生物聚合物的熱塑性聚縮物,其含有乳酸、羥基丁酸、丁二酸、乙醇酸及/或呋喃二羧酸之重複單元,較佳是乳酸及/或乙醇酸,尤其是乳酸。在這點上,聚乳酸是特佳的。 在本發明中可使用多種高熔點之合成的生物聚合物(熔點在110℃與270℃之間,較佳在140℃與270℃之間,更佳在180℃與270℃之間),諸如聚酯,諸如聚酯醯胺、改質的聚對苯二甲酸乙二酯、聚乳酸(PLA)、基於聚乳酸之三元聚合物、聚丁二酸丁二酯、聚呋喃酸烷二酯諸如PEF、聚乙醇酸、聚碳酸烷二酯(諸如聚碳酸乙二酯)、聚羥基烷酸酯(PHA)諸如聚羥基丁酸酯(PHB)、聚羥基戊酸酯(PHV)或聚羥基丁酸酯-羥基戊酸酯共聚物(PHBV)。 應了解『聚乳酸』(PLA)一詞是指由乳酸單元所構成之聚合物。該等聚乳酸經常是藉由乳酸之縮合所製造,但也藉由在合適條件下之乳交酯的開環聚合所獲得。 依據本發明之特適合的聚乳酸包含聚(乙交酯-共-L-乳交酯)、聚(L-乳交酯)、聚(L-乳交酯-共-ε-己內酯)、聚(L-乳交酯-共-乙交酯)、聚(L-乳交酯-共-D,L-乳交酯)、聚(D,L-乳交酯-共-乙交酯)以及聚(二氧雜環己酮)。作為實例,該類型之聚合物是市售之得自Boehringer Ingelheim Pharma KG(德國)之品名為Resomer® GL 903、Resomer® L 206 S、Resomer® L 207 S、Resomer® L 209 S、Resomer® L 210、Resomer® L 210 S、Resomer® LC 703 S、Resomer® LG 824 S、Resomer® LG 855 S、Resomer® LG 857 S、Resomer® LR 704 S、Resomer® LR 706 S、Resomer® LR 708、Resomer® LR 927 S、Resomer® RG 509 S及Resomer® X206 S者,得自Biomer, Inc.(德國)之名稱為Biomer(TM) L9000者。其他合適的聚乳酸聚合物是市售之得自美國明尼蘇達州明尼亞波斯的Natureworks, LLC。 對本發明之目的,尤其有利的聚乳酸特別是聚-D-、聚-L-、或聚-D,L-乳酸。 『聚乳酸』一詞通常是指乳酸之均聚物諸如z.y(L-乳酸)、聚(D-乳酸)、聚(DL-乳酸)、其混合物、及含有乳酸作為主要組分及小比例(較佳少於10莫耳%之可共聚合之共單體的共聚物。 另外合適之材料是基於聚乳酸、聚乙醇酸、聚碳酸烷二酯(諸如聚碳酸乙二酯)、聚羥基烷酸酯(PHA)、聚羥基丁酸酯(PHB)、聚羥基戊酸酯(PHV)及聚羥基丁酸酯-羥基戊酸酯共聚物(PHBV)的共聚物或三元聚合物。 在特佳具體例中,該生物聚合物僅為基於乳酸之熱塑性聚縮物。 依據本發明所用之聚乳酸之數目平均分子量(Mn)較佳是最低500 g/mol,較佳是最低1000 g/mol,特佳是最低5000 g/mol,合適是最低10000 g/mol,尤其是最低25000 g/mol。另一方面,該數目平均較佳是最高1000000 g/mol,合適是最高500000 g/mol,有利是最高100000 g/mol,尤其是最高50000 g/mol。在本發明之文中,在最低10000 g/mol至最高500000 g/mol之範圍內之數目平均分子量已經證實是特別有利的。 較佳之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的質量平均分子量(Mw)較佳是在750 g/mol至5000000 g/mol之範圍內,較佳是在5000 g/mol至1000000 g/mol之範圍內,特佳是在10000 g/mol至500000 g/mol之範圍內,尤其是在30000 g/mol至500000 g/mol之範圍內,且該等聚合物之多分散性有利地在1.5至5之範圍內。 在25℃之氯仿中0.1%聚合物濃度下所測得的,特別適合之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的特性黏度是在0.5 dl/g至8.0 dl/g之範圍內,較佳是在0.8 dl/g至7.0 dl/g之範圍內,尤其是在1.5 dl/g至3.2 dl/g之範圍內。 再者,在30℃之六氟-2-丙醇中0.1%聚合物濃度下所測得的,特別適合之乳酸聚合物(尤其是聚-D-、聚-L-或聚-D,L-乳酸)的特性黏度是在1.0 dl/g至2.6 dl/g之範圍內,尤其是在1.3 dl/g至2.3 dl/g之範圍內。 特別受關注的是具有在50℃與65℃之間的玻璃轉換溫度的聚乳酸。 特別受關注的是具有在155℃與180℃之間的熔點的聚乳酸。 特別受關注的是市售之聚乳酸諸如NatureWorks PLA 6202D。 在本發明之上下文中所用之『聚羥基脂肪酸酯』(PHF)一詞應被了解為意指下列聚合物:聚(3-羥基丙酸酯)(PHP)、聚(3-羥基丁酸酯)(PHB、P3HB)、聚(3-羥基戊酸酯)(PHV)、聚(3-羥基己酸酯)(PHHx)、聚(3-羥基庚酸酯)(PHH)、聚(3-羥基辛酸酯)(PHO)、聚(3-羥基壬酸酯)(PHN)、聚(3-羥基癸酸酯)(PHD)、聚(3-羥基十一酸酯)(PHUD)、聚(3-羥基十二酸酯)(PHDD)、聚(3-羥基十四酸酯)(PHTD)、聚(3-羥基十五酸酯)(PHPD)、聚(3-羥基十六酸酯)(PHHxD)、以及上述聚合物之摻合物。除了上述均聚物之外,聚羥基脂肪酸酯共聚物諸如聚(3-羥基丙酸酯-共-3-羥基丁酸酯)(P3HP-3HB)、聚(3-羥基丙酸酯-共-4-羥基丁酸酯)(P3HP-4HB)、聚(3-羥基丁酸酯-共-4-羥基丁酸酯)(P(3HB-4HB))、聚(3-羥基丁酸酯-共-3-羥基戊酸酯)(PHBV)、聚(3-羥基丁酸酯-共-3-羥基戊酸酯-共-3-羥基己酸酯)(PHBV-HHx)、以及上述共聚物之摻合物可一同被使用或與上述均聚物一同被使用。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物是市售的;實例為Mirel、Biomer P 209、Biopol Aonilex X、Proganic。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的玻璃轉換溫度較佳在-2℃至62℃之範圍內。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的熔化溫度較佳在100℃至177℃之範圍內。 依據ISO 1133-1:2011所測定的,依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物之熔體流動指數(MFI)是5至10 g/10 min(190℃,2.16kg)。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的數目平均分子量(Mn)較佳至少200000道爾頓,尤其至少220000道爾頓,特佳至少250000道爾頓,且最高達3000000道爾頓,尤其高達2500000道爾頓,特佳高達2000000道爾頓。 依據本發明所用之熱塑性聚羥基脂肪酸酯聚合物的質量平均分子量(Mw)經常是該數目平均分子量(Mn)的約2倍,較佳3倍。 『丁二酸酯系脂族聚合物』一詞應理解為意指具有下列通式的聚合物
Figure 02_image003
, 其中R 1、R 2、R 3、R 4示由2至20個碳原子之直鏈型或支鏈型脂族烴殘基。 在此方面之實例是聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯。 依據本發明所用之熱塑性丁二酸酯系脂族聚合物是市售的;實例Bionolle 1000、BioPBS。 依據本發明所用之熱塑性丁二酸酯聚合物之玻璃轉換溫度是在-45℃至45℃之範圍內。 依據本發明所用之熱塑性丁二酸酯聚合物之結晶溫度是在70℃至90℃之範圍內。 依據本發明所用之熱塑性丁二酸酯聚合物之熔化溫度是在60℃至180℃之範圍內。 依據ISO 1133-1:2011所測定的,依據本發明所用之熱塑性丁二酸酯聚合物之熔體流動指數(MFI)是5至10 g/10min(190℃,2.16kg)。 依據本發明所用之熱塑性丁二酸酯聚合物之數目平均分子量(Mn)較佳是至少20000道爾頓,尤其是至少30000道爾頓,特佳是至少35000道爾頓,且最高達140000道爾頓,尤其高達120000道爾頓,特佳高達110000道爾頓。 依據本發明所用之熱塑性丁二酸酯聚合物之質量平均分子量(Mw)經常是該數目平均分子量(Mn)的約2倍,較佳3倍。 聚己內酯(PCL)是本發明意義內的合成的生物聚合物。 特別受關注的是具有在-45℃與45℃之間的玻璃轉換溫度的聚己內酯。 特別受關注的是具有在70℃與90℃之間的結晶溫度的聚己內酯。 特別受關注的是具有在60℃與180℃之間的熔點的聚己內酯。 特別受關注的是具有70至145 J/g的熔化焓的聚己內酯。 特別受關注的是較佳藉由相對具有窄分布之聚苯乙烯標準的凝膠滲透層析法或藉由端基滴定所測定之具有至少20000道爾頓至140000道爾頓之數目平均分子量(Mn)的聚己內酯。 特別受關注的是市售的聚己內酯諸如Resomer C 209。 熱塑性聚合物 B該熱塑性聚合物B係選自上述之熱塑性聚合物群組且熱塑性聚合物B之較佳具體例對應於上述之熱塑性聚合物A的較佳具體例。 在一較佳具體例中,至少該熱塑性聚合物A及/或熱塑性聚合物B係選自由該可熔體紡絲合成的生物聚合物所形成之群組,其中由生質原料所得之聚縮物及聚合物是特佳的。只要熱塑性聚合物A和B皆選自由可熔體紡絲合成的生物聚合物所形成之群組,則較佳選擇在其化學本質方面及/或在其熔點方面不同的生物聚合物。在該具體例中,該多組分聚合物纖維較佳是雙組分纖維,其中該組分A形成核且該組分B形成殼。特佳地,在組分A中之熱塑性聚合物的熔點比在該組分B中之熱塑性聚合物的熔點高至少5℃,較佳高至少10℃。 添加劑 A B該添加劑A和B提高依據本發明之多組分聚合物纖維(尤其是依據本發明之雙組分纖維)的可生物降解性,因為該等添加劑提高該熱塑性聚合物A及/或該熱塑性聚合物B之可生物降解性。 依據本發明之多組分聚合物纖維(尤其是該較佳之雙組分纖維)含有(i)在該組分A中之至少一種添加劑A或(ii)在該組分B中之至少一種組分B或(iii)在該組分A中之至少一種添加劑A及在該組分B中之至少一種添加劑B。當至少一種添加劑A存在於該組分A且至少一種添加劑B存在於該組分B時,該添加劑A和該添加劑B是不同的,或當至少一種添加劑A存在於該組分A且至少一種添加劑B存在於該組分B時,若該熱塑性聚合物A和該熱塑性聚合物B不同,則該添加劑A和該添加劑B也可以相同。在此段落的上下文中,『不同』一詞是指該等物質至少在其化學本質方面或在其物理本質方面或在其濃度方面是不同的。 尤其,該添加劑A和B係: ․    鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),尤其是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO, ․    脂族聚酯,較佳是不具有側鏈碳原子之脂族聚酯,較佳是聚己內酯, ․    脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯, ․    醣類,特別是單醣,二醣及寡醣, ․    用於轉酯化的觸媒,特別是在鹼性條件下用於轉酯化的觸媒, ․    金屬化合物,特別是過渡金屬化合物,較佳是至少二種過渡金屬化合物,以及其鹽, ․    不飽和羧酸和其酸酐/酯/醯胺, ․    合成橡膠、天然橡膠, ․    碳水化合物,特別是澱粉及/或纖維素, 以及上述物質之混合物。 較佳的是多組分聚合物纖維,尤其是雙組分聚合物纖維,其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚酯且該添加劑A及/或添加劑B係選自由下列所形成之群組:(i) 鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii) 脂族聚酯,(iii)脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯,(iv) 醣類,特別是單醣,二醣及寡醣,(v) 用於轉酯化的觸媒,特別是在鹼性條件下用於轉酯化的觸媒,(vi) 碳水化合物,特別是澱粉及/或纖維素,以及其混合物。 特佳的雙組分聚合物纖維是其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚酯且該添加劑A及/或添加劑B係選自由下列所形成之群組:(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii) 脂族聚酯,(iii)脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯,(iv) 醣類,特別是單醣,二醣及寡醣,(v) 用於轉酯化的觸媒,特別是在鹼性條件下用於轉酯化的觸媒,(vi) 碳水化合物,特別是澱粉及/或纖維素,以及其混合物。上述脂族聚酯在其化學本質方面異於該熱塑性聚合物A和聚合物B之聚酯,亦即該熱塑性聚合物A和聚合物B之聚酯是由多元醇及脂族及/或芳香族二羧酸或其衍生物(酸酐、酯)而藉由聚縮合所製造之芳脂族聚酯或共聚酯。 特佳之添加劑A及/或添加劑B含有至少二種物質,其中較佳結合是: A)    鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7)(特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO)與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; B)    醣類(特別是單醣,二醣及寡醣)與碳水化合物(特別是澱粉及/或纖維素)的結合,以及其混合物, C)    脂族聚酯隨意地與醣類(特別是單醣,二醣及寡醣)或碳水化合物(特別是澱粉及/或纖維素)的結合,以及其混合物 D)    脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯。 用於作為熱塑性聚合物A之部分芳香族『芳脂族』聚酯或共聚酯的最佳添加劑A含有至少 -      鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7) (特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO)與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; 及 -      脂族聚酯(尤其是不具有側鏈碳原子之脂族聚酯)隨意地與(i)醣類(特別是單醣,二醣及寡醣),(ii)碳水化合物(特別是澱粉)及/或(iii)纖維素,(iv)脂肪酸酯(較佳是硬脂酸C1-C40-烷酯,更佳是硬脂酸C2-C20-烷酯,最佳是硬脂酸乙酯)的結合,以及其混合物。 屬於上述特佳的雙組分聚合物纖維是那些較佳者,其中該熱塑性聚合物A是聚酯且該熱塑性聚合物B是與在聚合物A中之聚酯不同的聚酯,且較佳是共聚酯,且該添加劑A和該添加劑B各自獨立地選自下列之結合 -      鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7) (特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO)與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; 及 -      脂族聚酯(尤其是不具有側鏈碳原子之脂族聚酯)隨意地與(i)醣類(特別是單醣,二醣及寡醣),(ii)碳水化合物(特別是澱粉)及/或(iii)纖維素,(iv)脂肪酸酯(較佳是硬脂酸C1-C40-烷酯,更佳是硬脂酸C2-C20-烷酯,最佳是硬脂酸乙酯)的結合,以及其混合物。 在特佳具體例中,上述脂肪酸酯是存在的且並非隨意的。 較佳的是多組分聚合物纖維,尤其是雙組分聚合物纖維,其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚烯烴且該添加劑A及/或添加劑B係選自下列群組:(i)醣類,特別是單醣,二醣及寡醣,(ii)金屬化合物,特別過渡金屬化合物,以及其鹽,(iii) 不飽和羧酸或其酸酐/酯/醯胺,(iv) 合成橡膠及/或天然橡膠,(v) 碳水化合物,特別是澱粉及/或纖維素,以及其混合物。對於聚烯烴特佳的是包含(a)過渡金屬化合物及(b)不飽和羧酸或其酸酐的添加劑A及/或添加劑B,其特別佳是與(c)合成橡膠及/或天然橡膠和(d)澱粉結合。 特佳的雙組分聚合物纖維是其中該熱塑性聚合物B是聚烯烴,尤其是聚丙烯聚合物,其包含作為添加劑B之至少(i)金屬化合物,尤其是過渡金屬化合物,以及其鹽,較佳是至少二種在化學上不同之過渡金屬化合物及(ii)不飽和羧酸或其酸酐/酯/醯胺,較佳是結合合成橡膠及/或天然橡膠,且隨意地另外包含(iii)醣類,特別是單醣,二醣及寡醣,(iv)碳水化合物,特別是澱粉及/或(v)纖維素,以及其混合物。再者,可以有苯酚抗氧化劑及CaO。 較佳的是多組分聚合物纖維,尤其是雙組分聚合物纖維,其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚醯胺且該添加劑A及/或添加劑B係選自下列群組:(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii)脂族聚酯,(iii)脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯,(iv)醣類,特別是單醣,二醣及寡醣,(v)用於轉酯化的觸媒,特別是在鹼性條件下用於轉酯化的觸媒,(vi)金屬化合物,尤其是過渡金屬化合物,以及其鹽,(vii)不飽和羧酸或其酸酐/酯/醯胺,(viii)合成橡膠及/或天然橡膠,(ix)碳水化合物,尤其是澱粉及/或纖維素,以及其混合物。 該添加劑A在該組分A中之比例以該組分A之總重量計,較佳在0.005重量%與20重量%之間,特佳在0.01重量%與5重量%之間。 該添加劑B在該組分B中之比例以該組分B之總重量計,較佳在0.005重量%與20重量%之間,特佳在0.01重量%與5重量%之間。 為要獲得低的重量比例以及在該組分中盡可能均勻之該添加劑的分布,該添加劑較佳以已知為母料之形式被添加於該擠出機內的聚合物材料中。 『母料』一詞應被理解為意指在該紡絲過程中經添加至該聚合物熔體的顆粒。在此方面,該顆粒具有聚合的載體材料以及至少一種添加劑。 為要使小量添加劑能添加至該聚合物,較佳地,改變在該母料中該添加劑之濃度。較佳地,在該紡絲方法中母料的劑量是在0.1重量%與30重量%之間,特佳地在0.5重量%與15重量%之間。 熱黏合為供熱黏合,特別地,合適的熱塑性聚合物、共聚物及摻混合物,特別地,熱塑性生物聚合物是具有高度熔化和結晶焓者。經常地,選擇該聚合物B之方式是使彼等有某一程度的結晶度以及多於約25焦耳/克(『J/g』),特佳多於35J/g,尤其多於50J/g之熔化潛熱(ΔHf)。熔化潛熱(ΔHf)、結晶潛熱(ΔHC)及結晶溫度之測定係利用微差掃描熱量法(『DSC』),尤其是依據ASTM D-3418(ASTM D-3418-15,藉由微差掃描熱量法之用於聚合物的熔化和結晶之過渡溫度和焓的標準試驗方法,ASTM International, West Conshohocken, PA, 2015, www.astm.org)來進行。 對熱塑性聚合物 A B 之進一步添加劑上述熱塑性聚合物、共聚物和摻合物,尤其是上述生物聚合物,具有一般添加劑,特別是諸如抗氧化劑。 另外之一般添加劑是顏料、穩定劑、表面活性劑、蠟、流動促進劑、固體溶劑、塑化劑及其他材料(例如經添加以改良該熱塑性組成物之加工性的成核劑)。 依據本發明之多組分纖維(尤其是依據本發明之雙組分纖維)是由至少90重量%之上述熱塑性聚合物、共聚物、摻合物(尤其是熱塑性生物聚合物)所構成,且尤其於該殼中,一般具有少於約10重量%,較佳少於約8重量%,特佳少於約5重量%之添加劑。 依據本發明之多組分纖維(尤其是依據本發明之雙組分纖維)可以是連續纖維,例如已知為短纖維者,或連續纖維(長絲)。 多組分纖維之製造在紡絲成纖維束之後,將該多組分纖維(尤其是依據本發明之雙組份纖維)結合在一起且使用原則上已知之方法在輥軋機中後處理,尤其是拉伸且隨意地也摺疊捲曲或調質。 當在該(長絲)紡絲方法之後被加工時,依據本發明之多組分聚合物纖維在離開該紡嘴後被立即冷卻且被拉伸且沉積在收集帶上或較佳纏繞在捲絲管上。進一步的步驟尤其包括該等長絲之拉伸、調質及熱黏合。 依據本發明之多組分纖維(尤其是依據本發明之雙組份纖維)的製造係使用精於該技術之人員已知之方法和設備進行,且這些已在文獻中,例如在Fourné (Synthetische Fasern [合成纖維];1995,第4和5.2章)中被描述。 很多製造方法可用於非織物之製造。在紡黏物之製造中,不進行短纖維製造之中間步驟。尤其,該多組份纖維在離開該紡嘴之後,較佳利用空氣流直接被捲曲,以致彼等被沉積成非織物。紡黏物之製造對精於該技術之人員是已知的且已經在文獻中,例如在Fourné (Synthetische Fasern [合成纖維];1995,第5.5章)中被描述。 為要改良該分散性或在二次紡絲單元中用於進一步加工(尤其是加工成紗)之目的,該纖維較佳是短纖維形式。該短纖維之長度原則上不受限制,但通常是2至200 mm,較佳是3至120 mm,特佳是4至60 mm。 依據本發明之多組分纖維(尤其是依據本發明之雙組份纖維,較佳是短纖維)之個別的線性密度是在0.5與30 dtex之間,較佳0.7至13 dtex之間。對於一些應用,在0.5與3 dtex之間的線性密度及<10mm(尤其是<8mm,特佳是<6mm,特佳是<5mm)的纖維長度是特別適合的。 依據本發明之多組分纖維(尤其是依據本發明之雙組分纖維)分別在110℃所測得的,較佳具有在0%至10%(較佳在>0%至8%)之範圍內的低的熱空氣熱縮收率。 原則上使用一般方法進行依據本發明之聚合物纖維的製造。首先,視需要將該聚合物乾燥且供應至擠出機。其次,使用具有合適紡嘴之常規設備,將該熔化的材料紡絲。設定從該紡嘴出口板所出之毛細管之質量通過量及拉出速度,以致製造具有所需線性密度的纖維。 所形成之纖維可具有不同形狀,例如圓形、橢圓形、星形、狗骨形、槓鈴形、腎形、三角形或多邊形、苜蓿葉形、馬蹄形、透鏡形、棒形、齒輪形、雲形、x形、y形、o形、u形;該等陳述並非限制的且其他合適的橫剖面也是可能的。 將依據本發明所製造之纖維長絲聚集成紗,然後順序成為纖維束。該纖維束起初沉積在罐中以供進一步加工。將暫時儲存在該等罐中之纖維束取出且製造大的索狀纖維束。 本發明也關於利用該已知方法所製造之該索狀纖維束的後處理;經常地,使用常見的輥軋機以及特殊拉伸,彼為10至600 ktex。用於該索狀纖維束饋入該拉伸或拉伸設備的進料速度較佳是10至110 m/min(進料速度)。在此方面,也可以應用其他輔助拉伸但對後續性質並無破壞效果的製劑。 可以在單一步驟中或隨意地使用二階段拉伸方法進行拉伸(在此方面參見例如US 3 816 486)。在拉伸之前或期間,可以使用常見方法施加一或多種後處理劑。 尤其在使用生物聚合物時,依據本發明之拉伸係以在1.2與6.0之間,較佳在2.0與4.0之間的拉伸比進行,其中在拉伸該纖維束時,溫度較佳是在30℃與100℃之間。因此,在待拉伸之纖維束的玻璃轉換溫度範圍內進行拉伸。在蒸氣之存在下,亦即在已知為蒸氣箱者之中,進行依據本發明之拉伸,以致該等纖維係在該等蒸氣箱中被拉伸。該等蒸氣箱正常是在3巴壓力下被操作。 藉由在蒸氣存在下及在上述溫度範圍內拉伸,該等纖維之熱收縮率能被減低且以特定方式控制。 在拉伸之前,該纖維束較佳是24至360 ktex。 拉伸較佳是在一階段中或在多重階段中,其中該拉伸單元之導輥可在不同溫度下且在該拉伸單元之間的拉伸比可為不同的。較佳地,將蒸氣箱定位在該等拉伸單元之至少二者之間,亦即關於該等纖維之拉伸點是在該蒸氣箱中或接近該蒸氣箱。所有的導輥(每個拉伸單元經常有7個)是在30至250℃之溫度下。所有的拉伸較佳是至少部分地或完全地在該蒸氣箱中進行。較佳地,該蒸氣箱係在3巴之蒸氣壓下被操作。 拉伸也可以冷進行,其中『冷』意指室溫(約20至35℃)。 個別拉伸之進行以及關於該輥軋機之所有參數的選擇係根據該聚合物及/或該等纖維之最後用途來進行。 對於該經拉伸之纖維的隨意摺疊/調質,可以使用一般之利用本質已知之摺疊機的機械折疊方法。較佳地,使用一種利用蒸氣載體將纖維摺疊的機械裝置,諸如填塞箱。然而,使用其他方法可獲得經摺疊的纖維,包括例如經三維折疊的纖維。為要進行該折疊,該纖維束起初且經常被升至在50℃至100℃(較佳地70℃至85℃,特佳至約78℃)範圍內之固定溫度且在對該纖維束進料輥為1.0至6.0巴(特佳在約2.0巴)之壓力、在該摺疊箱中0.5至6.0巴(特佳地1.5至3.0巴)之壓力下,以在1.0與2.0 kg/min之間(特佳地1.5 kg/min)的速率的蒸氣處理。 若該平滑或隨意經摺疊的纖維在爐或熱空氣流中被鬆弛且/或固定,這也在130℃之最高溫度下進行。 為要製造短纖維,將該平滑或隨意經摺疊的纖維取出,接著裁剪並沉積至壓縮包中以作為軟填料。本發明之短纖維較佳利用在鬆弛下游的機械裁剪裝置來裁剪。為要製造不同類型之纖維束,可以不用裁剪。這些類型之纖維束以未裁剪形式在包中被沉積且壓縮。 當依據本發明之纖維是在經摺疊的具體例中,摺疊程度較佳是每公分至少2個摺皺(拱形褶皺),較佳是每公分至少3個摺皺,較佳是每公分3個摺皺至每公分9.8個摺皺且特佳是每公分3.9個摺皺至每公分8.9個摺皺。在用於製造紡織織物的應用中,對於每公分約5至5.5之摺疊程度的值是特佳的。對於使用濕式佈層方法製造紡織織物,摺疊程度必須獨立地被設定。 一種用於製造該核/殼(=核/鞘)類型之雙組分纖維(其具有在該核中之作為熱塑性聚合物A的對苯二甲酸乙二酯(PET)和添加劑A及在該殼(鞘)中之作為熱塑性聚合物B的聚丙烯(PP)和添加劑B)的一般配置包括下列: -      乾燥該PET原料,一般長達4至6小時,在至高180℃之溫度下;一般,聚丙烯(PP)不須乾燥; -      該熔體擠出一般在具有一或多個螺桿的擠出機中完成; -      該雙組分紡嘴構造是與作為殼(鞘)材料之PP以及作為核組分之PET同心或不同心; -      用於核之擠出機熔體溫度一般是在用於PET之250℃至300℃的範圍內且用於鞘材料者一般是在用於PP之220℃至270℃的範圍內; -      在用於殼(鞘)和核二者之擠出機進料喉添加添加劑,含量在1至3重量%之間,一般為母料形式; -      纖維急冷一般是錯流的(crossflow)且空氣溫度一般是在18至24℃的範圍中; -      一般的纖維拉降(drawdown)速度是在800至1300 m/min範圍內; -      纖維拉伸能為在至高4之拉伸比和在110℃至130℃下之熱固定的單一或二重階段拉伸。 一種用於製造該核/殼(=核/鞘)類型之雙組分纖維(其具有在該核中之作為熱塑性聚合物A的對苯二甲酸乙二酯(PET)和添加劑A及在該殼(鞘)中之作為熱塑性聚合物B的聚對苯二甲酸乙二酯共聚物(coPET)和添加劑B)的一般配置包括下列: -      乾燥該PET原料,一般長達4至6小時,在至高180℃之溫度下; -      該熔體擠出一般在具有一或多個螺桿的擠出機中完成,一擠出機是用於殼(鞘)材料(coPET)且一擠出機是用於核材料(PET); -      該雙組分紡嘴構造是與作為殼(鞘)材料之coPET以及作為核組分之PET同心或不同心; -      該擠出機熔體溫度一般是在250℃至300℃之範圍內; -      在用於殼(鞘)和核二者之擠出機進料喉添加添加劑,含量在1至3重量%之間,一般為母料形式; -      纖維急冷一般是錯流(crossflow)或向內流(in-flow)或輻射向外流(radial out-flow)且空氣溫度一般是在18至50℃; -      一般的纖維拉降速度是在400至1800 m/min範圍內,較佳是1400 m/min; -      纖維拉伸能為在以下狀況下之單一或二重階段拉伸:至高4.5(具體是2.5至3.5)之拉伸比,後處理浴溫度至高80℃,在蒸氣浴(若存在)之前,導輥溫度至高70℃(具體是30℃),且在伸長點之後的溫度至高80℃,和一般在至高190℃之熱空氣爐中的熱固定。 能從依據本發明之纖維製造紡織織物;這些也構成本發明之主題。 紡織織物在本說明之上下文中所用的『紡織織物』一詞應就其最廣觀念被理解。因此,彼等可為任何含有依據本發明之纖維且已使用用於製造織物之技術所製造的結構。該等紡織織物的實例是非織物,尤其是濕式佈層非織物或乾式佈層非織物,較佳是基於利用熱黏合所製造之短纖維。非織物之其他實例是梳整(carded)或空氣佈層(airlaid)的非織物,較佳是基於短纖維或非織物,使用熔吹(melt blowing)及/或紡黏長絲方法所製造的。特別地,在該等纖維或非織物具有低的線性密度的情況下,熔吹方法(例如在自2000之“Complete Textile Glossary”, Celanese Acetate LLC,或在1993之“Chemiefaser-Lexikon, Robert Bauer的第10版中描述)及靜電紡絲方法是最適合的。 為要使用該紡黏長絲方法製造非織物,新紡纖維(較佳是新紡雙組分纖維)被收集在收集輸送帶上以將彼等疊成特定厚度,以致能獲得該紡黏非織物。該紡黏非織物能進一步被合併,例如在使用壓紋輥下之使用該熱壓紋方法或使用已知之針刺/水刀方法以進一步纏結該非織物。當使用雙組分纖維(其中該雙組分纖維具有較高和較低之熔點組分),該非織物藉由使用該較低熔點組分以熱黏合而被合併。 用於上述熱黏合,將含有該雙組分/多組分纖維之紡織織物饋至爐(例如通風乾燥器)中,該爐含有一或多個經使用以將該空氣之溫度加熱至高於該多組分纖維之較低熔點組分(例如該殼)的熔化溫度,但低於該較高熔點組分(例如該核)的熔化溫度的加熱區。該經加熱的空氣流經該紡織織物,一般是非織物,之後,該較低熔點組分熔化且在纖維之間形成鍵,以將該織物熱穩定化。 一般,流經該熱黏合爐之空氣是在100℃至約180℃之範圍內的溫度。在該爐中之滯留時間約180秒或更短。然而應了解:該熱黏合爐的參數與所用之聚合物類型和該材料之厚度相關。 也可以使用超音波合併技術,該技術利用靜態或轉動角(horn)及轉動圖案化壓紋輥。該等技術之實例在美國專利3 939 033;美國專利3 844 869;美國專利4 259 399;美國專利5 096 532;美國專利5 110 403及美國專利5 817 199中描述,為供所有目的,該等專利整體藉由引用被併入本文中。作為替代型,可將該非織物熱點熔合(thermally spot welded),以提供具有很多小而分開的黏合點的織物。該方法通常包含將該織物導引在二個經加熱之輥(諸如具有雕刻圖案之輥和第二黏合輥)之間。該雕刻輥被圖案化,使得該網狀物不在其整個表面上被黏合,且該第二輥可以是平滑的或被圖案化。 為功能及/或美觀理由,已發展用於雕刻輥之多種圖案。黏合的圖案的實例包括但不限於那些在美國專利3 855 046;美國專利5 620 779;美國專利5 962 112;美國專利 6 093 665;美國設計專利428 267號及美國設計專利390 708號中所描述者,為供所有目的,該等專利整體藉由引用被併入本文中。 該紡織織物之基礎重量(尤其是該非織物之基礎重量)是在10與500 g/m 2,較佳是25至450 g/cm 2,尤其是30至300 g/cm 2之間。 由依據本發明之多組分纖維(尤其是由依據本發明之雙組分纖維)所製造之紡織織物(尤其是非織物)能以已知方式且使用壓延輥製造或能在爐中熱合併。 因為該等組分有不同熔點,由依據本發明之多組分纖維所製造之紡織織物(例如非織物)經常藉由熱黏合製造。這在接點或交越點將該等纖維黏合在一起。只要由熱塑性聚合物B與添加劑B所製造之組分B具有比由熱塑性聚合物A與添加劑A所製造之組分A高的可生物降解性,該等纖維彼此的接點或交越點首先被降解且該紡織織物(例如非織物)更快速地崩解,之後,總降解性提高。 在此,該紡織織物(尤其是該非織物)能在該多組分纖維之外,還能依據所要目的,包含其他纖維。在此方面,尤其應聚焦於WO 2007/107906中描述之『填料纖維』。在WO 2007/107906中描述之『填料纖維』也形成本發明之主題的一部分且被合併於本發明中。 該紡織織物包含上述可生物降解之聚合物材料纖維,其可與其他纖維材料、化學纖維、較佳之天然纖維(諸如棉或纖維素纖維)、源於動物之纖維(諸如羊毛)或其他可生物降解的纖維混合。當混合該等不同的纖維,可以製造具有纖維梯度之紡織織物。纖維素纖維之實例包含軟木牛皮紙漿纖維。軟木牛皮紙漿纖維係得自針葉樹且包含纖維素纖維,諸如但不限於北方、西方及南方軟木種,諸如紅木、紅香柏、鐵杉、洋松、真雲杉、松樹(例如南方松)、真雲杉(例如黑雲杉)、其結合者。在本發明中,可以使用北方軟木牛皮紙漿纖維。其他適合用於本發明之纖維素材料是主要含有軟木纖維之漂白的硫酸鹽木纖維素材料。在本發明中也可以使用具有較小的平均長度之纖維。具有低的平均長度的合適纖維素材料的實例係硬木牛皮紙漿纖維。硬木牛皮紙漿纖維係得自落葉樹且包括纖維素材料纖維,諸如但不限於尤加利、楓樹、山毛櫸、白楊等。為要增加柔軟度、增加光彩、增加混濁度且改變該片之孔隙結構以提高其吸收率,尤加利牛皮紙漿纖維可為特受偏愛的。一般,纖維素材料纖維佔該非織物的約30重量%至約95重量%,在一些具體例中約40重量%至約90重量%且在一些具體例中約50重量%至約85重量%。 此外,在該非織物中也可含有超吸收用材料。超吸收用材料是在水中膨脹而能吸收其重量之20倍的材料,且在一些情況下,在含有0.9重量%之氯化鈉的水溶液中吸收其重量的至少30倍。該超吸收材料可為天然的、合成的及經改質之天然的聚合物和材料。合成的超吸收用聚合物的實例包含聚(丙烯酸)和聚(甲基丙烯酸)之鹼金屬和銨鹽、聚(丙烯醯胺)、聚乙烯醚)、順丁烯二酸酐與乙烯醚和α-烯烴之共聚物、聚乙烯吡咯啶酮)、聚(乙烯嗎福林酮)、聚乙烯醇)及其混合物和共聚物。其他超吸收用材料包含天然的和經改質之天然的聚合物,諸如水解的經丙烯腈接枝的澱粉、經丙烯酸接枝之澱粉、甲基纖維素、聚葡萄胺糖、羧甲基纖維素、羥丙基纖維素和天然膠諸如藻酸鹽、黃原膠、刺槐豆膠等。在本發明中也可以使用天然的及完全或部分合成的超吸收用聚合物的混合物。當使用該超吸收用材料,彼可佔該非織物的約30重量%至約95重量%,在一些具體例中約40重量%至約90重量%且在一些具體例中約50重量%至約85重量%。 該紡織織物(尤其是上述非織物)可用在吸收用物件中,例如用於身體照護之吸收用物件,例如尿布、訓練褲、吸收用內衣褲、失禁用物件、女用衛生衣褲,但不限於這些(例如衛生棉)、泳裝、嬰兒拭巾等;醫療吸收用物件諸如衣物,窗用材料、襯墊物、床用保護物、繃帶、吸收用布及醫療拭巾;用於食品工業之拭巾;衣物品項等。適合製造該類型之吸收用物件的材料和方法對精於該技術之人員是已知的。一般,吸收用物件包含基本不可滲液層(例如外殼)、可滲液層(例如面朝身體之層)、阻障層等)以及吸收用核。可使用在本發明中之非織物作為該不可滲液層、可滲液層及/或吸收用層。 該紡織織物(尤其是上述非織物)不限於上述應用且可被用在任何應用中,例如用在衛生、醫藥、個人保護中、在家庭(纖維填充物等)、衣物、移動/運輸(汽車、火車、航空器、船舶)、工程(絕緣)、農業、包裝、過濾及任何可拋式應用中。 試驗方法: 除非在本文中另外陳述,否則利用以下之測量或試驗方法。 線性密度: 該線性密度之測定係依照DIN EN ISO1973進行。 可生物降解性: 該測定、試驗及規範係依照選自下列所形成之群組中的至少一種方法:(i) ASTM D5338-15(2021),用於測定在合併嗜熱溫度之經控制的堆肥條件下塑膠材料之需氧生物降解性的標準試驗方法(DOI: 10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm. org),(ii) ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範)(DOI:10.1520/ D6400-12),(iii) ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/D5511-18),(iv) ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17),(v) ASTM D5210-92 (在汙泥之存在下的厭氧降解)(DOI:10.1520/D5210-92),(vi) PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31,(vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI:10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/D5988-18),用於測定在土壤中之塑膠材或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI:10.1520/ D5988-03),(viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000(DOI:10.31030/ 9010637),(ix) ISO 14855-1:2013-04 (DOI:10.31030/ 1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法),(x) EN 14995:2007-03-塑膠-堆肥性之評估(DOI:10.31030/9730527)或(xi) ISO 17088:2021-04 (對於可堆肥之塑膠的規範)(ICS 83.080.01)。 數目和質量平均分子量(Mn/Mw) 使用相對具有窄分布之合適聚合物標準的凝膠滲透層析法的測定,尤其是DIN 55672 (凝膠滲透層析法(GPC))。 特性黏度 在25℃之0.1%之聚合物濃度的氯仿中,透過GPC所測量之測定。 玻璃轉換溫度和熔化溫度 尤其,依照DIN EN ISO 11357-2:2020-08(塑膠-微差掃描熱量法的玻璃轉換溫度的測定(DSC)-第二部:玻璃轉換溫度及與玻璃轉換相關之步驟高度的測定)。 尤其,依照DIN EN ISO 11357-3:2018-07的熔化溫度的測定(塑膠-微差掃描熱量法(DSC)-第三部:熔化和結晶之溫度和焓的測定)。 使用以下計畫,利用微差掃描熱量法(DSC)的測定: 在氮氣下,相對銦校正,進行DSC測量。氮流50 mL/min;纖維重量在2至3mg範圍內。 以10K/min,溫度範圍從-50℃至210℃,然後恆溫5分鐘且最後以10K/min回到-50℃。 通常,最後的溫度一直是比預期之最高熔點高約50℃。 使用TA/Waters Model Q100進行DSC測量。 熔體黏度 使用Göttfert Rheo Tester 1000,在適合該聚合物之溫度(在約190℃與280℃之間)下,測定該熔體黏度。尤其,使用ASTM D2196-20(藉由旋轉黏度計,用於非牛頓材料之流變性質的標準試驗方法)。 表觀黏度 在WO 2007/070064中所述的,進行該測定。 熔體流動指數 依據ASTM試驗方法D1238-13(ASTM D1238-13,藉由擠出塑性計,用於熱塑性塑膠之熔體流速的標準試驗方法,ASTM International, West Conshohocken, PA, 2013, www.astm.org)或依據DIN EN ISO 1133-1:2012-03(塑膠-熱塑性塑膠之熔體質量流速(MFR)及熔體體積流速(MVR)之測定-第1部:標準試驗方法)以及依據DIN EN ISO 1133-2:2012-03(塑膠-熱塑性塑膠之熔體質量流速(MFR)及熔體體積流速(MVR)-第2部:用於對時間-溫度歷程及/或水分敏感的材料的程序)的測定。該熔體流動指數是:當例如在190℃下,將例如2160克之力持續施加10分鐘時,能被加壓通過擠出流變計開口(例如0.0825吋直徑)的聚合物的重量。 熔化潛熱 依據ASTM D-3418(ASTM D3418-15,藉由微差掃描熱量法(“DSC”),用於聚合物之過渡溫度及熔化焓和結晶焓的標準試驗方法,ASTM International, West Conshohocken, PA, 2015, www.astm.org)或依據DIN EN ISO 11357(塑膠-微差掃描熱量法(DSC)),進行熔化潛熱(ΔHf)、結晶潛熱(ΔHC)及該結晶溫度的測定。 熱收縮率 從樣本索之纖維束製備12個纖維(試驗樣本)。彼等在鑷子輔助下,一端被夾在末端區塊中,且將解捲用(decrimping)重物固定在另一端。在具有2.2dtex之線性密度的核/殼類型的雙組分纖維的輔助下,進行該測量;該解捲用重物是190mg。 具有該試驗樣本之末端區塊被固定至支持檯中,以致該試驗樣本在預張力下被自由地懸吊在該支持檯中。在每一纖維上,所選擇之起始長度(在一般情況下為150mm)在此被標記。這是在該支持檯中,在標記線的輔助下進行,且對該試驗樣本施加標記點。在標記後,經填充的末端區塊被取出且重置在板上。在此,將該解捲用重物移除且自由纖維端被夾在第二末端區塊中。橫跨該二末端區塊的試驗樣本位在張力下被懸吊在線架(wire frame)中。將該線架導入經預熱至正確處理溫度(一般溫度是200℃、110℃、80℃)之收縮爐的中心。在5分鐘之處理時間後,該線架從該爐移除。在至少30分鐘之用於該末端區塊的持續冷卻時間後,將具有該試驗樣本之末端區塊從該架移除且該等纖維重置在該板上。然後能進行背後(back)測量。為此,該試驗樣本再次負載該解捲用重物且懸吊在該支持檯中。用於該背後測量,定位該支持檯之可調節的標記線,使得該標記點之個別的上邊能覆蓋該標記線。然後,用於每一個別的纖維,在該等標記之間的長度能從該支持檯上之計數器讀取,精確度1/10 mm。 長度改變的計算:
Figure 02_image005
