JP2006200085A - Polylactic acid short fiber, method for producing the same and nonwoven fabric - Google Patents

Polylactic acid short fiber, method for producing the same and nonwoven fabric Download PDF

Info

Publication number
JP2006200085A
JP2006200085A JP2005014478A JP2005014478A JP2006200085A JP 2006200085 A JP2006200085 A JP 2006200085A JP 2005014478 A JP2005014478 A JP 2005014478A JP 2005014478 A JP2005014478 A JP 2005014478A JP 2006200085 A JP2006200085 A JP 2006200085A
Authority
JP
Japan
Prior art keywords
polylactic acid
lactic acid
fiber
nonwoven fabric
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005014478A
Other languages
Japanese (ja)
Inventor
Daisuke Sakai
大介 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2005014478A priority Critical patent/JP2006200085A/en
Publication of JP2006200085A publication Critical patent/JP2006200085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid short fiber having an excellent mechanical strength and also showing less deformation caused by heat, a method for producing the same, and a nonwoven fabric using the polylactic acid short fiber as a main fiber and having a good dimensional stability. <P>SOLUTION: This polylactic acid short fiber is characterized by constituted with the polylactic acid having ≥(99/1) ratio of the L-lactic acid/D-lactic acid (copolymerization molar ratio), ≤30% dry shrinkage at 140°C and ≥3.0 cN/dtex single fiber strength. Also, the polylactic acid short fiber is produced by melt-spinning the polylactic acid having ≥(99/1) ratio of the L-lactic acid/D-lactic acid (copolymerization molar ratio) and ≤0.08 mass% monomer amount, then drawing the obtained undrawn yarn and performing a heat treatment under a tension. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、優れた機械的強度を有し、かつ、熱による変形が少ないポリ乳酸短繊維とその製造方法、及びこのポリ乳酸短繊維を主体繊維として用いた寸法安定性のよい不織布に関するものである。 The present invention relates to a polylactic acid short fiber having excellent mechanical strength and less deformation due to heat, a method for producing the same, and a non-woven fabric having good dimensional stability using the polylactic acid short fiber as a main fiber. is there.

近年、ポリエチレンテレフタレート等の従来の合成樹脂は、石油を原料としていることから、従来の合成樹脂の使用は石油の枯渇を促進させる問題が生じるため、植物由来であるポリ乳酸樹脂が注目されるようになり、ポリ乳酸繊維やこの繊維を使用した不織布についても提案されている(例えば特許文献1)。 In recent years, since conventional synthetic resins such as polyethylene terephthalate use petroleum as a raw material, the use of conventional synthetic resins causes a problem of promoting the depletion of petroleum. Therefore, plant-derived polylactic acid resins are attracting attention. Therefore, polylactic acid fibers and nonwoven fabrics using these fibers have also been proposed (for example, Patent Document 1).

しかし、これらのポリ乳酸繊維を主体繊維やバインダー繊維として用いた不織布は、熱エアー等で加熱融着処理を施すと、不織布が収縮して風合いが堅くなるという問題があった。   However, non-woven fabrics using these polylactic acid fibers as main fibers and binder fibers have a problem that when the heat-sealing treatment is performed with hot air or the like, the non-woven fabric shrinks and the texture becomes stiff.

そこで、この問題を解決するために、特許文献2では、ポリ乳酸繊維として、ポリL−乳酸と、ポリD−乳酸をブレンドした、耐熱性の高いポリ乳酸ステレオコンプレックス繊維を使用した不織布が提案されている。しかし、現在、ポリ−D乳酸は、工業的に生産することは難しいことから、コストが非常に高いため、ポリ乳酸ステレオコンプレックス繊維を使用した不織布を工業生産することは、できないというのが現状である。
特許3329350号公報 特開2003−286640号公報
Therefore, in order to solve this problem, Patent Document 2 proposes a non-woven fabric using polylactic acid stereocomplex fibers having high heat resistance, which is a blend of poly L-lactic acid and poly D-lactic acid as polylactic acid fibers. ing. However, since it is difficult to produce poly-D lactic acid industrially at present, the cost is so high that it is impossible to industrially produce a nonwoven fabric using polylactic acid stereocomplex fibers. is there.
Japanese Patent No. 3329350 JP 2003-286640 A