使用對於所有12個試驗樣本的平均值。 本發明現在藉由以下實例證明,該等實例絕無意限制本發明的範圍。 The present invention enables the degradation behavior of fibers to be controlled by using two components with different degradation behaviors from each other. This need is met by a multicomponent polymer fiber according to the present invention, wherein the polymer fiber: (i) comprises at least one component A and at least one component B, (ii) the component A comprises thermoplastic polymer A , (iii) the component B comprises a thermoplastic polymer B, characterized in that (iv) the component A additionally has at least one additive A that improves the biodegradability of the multicomponent fiber and the component B does not have an improved The biodegradability additive B of the multicomponent fiber, or (v) the component B additionally has at least one additive B that improves the biodegradability of the multicomponent fiber and the component A does not have an additive B that improves the multicomponent fiber Additive A for the biodegradability of the component fibers, or (vi) the component A additionally has at least one additive A and the component B additionally has at least one additive B which together increase the biodegradability of the multicomponent fiber Biodegradability, provided that when (i) the thermoplastic polymer A and the thermoplastic polymer B are the same, the additives A and B are different, or (ii) when the additives A and B are the same, the thermoplastic Polymer A and the thermoplastic polymer B are different. In the context of the present invention, the increased biodegradability of the multicomponent fiber means that the multicomponent fiber degrades more rapidly than a multicomponent fiber without additives A and/or B, wherein Determination according to at least one method selected from the following groups: (i) ASTM D5338-15 (2021) (standard test for the determination of aerobic biodegradability of plastic materials under controlled composting conditions incorporating thermophilic temperatures method (DOI: 10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (for marking Standard Specification for Compostable Plastics) (DOI:10.1520/D6400-12), (iii) ASTM D5511 (ASTM D5511-11 Standard Test Method for Anaerobic Biodegradation of Plastic Materials Under High Solids Anaerobic Digestion Conditions ( DOI:10.1520/D5511-11) and ASTM D5511-18 Standard Test Method for Determination of Anaerobic Biodegradation of Plastic Materials under High Solids Anaerobic Digestion Conditions (DOI:10.1520/D5511-18), (iv) ASTM D6691 (ASTM D6691-09 standard test method for the determination of aerobic biodegradation of plastic materials in the marine environment by defined commensal species of microorganisms or natural seawater inoculum (DOI: 10.1520/D6691-09) ASTM D6691-17 standard test method for aerobic biodegradation of plastic materials in the environment by defined commensal species of microorganisms or natural seawater inoculum (DOI: 10.1520/D6691-17), (v) ASTM D5210-92 (in sludge Anaerobic degradation in the presence of methionine) (DOI:10.1520/D5210-92), (vi) PAS 9017:2020 (Plastics - Biodegradation of polyolefins in open earth environments - Specification), ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 standard test method for the determination of aerobic biodegradation of plastic materials in soil (DOI: 10.1520/D5988-12) and for the determination of ASTM D5988-18 standard test method for aerobic biodegradation of plastic materials (DOI: 10.1520/ D5988-18), ASTM for the determination of aerobic biodegradation of plastic materials in soil or plastic residues after composting D5988-03 Standard Test Method (DOI: 10.1520/D5 988-03), (viii) EN 13432:2000-12 Packaging - Requirements for packaging recyclable through composting and biodegradation - Test plan and evaluation criteria for final packaging acceptance; German version EN 13432: 2000 (DOI: 10.31030/9010637), (ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) plastics under controlled composting conditions Determination of ultimate aerobic biodegradation of materials (by analysis of emitted carbon dioxide), (x) EN 14995: 2007-03 - Plastics - Evaluation of compostability (DOI:10.31030/9730527) or (xi) ISO 17088 :2021-04 (Specifications for compostable plastics) (ICS 83.080.01). When processed using (short-fibre) spinning methods, the multicomponent polymer fibers according to the invention are often deposited into fiber bundles and subsequently drawn using rolling mills and using conventional methods and then post-treated. The fiber bundle can also be processed further directly and thus can be completely or partially dispensed with placing the cellulose in what is known as a tank. When processed using (filament) spinning methods, the multicomponent polymer fibers according to the invention can be cooled and drawn directly after exiting the spinneret and deposited on a collection belt or wound on a take-up tube . The filaments can be further drawn for further processing in order to increase the orientation of the molecular chains, especially at draw ratios between 0.5 and 3. Furthermore, it is possible to temper the filament. The combination of different biodegradability for components A and B means that the biodegradability properties of the resulting products from these multicomponent polymer fibers are designed and tailored. Textile fabrics (eg non-wovens) can be produced from multicomponent polymer fibers according to the invention. When the woven fabric (especially a non-woven fabric) is consolidated using thermal bonding, it is advantageous for the melting point of the thermoplastic polymer in component A to be at least 5°C higher than the melting point of the thermoplastic polymer in component B . In this embodiment, the multicomponent polymeric fiber is preferably a bicomponent fiber, wherein component A forms the core and component B forms the sheath. Particularly preferably, the melting point of the thermoplastic polymer in component A is at least 10° C. higher than the melting point of the thermoplastic polymer in component B. During thermal bonding, the fibers are bonded together at joints or intersections. When component B formed from thermoplastic polymer B and additive B has a higher biodegradability than component A formed from thermoplastic polymer A and additive A, the contact points or intersection points of the fibers are first together is degraded and the woven fabric (eg, non-woven) disintegrates more rapidly, with a consequent increase in overall degradability. Furthermore, it is possible to provide a multicomponent fiber comprising a very rapidly biodegradable component A and at least one further component B, wherein component B has a lower rate of biodegradation than component A. In this way, a staged biodegradation of the fibers can be obtained, resulting in technical advantages such as warning of mechanical failure, relatively high residual stability of the fibers and advanced biodegradation, etc. In addition to the core/shell structure (where the core may or may not be concentric with the shell), further possible configurations of the components in the multicomponent fiber are side-by-side structures, matrix-fibril structures And block slice (slice-of-cake) structure or orange slice structure. Furthermore, it is possible to provide multicomponent polymer fibers (especially bicomponent polymer fibers) that combine an extremely rapidly biodegradable core (component A) made of thermoplastic polymer A and optional additive A with An equally biodegradable shell (component B) made of thermoplastic polymer B and additive B, such that component A is only biodegraded when component B has already biodegraded. This is to accelerate the degradation, which starts as soon as component B has degraded to a sufficient extent. Thus, in another aspect, the present invention provides a bicomponent fiber having a core/sheath structure, wherein (i) the component A forms the core and the component B forms the sheath of the fiber, (ii) at Component A in the core comprises thermoplastic polymer A, (iii) component B comprises thermoplastic polymer B, (iv) the melting point of the thermoplastic polymer in component A of the core is greater than that in the shell The melting point of the thermoplastic polymer in the component B is at least 5°C higher, and preferably the melting point is at least 10°C higher, characterized in that (v) the component A has a higher biodegradability than the component B preferably, the component A has at least one additive A, or (vi) the component B has a higher biodegradability than the component A; preferably, the component B has at least one additive B. Higher biodegradability is determined according to at least one method selected from the following groups: (i) ASTM D5338-15(2021) (for the determination of plastic materials under controlled composting conditions incorporating thermophilic temperatures). Standard Test Method for Aerobic Biodegradability (DOI: 10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (for marking Standard Practice for Aerobic Composting of Plastics in Municipal or Industrial Facilities) (DOI: 10.1520/D6400-12), (iii) ASTM D5511 (for the determination of anaerobic biodegradation of plastic materials under high solids anaerobic digestion conditions) ASTM D5511-11 Standard Test Method (DOI: 10.1520/D5511-11) and ASTM D5511-18 Standard Test Method for Determination of Anaerobic Biodegradation of Plastic Materials Under High Solids Anaerobic Digestion Conditions (DOI: 10.1520/D5511- 18), (iv) ASTM D6691 (ASTM D6691-09 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment by Defined Commensal Species of Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691- 09) and ASTM D6691-17 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Marine Environments by Qualified Commensal Species of Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691-17), (v) ASTM D5210-92 (Anaerobic degradation in the presence of sludge) (DOI:10.1520/D5210-92), (vi) PAS 9017:2020 (Plastics - Biodegradation of polyolefins in open earth environments - Specification) , ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil (DOI: 10.1520/D5988-12 ) and the ASTM D5988-18 standard test method for the determination of aerobic biodegradation of plastic materials in soil (DOI: 10.1520/D5988-18), for the determination of plastic materials in soil or plastic residues after composting ASTM D5988-03 Standard Test Method for Aerobic Biodegradation of Materials (DOI:10.1520/D5988-03), (viii) EN 13432:2000-12 Packaging - For Permeable Composting and Biodegradation Requirements for returnable packaging - Test plans and evaluation criteria for final packaging acceptance; German version EN 13432:2000 (DOI:10.31030/9010637), (ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) Determination of the ultimate aerobic biodegradation of plastic materials under controlled composting conditions (by analyzing the released carbon dioxide), (x ) EN 14995:2007-03 - Plastics - Evaluation of compostability (DOI:10.31030/9730527) or (xi) ISO 17088:2021-04 (Specification for compostable plastics) (ICS 83.080.01). The bicomponent fibers according to the invention can thus be modified for any desired purpose and for any environment. Since the component A has higher biodegradability than the component B, first, the biodegradability-resistant shell component B is biodegraded and after that has been degraded, the component A is degraded. In this way, materials that are so highly biodegradable that they cannot often be engineered can be used as component A, since their high biodegradability means that they are considered unstable or unsuitable. The protective shell can also have a delayed action, ie the shell initially at least slows down the biodegradability and rapid biodegradation occurs after a certain time or period of use. Thus, for example, textile fabrics with a single bicomponent fiber according to the invention can be used in agriculture, wherein the component A has a high biodegradability according to ASTM D5338-15 or ASTM D6400 or ASTM D5988, but initially protected by the shell. This type of textile fabric can be disposed of using controlled composting after its intended use. Another advantage of the present invention is that it is possible to provide textile fabrics with bicomponent fibers according to the present invention, which on the one hand, for example in agriculture, can be used as intended, but in the case of incorrect disposal, can be reached via rivers ocean. For this purpose it is advantageous to use component A which has a high biodegradability according to ASTM D6691. Since incorrect handling often breaks or damages the protective shell, for example in marine environments, controlled biodegradability is ensured. Since component B is more biodegradable than component A, initially shell component B is degraded, resulting in a faster disintegration of the textile fabric with the bicomponent fibers according to the invention. In this way, for example, the sanitary article can be composted in a controlled manner in household waste or in a sewage plant after its intended use. In this way, a gradual biodegradation can be achieved, with attendant technical advantages, such as warning of mechanical failure, relatively high residual stability of the fibers in case of advanced biodegradation, etc. The bicomponent fiber according to the present invention may be a fiber of finite length (such as what is known as staple fiber), or a continuous fiber (filament). There are no severe restrictions on the aforementioned short fibers, but generally, they are 2 to 200 mm, preferably 3 to 120 mm, particularly preferably 4 to 60 mm. The individual linear densities of the bicomponent fibers (preferably staple fibers) according to the invention are preferably between 0.5 and 30 dtex, especially between 0.7 and 13 dtex. For some applications, a linear density between 0.5 and 3 dtex and a fiber length of <10 mm, especially <8 mm, especially <6 mm, especially <5 mm, are particularly suitable. The proportion of the cross-section of the core is between 20% and 90% of the total cross-sectional area of the fibers, and the proportion of the cross-section of the shell is Between 80% and 10%. The ratio of the cross-sectional areas of Component A and Component B can also help to fine-tune the biodegradable behavior of the fiber. Particularly preferred bicomponent polymer fibers are those in which the additive A and/or additive B are selected from (i) alkali metal and/or alkaline earth metal compounds (pH>7 when dissolved in water), especially carbonates , bicarbonate, sulfate, particularly preferably CaCO 3 ; and alkaline additives, particularly preferably CaO, (ii) aliphatic polyesters, (iii) sugars, especially monosaccharides, disaccharides and oligosaccharides, ( iv) Catalysts for transesterification, especially under alkaline conditions, (v) groups of carbohydrates, especially starch and/or cellulose, and mixtures thereof. Particularly preferred bicomponent polymer fibers are those in which the thermoplastic polymer A and/or the thermoplastic polymer B comprise at least one polyester and the additive A and/or additive B are selected from (i) alkali metals and / or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO, (ii) aliphatic polyester , (iii) sugars, especially monosaccharides, disaccharides and oligosaccharides, (iv) catalysts for transesterification, especially those under alkaline conditions, (v) carbohydrates, especially starch and/or Or cellulose, and a group of mixtures thereof. The aforementioned aliphatic polyesters are chemically different from the polyesters of thermoplastic polymer A and polymer B, i.e. the polyesters of thermoplastic polymer A and polymer B are araliphatic polyesters or copolyesters, They are produced by polycondensation from polyols and aliphatic and/or aromatic dicarboxylic acids or their derivatives (anhydrides, esters). The particularly preferred additive A and/or additive B contains at least two substances, wherein a preferred combination is: A) alkali metal and/or alkaline earth metal compound (pH>7 when dissolved in water) (especially carbonate, bicarbonate, Sulphate, especially CaCO 3 ; and alkaline additives, especially CaO) in combination with catalysts for transesterification (especially under alkaline conditions); B) sugars (especially monosaccharides, Disaccharides and oligosaccharides) combined with carbohydrates (especially starch and/or cellulose), and mixtures thereof, C) aliphatic polyesters optionally combined with sugars (especially monosaccharides, disaccharides and oligosaccharides) and Combinations of carbohydrates, especially starch and/or cellulose, and mixtures thereof. For partially aromatic "araliphatic" polyesters or copolyesters as thermoplastic polymer A, the optimal additive A contains at least - alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water) (especially carbonic acid salt, bicarbonate, sulfate, particularly preferably CaCO 3 ; and an alkaline additive, especially preferably CaO), preferably in combination with a catalyst for transesterification (especially under alkaline conditions); and - aliphatic polyesters (especially aliphatic polyesters having no side chain carbon atoms), optionally with (i) sugars, especially mono-, di- and oligosaccharides, (ii) carbohydrates, especially starch And/or (iii) combinations of cellulose, and mixtures thereof. Among the above-mentioned particularly preferred bicomponent polymeric fibers are those preferred wherein the thermoplastic polymer A is a polyester and the thermoplastic polymer B is a polyester different from the polyester in polymer A, and is preferably copolyester, and the additive A and the additive B are each independently selected from the following combinations: - alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water) (especially carbonates, bicarbonates, sulfuric acid salt, particularly preferably CaCO 3 ; and a basic additive, particularly preferably CaO), preferably in combination with a catalyst for transesterification (especially under alkaline conditions); and - aliphatic polyesters (especially are aliphatic polyesters with no side chain carbon atoms), optionally mixed with (i) sugars, especially monosaccharides, disaccharides and oligosaccharides, (ii) carbohydrates, especially starch and/or (iii) fiber Combinations of elements, and mixtures thereof. Particularly preferred bicomponent polymer fibers are those in which the thermoplastic polymer B is a polyolefin, especially a polypropylene polymer, comprising as additive B at least (i) a metal compound, especially a transition metal compound, and Salts thereof, preferably at least two chemically different transition metal compounds and (ii) unsaturated carboxylic acids or their anhydrides/esters/amides, preferably in combination with synthetic and/or natural rubber, and optionally, It further comprises (iii) sugars, especially monosaccharides, disaccharides and oligosaccharides, (iv) carbohydrates, especially starch and/or (v) cellulose, and mixtures thereof. Furthermore, a phenol antioxidant stabilizer and CaO can be contained. The biodegradability is fine-tuned by the amount of additive A in component A or additive B in component B. The amount of additives, based on the total amount of component A or component B, is often between 0.005% and 20% by weight, particularly preferably between 0.01% and 5% by weight. Among the above-mentioned additives, the following are particularly suitable: (i) alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, particularly preferably CaCO 3 , (ii) sugars, especially monosaccharides, disaccharides and oligosaccharides, and (iii) carbohydrates, especially starch and/or cellulose, and mixtures thereof, as well as the above combinations A), B) or C), because Its degradability properties are specifically adjusted according to ASTM D6691 or according to ASTM D5338-15, ASTM D6400 or ASTM D5988. Thermoplastic Polymers The polymers used according to the invention are thermoplastic polymers. The term "thermoplastic polymer" used in the present invention means a synthetic material which is deformable (thermoplastic) within a specified temperature range, preferably in the range of 25°C to 350°C. The procedure is reversible, ie it can be brought into its viscous state by cooling and reheating any number of times, provided the material is not damaged too much by overheating, known thermal decomposition, or by transporting the material under mechanical load. This is the difference between thermoplastic polymers and thermosets and elastomers. The thermoplastic polymer used according to the invention is preferably a polymer selected from the group formed by: acrylonitrile-ethylene-propylene-(diene)-styrene copolymer, acrylonitrile-methacrylate copolymer , acrylonitrile-methyl methacrylate copolymer, chlorinated acrylonitrile, polyethylene-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-ethylene-propylene-styrene copolymer, fiber Vegan Acetyl Butyrate, Cellulose Acetyl Propionate, Hydrated Cellulose, Carboxymethyl Cellulose, Cellulose Nitrate, Cellulose Propionate, Cellulose Triacetate, Polyvinyl Chloride, Ethylene -Acrylic acid copolymer, ethylene-butyl acrylate copolymer, ethylene-chlorotrifluoroethylene copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-tetrafluoroethylene copolymer Vinyl fluoride copolymer, ethylene-vinyl alcohol copolymer, ethylene-butylene copolymer, ethyl cellulose, polystyrene, polyfluoroethylene-propylene, methyl methacrylate-acrylonitrile-butadiene-styrene copolymer Polyamide, methyl methacrylate-butadiene-styrene copolymer, methyl cellulose, polyamide 11, polyamide 12, polyamide 46, polyamide 6, polyamide 6-3-T , polyamide 6-terephthalic acid copolymer, polyamide 66, polyamide 69, polyamide 610, polyamide 612, polyamide 6I, polyamide MXD 6, polyamide PDA-T , polyamide, polyaryl ether, polyaryl ether ketone, polyamide imide, polyarylamide, polyamine-bismaleimide, polyarylate (polyarylate), polybutene- 1. Polybutylacrylate, polybenzimidazole, polybismaleimide, polyoxadiazobenzimidazole, polybutylene terephthalate, polycarbonate, polychlorotrifluoroethylene, Polyethylene, polyester carbonate, polyaryletherketone, polyetheretherketone, polyetherimide, polyetherketone, polyethylene oxide, polyaryletherketone, polyethylene terephthalate, polyimide , polyisobutylene, polyisocyanurate, polyimide, polymethacrylimide, polymethacrylate, poly-4-methylpentene, polyacetal, polypropylene, polyphenylene oxide Base, polypropylene oxide, polyphenylene sulphide, polyphenylene, polystyrene, polystyrene, polytetrafluoroethylene, polyurethane, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, Polyvinylidene chloride, polyvinylidene fluoride, polyvinyl fluoride, polyvinyl methyl ether, polyvinyl pyrrolidone, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene- Maleic anhydride copolymer, styrene-maleic anhydride-butadiene copolymer, styrene-methyl methacrylate copolymer, styrene-methylstyrene copolymer, styrene-acrylonitrile copolymer compound, vinyl chloride-ethylene copolymer, vinyl chloride-methacrylate copolymer, vinyl chloride-maleic anhydride copolymer, vinyl chloride-maleimide copolymer, vinyl chloride-methacrylate Ester copolymer, vinyl chloride-octyl acrylate copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer , Vinyl chloride-vinylidene chloride-acrylonitrile copolymer. Among these thermoplastic polymers, melt-spinnable synthetic biopolymers are preferred, particularly preferred are polycondensates and polymers produced from biomass raw materials. The term "synthetic biopolymer" as used in the present invention designates a substance mainly composed of raw materials of biological origin (sustainable raw materials). This makes them different from common mineral oil-based substances or plastics such as polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC), as long as the feedstock is not renewable (such as bio-PE/green PE (bio-PE/green PE)).In a preferred embodiment, the multicomponent fiber according to the present invention is made of biodegradable synthetic biopolymers, wherein the word "biodegradable" can be, for example, Specified, tested and/or determined according to at least one method selected from the group formed by: (i) ASTM D5338-15(2021), for the determination of plastic materials under controlled composting conditions incorporating thermophilic temperatures Standard Test Method for Aerobic Biodegradability (DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (for marking Standard Practice for Plastics Composted Aerobically in Municipal or Industrial Facilities) (DOI: 10.1520/D6400-12), (iii) ASTM D5511 (for Determination of Anaerobic Biodegradation of Plastic Materials Under High Solids Anaerobic Digestion Conditions) ASTM D5511-11 standard test method (DOI: 10.1520/D5511-11) and ASTM D5511-18 standard test method for the determination of anaerobic biodegradation of plastic materials under high solids anaerobic digestion conditions (DOI: 10.1520/D5511 -18), (iv) ASTM D6691 (ASTM D6691-09 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment by Defined Commensal Species of Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691 -09) and the ASTM D6691-17 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Marine Environments by Commensal Species of Defined Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691-17), (v ) ASTM D5210-92 (Anaerobic degradation in the presence of sludge) (DOI:10.1520/D5210-92), (vi) PAS 9017:2020 (Plastics - Biodegradation of polyolefins in open earth environments - Specification ), ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil (DOI: 10.1520/D5988- 12) and the ASTM D5988-18 standard for determining the aerobic biodegradation of plastic materials in soil Test method (DOI: 10.1520/ D5988-18), ASTM D5988-03 standard test method for the determination of aerobic biodegradation of plastic materials in soil or plastic residues after composting (DOI: 10.1520/D5988-03 ), (viii) EN 13432:2000-12 Packaging - Requirements for packaging recyclable through composting and biodegradation - Test plans and evaluation criteria for final packaging acceptance; German version EN 13432:2000 (DOI : 10.31030/9010637), (ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) Finalization of plastic materials under controlled composting conditions Determination of aerobic biodegradation (by means of analysis of emitted carbon dioxide), (x) EN 14995: 2007-03-Plastics-Assessment of compostability (DOI:10.31030/9730527) or (xi) ISO 17088:2021- 04 (Specification for compostable plastics) (ICS 83.080.01). Preferred synthetic biopolymers in the context of the present invention are aliphatic, aliphatic, and/or aromatic dicarboxylic acids or their derivatives (anhydrides, esters) produced by polycondensation from polyols, and aliphatic and/or aromatic dicarboxylic acids or their derivatives (anhydrides, esters). An araliphatic polyester or copolyester, wherein the polyol may be substituted or unsubstituted, and the polyol may be a linear or branched polyol. Preferred polyols are polyols containing 2 to 8 carbon atoms, polyalkylene ether glycols containing 2 to 8 carbon atoms and cycloaliphatic diols containing 4 to 12 carbon atoms. Non-limiting examples of polyols that can be used include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1, 3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, polyethylene glycol, diethylene glycol, 2,2, 4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl- 1,3-cyclobutanediol, triethylene glycol and tetraethylene glycol. Preferred polyols include 1,4-butanediol, 1,3-propanediol, ethylene glycol, 1,6-hexanediol, diethylene glycol, isosorbide and 1,4-cyclohexanedimethanol. Preferred aliphatic dicarboxylic acids include substituted or unsubstituted dicarboxylic acids selected from the group formed by aliphatic dicarboxylic acids containing 2 to 12 carbon atoms and cycloaliphatic dicarboxylic acids containing 5 to 10 carbon atoms. Nonaromatic dicarboxylic acids of the linear or branched type, wherein the cycloaliphatic dicarboxylic acids may also contain heteroatoms in the ring. The substituted non-aromatic dicarboxylic acid generally contains 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy. Non-limiting examples of aliphatic and cycloaliphatic dicarboxylic acids include maleic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, fumaric acid , 2,2-dimethylglutaric acid, suberic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 3-cyclohexane dicarboxylic acid, dihydroxy Acetic acid, itaconic acid, maleic acid, 2,5-nor
Figure 111101733-001
Alkane dicarboxylic acid. Preferred aromatic dicarboxylic acids include substituted or unsubstituted aromatic dicarboxylic acids selected from the group formed by aromatic dicarboxylic acids containing 6 to 12 carbon atoms, wherein these carboxylic acids can also be Aromatic rings and/or contain heteroatoms in their substituents. The substituted aromatic dicarboxylic acid may generally contain 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy. Non-limiting examples of aromatic dicarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, and furandicarboxylic acid. The aforementioned aliphatic dicarboxylic acids may also be in the form of copolymers or terpolymers together with the aforementioned aromatic dicarboxylic acids; non-limiting examples are polybutene-adipate-terephthalate and biomass PTA . Particularly preferred synthetic biopolymers in the context of the present invention are aliphatic polyesters having repeat units of at least 4 carbon atoms, for example polyhydroxyalkanoates, such as polyhydroxyvalerate and polyhydroxybutyrate- Hydroxyvalerate copolymer, polycaprolactone, furandicarboxylic acid, and succinate-based aliphatic polymers (such as polybutylene succinate, polybutylene succinate adipate, and polybutylene succinate Ethylene glycol diacid). Specific examples may be selected from polyethylene oxalate, polyethylene malonate, polyethylene succinate, polytrimethylene oxalate, polypropylene malonate, polytrimethylene succinate, polybutylene oxalate Diesters, polybutylene malonate, polybutylene succinate and blends and copolymers of these compounds. In particular, the preferred synthetic biopolymers are aliphatic polyesters comprising lactic acid (PLA), hydroxy fatty acid (PHF) (also known as polyhydroxyalkanoate PHA), especially hydroxybutyric acid (PHB). Repeating units, and succinate-based aliphatic polymers, such as polybutylene succinate, polybutylene succinate adipate, and polyethylene succinate. It is to be understood that by "aliphatic polyester" is meant those aliphatic polyesters generally having at least about 50 mole %, preferably at least about 60 mole %, especially at least about 70 mole %, especially at least 95 mole % monomer. Furthermore, in the context of the present invention, having a glass transition temperature above -125°C, advantageously above -30°C, preferably above 30°C, particularly preferably above 50°C, especially above 70°C Thermoplastic polymers are extremely advantageous. In the context of a more particularly preferred embodiment of the invention, the glass transition temperature of the polymer is in the range of -125°C to 200°C, especially in the range of -125°C to 100°C. Between the thermoplastic synthetic biopolymers, the glass transition temperature is preferably higher than 20°C, advantageously higher than 25°C, preferably higher than 30°C, particularly preferably higher than 35°C, especially high at 40°C. In the context of a more particularly preferred embodiment of the invention, the glass transition temperature of the polymer is in the range of 35°C to 55°C, especially in the range of 40°C to 50°C. Particularly preferred polyesters are PET with a glass transition temperature of up to 70°C, PLA with a glass transition temperature in the range of 40°C to 70°C and PHA with a glass transition temperature in the range of -40°C to 62°C and PHB, PBS, and PBS copolymers such as PBSA having a glass transition temperature in the range of -45°C to 45°C and polycaprolactone having a glass transition temperature in the range of -75°C to 45°C. Polyesters, especially polyethylene terephthalate, often have a molecular weight corresponding to an intrinsic viscosity (IV) of 0.4 to 1.4 (dl/g), measured on a solution in dichloroacetic acid at 25°C . Particularly preferred polyesters are those such as PET, PEN, PLA, PBS, PEIT, which are preferably determined by gel permeation chromatography against polystyrene standards with a narrow distribution and or by end group titration. Measured to have a number average molecular weight (Mn) of at least 20000 g/mol. Still more preferably, these polymers have a polydispersity of at least 1.7. Polyesters of particular interest are those such as PET which have a melting point between 250°C and 260°C. Polyesters of particular interest are those such as PET with an enthalpy of fusion of (80%: 43 J/g; 100% crystalline/theoretical): 115 J/g. Polyesters of particular interest are those such as PET with a crystallization temperature of at least 125°C and an enthalpy of crystallization (125°C) of at least 31 J/g. Polyesters of particular interest are commercially available from Trevira GmbH, eg Trevira® T298. The glass transition temperature of the particularly preferred polyamide is in the range of 30°C to 80°C, especially in the range of 35°C to 65°C, especially in the range of 50°C to 60°C, wherein the equivalent values are especially for PA 6.6 and PA 6. Polyamides of particular interest are those such as PA 6.6 and PA 6, which preferably have at least 10,000 as determined by gel permeation chromatography against a polystyrene standard with a narrow distribution or by end group titration. Number average molecular weight (Mn) in g/mol. Polyamides of particular interest are those such as PA 6.6 and PA 6 which have a melting point between 170°C and 280°C, more preferably between 200°C and 260°C. Polyamides of particular interest are those such as PA 6.6 and PA 6 which have a crystalline enthalpy of fusion (100% crystalline) of 190°C. Polyamides of particular interest are those such as PA 6.6 and PA 6 which have a softening temperature of 204°C. Commercially available polyamides such as Nylon, Perlon or Grilon are of particular interest. Polyolefins of particular interest are homopolymers such as polyethylene (PE) or polypropylene (PP), and copolymers or terpolymers comprising at least 50 mol% of ethylene and/or propylene repeating units. The polyethylenes of particular concern are low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), ultra low density polyethylene (ULDPE), medium density polyethylene (MDPE), Polymethylpentene (PMP), polybutene-1 (PB-1); ethylene-octene copolymer, stereoblock PP, olefin block copolymer, propylene-butane copolymer. Particularly preferred polyolefins are those PE which have a glass transition temperature in the range -100°C to -35°C and PP which have a glass transition temperature in the range -10°C to -5°C. Polyethylenes of particular interest are those with a melting point between 120°C and 135°C and polypropylenes are those with a melting point between 158°C and 170°C. Polyethylenes of particular interest are those with a crystalline enthalpy of fusion (100% crystalline) of 290 J/g and polypropylenes are those with a crystalline enthalpy of fusion of 190 J/g. Commercially available polyolefins such as LDPE (PE Aspun 6834, Dow), HDPE (SKGC MK 910), PP (Braskem) such as Braskem HSP 165G are of particular interest. Further suitable polymers are those having a melting temperature above 50°C, advantageously at least 75°C, preferably above 150°C. Particularly preferably, the melting temperature is in the range of 120°C to 285°C, especially in the range of 150°C to 270°C, especially preferably in the range of 175°C to 270°C. In this regard, the glass transition temperature and melting temperature of the polymer are preferably determined by differential scanning calorimetry (DSC). Particularly preferred synthetic biopolymers according to the invention are based on thermoplastic polycondensates known as biopolymers containing repeat units of lactic acid, hydroxybutyric acid, succinic acid, glycolic acid and/or furandicarboxylic acid , preferably lactic acid and/or glycolic acid, especially lactic acid. In this point, polylactic acid is particularly preferable. Various synthetic biopolymers with high melting points (melting points between 110°C and 270°C, preferably between 140°C and 270°C, more preferably between 180°C and 270°C) can be used in the present invention, such as Polyesters such as polyesteramide, modified polyethylene terephthalate, polylactic acid (PLA), terpolymers based on polylactic acid, polybutylene succinate, polyalkylene furanoate Such as PEF, polyglycolic acid, polyalkylene carbonates (such as polyethylene carbonate), polyhydroxyalkanoates (PHA) such as polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV) or polyhydroxy Butyrate-hydroxyvalerate copolymer (PHBV). It should be understood here that the term "polylactic acid" (PLA) refers to a polymer composed of lactic acid units. Such polylactic acids are often produced by condensation of lactic acid, but are also obtained by ring-opening polymerization of lactide under suitable conditions. Particularly suitable polylactic acids according to the present invention include poly(glycolide-co-L-lactide), poly(L-lactide), poly(L-lactide-co-ε-caprolactone), poly( L-lactide-co-glycolide), poly(L-lactide-co-D,L-lactide), poly(D,L-lactide-co-glycolide), and (polydioxa cyclohexanone). As examples, polymers of this type are commercially available from Boehringer Ingelheim Pharma KG (Germany) under the names Resomer® GL 903, Resomer® L 206 S, Resomer® L 207 S, Resomer® L 209 S, Resomer® L 210, Resomer® L 210 S, Resomer® LC 703 S, Resomer® LG 824 S, Resomer® LG 855 S, Resomer® LG 857 S, Resomer® LR 704 S, Resomer® LR 706 S, Resomer® LR 708, Resomer ® LR 927 S, Resomer® RG 509 S and Resomer® X206 S, obtained from Biomer, Inc. (Germany) under the name Biomer(TM) L9000. Other suitable polylactic acid polymers are commercially available from Natureworks, LLC, Minneapolis, Minnesota, USA. Particularly advantageous polylactic acids for the purposes of the present invention are especially poly-D-, poly-L-, or poly-D,L-lactic acids. The term "polylactic acid" generally refers to homopolymers of lactic acid such as poly(L-lactic acid), poly(D-lactic acid), poly(DL-lactic acid), mixtures thereof, and those containing lactic acid as the main component and a small proportion of ( Copolymers with preferably less than 10 mole %) of copolymerizable comonomers. Further suitable materials are based on polylactic acid, polyglycolic acid, polyalkylene carbonates (such as polyethylene carbonate), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydroxybutyrate-hydroxyvalerate copolymer (PHBV) copolymer or terpolymer. In a particularly preferred embodiment, the biopolymer is solely a thermoplastic polycondensate based on lactic acid. The number average molecular weight (Mn) of the polylactic acid used according to the invention is preferably at least 500 g/mol, preferably at least 1000 g/mol, particularly preferably at least 5000 g/mol, suitably at least 10000 g/mol, especially is a minimum of 25000 g/mol. On the other hand, this number is preferably on average up to 1 000 000 g/mol, suitably up to 500 000 g/mol, advantageously up to 100 000 g/mol, especially up to 50 000 g/mol. In the context of the present invention, number-average molecular weights in the range of at least 10 000 g/mol to 500 000 g/mol have proven to be particularly advantageous. The mass average molecular weight (Mw) of preferred lactic acid polymers (especially poly-D-, poly-L- or poly-D,L-lactic acid) is preferably in the range of 750 g/mol to 5,000,000 g/mol, Preferably in the range of 5000 g/mol to 1000000 g/mol, especially preferably in the range of 10000 g/mol to 500000 g/mol, especially in the range of 30000 g/mol to 500000 g/mol, And the polydispersity of these polymers is advantageously in the range of 1.5 to 5. The intrinsic viscosity of particularly suitable lactic acid polymers (especially poly-D-, poly-L- or poly-D,L-lactic acid) is measured at 0.1% polymer concentration in chloroform at 25°C. In the range of dl/g to 8.0 dl/g, preferably in the range of 0.8 dl/g to 7.0 dl/g, especially in the range of 1.5 dl/g to 3.2 dl/g. Furthermore, particularly suitable lactic acid polymers (especially poly-D-, poly-L- or poly-D,L) measured at 0.1% polymer concentration in hexafluoro-2-propanol at 30°C - lactic acid) has an intrinsic viscosity in the range of 1.0 dl/g to 2.6 dl/g, especially in the range of 1.3 dl/g to 2.3 dl/g. Of particular interest is polylactic acid having a glass transition temperature between 50°C and 65°C. Of particular interest is polylactic acid having a melting point between 155°C and 180°C. Of particular interest is commercially available polylactic acid such as NatureWorks PLA 6202D. The term "polyhydroxyalkanoate (PHF)" used in the context of the present invention is preferably understood to mean the following polymers: poly(3-hydroxypropionate) (PHP), poly(3-hydroxy butyrate) (PHB, P3HB), poly(3-hydroxyvalerate) (PHV), poly(3-hydroxyhexanoate) (PHHx), poly(3-hydroxyheptanoate) (PHH), poly (3-hydroxycaprylate) (PHO), poly(3-hydroxynonanoate) (PHN), poly(3-hydroxydecanoate) (PHD), poly(3-hydroxyundecanoate) (PHUD ), poly(3-hydroxydodecanoate) (PHDD), poly(3-hydroxytetradecanoate) (PHTD), poly(3-hydroxypentadecanoate) (PHPD), poly(3-hydroxydecanoate) Hexaester) (PHHxD), and blends of the above polymers. In addition to the above homopolymers, polyhydroxyalkanoate copolymers such as poly(3-hydroxypropionate-co-3-hydroxybutyrate) (P3HP-3HB), poly(3-hydroxypropionate-co- -4-hydroxybutyrate) (P3HP-4HB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-4HB)), poly(3-hydroxybutyrate- Co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBV-HHx), and copolymers of the above Blends of these polymers can be used together or with the homopolymers. The thermoplastic polyhydroxyalkanoate polymers used according to the invention are commercially available; examples are Mirel, Biomer P 209, Biopol Aonilex X, Proganic. The glass transition temperature of the thermoplastic polyhydroxyalkanoate polymers used in accordance with the invention is preferably in the range -2°C to 62°C. The thermoplastic polyhydroxyalkanoate polymers used according to the invention preferably have a melting temperature in the range of 100°C to 177°C. The thermoplastic polyhydroxyalkanoate polymer used according to the present invention has a melt flow index (MFI) of 5 to 10 g/10 min (190° C., 2.16 kg) measured according to ISO 1133-1:2011. The number average molecular weight (Mn) of the thermoplastic polyhydroxyalkanoate polymers used according to the invention is preferably at least 200,000 Daltons (Dalton), especially at least 220,000 Daltons, particularly preferably at least 250,000 Daltons, and up to 3,000,000 Daltons, especially up to 2,500,000 Daltons, especially up to 2,000,000 Daltons. The mass-average molecular weight (Mw) of the thermoplastic polyhydroxyalkanoate polymers used according to the invention is often about 2 times, preferably 3 times, the number-average molecular weight (Mn). The term "succinate-based aliphatic polymer" should be understood to mean a polymer having the following general formula
Figure 02_image001