本発明は、上記のような従来のポリ乳酸繊維を主体繊維やバインダー繊維として用いた不織布が、熱融着加工時に収縮変形しやすいという問題を解決し、優れた機械的強度を有し、かつ、熱による変形が少ないポリ乳酸短繊維とその製造方法、及びこのポリ乳酸短繊維を主体繊維として用いた寸法安定性のよい不織布を提供することを技術的な課題とするものである。   The present invention solves the problem that a nonwoven fabric using the above-mentioned conventional polylactic acid fiber as a main fiber or binder fiber tends to shrink and deform at the time of heat-sealing, has excellent mechanical strength, and It is an object of the present invention to provide a polylactic acid short fiber that is less deformed by heat, a method for producing the same, and a non-woven fabric having good dimensional stability using the polylactic acid short fiber as a main fiber.

本発明者は、上記の課題を解決するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、次の構成を要旨とするものである。
(1)ポリ乳酸短繊維であって、該繊維は、L−乳酸/D−乳酸(共重合モル比)が99/1以上のポリ乳酸によって構成され、140℃における乾熱収縮率が3.0%以下、単糸強度が3.0cN/dtex以上であることを特徴とする請求項1記載のポリ乳酸であることを特徴とするポリ乳酸短繊維。
(2)L−乳酸/D−乳酸(共重合モル比)が99/1以上、モノマー量が0.08質量%以下のポリ乳酸を溶融紡糸し、次いで、得られた未延伸糸を延伸した後、緊張熱処理を施すことを特徴とする上(1)記載のポリ乳酸短繊維の製造方法。
(3)上(1)記載のポリ乳酸短繊維50〜90質量%と、融点が100〜140℃である脂肪族ポリエステルを鞘成分とし、L−乳酸/D−乳酸(共重合モル比)が99/1以上のポリ乳酸を芯成分とするポリ乳酸系バインダー繊維50〜10質量%とからなることを特徴とする短繊維不織布。
The inventor of the present invention has arrived at the present invention as a result of intensive studies to solve the above-mentioned problems.
That is, the gist of the present invention is as follows.
(1) A polylactic acid short fiber, which is composed of polylactic acid having an L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more and a dry heat shrinkage at 140 ° C. of 3. 2. The polylactic acid short fiber characterized by being a polylactic acid according to claim 1, having a single yarn strength of 0 c or less and a single yarn strength of 3.0 cN / dtex or more.
(2) Polylactic acid having an L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more and a monomer amount of 0.08% by mass or less was melt-spun, and then the obtained undrawn yarn was drawn. After that, a tension heat treatment is performed, The method for producing polylactic acid short fibers according to (1) above.
(3) 50-90% by mass of polylactic acid short fibers described in (1) above and aliphatic polyester having a melting point of 100-140 ° C. as a sheath component, L-lactic acid / D-lactic acid (copolymerization molar ratio) is A short fiber nonwoven fabric comprising 50 to 10% by mass of a polylactic acid-based binder fiber having 99/1 or more polylactic acid as a core component.

本発明のポリ乳酸短繊維は、熱による変形が少ない繊維であり、また、優れた機械的強度を有している。したがって、このポリ乳酸短繊維を主体繊維として用いた不織布は、熱融着加工時の収縮変形が小さく、寸法安定性に優れたものである。   The polylactic acid short fiber of the present invention is a fiber that is hardly deformed by heat and has excellent mechanical strength. Therefore, the nonwoven fabric using this polylactic acid short fiber as a main fiber is small in shrinkage deformation at the time of heat-sealing and has excellent dimensional stability.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明のポリ乳酸短繊維は、L−乳酸が主体とするポリ乳酸であって、L−乳酸/D−乳酸(共重合モル比)が99/1以上のポリ乳酸によって構成される。すなわち、L−乳酸/D−乳酸(共重合モル比)が99/1〜100/0のポリ乳酸によって構成される。上記共重合モル比を外れるポリ乳酸は、融点が低くなり、本発明の目的が達成されない。   First, the polylactic acid short fiber of the present invention is polylactic acid mainly composed of L-lactic acid, and is composed of polylactic acid having L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more. That is, it is composed of polylactic acid having L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 to 100/0. Polylactic acid that deviates from the copolymerization molar ratio has a low melting point, and the object of the present invention is not achieved.