, wherein R 1 , R 2 , R 3 , and R 4 represent straight-chain or branched-chain aliphatic hydrocarbon residues with 2 to 20 carbon atoms. Examples in this regard are polybutylene succinate, polybutylene succinate adipate and polyethylene succinate. The thermoplastic succinate-based aliphatic polymers used according to the invention are commercially available; examples are Bionolle 1000, BioPBS. The glass transition temperature of the thermoplastic succinate polymers used in accordance with the invention is in the range of -45°C to 45°C. The crystallization temperature of the thermoplastic succinate polymers used according to the invention is in the range of 70°C to 90°C. The melting temperature of the thermoplastic succinate polymers used according to the invention is in the range of 60°C to 180°C. The thermoplastic succinate polymer used according to the present invention has a melt flow index (MFI) of 5 to 10 g/10 min (190° C., 2.16 kg) measured according to ISO 1133-1:2011. The thermoplastic succinate polymers used according to the invention preferably have a number average molecular weight (Mn) of at least 20,000 Daltons, especially at least 30,000 Daltons, particularly preferably at least 35,000 Daltons, and up to 140,000 Daltons up to 120,000 Daltons, especially up to 110,000 Daltons. The mass average molecular weight (Mw) of the thermoplastic succinate polymer used according to the invention is about 2 times, preferably about 3 times, the number average molecular weight (Mn). Polycaprolactone (PCL) is a synthetic biopolymer within the meaning of the present invention. Of particular interest are polycaprolactones with glass transition temperatures between -45°C and 45°C. Of particular interest are polycaprolactones having a crystallization temperature between 70°C and 90°C. Of particular interest are polycaprolactones having a melting point between 60°C and 180°C. Of particular interest are polycaprolactones having an enthalpy of fusion of 70 to 145 J/g. Of particular interest are polycaprolactones having preferably at least 20,000 Daltons to 140,000 Daltons as determined by gel permeation chromatography against polystyrene standards with a narrow distribution or by end group titration. Polycaprolactone with number average molecular weight (Mn) in tons. Of particular interest are commercially available polycaprolactones such as Resomer C 209. Thermoplastic Polymer A The thermoplastic polymer A is selected from the group of thermoplastic polymers mentioned above. Among the thermoplastic polymers A, melt-spinnable synthetic biopolymers are preferred, particularly preferred are polycondensates and polymers produced from biomass raw materials. The synthetic biopolymer is selected from the group of synthetic biopolymers described above. Preferred synthetic biopolymers are aliphatic, araliphatic polyesters or copolyesters formed by polycondensation from polyols, and aliphatic and/or aromatic dicarboxylic acids or derivatives thereof (anhydrides, ester), wherein the polyol can be a substituted or unsubstituted linear or branched polyol. Preferred polyols are polyols containing 2 to 8 carbon atoms, polyalkylene ether glycols containing 2 to 8 carbon atoms, and cycloaliphatic diols containing 4 to 12 carbon atoms. Non-limiting examples of polyols that can be used are ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1, 3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, polyethylene glycol, diethylene glycol, 2,2, 4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl- 1,3-cyclobutanediol, triethylene glycol and tetraethylene glycol. Preferred polyols include 1,4-butanediol, 1,3-propanediol, ethylene glycol, 1,6-hexanediol, diethylene glycol, isosorbide and 1,4-cyclohexanedimethanol. Preferred aliphatic dicarboxylic acids include substituted or unsubstituted dicarboxylic acids selected from the group formed by aliphatic dicarboxylic acids containing 2 to 12 carbon atoms and cycloaliphatic dicarboxylic acids containing 5 to 10 carbon atoms. Nonaromatic dicarboxylic acids of the straight-chain or branched type, wherein the cycloaliphatic dicarboxylic acids may also contain heteroatoms in their rings. The substituted non-aromatic dicarboxylic acid generally contains 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy. Non-limiting examples of aliphatic and cycloaliphatic dicarboxylic acids include maleic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, fumaric acid , 2,2-dimethylglutaric acid, suberic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 3-cyclohexane dicarboxylic acid, dihydroxy Acetic acid, itaconic acid, maleic acid, 2,5-nor
Figure 111101733-001
Alkane dicarboxylic acid. Preferred aromatic dicarboxylic acids include substituted or unsubstituted aromatic dicarboxylic acids selected from the group formed by aromatic dicarboxylic acids containing 6 to 12 carbon atoms, wherein these carboxylic acids can also be Aromatic rings and/or contain heteroatoms in their substituents. The substituted aromatic dicarboxylic acid may generally have 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy. Non-limiting examples of aromatic dicarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, and furandicarboxylic acid. The aforementioned aliphatic dicarboxylic acids may also be in the form of copolymers or terpolymers together with the aforementioned aromatic dicarboxylic acids; non-limiting examples are e.g. polybutene-adipate terephthalate and biomass PTA . Among the thermoplastic polymers A, preferred melt-spinnable synthetic biopolymers are aliphatic polyesters having repeating units of at least 4 carbon atoms, such as polyhydroxyalkanoates, such as polyhydroxyvaleric acid Esters and polyhydroxybutyrate-hydroxyvalerate copolymers, polycaprolactone, furandicarboxylic acid, and succinic acid-based aliphatic polymers (such as polybutylene succinate, polyadipene succinate butylene succinate and polyethylene succinate). Specific examples may be selected from polyethylene oxalate, polyethylene maleate, polyethylene succinate, polytrimethylene oxalate, polytrimethylene maleate, polytrimethylene succinate Diesters, polybutylene oxalate, polybutylene maleate, polybutylene succinate and blends and copolymers of these compounds. Particularly preferred synthetic biopolymers are aliphatic polyesters comprising repeat units of lactic acid (PLA), hydroxy fatty acid (PHF) (also known as polyhydroxyalkanoate, PHA), especially hydroxybutyric acid (PHB), And succinate-based aliphatic polymers, such as polybutylene succinate, polybutylene succinate adipate, and polyethylene succinate. "Aliphatic polyesters" are understood to mean those aliphatic polyesters having generally at least about 50 mole %, preferably at least about 60 mole %, especially at least about 70 mole %, especially at least about 95 mole % monomeric polyester. Between the thermoplastic polymers A having a glass transition temperature higher than -125°C, advantageously higher than -30°C, preferably higher than 30°C, particularly preferably higher than 50°C, especially higher than 70°C Thermoplastic polymers are preferred. In the context of particularly preferred embodiments, the glass transition temperature of the polymer is in the range -125°C to 200°C, especially in the range -125°C to 100°C. Among the thermoplastic polymers A, preferred thermoplastic synthetic biopolymers are those with a temperature preferably higher than 20°C, advantageously higher than 25°C, preferably higher than 30°C, particularly preferably higher than 35°C , especially those above the glass transition temperature of 40°C. In the context of particularly preferred embodiments, the glass transition temperature of the polymer is in the range of 35°C to 55°C, especially in the range of 40°C to 50°C. Particularly preferred polyesters are PET with a glass transition temperature of at least 70°C, PLA with a glass transition temperature in the range of 40°C to 70°C, PHA with a glass transition temperature in the range of -40°C to 62°C and PHB, PBS and PBS copolymers such as PBSA with a glass transition temperature in the range of -45°C to 45°C and polycaprolactone with a glass transition temperature in the range of -75°C to 45°C. The molecular weight of polyesters, especially polyethylene terephthalate, often corresponds to an intrinsic viscosity (IV ). Polyesters of particular interest are those such as PET, PEN, PLA, PBS, PEIT whose properties are preferably determined by gel permeation chromatography against a styrene standard with a narrow distribution or by end group titration. A number average molecular weight (Mn) of at least 20000 g/mol. Still more preferably, the polymers have a polydispersity of at least 1.7. Polyesters of particular interest are those having a melting point between 250°C and 260°C, such as PET. Polyesters of particular interest are those with an enthalpy of fusion of (80%: 43 J/g; 100% crystalline/theoretical): 115 J/g, such as PET. Polyesters of particular interest are such as PET with a crystallization temperature of at least 125°C and an enthalpy of crystallization (125°C) of at least 31 J/g. Polyesters of particular interest are those commercially available from Trevira GmbH, eg Trevira® T298. Particularly preferred polyamides have a glass transition temperature in the range of 30°C to 80°C, especially in the range of 35°C to 65°C, especially preferably in the range of 50°C to 60°C, wherein these values are especially Yes to PA 6.6 and PA 6. Polyamides of particular interest are such as PA 6.6 or PA 6, which have preferably at least 10000 g as determined by gel permeation chromatography against a styrene standard with a narrow distribution or by end group titration. /mol is the number average molecular weight (Mn). Polyamides of particular interest are such as PA 6.6 and PA 6 having a melting point between 170°C and 280°C, more preferably between 200°C and 260°C. Polyamides of particular interest are such as PA 6.6 and PA 6 which have a crystallization enthalpy of fusion (100% crystalline) of 190°C. Polyamides of particular interest are such as PA 6.6 and PA 6 which have a softening temperature of 204°C. Commercially available polyamides such as Nylon, Perlon or Grilon are of particular interest. Polyolefins of particular interest are homopolymers such as polyethylene (PE) or polypropylene (PP), and copolymers or terpolymers comprising at least 50 mole % of ethylene and/or propylene repeat units. The polyethylenes of particular concern are low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), ultra low density polyethylene (ULDPE), medium density polyethylene (MDPE), Polymethylpentene (PMP), polybutene-1 (PB-1); ethylene-octene copolymer, stereoblock PP, olefin block copolymer, propylene-butane copolymer. Particularly preferred polyolefins are PE with a glass transition temperature in the range -100°C to -35°C and PP with a glass transition temperature in the range -10°C to -5°C. Polyethylenes of particular interest are those with a melting point between 120°C and 135°C and polypropylenes are those with a melting point between 158°C and 170°C. Polyethylenes of particular interest are those with a crystalline fusion enthalpy of 290 J/g (100% crystalline) and polypropylenes are those with a crystalline fusion enthalpy of 190 J/g. Of particular interest are commercially available polyolefins such as LDPE (PE Aspun 6834, Dow), HDPE (SKGC MK 910), PP (Braskem). Further suitable polymers are those having a melting temperature above 50°C, advantageously at least 75°C, preferably above 150°C. Particularly preferably, the melting temperature is in the range of 120°C to 285°C, especially in the range of 150°C to 270°C, especially preferably in the range of 175°C to 270°C. In this regard, the glass transition temperature and melting temperature of the polymer are preferably determined by differential scanning calorimetry (DSC). Particularly preferred synthetic biopolymers according to the invention are based on thermoplastic polycondensates known as biopolymers containing repeat units of lactic acid, hydroxybutyric acid, succinic acid, glycolic acid and/or furandicarboxylic acid , preferably lactic acid and/or glycolic acid, especially lactic acid. In this point, polylactic acid is particularly preferable. Various synthetic biopolymers with high melting points (melting points between 110°C and 270°C, preferably between 140°C and 270°C, more preferably between 180°C and 270°C) can be used in the present invention, such as Polyesters such as polyesteramide, modified polyethylene terephthalate, polylactic acid (PLA), terpolymers based on polylactic acid, polybutylene succinate, polyalkylene furanoate Such as PEF, polyglycolic acid, polyalkylene carbonates (such as polyethylene carbonate), polyhydroxyalkanoates (PHA) such as polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV) or polyhydroxy Butyrate-hydroxyvalerate copolymer (PHBV). It should be understood that the term "polylactic acid" (PLA) refers to a polymer composed of lactic acid units. Such polylactic acids are often produced by condensation of lactic acid, but are also obtained by ring-opening polymerization of lactide under suitable conditions. Particularly suitable polylactic acids according to the present invention include poly(glycolide-co-L-lactide), poly(L-lactide), poly(L-lactide-co-ε-caprolactone), poly( L-lactide-co-glycolide), poly(L-lactide-co-D,L-lactide), poly(D,L-lactide-co-glycolide), and poly(dioxa cyclohexanone). As examples, polymers of this type are commercially available from Boehringer Ingelheim Pharma KG (Germany) under the names Resomer® GL 903, Resomer® L 206 S, Resomer® L 207 S, Resomer® L 209 S, Resomer® L 210, Resomer® L 210 S, Resomer® LC 703 S, Resomer® LG 824 S, Resomer® LG 855 S, Resomer® LG 857 S, Resomer® LR 704 S, Resomer® LR 706 S, Resomer® LR 708, Resomer ® LR 927 S, Resomer® RG 509 S and Resomer® X206 S, obtained from Biomer, Inc. (Germany) under the name Biomer(TM) L9000. Other suitable polylactic acid polymers are commercially available from Natureworks, LLC, Minneapolis, Minnesota, USA. Particularly advantageous polylactic acids for the purposes of the present invention are especially poly-D-, poly-L-, or poly-D,L-lactic acids. The term "polylactic acid" usually refers to homopolymers of lactic acid such as zy (L-lactic acid), poly (D-lactic acid), poly (DL-lactic acid), their mixtures, and containing lactic acid as the main component and a small proportion ( Copolymers of preferably less than 10 mol% of copolymerizable comonomers.Additionally suitable materials are based on polylactic acid, polyglycolic acid, polyalkylene carbonates (such as polyethylene carbonate), polyhydroxyalkylene Copolymer or terpolymer of polyhydroxybutyrate (PHA), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydroxybutyrate-hydroxyvalerate copolymer (PHBV). In a preferred embodiment, the biopolymer is only a thermoplastic polycondensate based on lactic acid. The number average molecular weight (Mn) of the polylactic acid used according to the invention is preferably at least 500 g/mol, preferably at least 1000 g/mol , particularly preferably at least 5000 g/mol, suitably at least 10000 g/mol, especially at least 25000 g/mol. On the other hand, this number is preferably at most 1000000 g/mol on average, suitably at most 500000 g/mol, Advantageously a maximum of 100000 g/mol, especially a maximum of 50000 g/mol. In the context of the present invention, a number average molecular weight in the range from a minimum of 10000 g/mol to a maximum of 500000 g/mol has proven to be particularly advantageous. The mass average molecular weight (Mw) of the lactic acid polymer (especially poly-D-, poly-L- or poly-D,L-lactic acid) is preferably in the range of 750 g/mol to 5,000,000 g/mol, preferably is in the range of 5,000 g/mol to 1,000,000 g/mol, particularly preferably in the range of 10,000 g/mol to 500,000 g/mol, especially in the range of 30,000 g/mol to 500,000 g/mol, and the The polydispersity of such polymers is advantageously in the range of 1.5 to 5. Particularly suitable lactic acid polymers (especially poly-D-, poly- L- or poly-D, L-lactic acid) has an intrinsic viscosity in the range of 0.5 dl/g to 8.0 dl/g, preferably in the range of 0.8 dl/g to 7.0 dl/g, especially 1.5 In the range of dl/g to 3.2 dl/g. Furthermore, lactic acid polymers (especially poly-D -, poly-L- or poly-D,L-lactic acid) has an intrinsic viscosity in the range of 1.0 dl/g to 2.6 dl/g, especially in the range of 1.3 dl/g to 2.3 dl/g. Especially Of particular interest is polylactic acid having a glass transition temperature between 50° C. and 65° C. Of particular interest is polylactic acid having a melting point between 155° C. and 180° C. Of particular interest is the commercially available Polylactic acid such as NatureWorks PLA 6202D. The term "polyhydroxyalkanoate" (PHF) used in the context of the present invention should be understood to mean the following polymers: poly(3-hydroxypropionate) (PHP), poly(3-hydroxybutyrate ester) (PHB, P3HB), poly(3-hydroxyvalerate) (PHV), poly(3-hydroxyhexanoate) (PHHx), poly(3-hydroxyheptanoate) (PHH), poly(3 -hydroxycaprylate) (PHO), poly(3-hydroxynonanoate) (PHN), poly(3-hydroxydecanoate) (PHD), poly(3-hydroxyundecanoate) (PHUD), Poly(3-hydroxydodecanoate) (PHDD), poly(3-hydroxytetradecanoate) (PHTD), poly(3-hydroxypentadecanoate) (PHPD), poly(3-hydroxyhexadecanoate) esters) (PHHxD), and blends of the above polymers. In addition to the above homopolymers, polyhydroxyalkanoate copolymers such as poly(3-hydroxypropionate-co-3-hydroxybutyrate) (P3HP-3HB), poly(3-hydroxypropionate-co- -4-hydroxybutyrate) (P3HP-4HB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-4HB)), poly(3-hydroxybutyrate- Co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBV-HHx), and copolymers of the above Blends of these can be used together or with the above-mentioned homopolymers. The thermoplastic polyhydroxyalkanoate polymers used according to the invention are commercially available; examples are Mirel, Biomer P 209, Biopol Aonilex X, Proganic. The glass transition temperature of the thermoplastic polyhydroxyalkanoate polymers used in accordance with the invention is preferably in the range -2°C to 62°C. The thermoplastic polyhydroxyalkanoate polymers used according to the invention preferably have a melting temperature in the range of 100°C to 177°C. The thermoplastic polyhydroxyalkanoate polymers used according to the invention have a melt flow index (MFI) of 5 to 10 g/10 min (190° C., 2.16 kg), measured according to ISO 1133-1:2011. The number-average molecular weight (Mn) of the thermoplastic polyhydroxyalkanoate polymers used according to the invention is preferably at least 200,000 Daltons, especially at least 220,000 Daltons, particularly preferably at least 250,000 Daltons, and up to 3,000,000 Daltons , especially up to 2,500,000 Daltons, especially up to 2,000,000 Daltons. The mass-average molecular weight (Mw) of the thermoplastic polyhydroxyalkanoate polymers used according to the invention is often about 2 times, preferably 3 times, the number-average molecular weight (Mn). The term "succinate-based aliphatic polymer" is understood to mean a polymer having the following general formula
Figure 02_image003
, wherein R 1 , R 2 , R 3 , and R 4 represent linear or branched aliphatic hydrocarbon residues with 2 to 20 carbon atoms. Examples in this regard are polybutylene succinate, polybutylene succinate adipate and polyethylene succinate. The thermoplastic succinate-based aliphatic polymers used according to the invention are commercially available; examples are Bionolle 1000, BioPBS. The glass transition temperature of the thermoplastic succinate polymers used in accordance with the invention is in the range of -45°C to 45°C. The crystallization temperature of the thermoplastic succinate polymers used according to the invention is in the range of 70°C to 90°C. The melting temperature of the thermoplastic succinate polymers used according to the invention is in the range of 60°C to 180°C. The thermoplastic succinate polymer used according to the invention has a melt flow index (MFI) of 5 to 10 g/10 min (190° C., 2.16 kg), measured according to ISO 1133-1:2011. The thermoplastic succinate polymers used according to the invention preferably have a number average molecular weight (Mn) of at least 20,000 Daltons, especially at least 30,000 Daltons, particularly preferably at least 35,000 Daltons, and up to 140,000 Daltons up to 120,000 Daltons, especially up to 110,000 Daltons. The mass average molecular weight (Mw) of the thermoplastic succinate polymers used according to the invention is often about 2 times, preferably 3 times, the number average molecular weight (Mn). Polycaprolactone (PCL) is a synthetic biopolymer within the meaning of the present invention. Of particular interest are polycaprolactones with glass transition temperatures between -45°C and 45°C. Of particular interest are polycaprolactones having a crystallization temperature between 70°C and 90°C. Of particular interest are polycaprolactones having a melting point between 60°C and 180°C. Of particular interest are polycaprolactones having an enthalpy of fusion of 70 to 145 J/g. Of particular interest are those having a number average molecular weight of at least 20,000 Daltons to 140,000 Daltons ( Mn) polycaprolactone. Of particular interest are commercially available polycaprolactones such as Resomer C 209. Thermoplastic Polymer B The thermoplastic polymer B is selected from the thermoplastic polymer group mentioned above and preferred examples of the thermoplastic polymer B correspond to preferred examples of the thermoplastic polymer A mentioned above. In a preferred embodiment, at least the thermoplastic polymer A and/or thermoplastic polymer B are selected from the group formed by the melt-spinnable biopolymer, wherein the polycondensation obtained from the biomass raw material Materials and polymers are particularly preferred. As long as the thermoplastic polymers A and B are both selected from the group formed by melt-spinnable synthetic biopolymers, preference is given to choosing biopolymers which differ in their chemical nature and/or in their melting point. In this embodiment, the multicomponent polymer fiber is preferably a bicomponent fiber, wherein the component A forms the core and the component B forms the sheath. Particularly preferably, the melting point of the thermoplastic polymer in component A is at least 5°C, preferably at least 10°C, higher than the melting point of the thermoplastic polymer in component B. Additives A and B The additives A and B increase the biodegradability of the multicomponent polymer fibers according to the invention, especially the bicomponent fibers according to the invention, because these additives increase the thermoplastic polymer A and/or Or the biodegradability of the thermoplastic polymer B. The multicomponent polymer fibers according to the present invention (especially the preferred bicomponent fibers) contain (i) at least one additive A in the component A or (ii) at least one component A in the component B Part B or (iii) at least one additive A in the component A and at least one additive B in the component B. When at least one additive A is present in the component A and at least one additive B is present in the component B, the additive A and the additive B are different, or when at least one additive A is present in the component A and at least one When additive B is present in the component B, if the thermoplastic polymer A and the thermoplastic polymer B are different, the additive A and the additive B may also be the same. In the context of this paragraph, the word "different" means that the substances differ at least in their chemical nature or in their physical nature or in their concentration. In particular, the additives A and B are: ․ Alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO, ․ Aliphatic polyesters, preferably aliphatic polyesters having no side chain carbon atoms, preferably polycaprolactone, ․ Fatty acid ester, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, most preferably ethyl stearate, ․ Sugars, especially monosaccharides, disaccharides and oligosaccharides, ․ Catalysts for transesterification, especially under alkaline conditions, ․ Metal compounds, especially transition metal compounds, preferably at least two transition metal compounds, and salts thereof, ․ Unsaturated carboxylic acids and their anhydrides/esters/amides, ․ Synthetic rubber, natural rubber, ․ Carbohydrates, especially starch and/or cellulose, and mixtures of the above. Preferred are multicomponent polymer fibers, especially bicomponent polymer fibers, wherein the thermoplastic polymer A and/or the thermoplastic polymer B comprise at least one polyester and the additive A and/or additive B are selected from Free from the group formed by: (i) alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, particularly preferably CaCO 3 ; and alkaline Additives, particularly preferably CaO, (ii) aliphatic polyester, (iii) fatty acid ester, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, most preferably hard Fatty acid ethyl esters, (iv) sugars, especially monosaccharides, disaccharides and oligosaccharides, (v) catalysts for transesterification, especially under alkaline conditions, (vi) Carbohydrates, especially starch and/or cellulose, and mixtures thereof. Particularly preferred bicomponent polymer fibers are those in which the thermoplastic polymer A and/or the thermoplastic polymer B comprise at least one polyester and the additive A and/or additive B are selected from the group formed by: (i ) alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, particularly preferably CaCO 3 ; and alkaline additives, particularly preferably CaO, (ii) Aliphatic polyester, (iii) fatty acid ester, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, most preferably ethyl stearate, (iv) sugar , especially monosaccharides, disaccharides and oligosaccharides, (v) catalysts for transesterification, especially under alkaline conditions, (vi) carbohydrates, especially starch and and/or cellulose, and mixtures thereof. The aforementioned aliphatic polyesters are chemically different from the polyesters of thermoplastic polymer A and polymer B, that is, the polyesters of thermoplastic polymer A and polymer B are composed of polyols and aliphatic and/or aromatic Araliphatic polyesters or copolyesters produced by polycondensation of aromatic dicarboxylic acids or their derivatives (anhydrides, esters). The particularly preferred additive A and/or additive B contains at least two substances, wherein a preferred combination is: A) alkali metal and/or alkaline earth metal compounds (pH>7 when dissolved in water) (especially carbonates, bicarbonates, Sulphate, especially CaCO 3 ; and alkaline additives, especially CaO) in combination with catalysts for transesterification (especially under alkaline conditions); B) sugars (especially monosaccharides, Disaccharides and oligosaccharides) combined with carbohydrates (especially starch and/or cellulose), and mixtures thereof, C) aliphatic polyesters optionally combined with sugars (especially monosaccharides, disaccharides and oligosaccharides) or Combination of carbohydrates (especially starch and/or cellulose), and mixtures thereof D) Fatty acid ester, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, best It is ethyl stearate. Optimal additives A for partially aromatic 'araliphatic' polyesters or copolyesters as thermoplastic polymers A contain at least - alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water) (especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO) in combination with catalysts for transesterification (especially under alkaline conditions); and - esters Paphatic polyesters (especially aliphatic polyesters without side chain carbon atoms) are optionally combined with (i) sugars (especially monosaccharides, disaccharides and oligosaccharides), (ii) carbohydrates (especially starch) and /or (iii) cellulose, (iv) fatty acid ester (preferably C1-C40-alkyl stearate, more preferably C2-C20-alkyl stearate, most preferably ethyl stearate) combinations, and mixtures thereof. Among the particularly preferred bicomponent polymeric fibers above are those preferred wherein the thermoplastic polymer A is a polyester and the thermoplastic polymer B is a polyester different from the polyester in polymer A, and preferably is a copolyester, and the additive A and the additive B are each independently selected from the following combinations - alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water) (especially carbonates, bicarbonates, sulfuric acid salt, particularly preferably CaCO 3 ; and a basic additive, most preferably CaO) in combination with a catalyst for transesterification (especially under alkaline conditions); and - aliphatic polyesters (especially without Aliphatic polyesters with side chain carbon atoms) optionally with (i) sugars (especially monosaccharides, disaccharides and oligosaccharides), (ii) carbohydrates (especially starch) and/or (iii) cellulose, (iv) Combinations of fatty acid esters (preferably C1-C40-alkyl stearate, more preferably C2-C20-alkyl stearate, most preferably ethyl stearate), and mixtures thereof. In particularly preferred embodiments, the aforementioned fatty acid esters are present and not optional. Preferred are multicomponent polymer fibers, especially bicomponent polymer fibers, wherein the thermoplastic polymer A and/or the thermoplastic polymer B comprise at least one polyolefin and the additive A and/or additive B are selected from From the following groups: (i) sugars, especially monosaccharides, disaccharides and oligosaccharides, (ii) metal compounds, especially transition metal compounds, and their salts, (iii) unsaturated carboxylic acids or their anhydrides/esters/ Amides, (iv) synthetic and/or natural rubber, (v) carbohydrates, especially starch and/or cellulose, and mixtures thereof. Particularly preferred for polyolefins are additives A and/or B comprising (a) transition metal compounds and (b) unsaturated carboxylic acids or their anhydrides, which are particularly preferred in combination with (c) synthetic rubber and/or natural rubber and (d) Starch binding. Particularly preferred bicomponent polymer fibers are those in which the thermoplastic polymer B is a polyolefin, especially a polypropylene polymer, comprising as additive B at least (i) metal compounds, especially transition metal compounds, and salts thereof, Preferably at least two chemically distinct transition metal compounds and (ii) unsaturated carboxylic acids or anhydrides/esters/amides thereof, preferably in combination with synthetic rubber and/or natural rubber, and optionally further comprising (iii ) sugars, especially mono-, di- and oligosaccharides, (iv) carbohydrates, especially starch and/or (v) cellulose, and mixtures thereof. Furthermore, there may be phenolic antioxidants and CaO. Preference is given to multicomponent polymer fibers, especially bicomponent polymer fibers, wherein the thermoplastic polymer A and/or the thermoplastic polymer B comprises at least one polyamide and the additive A and/or additive B is selected from the following group: (i) alkali metal and/or alkaline earth metal compounds (pH > 7 when dissolved in water), especially carbonates, bicarbonates, sulfates, particularly preferably CaCO 3 ; and alkaline additives, Particularly preferred is CaO, (ii) aliphatic polyester, (iii) fatty acid ester, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, most preferably stearic acid Ethyl esters, (iv) sugars, especially monosaccharides, disaccharides and oligosaccharides, (v) catalysts for transesterification, especially catalysts for transesterification under alkaline conditions, (vi ) metal compounds, especially transition metal compounds, and their salts, (vii) unsaturated carboxylic acids or their anhydrides/esters/amides, (viii) synthetic rubber and/or natural rubber, (ix) carbohydrates, especially starch and/or cellulose, and mixtures thereof. The proportion of the additive A in the component A is based on the total weight of the component A, preferably between 0.005% by weight and 20% by weight, particularly preferably between 0.01% by weight and 5% by weight. The proportion of the additive B in the component B is based on the total weight of the component B, preferably between 0.005% by weight and 20% by weight, particularly preferably between 0.01% by weight and 5% by weight. In order to obtain a low weight proportion and a distribution of the additive that is as uniform as possible in the component, the additive is preferably added to the polymer material in the extruder in the form of what is known as a masterbatch. The term "masterbatch" is understood to mean particles that are added to the polymer melt during the spinning process. In this respect, the particles have a polymeric carrier material and at least one additive. To enable the addition of small amounts of additives to the polymer, it is preferred to vary the concentration of the additives in the masterbatch. Preferably, the dosage of masterbatch in the spinning process is between 0.1% and 30% by weight, particularly preferably between 0.5% and 15% by weight. Thermal bonding is thermal bonding, in particular, suitable thermoplastic polymers, copolymers and blends, in particular thermoplastic biopolymers are those with high melting and crystallization enthalpies. Often, the polymers B are selected in such a way that they have a certain degree of crystallinity and more than about 25 Joules/gram ("J/g"), especially more than 35 J/g, especially more than 50 J/g The latent heat of fusion (ΔHf) of g. The latent heat of fusion (ΔHf), latent heat of crystallization (ΔHC) and crystallization temperature are measured by differential scanning calorimetry ("DSC"), especially according to ASTM D-3418 (ASTM D-3418-15, by differential scanning calorimetry Standard Test Method for Transition Temperature and Enthalpy of Melting and Crystallization of Polymers, ASTM International, West Conshohocken, PA, 2015, www.astm.org). Further Additives to Thermoplastic Polymers A and B The thermoplastic polymers, copolymers and blends described above, especially the biopolymers described above, have additives in general, such as antioxidants in particular. Further typical additives are pigments, stabilizers, surfactants, waxes, flow promoters, solid solvents, plasticizers and other materials such as nucleating agents added to improve the processability of the thermoplastic composition. multicomponent fibers according to the invention (in particular bicomponent fibers according to the invention) consist of at least 90% by weight of the aforementioned thermoplastic polymers, copolymers, blends (especially thermoplastic biopolymers), and In particular in the shell there is typically less than about 10% by weight, preferably less than about 8% by weight, especially less than about 5% by weight of additives. The multicomponent fibers according to the invention, in particular the bicomponent fibers according to the invention, may be continuous fibers, such as those known as staple fibers, or continuous fibers (filaments). Production of multicomponent fibers After spinning into fiber bundles, the multicomponent fibers, especially bicomponent fibers according to the invention, are combined and worked up in a rolling mill using methods known in principle, especially Is stretched and casually also folded curled or toned. When processed after the (filament) spinning process, the multicomponent polymer fibers according to the invention are cooled immediately after leaving the spinneret and drawn and deposited on a collection belt or preferably wound on a roll on the silk tube. Further steps include, inter alia, drawing, tempering and thermal bonding of the filaments. The manufacture of multicomponent fibers according to the invention (in particular bicomponent fibers according to the invention) is carried out using methods and equipment known to those skilled in the art and which are described in the literature, for example in Fourné (Synthetische Fasern [Synthetic Fibers]; 1995, Chapters 4 and 5.2) are described. Many manufacturing methods are available for the manufacture of non-wovens. In the manufacture of spunbonds, no intermediate steps of staple fiber manufacture are carried out. In particular, the multicomponent fibers are crimped directly after leaving the spinning nozzle, preferably with an air flow, so that they are deposited as a non-woven. The production of spunbonds is known to those skilled in the art and has been described, for example, in Fourné (Synthetische Fasern [Synthetic Fibers]; 1995, chapter 5.5). For the purpose of improving the dispersibility or for further processing, especially into yarns, in the secondary spinning unit, the fibers are preferably in the form of staple fibers. The length of the short fibers is not limited in principle, but is usually 2 to 200 mm, preferably 3 to 120 mm, particularly preferably 4 to 60 mm. The individual linear densities of the multicomponent fibers according to the invention, especially the bicomponent fibers according to the invention, preferably staple fibers, are between 0.5 and 30 dtex, preferably between 0.7 and 13 dtex. For some applications, a linear density between 0.5 and 3 dtex and a fiber length of <10 mm, especially <8 mm, especially <6 mm, especially <5 mm, are particularly suitable. According to the multi-component fiber of the present invention (especially the bi-component fiber according to the present invention), it is measured at 110°C, and preferably has a value of 0% to 10% (preferably> 0% to 8%) Low hot air heat shrinkage rate in the range. The production of the polymer fibers according to the invention is carried out in principle using the usual methods. First, the polymer is dried and supplied to an extruder as necessary. Next, the molten material is spun using conventional equipment with suitable spinnerets. The mass throughput and withdrawal speed of the capillary exiting the spinneret exit plate are set so as to produce fibers with the desired linear density. The formed fibers can have different shapes, such as round, oval, star, dog-bone, barbell, kidney, triangle or polygon, cloverleaf, horseshoe, lens, rod, gear, cloud, x-shaped, y-shaped, o-shaped, u-shaped; these representations are not limiting and other suitable cross-sections are possible. The fiber filaments produced according to the present invention are gathered into yarns and then sequentially into fiber bundles. The tow is initially deposited in tanks for further processing. The fiber bundles temporarily stored in the tanks are taken out and large cord-shaped fiber bundles are produced. The invention also concerns the aftertreatment of the cord-like fiber bundles produced by the known method; usually, using common rolling mills and special stretching, which is between 10 and 600 ktex. The feed speed for feeding the cord-like fiber bundle into the drawing or drawing apparatus is preferably 10 to 110 m/min (feed speed). In this respect, other formulations which assist stretching but have no detrimental effect on the subsequent properties can also be applied. Stretching can be carried out in a single step or optionally using a two-stage stretching process (see eg US 3 816 486 in this regard). Before or during stretching, one or more post-treatment agents can be applied using common methods. Especially when using biopolymers, the stretching according to the invention is carried out with a draw ratio between 1.2 and 6.0, preferably between 2.0 and 4.0, wherein when drawing the fiber bundle, the temperature is preferably Between 30°C and 100°C. Therefore, drawing is performed within the glass transition temperature range of the fiber bundle to be drawn. The drawing according to the invention is carried out in the presence of steam, ie in what are known as steam boxes, so that the fibers are drawn in the steam boxes. The steam boxes are normally operated at a pressure of 3 bar. By drawing in the presence of steam and within the above temperature range, the thermal shrinkage of the fibers can be reduced and controlled in a specific manner. The tow is preferably 24 to 360 ktex before stretching. Stretching is preferably in one stage or in multiple stages, wherein the guide rolls of the stretching units may be at different temperatures and the stretching ratios may be different between the stretching units. Preferably, a steam box is positioned between at least two of the drawing units, ie the drawing point with respect to the fibers is in or close to the steam box. All guide rolls (often 7 per stretching unit) are at a temperature of 30 to 250°C. All stretching is preferably at least partially or completely performed in the steam box. Preferably, the steam box is operated at a steam pressure of 3 bar. Stretching can also be done cold, where "cold" means room temperature (about 20 to 35°C). The execution of the individual stretches and the selection of all parameters concerning the rolling mill are carried out according to the final use of the polymer and/or the fibers. For the random folding/conditioning of the drawn fibers, the usual mechanical folding methods with folding machines known per se can be used. Preferably, a mechanical device, such as a stuffer box, is used that utilizes a vapor carrier to fold the fibers. However, folded fibers can be obtained using other methods, including, for example, three-dimensionally folded fibers. To carry out the folding, the fiber bundle is initially and often raised to a fixed temperature in the range of 50°C to 100°C (preferably 70°C to 85°C, particularly preferably to about 78°C) and after the fiber bundle is Feed rollers at a pressure of 1.0 to 6.0 bar (especially preferably at about 2.0 bar), at a pressure of 0.5 to 6.0 bar (especially preferably 1.5 to 3.0 bar) in the folding box, to between 1.0 and 2.0 kg/min Steam treatment at a rate of (especially preferably 1.5 kg/min). If the smooth or randomly folded fibers are relaxed and/or fixed in an oven or a stream of hot air, this is also done at a maximum temperature of 130°C. To make staple fibers, the smooth or randomly folded fibers are taken, then cut and deposited into compressed bales as wadding. The staple fibers of the present invention are preferably cut using a mechanical cutting device downstream of relaxation. In order to manufacture different types of fiber bundles, cutting is not required. These types of fiber bundles are deposited and compressed in bales in uncut form. When the fibers according to the invention are in folded embodiments, the degree of folding is preferably at least 2 creases per centimeter (arch folds), preferably