本発明のポリ乳酸短繊維は、140℃における乾熱収縮率が3.0%以下という特性を有している。140℃における乾熱収縮率が3.0%より高いと、不織布等の繊維構造体の製造時に熱融着処理をする際に熱変形するため、目的とする寸法や風合いの繊維構造体が得られ難くなる。140℃の乾熱収縮率を3.0%以下にすることによって、繊維構造体を作成する際の熱処理による変形が少なく、また、得られる繊維構造体も、熱変形し難いものとなる。さらには、ポリ乳酸短繊維の150℃の乾熱収縮率が5.0%以下であることが好ましい。   The polylactic acid short fiber of the present invention has a characteristic that the dry heat shrinkage at 140 ° C. is 3.0% or less. When the dry heat shrinkage rate at 140 ° C. is higher than 3.0%, the fiber structure having a desired size and texture can be obtained because it is thermally deformed during heat fusion treatment during the production of a fiber structure such as a nonwoven fabric. It becomes difficult to be. By setting the dry heat shrinkage at 140 ° C. to 3.0% or less, deformation due to heat treatment in producing the fiber structure is small, and the obtained fiber structure is also difficult to be thermally deformed. Furthermore, it is preferable that the dry heat shrinkage at 150 ° C. of the polylactic acid short fiber is 5.0% or less.

さらに、本発明のポリ乳酸短繊維は、単糸強度が3.0cN/dtex以上である。単糸強度が3.0cN/dtexより小さいと、ポリ乳酸短繊維が形成する繊維構造体の機械的強度が低下するので傾向となる。さらには、単糸強度は3.3cN/dtex以上であることが好ましく、単糸強度は高ければ高い程よいことは、当業者の常識であるが、その上限は、5.0cN/dtexであると十分に本発明の目的は達成される。   Furthermore, the polylactic acid short fiber of the present invention has a single yarn strength of 3.0 cN / dtex or more. If the single yarn strength is less than 3.0 cN / dtex, the mechanical strength of the fiber structure formed by the polylactic acid short fibers tends to decrease, and this tends to occur. Furthermore, it is common knowledge of those skilled in the art that the single yarn strength is preferably 3.3 cN / dtex or higher, and the higher the single yarn strength is, it is common knowledge of those skilled in the art, but the upper limit is 5.0 cN / dtex. The object of the present invention is fully achieved.

本発明のポリ乳酸短繊維には、機械的捲縮が付与されていてもよい。機械的捲縮とは、押し込み式の捲縮機(クリンパー)等で、機械的に付与された捲縮であって、捲縮数は5〜20ヶ/25mmの範囲が好ましく、特に好ましくは8〜15ヶ/25mm、さらに好ましくは10〜13ヶ/25mmであり、捲縮率は5〜30%の範囲、特に好ましくは7〜20%、さらに好ましくは9〜15%である。捲縮数が5/25mmよりも少ない、または、捲縮率が5%より低いと、ウェブ作成時においてカード通過性が劣る傾向となる。また、捲縮数が20/25mmよりも多い場合や、捲縮率が30%より高いと、繊維のからみが強くてネップ等が発生しやすくなる。   Mechanical crimps may be imparted to the polylactic acid short fibers of the present invention. The mechanical crimp is a crimp that is mechanically applied by a push-type crimper or the like, and the number of crimps is preferably in the range of 5 to 20 pieces / 25 mm, particularly preferably 8. -15 pieces / 25 mm, more preferably 10-13 pieces / 25 mm, and the crimp rate is in the range of 5-30%, particularly preferably 7-20%, and more preferably 9-15%. If the number of crimps is less than 5/25 mm or the crimp rate is lower than 5%, the card passing property tends to be inferior at the time of web creation. Further, when the number of crimps is greater than 20/25 mm, or when the crimp rate is higher than 30%, the fibers are strongly entangled, and nep and the like are likely to occur.

次に、上記特性を有する本発明のポリ乳酸短繊維の製造方法について説明する。   Next, the manufacturing method of the polylactic acid short fiber of this invention which has the said characteristic is demonstrated.

本発明においては、原料として用いるポリ乳酸のL−乳酸/D−乳酸(共重合モル比)とモノマー量、および繊維の熱セット(熱処理)を緊張下で行うことが重要である。   In the present invention, it is important that L-lactic acid / D-lactic acid (copolymerization molar ratio) of polylactic acid used as a raw material, the amount of monomer, and heat setting (heat treatment) of fibers are performed under tension.

まず、L−乳酸/D−乳酸(共重合モル比)が99/1以上、モノマー量が0.08質量%以下のポリ乳酸を用意する。L−乳酸/D−乳酸(共重合モル比)が99/1未満、すなわち、L−乳酸/D−乳酸が99/1〜100/1を外れるものや、モノマー量が0.08質量%を超えるポリ乳酸を原料として用いると、繊維の乾熱収縮率が顕著に高くなり、繊維の乾熱収縮率を3.0%以下とすることが困難となる。   First, polylactic acid having L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more and a monomer amount of 0.08% by mass or less is prepared. L-lactic acid / D-lactic acid (copolymerization molar ratio) is less than 99/1, that is, L-lactic acid / D-lactic acid deviates from 99/1 to 100/1, and the monomer amount is 0.08% by mass. When polylactic acid exceeding the amount is used as a raw material, the dry heat shrinkage rate of the fiber is remarkably increased, and it becomes difficult to set the dry heat shrinkage rate of the fiber to 3.0% or less.

また、原料として用いるポリ乳酸の水分率は100ppm以下であることが好ましい。水分率が100ppmを超えると、溶融紡糸時にポリ乳酸の加水分解が起こりやすくなるため好ましくない。   Moreover, it is preferable that the moisture content of the polylactic acid used as a raw material is 100 ppm or less. If the water content exceeds 100 ppm, polylactic acid tends to be hydrolyzed during melt spinning, which is not preferable.

また、ポリ乳酸の数平均分子量は、60000〜90000を用いることが好ましい。   The number average molecular weight of polylactic acid is preferably 60000-90000.

本発明では、まず上記したポリ乳酸を溶融紡糸するが、紡糸温度は235℃以下に設定するとよい。次いで、溶融紡糸により得られた未延伸糸を延伸する。延伸条件としては、延伸性や物性(強度等)を考慮し、延伸温度50〜70℃、延伸倍率(DR)3.0〜5.0が好ましい。   In the present invention, the above-described polylactic acid is melt-spun first, and the spinning temperature is preferably set to 235 ° C. or lower. Next, the undrawn yarn obtained by melt spinning is drawn. The stretching conditions are preferably a stretching temperature of 50 to 70 ° C. and a stretching ratio (DR) of 3.0 to 5.0 in consideration of stretchability and physical properties (strength and the like).

次いで、延伸後の糸条に熱処理を施す。熱処理を施すことにより、熱収縮が低い繊維を得ることができる。本発明においては、この熱処理を緊張下で行うこと(緊張熱処理)が重要である。ポリ乳酸繊維は、熱処理により単糸強度が低下する傾向が強く、緊張下でなく、非緊張下すなわち弛緩した状態で熱処理(弛緩熱処理)を施すと、単糸強度が著しく低下する。単糸強度を保持するためにも緊張熱処理とする必要がある。なお、一般に得られる繊維の熱収縮を抑制する効果は、弛緩熱処理の方が高いが、本発明のポリ乳酸繊維は、特定の共重合比を有する結晶性の非常に高いポリ乳酸を使用しているため、弛緩熱処理を行わなくとも、所望とする低収縮とすることができ、高強度を維持することができる。緊張熱処理としては、ヒートドラムやヒータープレートなどにより、糸条に張力を掛けた状態で熱処理を施せばよく、温度は140〜155℃が好ましい。   Next, the drawn yarn is subjected to heat treatment. By performing the heat treatment, a fiber having low heat shrinkage can be obtained. In the present invention, it is important to perform this heat treatment under tension (tensile heat treatment). The polylactic acid fiber has a strong tendency to decrease the single yarn strength by heat treatment, and the single yarn strength is remarkably lowered when heat treatment (relaxation heat treatment) is performed in a non-tensioned state, that is, in a relaxed state, not under tension. In order to maintain the single yarn strength, it is necessary to perform tension heat treatment. In general, the effect of suppressing thermal shrinkage of the fiber obtained is higher in the relaxation heat treatment, but the polylactic acid fiber of the present invention uses polylactic acid having a specific copolymerization ratio and very high crystallinity. Therefore, even if relaxation heat treatment is not performed, the desired low shrinkage can be achieved and high strength can be maintained. As the tension heat treatment, heat treatment may be performed in a state where tension is applied to the yarn with a heat drum or a heater plate, and the temperature is preferably 140 to 155 ° C.