at least 3 creases per centimeter, preferably 3 creases per centimeter Up to 9.8 creases per centimeter and most preferably 3.9 creases per centimeter to 8.9 creases per centimeter. In applications for the manufacture of textile fabrics, values of about 5 to 5.5 folds per centimeter are particularly preferred. For the manufacture of textile fabrics using the wet ply method, the degree of folding must be set independently. A bicomponent fiber for the manufacture of the core/sheath (=core/sheath) type (it has in the core polyethylene terephthalate (PET) as thermoplastic polymer A and additive A and in the core A typical configuration of polypropylene (PP) as thermoplastic polymer B and additives B) in the shell (sheath) includes the following: - drying of the PET material, typically for up to 4 to 6 hours, at temperatures up to 180°C; typically , polypropylene (PP) does not need to be dried; - the melt extrusion is generally done in an extruder with one or more screws; - the bicomponent nozzle is constructed with PP as shell (sheath) material and Concentric or non-concentric PET as core component; - Extruder melt temperature for core is generally in the range of 250°C to 300°C for PET and for sheath material is generally in the range for PP In the range of 220 °C to 270 °C; - addition of additives in the feed throat of the extruder for both the shell (sheath) and the core, in an amount between 1 and 3% by weight, generally in the form of a masterbatch; - quenching of the fibers It is generally crossflow and the air temperature is generally in the range of 18 to 24 °C; - the typical fiber drawdown speed is in the range of 800 to 1300 m/min; - the fiber drawing energy is in the range of Single or dual stage stretching with stretch ratio up to 4 and heat setting at 110°C to 130°C. A bicomponent fiber for the manufacture of the core/sheath (=core/sheath) type (it has in the core polyethylene terephthalate (PET) as thermoplastic polymer A and additive A and in the core A general configuration of polyethylene terephthalate copolymer (coPET) as thermoplastic polymer B and additives B) in the shell (sheath) consists of the following: - Dry the PET stock, typically for 4 to 6 hours, at at temperatures up to 180°C; - the melt extrusion is generally done in extruders with one or more screws, one for the shell (sheath) material (coPET) and one for In the core material (PET); - The two-component nozzle structure is concentric or non-concentric with coPET as the shell (sheath) material and PET as the core component; - The melt temperature of the extruder is generally at 250 ° C to the range of 300 °C; - addition of additives in the feed throat of the extruder for both the shell (sheath) and the core, at levels between 1 and 3% by weight, generally in masterbatch form; - fiber quenching is generally Crossflow or in-flow or radial out-flow and the air temperature is generally 18 to 50°C; - The general fiber pulling speed is 400 to 1800 m/min range, preferably 1400 m/min; - the fiber draw can be a single or double-stage draw under the following conditions: a draw ratio of up to 4.5 (specifically 2.5 to 3.5), and a post-treatment bath temperature of up to 80 °C, guide roll temperature up to 70°C (specifically 30°C) before the steam bath (if present), and up to 80°C after the elongation point, and heat setting in a hot air oven typically up to 190°C. Textile fabrics can be produced from the fibers according to the invention; these also form the subject of the invention. Textile fabrics The term "textile fabric" as used in the context of this description should be understood in its broadest sense. Thus, they may be any structure containing fibers according to the invention and which has been produced using techniques used to produce fabrics. Examples of such textile fabrics are non-wovens, especially wet-laid non-wovens or dry-laid non-wovens, preferably based on staple fibers produced by thermal bonding. Other examples of nonwovens are carded or airlaid nonwovens, preferably based on staple fibers or nonwovens, manufactured using melt blowing and/or spunbond filament processes . In particular, in the case of fibers or non-wovens of low linear density, the melt-blowing process (eg in "Complete Textile Glossary", Celanese Acetate LLC from 2000, or in "Chemiefaser-Lexikon, Robert Bauer" from 1993 Described in the 10th edition) and electrospinning methods are most suitable. To use this spunbond filament method to make non-woven fabrics, freshly spun fibers (preferably freshly spun bicomponent fibers) are collected on a collection conveyor To stack them into a specific thickness, so that the spunbond non-fabric can be obtained. The spunbond non-fabric can be further combined, for example using the heat embossing method under embossing rollers or using known needle punching/water embossing Knife method to further entangle the nonwoven. When using bicomponent fibers (wherein the bicomponent fiber has a higher and a lower melting point component), the nonwoven is thermally bonded by using the lower melting point component For thermal bonding as described above, the textile fabric containing the bicomponent/multicomponent fibers is fed into an oven (such as a ventilated dryer) containing one or more woven fabrics used to heat the air to a high temperature. The heating zone at the melting temperature of the lower melting point component (such as the sheath) of the multicomponent fiber, but lower than the melting temperature of the higher melting point component (such as the core). The heated air flows through the Woven fabrics, typically non-wovens, after which the lower melting point component melts and forms bonds between the fibers to thermally stabilize the fabric. Typically, the air flowing through the thermal bonding oven is at a temperature of 100°C to about 180°C The temperature within the range. The residence time in the furnace is about 180 seconds or less. However, it should be understood that the parameters of the thermal bonding furnace are related to the type of polymer used and the thickness of the material. Ultrasonic merging technology can also be used , which utilizes static or turning angle (horn) and rotating patterned embossing rollers. Examples of such techniques are in US Patent 3 939 033; US Patent 3 844 869; US Patent 4 259 399; US Patent 5 096 532; Described in patent 5 110 403 and U.S. patent 5 817 199, which are incorporated herein by reference in their entirety for all purposes. As an alternative, the non-woven fabric can be thermally spot welded to provide a A fabric of many small, separate bonding points. The process typically involves directing the fabric between two heated rolls, such as a roll with an engraved pattern and a second bonding roll. The engraved roll is patterned such that The web is not bonded on its entire surface, and the second roll can be smooth or patterned. For functional and/or aesthetic reasons, various patterns for engraved rolls have been developed. Examples of bonded patterns include But not limited to those in US Patent 3 855 046; US Patent 5 620 779; US Patent 5 962 112; US Patent 6 093 665; US Design Patent 428 267 and US Design Patent No. 390,708, which are hereby incorporated by reference in their entireties for all purposes. The basis weight of the woven fabric, especially the basis weight of the non-woven fabric, is between 10 and 500 g/m 2 , preferably 25 to 450 g/cm 2 , especially 30 to 300 g/cm 2 . Textile fabrics (in particular nonwovens) produced from the multicomponent fibers according to the invention, especially from the bicomponent fibers according to the invention, can be produced in a known manner and using calender rolls or can be combined thermally in an oven. Because the components have different melting points, textile fabrics (eg non-wovens) produced from multicomponent fibers according to the invention are often produced by thermal bonding. This bonds the fibers together at joints or intersections. As long as component B made of thermoplastic polymer B and additive B has a higher biodegradability than component A made of thermoplastic polymer A and additive A, the joints or intersections of the fibers with each other are first is degraded and the woven fabric (eg non-woven) disintegrates more rapidly, after which the overall degradability increases. In this case, the textile fabric (in particular the non-woven fabric) can comprise, in addition to the multicomponent fibers, also further fibers, depending on the desired purpose. In this regard, particular attention should be paid to the "filler fibers" described in WO 2007/107906. The "filler fibers" described in WO 2007/107906 also form part of the subject-matter of the present invention and are incorporated in the present invention. The textile fabric comprises the above-mentioned fibers of biodegradable polymer materials, which can be combined with other fiber materials, chemical fibers, preferably natural fibers (such as cotton or cellulose fibers), fibers of animal origin (such as wool) or other biodegradable fibers. Degraded fiber mix. When these different fibers are mixed, textile fabrics with fiber gradients can be produced. Examples of cellulosic fibers include softwood kraft fibers. Softwood kraft fibers are derived from conifers and comprise cellulosic fibers such as, but not limited to, northern, western, and southern softwood species such as redwood, red cedar, hemlock, western pine, true spruce, pines (e.g., southern pine), True spruce (for example black spruce), binders thereof. In the present invention, northern softwood kraft pulp fibers can be used. Other cellulosic materials suitable for use in the present invention are bleached kraft lignocellulosic materials containing mainly softwood fibers. Fibers with a smaller average length can also be used in the present invention. An example of a suitable cellulosic material having a low average length is hardwood kraft pulp fibers. Hardwood kraft fibers are derived from deciduous trees and include fibers of cellulosic materials such as, but not limited to, eucalyptus, maple, beech, poplar, and the like. Eucalyptus kraft fibers may be particularly preferred for increasing softness, increasing luster, increasing haze, and modifying the pore structure of the sheet to increase its absorbency. Typically, the fibers of cellulosic material comprise from about 30% to about 95%, in some embodiments from about 40% to about 90%, and in some embodiments from about 50% to about 85% by weight of the nonwoven. In addition, superabsorbent materials may also be contained in the nonwoven fabric. A superabsorbent material is a material that swells in water to absorb 20 times its weight, and in some cases at least 30 times its weight in an aqueous solution containing 0.9% by weight sodium chloride. The superabsorbent materials can be natural, synthetic and modified natural polymers and materials. Examples of synthetic superabsorbent polymers include alkali metal and ammonium salts of poly(acrylic acid) and poly(methacrylic acid), poly(acrylamide), polyvinyl ether), maleic anhydride and vinyl ether, and alpha - Copolymers of olefins, polyvinylpyrrolidone), poly(vinylmorphrinone), polyvinyl alcohol) and mixtures and copolymers thereof. Other superabsorbent materials include natural and modified natural polymers such as hydrolyzed acrylonitrile-grafted starch, acrylic acid-grafted starch, methylcellulose, polyglucosamine, carboxymethylcellulose Alginate, hydroxypropyl cellulose and natural gums such as alginate, xanthan gum, locust bean gum, etc. Mixtures of natural and wholly or partially synthetic superabsorbent polymers may also be used in the present invention. When the superabsorbent material is used, it may comprise from about 30% to about 95% by weight of the nonwoven, in some embodiments from about 40% to about 90% by weight and in some embodiments from about 50% to about 85% by weight. The textile fabrics, especially the non-wovens mentioned above, can be used in absorbent articles, for example absorbent articles for body care, such as diapers, training pants, absorbent underpants, incontinence articles, feminine hygiene underwear, but not Limited to these (e.g. sanitary napkins), swimwear, baby wipes, etc.; medical absorbent articles such as clothing, window materials, upholstery, bed protectors, bandages, absorbent cloths and medical towels; wipes; clothing items, etc. Materials and methods suitable for making absorbent articles of this type are known to those skilled in the art. Typically, absorbent articles comprise a substantially liquid-impermeable layer (eg, shell), a liquid-permeable layer (eg, body-facing layer, barrier layer, etc.), and an absorbent core. As the liquid-impermeable layer, liquid-permeable layer and/or absorbent layer, non-woven fabrics can be used in the present invention. The woven fabrics (especially the non-wovens mentioned above) are not limited to the applications mentioned above and can be used in any application, for example in hygiene, medicine, personal protection, in the home (fiber filling, etc.), clothing, mobility/transportation (automotive , trains, aircraft, ships), engineering (insulation), agriculture, packaging, filtration and any disposable application. Test Methods: Unless stated otherwise herein, the following measurement or test methods were utilized. Linear Density: The linear density is measured in accordance with DIN EN ISO1973. Biodegradability: This determination, test and specification is based on at least one method selected from the group formed by: (i) ASTM D5338-15(2021), for the determination of controlled Standard Test Method for Aerobic Biodegradability of Plastic Materials Under Composting Conditions (DOI: 10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (use Standard Practice for Labeling Plastics Designed for Aerobic Composting in Municipal or Industrial Facilities) (DOI: 10.1520/ D6400-12), (iii) ASTM D5511 (for the determination of plastic materials subjected to high solids anaerobic digestion ASTM D5511-11 standard test method for anaerobic biodegradation (DOI: 10.1520/D5511-11) and ASTM D5511-18 standard test method for determining anaerobic biodegradation of plastic materials under high solids anaerobic digestion conditions ( DOI:10.1520/D5511-18), (iv) ASTM D6691 (ASTM D6691-09 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment by Commensal Species of Qualified Microorganisms or Natural Seawater Inoculum ( DOI:10.1520/D6691-09) and ASTM D6691-17 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment 17), (v) ASTM D5210-92 (anaerobic degradation in the presence of sludge) (DOI:10.1520/D5210-92), (vi) PAS 9017:2020 (plastics - polyolefins in open earth environments Biodegradation-Specification), ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil (DOI : 10.1520/D5988-12) and the ASTM D5988-18 standard test method for the determination of aerobic biodegradation of plastic materials in soil (DOI: 10.1520/D5988-18), for the determination of plastic materials in soil or ASTM D5988-03 Standard Test Method for Aerobic Biodegradation of Plastic Residues After Composting (DOI: 10.1520/ D5988-03), (viii) EN 13432:2000-12 Packaging - For use through composting and biodegradation Requirements for recyclable packaging - Test plan and evaluation criteria for final packaging acceptance; German version EN 13432:2000 (DOI:10.31030/ 9010637), (ix) ISO 14855-1:2013-04 (DOI :10.31030/ 1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) Determination of the ultimate aerobic biodegradation of plastic materials under controlled composting conditions (by analyzing the released carbon dioxide), ( x) EN 14995:2007-03 - Plastics - Evaluation of compostability (DOI:10.31030/9730527) or (xi) ISO 17088:2021-04 (Specification for compostable plastics) (ICS 83.080.01). Number and mass average molecular weight (Mn/Mw) Determination using gel permeation chromatography relative to suitable polymer standards with narrow distribution, in particular DIN 55672 (gel permeation chromatography (GPC)). Intrinsic viscosity was determined by GPC measurement in chloroform at 0.1% polymer concentration at 25°C. Glass transition temperature and melting temperature in particular, according to DIN EN ISO 11357-2:2020-08 (Plastics - Determination of glass transition temperature by differential scanning calorimetry (DSC) - Part 2: Glass transition temperature and related glass transition Determination of step height). In particular, the determination of the melting temperature according to DIN EN ISO 11357-3:2018-07 (Plastics - Differential Scanning Calorimetry (DSC) - Part 3: Determination of temperature and enthalpy of melting and crystallization). Determination by Differential Scanning Calorimetry (DSC) using the following scheme: DSC measurements were performed under nitrogen, calibrated against indium. Nitrogen flow 50 mL/min; fiber weight in the range of 2 to 3 mg. At 10K/min, the temperature ranges from -50°C to 210°C, then isothermal for 5 minutes and finally back to -50°C at 10K/min. Typically, the final temperature has been about 50°C above the expected maximum melting point. DSC measurements were performed using a TA/Waters Model Q100. Melt Viscosity The melt viscosity was measured using a Göttfert Rheo Tester 1000 at a temperature suitable for the polymer (between about 190°C and 280°C). In particular, ASTM D2196-20 (Standard Test Method for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer) is used. The apparent viscosity was determined as described in WO 2007/070064. Melt flow index according to ASTM test method D1238-13 (ASTM D1238-13, by extrusion plastometer, standard test method for melt flow rate of thermoplastics, ASTM International, West Conshohocken, PA, 2013, www.astm .org) or according to DIN EN ISO 1133-1:2012-03 (Plastics - Determination of melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics - Part 1: Standard test methods) and according to DIN EN ISO 1133-2:2012-03 (Plastics - Melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics - Part 2: For materials sensitive to time-temperature history and/or moisture program) measurement. The melt flow index is the weight of polymer that can be forced through an extrusion rheometer opening (eg, 0.0825 inch diameter) when a force of, eg, 2160 grams is applied for 10 minutes, eg, at 190°C. Latent heat of fusion according to ASTM D-3418 (ASTM D3418-15, Standard Test Method for Transition Temperature and Enthalpy of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry ("DSC"), ASTM International, West Conshohocken, PA, 2015, www.astm.org) or according to DIN EN ISO 11357 (Plastics - Differential Scanning Calorimetry (DSC)), for the determination of the latent heat of fusion (ΔHf), the latent heat of crystallization (ΔHC) and the crystallization temperature. Thermal Shrinkage 12 fibers (test samples) were prepared from the fiber bundle of the sample cord. They are clamped at one end in the end block with the aid of tweezers and a decrimping weight is fixed at the other end. The measurements were carried out with the aid of bicomponent fibers of the core/sheath type having a linear density of 2.2 dtex; the unwinding weight was 190 mg. The end block with the test specimen is secured into the support table such that the test specimen is freely suspended in the support table under pretension. On each fiber, the selected starting length (150 mm in general) is marked here. This is done in the support table with the aid of marking lines and marking points are applied to the test specimen. After marking, the filled end blocks are removed and reset on the board. Here, the unwinding weight is removed and the free fiber end is clamped in the second end block. The test specimens are suspended under tension in a wire frame across the end blocks. The wire frame is introduced into the center of a shrinking furnace preheated to the correct processing temperature (generally 200°C, 110°C, 80°C). After a treatment time of 5 minutes, the wire frame was removed from the oven. After a continuous cooling time for the end block of at least 30 minutes, the end block with the test sample was removed from the rack and the fibers were replaced on the plate. Back measurements can then be made. For this, the test sample is again loaded with the unwinding weight and suspended in the support table. For the backside measurement, the adjustable marking line of the support table is positioned such that the respective upper sides of the marking points overlap the marking line. Then, for each individual fiber, the length between the marks can be read from a counter on the support table with an accuracy of 1/10 mm. Calculation of length change:
Figure 02_image005
The mean value for all 12 test samples was used. The invention is now demonstrated by the following examples, which are in no way intended to limit the scope of the invention.