次いで、緊張熱処理後の糸条に必要に応じて捲縮を付与する。捲縮を付与する方法としては公知の方法であればよく、押し込み式のクリンパー等で、好ましくは捲縮数5〜20ケ/25mm、捲縮率5〜30%の機械捲縮を付与すればよい。   Next, crimps are imparted to the yarn after the tension heat treatment as necessary. As a method for imparting crimps, any known method may be used, and it may be a push-in type crimper or the like, preferably by providing mechanical crimps having a crimp number of 5 to 20/25 mm and a crimp rate of 5 to 30%. Good.

次いで、糸条には仕上げ油剤を付与する。仕上げ油剤を付与した後に、熱風などにより乾燥させる場合があるが、非緊張下であるために、乾燥温度は50〜80℃の低温に設定するとよい。   Next, a finishing oil is applied to the yarn. After applying the finishing oil, it may be dried with hot air or the like, but since it is under non-tension, the drying temperature may be set to a low temperature of 50 to 80 ° C.

最後に、所定の繊維長に切断し、140℃における乾熱収縮率が3.0%以下、単糸強度3.0dN/dtex以上のポリ乳酸短繊維を得る。   Finally, it is cut into a predetermined fiber length to obtain polylactic acid short fibers having a dry heat shrinkage at 140 ° C. of 3.0% or less and a single yarn strength of 3.0 dN / dtex or more.

次に、本発明のポリ乳酸系短繊維からなる不織布について説明する。   Next, the nonwoven fabric which consists of the polylactic acid-type short fiber of this invention is demonstrated.

本発明の不織布は、前記したポリ乳酸短繊維からなる主体繊維と、特定の融点を有する脂肪族ポリエステルを鞘成分とし、特定のポリ乳酸を芯成分とするポリ乳酸系バインダー繊維とから構成される。前記バインダー繊維のバインダー成分(鞘成分)が、溶融または軟化して、構成繊維同士を熱融着、熱固定、熱圧着等しており、不織布として一体化している。   The nonwoven fabric of the present invention is composed of a main fiber composed of the above-described short polylactic acid fibers, and a polylactic acid-based binder fiber having an aliphatic polyester having a specific melting point as a sheath component and a specific polylactic acid as a core component. . The binder component (sheath component) of the binder fiber is melted or softened, and the constituent fibers are heat-fused, heat-fixed, thermocompression bonded, etc., and integrated as a nonwoven fabric.

本発明において、主体繊維であるポリ乳酸短繊維の混率は、50〜90質量%であり、好ましくは65〜90質量%である。ポリ乳酸短繊維の混率が50質量%未満になると、乾熱収縮率が低いポリ乳酸短繊維の混率が低くなるため、不織布の熱による収縮や変形が起こりやすくなるため好ましくない。また、ポリ乳酸短繊維の混率が90質量%を超えると、バインダー繊維の混率が少なくなり、不織布の強力が低くなる傾向となる。   In the present invention, the mixing ratio of the polylactic acid short fibers as the main fibers is 50 to 90% by mass, preferably 65 to 90% by mass. When the blending ratio of the polylactic acid short fibers is less than 50% by mass, the blending ratio of the polylactic acid short fibers having a low dry heat shrinkage ratio is decreased, and therefore, the nonwoven fabric is likely to shrink or deform due to heat, which is not preferable. On the other hand, when the mixing ratio of the polylactic acid short fibers exceeds 90% by mass, the mixing ratio of the binder fibers decreases and the strength of the nonwoven fabric tends to decrease.

本発明の不織布を構成するポリ乳酸系バインダー繊維は、L−乳酸/D−乳酸(共重合モル比)が99/1以上であるポリ乳酸を芯成分とする。すなわち、L−乳酸/D−乳酸(共重合モル比)が99/1〜100/0のL−乳酸主体のポリ乳酸である。一般にバインダー繊維は、鞘成分の融点が低く、延伸工程等で十分な熱セットを行うことができないため、熱による収縮が高い傾向にあるが、本発明においては、L−乳酸/D−乳酸(共重合モル比)が99/1以上である結晶性の高いポリ乳酸を芯成分としているため、熱による収縮を抑制することができる。L−乳酸/D−乳酸(共重合モル比)が99/1未満になると、ポリ乳酸の結晶性が十分に高くないため、熱による収縮が高くなり、本発明の効果が得られ難くなる。   The polylactic acid-based binder fiber constituting the nonwoven fabric of the present invention contains polylactic acid having L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more as a core component. That is, L-lactic acid / D-lactic acid (copolymerization molar ratio) is L-lactic acid-based polylactic acid having a ratio of 99/1 to 100/0. In general, the binder fiber has a low melting point of the sheath component and cannot be sufficiently heat-set in the stretching process or the like, and thus tends to be highly shrunk. However, in the present invention, L-lactic acid / D-lactic acid ( Since highly crystalline polylactic acid having a copolymerization molar ratio) of 99/1 or more is used as a core component, shrinkage due to heat can be suppressed. When L-lactic acid / D-lactic acid (copolymerization molar ratio) is less than 99/1, the crystallinity of polylactic acid is not sufficiently high, so that the shrinkage due to heat increases and the effects of the present invention are hardly obtained.