實例1 從聚對苯二甲酸乙二酯(PET)樹脂紡成聚對苯二甲酸乙二酯(PET)纖維,其具有以下性質: 用於PET之熔體擠出係藉由溫度為280℃至290℃之具有一或多個螺桿的擠出機完成。 在該擠出機進料喉,添加2wt%母料劑量水平的添加劑A。該母料係由作為載劑之PET聚酯和包含脂族聚酯及CaCO3之該添加劑組成。 藉由交錯流動及40℃之溫度進行該纖維之急冷;纖維拉降速度是1400 m/min。紡絲纖維細度是5.4 dtex。 藉由在至高4之拉伸比下之單一或雙重階段拉伸完成該纖維拉伸且最終dtex是2.5dtex。在110至130℃下完成熱設定。 所製造之纖維被裁剪成具有38mm長度之短纖維。 依據ASTM D5511試驗所製造之纖維且在208天之後獲得結果。

Figure 02_image007
與對照組相對之生物降解性係在圖1中顯示。 實例2 具有作為核(熱塑性聚合物A)之聚對苯二甲酸乙二酯(PET)和作為殼(鞘)(熱塑性聚合物B)之聚丙烯(PP)的雙組分纖維係由聚對苯二甲酸乙二酯(PET)樹脂和具有以下性質之聚丙烯(PP)樹脂紡成: 用於PET之熔體擠出係藉由溫度為270℃之具有一或多個螺桿的擠出機且用於PP之熔體擠出係藉由溫度為250℃之具有一或多個螺桿的另一擠出機來完成。 在該擠出機進料喉,添加2wt%母料劑量水平的添加劑A至該PET。該母料係由作為載劑之PET聚酯和包含脂族聚酯及CaCO3之該添加劑組成。 在該擠出機進料喉,添加2wt%母料劑量水平的添加劑B至該PP。該母料係由作為載劑之PP和包含過渡金屬化合物和不飽和羧酸的添加劑組成。 藉由交錯流動和20℃之空氣溫度使纖維急冷發生;纖維拉降速度是1000m/min。紡絲纖維的細度是5.4dtex。藉由在至高4之拉伸比下的單一或雙重階段的拉伸來完成該纖維之拉伸且最後之dtex是2.5dtex。在110至130℃下完成熱設定。將所製造之纖維拉伸裁剪成具有長38mm之短纖維且藉由熱黏合製造非織物。 所製造之非織物作為對照組被保存在密封抽空的袋中且所製造之另一非織物在60℃及60%相對溼度下試驗經過一年的時間(365天)。 相對對照組之降解係在圖2a-e中顯示。該PP鞘之降解明顯變為可見。圖2e證明該PET核之降解,因為該部分之形狀明顯地從一般用於PET之蘑菇形狀變為一種指明該材料已變脆的形狀。在該試驗中,該等纖維藉由機械試驗機,以可複製方式(界定的速度)被軸向地壓迫。 該雙組分纖維之核具有與實例1中所述之纖維相同的材料組成(聚合物和添加劑),其中降解已經依據ASTM D5511證明。 實例3 具有作為核(熱塑性聚合物A)之聚對苯二甲酸乙二酯(PET)和作為殼(鞘)(熱塑性聚合物B)之共聚對苯二甲酸乙二酯(coPET)的雙組分纖維係由聚對苯二甲酸乙二酯(PET)樹脂和具有以下性質之共聚對苯二甲酸乙二酯(coPET)樹脂紡成: 用於PET之熔體擠出係藉由溫度為290℃之具有一或多個螺桿的擠出機且用於coPET之熔體擠出係藉由溫度為280℃之具有一或多個螺桿的另一擠出機來完成。 在該擠出機進料喉,將2wt%母料劑量水平的添加劑A添加至該PET。該母料係由作為載劑之PET聚酯和包含脂族聚酯及CaCO3之該添加劑組成。 在該擠出機進料喉,將2wt%母料劑量水平的添加劑B添加至該coPET。該添加劑B與添加劑A相同。 藉由交錯流動和35℃之空氣溫度使纖維急冷發生;纖維拉降速度是1200m/min。紡絲纖維的細度是5.4dtex。 藉由在至高4.5之拉伸率下的單一或雙重階段的拉伸來完成該纖維之拉伸且最後之dtex是2.5dtex。在80℃下完成熱設定。 將所製造之纖維拉伸裁剪成具有長38mm之短纖維且藉由熱黏合製造非織物。 所得之纖維符合所加諸之所有要求。該雙組分纖維之核具有與實例1中所述之纖維相同的材料組成(聚合物和添加劑),其中降解已經依據ASTM D5511證明。該鞘是不同的,因為該共聚酯之熔點低於該核之聚酯之熔點,這使該纖維可能用於經熱黏合的非織物。 Example 1 Polyethylene terephthalate (PET) fibers were spun from polyethylene terephthalate (PET) resin, which had the following properties: Melt extrusion for PET was carried out at a temperature of 280°C Extruders with one or more screws to 290°C are accomplished. At the extruder feed throat, Additive A was added at a masterbatch dosage level of 2 wt%. The masterbatch is composed of PET polyester as carrier and the additive comprising aliphatic polyester and CaCO3. The quenching of the fiber was carried out by means of interlaced flow and a temperature of 40° C.; the fiber draw-down speed was 1400 m/min. The spun fiber fineness was 5.4 dtex. The fiber drawing is done by single or double stage drawing at draw ratios up to 4 and the final dtex is 2.5 dtex. The heat setting is done at 110 to 130°C. The manufactured fibers were cut into staple fibers having a length of 38 mm. The manufactured fibers were tested according to ASTM D5511 and the results were obtained after 208 days.
Figure 02_image007
The biodegradability relative to the control is shown in Figure 1 . Example 2 A bicomponent fiber with polyethylene terephthalate (PET) as the core (thermoplastic polymer A) and polypropylene (PP) as the sheath (sheath) (thermoplastic polymer B) was made of polyethylene terephthalate (PET) Spinning of ethylene phthalate (PET) resin and polypropylene (PP) resin with the following properties: Melt extrusion for PET is carried out by an extruder with one or more screws at a temperature of 270°C And the melt extrusion for PP is done by another extruder with one or more screws at a temperature of 250°C. At the extruder feed throat, Additive A was added to the PET at a masterbatch dosage level of 2 wt%. The masterbatch is composed of PET polyester as carrier and the additive comprising aliphatic polyester and CaCO3. At the extruder feed throat, Additive B was added to the PP at a masterbatch dosage level of 2 wt%. The masterbatch is composed of PP as carrier and additives including transition metal compound and unsaturated carboxylic acid. The quenching of the fibers took place by means of interlaced flow and an air temperature of 20°C; the fiber drawdown speed was 1000 m/min. The fineness of the spun fiber was 5.4 dtex. Drawing of the fiber is done by single or double stage drawing at draw ratios up to 4 and the final dtex is 2.5 dtex. The heat setting is done at 110 to 130°C. The produced fibers were drawn and cut into short fibers having a length of 38 mm and a non-woven fabric was produced by thermal bonding. The manufactured non-fabric was kept as a control in a sealed evacuated bag and another non-fabric manufactured was tested at 60°C and 60% relative humidity over a period of one year (365 days). The degradation relative to the control group is shown in Figures 2a-e. Degradation of the PP sheath clearly became visible. Figure 2e demonstrates the degradation of the PET core, as the shape of the portion clearly changes from the mushroom shape typically used for PET to a shape indicating that the material has become brittle. In this test, the fibers are axially compressed in a reproducible manner (defined speed) by means of a mechanical testing machine. The core of the bicomponent fiber had the same material composition (polymer and additives) as the fiber described in Example 1, where degradation had been demonstrated according to ASTM D5511. Example 3 Bipacket with polyethylene terephthalate (PET) as core (thermoplastic polymer A) and copolyethylene terephthalate (coPET) as shell (sheath) (thermoplastic polymer B) The fiber is spun from polyethylene terephthalate (PET) resin and copolyethylene terephthalate (coPET) resin with the following properties: Melt extrusion for PET is carried out at a temperature of 290 The extruder with one or more screws at °C and the melt extrusion for coPET was done by another extruder with one or more screws at a temperature of 280 °C. At the extruder feedthroat, Additive A was added to the PET at a masterbatch dosage level of 2 wt%. The masterbatch is composed of PET polyester as carrier and the additive comprising aliphatic polyester and CaCO3. Additive B was added to the coPET at the extruder feed throat at a masterbatch dosage level of 2 wt%. This additive B is the same as additive A. The quenching of the fibers took place by means of interleaved flow and an air temperature of 35°C; the fiber drawdown speed was 1200 m/min. The fineness of the spun fiber was 5.4 dtex. Drawing of the fiber is done by single or double stage drawing at draw ratio up to 4.5 and the final dtex is 2.5 dtex. The heat setting was done at 80°C. The produced fibers were drawn and cut into short fibers having a length of 38 mm and a non-woven fabric was produced by thermal bonding. The resulting fibers met all the requirements imposed. The core of the bicomponent fiber had the same material composition (polymer and additives) as the fiber described in Example 1, where degradation had been demonstrated according to ASTM D5511. The sheath is different because the copolyester has a lower melting point than the polyester of the core, which makes it possible for the fiber to be used in thermally bonded nonwovens.

[圖1]顯示依據ASTM D5511所試驗之該纖維對該對照組的生物降解。 [圖2a-e]顯示該纖維對該對照組的降解。 [Fig. 1] shows the biodegradation of the fiber tested according to ASTM D5511 against the control group. [Fig. 2a-e] shows the degradation of the fiber against the control group.

Claims (25)

一種多組分聚合物纖維,其含有 (i)    至少一種組分A及至少一種組分B, (ii)   該組分A包含熱塑性聚合物A, (iii)  該組分B包含熱塑性聚合物B, 其特徵在於 (iv)  該組分A額外具有至少一種提高該多組分纖維之可生物降解性之添加劑A且該組分B不具有提高該多組分纖維之可生物降解性之添加劑B, 或 (v)   該組分B額外具有至少一種提高該多組分纖維之可生物降解性之添加劑B且該組分A不具有提高該多組分纖維之可生物降解性之添加劑A, 或 (vi)  該組分A額外具有至少一種添加劑A且該組分B額外具有至少一種添加劑B,該等添加劑一起提高該多組分纖維之可生物降解性,先決條件是當(i)該熱塑性聚合物A和該熱塑性聚合物B相同時,該等添加劑A和B是不同的,或(ii)當該添加劑A和B相同時,該熱塑性聚合物A和該熱塑性聚合物B是不同的。 A multicomponent polymer fiber comprising (i) at least one component A and at least one component B, (ii) the component A comprises thermoplastic polymer A, (iii) the component B comprises a thermoplastic polymer B, It is characterized by (iv) the component A additionally has at least one additive A that increases the biodegradability of the multicomponent fiber and the component B does not have an additive B that increases the biodegradability of the multicomponent fiber, or (v) the component B additionally has at least one additive B that increases the biodegradability of the multicomponent fiber and the component A does not have an additive A that increases the biodegradability of the multicomponent fiber, or (vi) the component A additionally has at least one additive A and the component B additionally has at least one additive B which together increase the biodegradability of the multicomponent fiber, provided that when (i) the thermoplastic When polymer A and the thermoplastic polymer B are the same, the additives A and B are different, or (ii) when the additives A and B are the same, the thermoplastic polymer A and the thermoplastic polymer B are different. 如請求項1之多組分聚合物纖維,其中該熱塑性聚合物A及/或該熱塑性聚合物B係選自下列群組: (i)    丙烯腈-乙烯-丙烯-(二烯)-苯乙烯共聚物、丙烯腈-甲基丙烯酸酯共聚物、丙烯腈-甲基丙烯酸甲酯共聚物、氯化丙烯腈、聚乙烯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-乙烯-丙烯-苯乙烯共聚物、纖維素乙醯基丁酸酯、纖維素乙醯基丙酸酯、水合纖維素、羧甲基纖維素、纖維素硝酸酯、纖維素丙酸酯、纖維素三乙酸酯、聚氯乙烯、乙烯-丙烯酸共聚物、乙烯-丙烯酸丁酯共聚物、乙烯-氯三氟乙烯共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-甲基丙烯酸酯共聚物、乙烯-甲基丙烯酸共聚物、乙烯-四氟乙烯共聚物、乙烯-乙烯醇共聚物、乙烯-丁烯共聚物、乙基纖維素、聚苯乙烯、聚氟乙烯-丙烯、甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、甲基纖維素、聚醯胺11、聚醯胺12、聚醯胺46、聚醯胺6、聚醯胺6-3-T、聚醯胺6-對苯二甲酸共聚物、聚醯胺66、聚醯胺69、聚醯胺610、聚醯胺612、聚醯胺6I、聚醯胺MXD 6、聚醯胺PDA-T、聚醯胺、聚芳醚、聚芳醚酮、聚醯胺醯亞胺、聚芳醯胺、聚胺基-雙順丁烯二醯亞胺、聚芳酯(polyarylate)、聚丁烯-1、聚丙烯酸丁酯、聚苯並咪唑、聚雙順丁烯二醯亞胺、聚氧雜二偶氮苯並咪唑、聚對苯二甲酸丁酯、聚碳酸酯、聚氯三氟乙烯、聚乙烯、聚酯碳酸酯、聚芳醚酮、聚醚醚酮、聚醚醯亞胺、聚醚酮、聚氧化乙烯、聚芳醚碸、聚對苯二甲酸乙二酯、聚醯亞胺、聚異丁烯、聚異氰尿酸酯、聚醯亞胺碸、聚甲基丙烯醯亞胺、聚甲基丙烯酸酯、聚-4-甲基戊烯、聚縮醛、聚丙烯、聚氧化苯基、聚氧化丙烯、聚苯硫(polyphenylene sulphide)、聚苯碸、聚苯乙烯、聚碸、聚四氟乙烯、聚胺酯、聚乙酸乙烯酯、聚乙烯醇、聚乙烯丁醛、聚氯乙烯、聚偏二氯乙烯、聚偏二氟乙烯、聚氟乙烯、聚乙烯基甲醚、聚乙烯吡咯啶酮、苯乙烯-丁二烯共聚物、苯乙烯-異戊二烯共聚物、苯乙烯-順丁烯二酸酐共聚物、苯乙烯-順丁烯二酸酐-丁二烯共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、苯乙烯-甲基苯乙烯共聚物、苯乙烯-丙烯腈共聚物、氯乙烯-乙烯共聚物、氯乙烯-甲基丙烯酸酯共聚物、氯乙烯-順丁烯二酸酐共聚物、氯乙烯-順丁烯二醯亞胺共聚物、氯乙烯-甲基丙烯酸甲酯共聚物、氯乙烯-丙烯酸辛酯共聚物、氯乙烯-乙酸乙烯酯共聚物、氯乙烯-偏二氯乙烯共聚物、氯乙烯-偏二氯乙烯-丙烯腈共聚物, 及/或 (ii)   合成的生物聚合物。 The multicomponent polymer fiber as claimed in claim 1, wherein the thermoplastic polymer A and/or the thermoplastic polymer B are selected from the following groups: (i) Acrylonitrile-ethylene-propylene-(diene)-styrene copolymer, acrylonitrile-methacrylate copolymer, acrylonitrile-methyl methacrylate copolymer, chlorinated acrylonitrile, polyethylene-benzene Ethylene Copolymer, Acrylonitrile-Butadiene-Styrene Copolymer, Acrylonitrile-Ethylene-Propylene-Styrene Copolymer, Cellulose Acetyl Butyrate, Cellulose Acetyl Propionate, Hydrated Cellulose, Carboxymethylcellulose, cellulose nitrate, cellulose propionate, cellulose triacetate, polyvinyl chloride, ethylene-acrylic acid copolymer, ethylene-butyl acrylate copolymer, ethylene-chlorotrifluoroethylene copolymer , ethylene-ethyl acrylate copolymer, ethylene-methacrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-vinyl alcohol copolymer, ethylene-butene copolymer, ethyl Cellulose, polystyrene, polyvinyl fluoride-propylene, methyl methacrylate-acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, methyl cellulose , polyamide 11, polyamide 12, polyamide 46, polyamide 6, polyamide 6-3-T, polyamide 6-terephthalic acid copolymer, polyamide 66, polyamide 69. Polyamide 610, polyamide 612, polyamide 6I, polyamide MXD 6, polyamide PDA-T, polyamide, polyarylether, polyaryl ether ketone, polyamideimide, Polyaramide, polyamino-bismaleimide, polyarylate, polybutene-1, polybutylacrylate, polybenzimidazole, polybismaleimide , polyoxadiazobenzimidazole, polybutylene terephthalate, polycarbonate, polychlorotrifluoroethylene, polyethylene, polyester carbonate, polyaryletherketone, polyetheretherketone, polyetheramide Imine, polyether ketone, polyethylene oxide, polyaryl ether ketone, polyethylene terephthalate, polyimide, polyisobutylene, polyisocyanurate, polyimide thorium, polymethacrylic Amide, polymethacrylate, poly-4-methylpentene, polyacetal, polypropylene, polyphenylene oxide, polypropylene oxide, polyphenylene sulphide, polyphenylene, polystyrene , Polyethylene, polytetrafluoroethylene, polyurethane, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl fluoride, polyvinyl methyl ether , polyvinylpyrrolidone, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-maleic anhydride copolymer, styrene-maleic anhydride-butadiene copolymer styrene-methyl methacrylate copolymer, styrene-methyl styrene copolymer, styrene-acrylonitrile copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-methacrylate copolymer, vinyl chloride -Maleic anhydride copolymer, vinyl chloride-maleimide copolymer, vinyl chloride-methyl methacrylate copolymer, vinyl chloride-octyl acrylate copolymer, vinyl chloride-vinyl acetate copolymer , vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-acrylonitrile copolymer, and/or (ii) Synthetic biopolymers. 如請求項2之多組分聚合物纖維,其中該合成的生物聚合物可以是一或多種藉由聚縮合而從多元醇、及脂族及/或芳香族二羧酸或其衍生物(酸酐、酯)所製造之脂族、芳脂族聚酯或共聚酯,其中該多元醇可以經取代或未經取代,且該多元醇可為直鏈型或支鏈型多元醇。The multi-component polymer fiber as claimed in item 2, wherein the synthetic biopolymer can be one or more from polyhydric alcohol, and aliphatic and/or aromatic dicarboxylic acid or its derivative (acid anhydride) by polycondensation , ester) aliphatic, araliphatic polyester or copolyester, wherein the polyol can be substituted or unsubstituted, and the polyol can be linear or branched polyol. 如請求項3之多組分聚合物纖維,其中(i)該多元醇含有2至8個碳原子,(ii)該脂族二羧酸包含經取代或未經取代之直鏈型或支鏈型的非芳香族二羧酸,其係選自由含有2至12個碳原子之脂族二羧酸及含有5至10個碳原子之環脂族二羧酸所形成之群組,其中該環脂族二羧酸也可在其環中含有雜原子,(iii)該芳香族二羧酸包含經取代或未經取代之芳香族二羧酸,其係選自由含有6至12個碳原子之芳香族二羧酸所形成之群組,其中該等羧酸也可在其芳香族環中及/或在其取代基中包含雜原子,(iv)該經取代之芳香族二羧酸含有1至4個選自鹵素、C6-C10芳基及C1-C4烷氧基的取代基。The multicomponent polymer fiber as claimed in item 3, wherein (i) the polyhydric alcohol contains 2 to 8 carbon atoms, (ii) the aliphatic dicarboxylic acid comprises substituted or unsubstituted linear or branched Type non-aromatic dicarboxylic acids selected from the group formed by aliphatic dicarboxylic acids containing 2 to 12 carbon atoms and cycloaliphatic dicarboxylic acids containing 5 to 10 carbon atoms, wherein the ring Aliphatic dicarboxylic acids may also contain heteroatoms in their rings, (iii) the aromatic dicarboxylic acids include substituted or unsubstituted aromatic dicarboxylic acids selected from the group consisting of 6 to 12 carbon atoms Groups of aromatic dicarboxylic acids which may also contain heteroatoms in their aromatic rings and/or in their substituents, (iv) the substituted aromatic dicarboxylic acids containing 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy. 如請求項1至4中一或多項的多組分聚合物纖維,其中該合成的生物聚合物係選自由具有至少4個碳原子之重複單元的脂族聚酯所形成之群組,例如聚羥基烷酸酯,諸如聚羥基戊酸酯及聚羥基丁酸酯-羥基戊酸酯共聚物、聚己內酯、呋喃二羧酸、及丁二酸酯系脂族聚合物(例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯),特殊實例可以選自聚草酸乙二酯、聚丙二酸乙二酯、聚丁二酸乙二酯、聚草酸丙二酯、聚丙二酸丙二酯、聚丁二酸丙二酯、聚草酸丁二酯,聚丙二酸丁二酯、聚丁二酸丁二酯及該等化合物之摻合物和共聚物。A multicomponent polymer fiber as claimed in one or more of claims 1 to 4, wherein the synthetic biopolymer is selected from the group formed by aliphatic polyesters having repeating units of at least 4 carbon atoms, such as poly Hydroxyalkanoates, such as polyhydroxyvalerate and polyhydroxybutyrate-hydroxyvalerate copolymers, polycaprolactone, furandicarboxylic acid, and succinate-based aliphatic polymers (such as polybutylene butylene succinate, polybutylene succinate adipate and polyethylene succinate), specific examples may be selected from polyethylene oxalate, polyethylene malonate, polyethylene succinate , polytrimethylene oxalate, polypropylene malonate, polytrimethylene succinate, polybutylene oxalate, polybutylene malonate, polybutylene succinate and blends of these compounds and copolymers. 如請求項1至5中一或多項的多組分聚合物纖維,其中該合成的生物聚合物是脂族聚酯,該脂族聚酯包含乳酸(PLA)、羥基脂肪酸(PHF)(也已知為聚羥基烷酸酯PHA)、尤其是羥基丁酸(PHB)之重複單元,以及丁二酸系脂族聚合物,例如聚丁二酸丁二酯、聚丁二酸己二酸丁二酯及聚丁二酸乙二酯。The multicomponent polymer fiber of one or more of claims 1 to 5, wherein the synthetic biopolymer is an aliphatic polyester comprising lactic acid (PLA), hydroxy fatty acid (PHF) (also Known as polyhydroxyalkanoates (PHA), especially repeating units of hydroxybutyric acid (PHB), and succinic acid-based aliphatic polymers, such as polybutylene succinate, polybutylene succinate adipate esters and polyethylene succinate. 如請求項1至6中一或多項的多組分聚合物纖維,其中該熱塑性聚合物A及/或B之玻璃轉換溫度是在-125℃至200℃範圍內,尤其在-125℃至100℃範圍內。Multicomponent polymer fiber according to one or more of claims 1 to 6, wherein the glass transition temperature of the thermoplastic polymer A and/or B is in the range of -125°C to 200°C, especially in the range of -125°C to 100°C ℃ range. 如請求項1至7中一或多項的多組分聚合物纖維,其中該熱塑性聚合物A及/或B之熔化溫度是在120℃至285℃範圍內,尤其是在150℃至270℃範圍內,特佳是在175℃至270℃範圍內。Multicomponent polymer fibers according to one or more of claims 1 to 7, wherein the melting temperature of the thermoplastic polymers A and/or B is in the range of 120°C to 285°C, especially in the range of 150°C to 270°C Within, particularly preferably in the range of 175°C to 270°C. 如請求項1至8中一或多項的多組分聚合物纖維,其中該熱塑性聚合物A及/或B係選自由聚乳酸(PLA)以及其共聚物、聚羥基脂肪酸酯(PHF)以及其共聚物、以及該等聚合物之摻合物所形成之群組。Multicomponent polymer fibers as one or more of claims 1 to 8, wherein the thermoplastic polymer A and/or B is selected from polylactic acid (PLA) and its copolymers, polyhydroxyalkanoate (PHF) and Copolymers thereof, and groups formed by blends of such polymers. 如請求項1至9中一或多項的多組分聚合物纖維,其中至少該熱塑性聚合物A及/或該熱塑性聚合物B係選自由可熔體紡絲之合成的生物聚合物所形成之群組,其中從生質原料所產生之聚縮物和聚合物是特佳的。Multicomponent polymer fibers as claimed in one or more of claims 1 to 9, wherein at least the thermoplastic polymer A and/or the thermoplastic polymer B are selected from those formed from melt-spinnable synthetic biopolymers Group in which polycondensates and polymers produced from biomass raw materials are particularly preferred. 如請求項1至10中一或多項的多組分聚合物纖維,其中該多組分聚合物纖維是雙組分纖維,其中該組分A形成核且該組分B形成殼且在該組分A中之熱塑性聚合物的熔點比在該組分B中之熱塑性聚合物的熔點高至少5℃,較佳至少10℃。A multicomponent polymer fiber as claimed in one or more of claims 1 to 10, wherein the multicomponent polymer fiber is a bicomponent fiber, wherein the component A forms a core and the component B forms a sheath and in the group The melting point of the thermoplastic polymer in component A is at least 5°C, preferably at least 10°C, higher than the melting point of the thermoplastic polymer in component B. 如請求項1至11中一或多項的多組分聚合物纖維,其中該纖維具有(i)在該組分A中之至少一種添加劑A或(ii)在該組分B中之至少一種組分B或(iii)在該組分A中之至少一種添加劑A及在該組分B中之至少一種添加劑B,先決條件是該添加劑A和該添加劑B是不同的,或只要至少一種添加劑A存在於該組分A且至少一種添加劑B存在於該組分B,則當該熱塑性聚合物A和該熱塑性聚合物B不同時,該添加劑A和該添加劑B也可以相同。A multicomponent polymeric fiber as claimed in one or more of claims 1 to 11, wherein the fiber has (i) at least one additive A in the component A or (ii) at least one additive in the component B Part B or (iii) at least one additive A in the component A and at least one additive B in the component B, provided that the additive A and the additive B are different, or as long as the at least one additive A If the component A is present and at least one additive B is present in the component B, then when the thermoplastic polymer A and the thermoplastic polymer B are different, the additive A and the additive B may also be the same. 如請求項1至12中一或多項的多組分聚合物纖維,其中該添加劑A和B係選自下列群組: (i)    鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),尤其是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO, (ii)   脂族聚酯, (iii)  脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯, (iv)  醣類,特別是單醣,二醣及寡醣, (v)   用於轉酯化的觸媒,特別是在鹼性條件下用於轉酯化的觸媒, (vi)  金屬化合物,特別是過渡金屬化合物、以及其鹽, (vii) 不飽和羧酸和其酸酐/酯/醯胺, (viii) 合成橡膠、天然橡膠, (ix)  碳水化合物,特別是澱粉及/或纖維素, 以及上述物質之混合物。 One or more multicomponent polymer fibers as claimed in items 1 to 12, wherein the additives A and B are selected from the following groups: (i) alkali metal and/or alkaline earth metal compounds (pH>7 when dissolved in water ), especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO, (ii) aliphatic polyesters, (iii) fatty acid esters, preferably stearic Acid C1-C40 alkyl esters, more preferably stearic acid C2-C20 alkyl esters, most preferably ethyl stearate, (iv) sugars, especially monosaccharides, disaccharides and oligosaccharides, (v) used in Catalysts for transesterification, especially catalysts for transesterification under alkaline conditions, (vi) metal compounds, especially transition metal compounds, and salts thereof, (vii) unsaturated carboxylic acids and their anhydrides/ Esters/amides, (viii) synthetic rubber, natural rubber, (ix) carbohydrates, especially starch and/or cellulose, and mixtures of the above. 如請求項1至13中一或多項的多組分聚合物纖維,其中該添加劑A在該組分A中之比例以該組分A之總重量計,較佳在0.005重量%與20重量%之間,特佳在0.01重量%與5重量%之間,且該添加劑B在該組分B中之比例以該組分B之總重量計,較佳在0.005重量%與20重量%之間,特佳在0.01重量%與5重量%之間。Multi-component polymer fibers as claimed in one or more of claims 1 to 13, wherein the proportion of the additive A in the component A is based on the total weight of the component A, preferably between 0.005% by weight and 20% by weight Between, particularly preferably between 0.01% by weight and 5% by weight, and the proportion of the additive B in the component B is based on the total weight of the component B, preferably between 0.005% by weight and 20% by weight , especially preferably between 0.01% by weight and 5% by weight. 如請求項1至14中一或多項的多組分聚合物纖維,其中該纖維為連續纖維,較佳是短纖維,或為連續長絲,且較佳為雙組分纖維。The multicomponent polymer fiber according to one or more of claims 1 to 14, wherein the fiber is a continuous fiber, preferably a staple fiber, or a continuous filament, preferably a bicomponent fiber. 如請求項1至14中一或多項的多組分聚合物纖維,其中該纖維與不具有該添加劑A及/或B之多組分纖維相比,具有提高之可生物降解性,且該可生物降解性係依據至少一種選自下列群組之方法所測定 (i)    ASTM D5338-15(2021),用於測定在合併嗜熱溫度之經控制的堆肥條件下塑膠材料之需氧生物降解性的標準試驗方法(DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii)   ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範)(DOI: 10.1520/D6400-12), (iii)  ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料之厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/ D5511-18), (iv)  ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17)), (v)   ASTM D5210-92 (在汙泥之存在下的厭氧降解) (DOI:10.1520/D5210-92), (vi)  PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31, (vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI:10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/D5988-18),用於測定在土壤中之塑膠材或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI: 10.1520/D5988-03)), (viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000 (DOI:10.31030/9010637), (ix)  ISO 14855-1:2013-04 (DOI: 10.31030/1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法), (x)   EN 14995:2007-03-塑膠-堆肥性之評估(DOI: 10.31030/9730527)或 (xi)  ISO 17088:2021-04 (對於可堆肥之塑膠的規範) (ICS 83.080.01)。 A multicomponent polymer fiber as claimed in one or more of claims 1 to 14, wherein the fiber has increased biodegradability compared to a multicomponent fiber without the additives A and/or B, and the biodegradability Biodegradability is determined according to at least one method selected from the following group (i) ASTM D5338-15(2021), Standard Test Method for Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions Combined with Thermophilic Temperatures (DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (Standard Practice for Labeling Plastics Designed for Aerobic Composting in Municipal or Industrial Facilities) (DOI: 10.1520/D6400-12), (iii) ASTM D5511 (ASTM D5511-11 standard test method for the determination of anaerobic biodegradation of plastic materials under high-solids anaerobic digestion conditions (DOI: 10.1520/D5511-11) and for the determination of ASTM D5511-18 Standard Test Method for Anaerobic Biodegradation of Plastic Materials Under Digestive Conditions (DOI: 10.1520/ D5511-18), and ASTM D6691-17 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment by Defined Commensal Species of Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691-17)), (v) ASTM D5210-92 (anaerobic degradation in the presence of sludge) (DOI: 10.1520/D5210-92), (vi) PAS 9017:2020 (Plastics - Biodegradation of polyolefins in open earth environments - Specification), ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil (DOI: 10.1520/D5988-12) and for Determination of Aerobic Biodegradation of Plastic Materials in Soil ASTM D5988-18 Standard Test Method for Biodegradation (DOI: 10.1520/D5988-18), ASTM D5988-03 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil or Plastic Residue After Composting (DOI: 10.1520/D5988-03)), (viii) EN 13432:2000-12 Packaging - Requirements for packaging recyclable through composting and biodegradation - Test plan and evaluation criteria for final packaging acceptance; German version of EN 13432:2000 (DOI: 10.31030 /9010637), (ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) Determination of ultimate aerobic biodegradation of plastic materials under controlled composting conditions (by the method of analyzing the emitted carbon dioxide), (x) EN 14995:2007-03-Plastics-Assessment of compostability (DOI: 10.31030/9730527) or (xi) ISO 17088:2021-04 (Specification for compostable plastics) (ICS 83.080.01). 一種具有核/殼結構之雙組分纖維,其中 (i)    該組分A形成該核且該組分B形成該纖維之殼, (ii)   在該核中之組分A包含熱塑性聚合物A, (iii)  該組分B包含熱塑性聚合物B, (iv)  在該核之該組分A中之該熱塑性聚合物的熔點比在該殼之該組分B中之該熱塑性聚合物的熔點高至少5℃,且較佳地該熔點高至少10℃, 其特徵在於 (v)   該組分A具有比該組分B高的生物降解性;較佳地,該組分A具有至少一種添加劑A, 或 (vi)  該組分B具有比該組分A高之生物降解性;較佳地,該組分B具有至少一種添加劑B。 A bicomponent fiber having a core/shell structure, wherein (i) the component A forms the core and the component B forms the sheath of the fiber, (ii) Component A in the core comprises thermoplastic polymer A, (iii) the component B comprises a thermoplastic polymer B, (iv) the melting point of the thermoplastic polymer in the component A of the core is at least 5°C higher than the melting point of the thermoplastic polymer in the component B of the shell, and preferably the melting point is at least 10°C higher °C, It is characterized by (v) the component A has higher biodegradability than the component B; preferably, the component A has at least one additive A, or (vi) The component B has a higher biodegradability than the component A; preferably, the component B has at least one additive B. 如請求項17之雙組分纖維,其中該生物降解性係依據至少一種選自下列群組之方法所測定: (i)    ASTM D5338-15(2021),用於測定在合併嗜熱溫度之經控制的堆肥條件下之塑膠材料之需氧生物降解性的標準試驗方法(DOI:10.1520/D5338-15R21) ASTM International, West Conshohocken, PA, 2015, www.astm.org), (ii)   ASTM D6400-12 (用於標記經設計以在市政或工業設施中經需氧堆肥的塑膠的標準規範)(DOI: 10.1520/D6400-12), (iii)  ASTM D5511 (用於測定在高固體厭氧消化條件下塑膠材料的厭氧生物降解的ASTM D5511-11標準試驗方法(DOI:10.1520/D5511-11)以及用於測定在高固體厭氧消化條件下塑膠材料的厭氧生物降解的ASTM D5511-18標準試驗方法(DOI:10.1520/D5511-18), (iv)  ASTM D6691 (用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-09標準試驗方法(DOI:10.1520/D6691-09)以及用於測定在海洋環境中塑膠材料由經限定之微生物的共生物種或自然海水接種物需氧生物降解的ASTM D6691-17標準試驗方法(DOI:10.1520/D6691-17), (v)   ASTM D5210-92 (在汙泥之存在下的厭氧降解)(DOI:10.1520/D5210-92), (vi)  PAS 9017:2020 (塑膠-在露天地球環境中的聚烯烴的生物降解-規範),ISBN 978 0 539 17478 6;2021-10-31, (vii) ASTM D5988 (用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-12標準試驗方法(DOI:10.1520/D5988-12)以及用於測定在土壤中之塑膠材料的需氧生物降解的ASTM D5988-18標準試驗方法(DOI:10.1520/D5988-18),用於測定在土壤中之塑膠材料或在堆肥後之塑膠殘料的需氧生物降解的ASTM D5988-03標準試驗方法(DOI:10.1520/D5988-03), (viii) EN 13432:2000-12包裝-用於透過堆肥和生物降解可回收之包裝的要求-用於最終之包裝接收的試驗計畫和評估準則;德文版EN 13432:2000 (DOI:10.31030/9010637), (ix)  ISO 14855-1:2013-04 (DOI: 10.31030/1939267)及ISO 14855-2:2018-07 (ICS 83.080.01)在經控制之堆肥條件下塑膠材料之最終需氧生物降解的測定(藉由分析經放出之二氧化碳的方法), (x)   EN 14995:2007-03-塑膠-堆肥性之評估(DOI: 10.31030/9730527)或 (xi)  ISO 17088:2021-04 (對於可堆肥之塑膠的規範) (ICS 83.080.01)。 The bicomponent fiber as claimed in item 17, wherein the biodegradability is determined according to at least one method selected from the following groups: (i) ASTM D5338-15(2021), Standard Test Method for Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions Combined with Thermophilic Temperatures (DOI:10.1520/D5338-15R21) ASTM International , West Conshohocken, PA, 2015, www.astm.org), (ii) ASTM D6400-12 (Standard Practice for Labeling Plastics Designed for Aerobic Composting in Municipal or Industrial Facilities) (DOI: 10.1520/D6400-12), (iii) ASTM D5511 (ASTM D5511-11 Standard Test Method for Anaerobic Biodegradation of Plastic Materials Under High Solids Anaerobic Digestion Conditions (DOI: 10.1520/D5511-11) and ASTM D5511-18 Standard Test Method for Anaerobic Biodegradation of Plastic Materials Under Digestive Conditions (DOI: 10.1520/D5511-18), and ASTM D6691-17 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in the Marine Environment by Defined Commensal Species of Microorganisms or Natural Seawater Inoculum (DOI: 10.1520/D6691-17), (v) ASTM D5210-92 (anaerobic degradation in the presence of sludge) (DOI: 10.1520/D5210-92), (vi) PAS 9017:2020 (Plastics - Biodegradation of polyolefins in open earth environments - Specification), ISBN 978 0 539 17478 6; 2021-10-31, (vii) ASTM D5988 (ASTM D5988-12 Standard Test Method for Determination of Aerobic Biodegradation of Plastic Materials in Soil (DOI: 10.1520/D5988-12) and for Determination of Aerobic Biodegradation of Plastic Materials in Soil ASTM D5988-18 standard test method for biodegradation (DOI: 10.1520/D5988-18), ASTM D5988-03 standard test method for the determination of aerobic biodegradation of plastic materials in soil or plastic residues after composting (DOI: 10.1520/D5988-03), (viii) EN 13432:2000-12 Packaging - Requirements for packaging recyclable through composting and biodegradation - Test plan and evaluation criteria for final packaging acceptance; German version of EN 13432:2000 (DOI: 10.31030 /9010637), (ix) ISO 14855-1:2013-04 (DOI: 10.31030/1939267) and ISO 14855-2:2018-07 (ICS 83.080.01) Determination of ultimate aerobic biodegradation of plastic materials under controlled composting conditions (by the method of analyzing the emitted carbon dioxide), (x) EN 14995:2007-03-Plastics-Assessment of compostability (DOI: 10.31030/9730527) or (xi) ISO 17088:2021-04 (Specification for compostable plastics) (ICS 83.080.01). 如請求項17或請求項18之雙組分纖維,其中該添加劑A及/或添加劑B係選自由下列所形成之群組:(i)鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7),特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO,(ii) 脂族聚酯,(iii)脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯,(iv) 醣類,特別是單醣、二醣及寡醣,(v) 用於轉酯化的觸媒,特別是在鹼性條件下之轉酯化的觸媒,(vi) 碳水化合物,特別是澱粉及/或纖維素,以及其混合物。 Such as the bicomponent fiber of claim 17 or claim 18, wherein the additive A and/or additive B are selected from the group formed by: (i) alkali metal and/or alkaline earth metal compound (pH when dissolved in water >7), especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO, (ii) aliphatic polyesters, (iii) fatty acid esters, preferably C1-C40 alkyl stearate, more preferably C2-C20 alkyl stearate, most preferably ethyl stearate, (iv) sugars, especially monosaccharides, disaccharides and oligosaccharides, (v) Catalysts for the transesterification, especially under alkaline conditions, of (vi) carbohydrates, especially starch and/or cellulose, and mixtures thereof. 如請求項17、18或19之雙組分纖維,其中該熱塑性聚合物A及/或該熱塑性聚合物B包含至少一種聚酯,先決條件是在該添加劑A及/或添加劑B是脂族聚酯的情況下,該聚酯是脂族聚酯或共聚酯。The bicomponent fiber as claimed in claim 17, 18 or 19, wherein the thermoplastic polymer A and/or the thermoplastic polymer B comprises at least one polyester, provided that the additive A and/or the additive B is an aliphatic polyester In the case of esters, the polyester is an aliphatic polyester or copolyester. 如請求項17至20中一或多項之雙組分纖維,其中該添加劑A及/或添加劑B係選自由下列所形成之群組: A)    鹼金屬及/或鹼土金屬化合物(溶在水中時pH>7) (特別是碳酸鹽、碳酸氫鹽、硫酸鹽,特佳是CaCO 3;以及鹼性添加劑,特佳是CaO)與用於轉酯化(特別是在鹼性條件下)的觸媒的結合; B)    醣類(特別是單醣、二醣及寡醣)與碳水化合物(特別是澱粉及/或纖維素)的結合,以及其混合物, C)    脂族聚酯與醣類(特別是單醣、二醣及寡醣)與碳水化合物(特別是澱粉及/或纖維素)的結合, D)    脂肪酸酯,較佳是硬脂酸C1-C40烷酯,更佳是硬脂酸C2-C20烷酯,最佳是硬脂酸乙酯,以及其混合物。 Bicomponent fibers as claimed in one or more of claims 17 to 20, wherein the additive A and/or additive B are selected from the group formed by: A) alkali metal and/or alkaline earth metal compounds (when dissolved in water pH>7) (especially carbonates, bicarbonates, sulfates, especially CaCO 3 ; and alkaline additives, especially CaO) and catalysts for transesterification (especially under alkaline conditions) B) combination of sugars (especially monosaccharides, disaccharides and oligosaccharides) and carbohydrates (especially starch and/or cellulose), and mixtures thereof, C) aliphatic polyesters and sugars ( Especially monosaccharides, disaccharides and oligosaccharides) combined with carbohydrates (especially starch and/or cellulose), D) fatty acid esters, preferably C1-C40 alkyl stearate, more preferably stearin C2-C20 alkyl esters of acids, most preferably ethyl stearate, and mixtures thereof. 一種如請求項1至16中一或多項之多組分聚合物纖維或如請求項17至21中一或多項之雙組分纖維用於製造紡織物的用途。Use of a multicomponent polymer fiber according to one or more of claims 1 to 16 or a bicomponent fiber according to one or more of claims 17 to 21 for the manufacture of textiles. 一種紡織物,其含有如請求項1至16中一或多項之多組分聚合物纖維或如請求項17至21中一或多項之雙組分纖維。A textile fabric comprising the multicomponent polymer fiber according to one or more of claims 1 to 16 or the bicomponent fiber according to one or more of claims 17 to 21. 如請求項23之紡織物,其中該紡織物是非織物,特別是濕式佈層非織物或乾式佈層非織物,較佳是基於短纖維者,其中該非織物較佳藉由熱黏合被固結。Textile according to claim 23, wherein the textile is a non-woven, in particular a wet-laid non-woven or a dry-laid non-woven, preferably based on short fibers, wherein the non-woven is preferably consolidated by thermal bonding . 如請求項23或請求項24之紡織物,其中該紡織物(特別是非織物)之基礎重量是在10與500 g/m 2,較佳是25至450 g/m 2,特別是30至300 g/m 2之間。 The textile of claim 23 or claim 24, wherein the basis weight of the textile (especially non-woven) is between 10 and 500 g/m 2 , preferably 25 to 450 g/m 2 , especially 30 to 300 g/m 2 g/ m2 between.
TW111101733A 2021-01-15 2022-01-14 Biologically degradable multi-component polymer fibres TW202240038A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163137901P 2021-01-15 2021-01-15
US63/137,901 2021-01-15
US202163143247P 2021-01-29 2021-01-29
US63/143,247 2021-01-29

Publications (1)

Publication Number Publication Date
TW202240038A true TW202240038A (en) 2022-10-16

Family

ID=80168058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101733A TW202240038A (en) 2021-01-15 2022-01-14 Biologically degradable multi-component polymer fibres

Country Status (7)

Country Link
EP (1) EP4278032A1 (en)
JP (1) JP2024507060A (en)
KR (1) KR20230130670A (en)
IL (1) IL304461A (en)
MX (1) MX2023008352A (en)
TW (1) TW202240038A (en)
WO (1) WO2022152867A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115821426B (en) * 2022-12-16 2024-04-26 扬州富威尔复合材料有限公司 Crystalline bio-based low-melting-point polyester composite fiber with antibacterial function and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816486A (en) 1969-11-26 1974-06-11 Du Pont Two stage drawn and relaxed staple fiber
CA948388A (en) 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
US3844869A (en) 1972-12-20 1974-10-29 Crompton & Knowles Corp Apparatus for ultrasonic welding of sheet materials
US3939033A (en) 1974-12-16 1976-02-17 Branson Ultrasonics Corporation Ultrasonic welding and cutting apparatus
US4259399A (en) 1978-08-31 1981-03-31 Burlington Industries, Inc. Ultrasonic nonwoven bonding
US5096532A (en) 1990-01-10 1992-03-17 Kimberly-Clark Corporation Ultrasonic rotary horn
US5110403A (en) 1990-05-18 1992-05-05 Kimberly-Clark Corporation High efficiency ultrasonic rotary horn
US6093665A (en) 1993-09-30 2000-07-25 Kimberly-Clark Worldwide, Inc. Pattern bonded nonwoven fabrics
CA2123330C (en) 1993-12-23 2004-08-31 Ruth Lisa Levy Ribbed clothlike nonwoven fabric and process for making same
US5962112A (en) 1996-12-19 1999-10-05 Kimberly-Clark Worldwide, Inc. Wipers comprising point unbonded webs
US5817199A (en) 1996-12-20 1998-10-06 Kimberly-Clark Worldwide, Inc. Methods and apparatus for a full width ultrasonic bonding device
US6509092B1 (en) * 1999-04-05 2003-01-21 Fiber Innovation Technology Heat bondable biodegradable fibers with enhanced adhesion
US7056580B2 (en) * 2003-04-09 2006-06-06 Fiber Innovation Technology, Inc. Fibers formed of a biodegradable polymer and having a low friction surface
US20070122614A1 (en) * 2005-11-30 2007-05-31 The Dow Chemical Company Surface modified bi-component polymeric fiber
WO2007070064A1 (en) 2005-12-15 2007-06-21 Kimberly - Clark Worldwide, Inc. Biodegradable multicomponent fibers
US7790640B2 (en) 2006-03-23 2010-09-07 Kimberly-Clark Worldwide, Inc. Absorbent articles having biodegradable nonwoven webs

Also Published As

Publication number Publication date
JP2024507060A (en) 2024-02-16
IL304461A (en) 2023-09-01
MX2023008352A (en) 2023-08-21
WO2022152867A1 (en) 2022-07-21
KR20230130670A (en) 2023-09-12
EP4278032A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US6506873B1 (en) Degradable polymer fibers; preparation product; and, methods of use
KR101422317B1 (en) Multicomponent biodegradable filaments and nonwoven webs formed therefrom
KR101275404B1 (en) Biodegradable Multicomponent Fibers
US20150137413A1 (en) Multicomponent Fibers Comprising A Disolvable Starch Component, Processes Thereof, And Fibers Therefrom
US20030109605A1 (en) Fibers comprising starch and biodegradable polymers
JP2010513594A (en) Biodegradable polyester used for fiber formation
JP2004532360A (en) Fibers containing polyhydroxyalkanoate copolymer / polylactic acid polymer or copolymer blend
KR101698011B1 (en) Biodegradable nonwoven fabric and fiber product using the same
US20140272362A1 (en) Multicomponent aliphatic polyester blend fibers
EP2918709A1 (en) Multicomponent Aliphatic Polyester Fibers
TW202240038A (en) Biologically degradable multi-component polymer fibres
JP2006200085A (en) Polylactic acid short fiber, method for producing the same and nonwoven fabric
US20230304192A1 (en) Prodegradation in nonwovens
JP2024502488A (en) Nonwoven fabric having a single layer with a plurality of different fiber types, and devices, systems and methods for producing the same
CN116848297A (en) Biodegradable multicomponent polymeric fibers
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP2795487B2 (en) Fiber laminate
FI4087962T3 (en) Biodegradable polymer fiber from renewable raw materials
JP5356960B2 (en) Polymer alloy fiber and sanitary article surface sheet containing the fiber
WO2004044288A1 (en) Multicomponent fibers comprising a dissolvable starch component, processes therefor, and fibers therefrom
JPH11302958A (en) Biodegradable nonwoven fabric and its production
WO2004050965A1 (en) Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core
MXPA99010051A (en) Degradable polymer fibers;preperation;product;and methods of use
JP2009215662A (en) Staple fiber for nonwoven fabric and stape fiber nonwoven fabric