また、ポリ乳酸系バインダー繊維は、融点が100〜140℃である脂肪族ポリエステルを鞘成分とする。鞘成分となる脂肪族ポリエステルの融点が100℃未満になると、不織布の耐熱性が悪くなり、使用時の熱による軟化や変形が起こりやすくなるため好ましくない。一方、脂肪族ポリエステルの融点が140℃を超えると、主体繊維であるポリ乳酸短繊維との融点差が小さくなり、熱処理温度が制限され、所望の物性や風合いが得られ難い傾向となる。   Moreover, polylactic acid-type binder fiber uses aliphatic polyester whose melting | fusing point is 100-140 degreeC as a sheath component. When the melting point of the aliphatic polyester serving as the sheath component is less than 100 ° C., the heat resistance of the non-woven fabric is deteriorated, and softening or deformation due to heat during use tends to occur. On the other hand, when the melting point of the aliphatic polyester exceeds 140 ° C., the melting point difference from the polylactic acid short fiber as the main fiber becomes small, the heat treatment temperature is limited, and the desired physical properties and texture tend to be hardly obtained.

鞘成分である脂肪族ポリエステルは、示差走査型熱量計によるDSC測定で得られる溶融ピークのピーク温度が110〜140℃であれば特段の制約はなく、ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリカプロラクタム、ポリ−3−ヒドロキシプロピオネート、ポリ−3−ヒドロキシブチレート、ポリ−3−ヒドロキシブチレートバリレート等を用いることができる。また、本発明の効果を損なわない範囲で、L−乳酸、D−乳酸、ε−カプロラクトン等の環状ラクトン類、α−ヒドロキシ酪酸、α−ヒドロキシイソ酪酸、α−ヒドロキシ吉草酸等のα−オキシ酸類、エチレングリコール、1,4−ブタンジオール等のグリコール類、コハク酸、セバシン酸、アジピン酸等のジカルボン酸類を含有してもよい。   The aliphatic polyester as the sheath component is not particularly limited as long as the peak temperature of the melting peak obtained by DSC measurement using a differential scanning calorimeter is 110 to 140 ° C., and polylactic acid, polyethylene succinate, polybutylene succinate Polycaprolactam, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxybutyrate valerate and the like can be used. In addition, cyclic lactones such as L-lactic acid, D-lactic acid, and ε-caprolactone, and α-oxy such as α-hydroxybutyric acid, α-hydroxyisobutyric acid, α-hydroxyvaleric acid, and the like may be used as long as the effects of the present invention are not impaired. Acids, glycols such as ethylene glycol and 1,4-butanediol, and dicarboxylic acids such as succinic acid, sebacic acid and adipic acid may be contained.

ここで、本発明においては、鞘成分を構成する脂肪族ポリエステルが、L−乳酸/D−乳酸(共重合モル比)が94/6〜90/10のL−乳酸を主体とするポリ乳酸であることが好ましい。ポリ乳酸は、植物由来の樹脂であり、バインダー繊維の鞘成分にも使用することで、本発明の不織布の、植物由来樹脂の比率を高めることができるため好ましい。L−乳酸/D−乳酸(共重合モル比)が94/6〜90/10とすることによって、融点を約100〜140℃とすることができる。   Here, in the present invention, the aliphatic polyester constituting the sheath component is polylactic acid mainly composed of L-lactic acid having an L-lactic acid / D-lactic acid (copolymerization molar ratio) of 94/6 to 90/10. Preferably there is. Polylactic acid is a plant-derived resin, and it is preferable to use it as a sheath component of the binder fiber because the ratio of the plant-derived resin of the nonwoven fabric of the present invention can be increased. By setting L-lactic acid / D-lactic acid (copolymerization molar ratio) to 94/6 to 90/10, the melting point can be about 100 to 140 ° C.

また、本発明においては、鞘成分を構成する脂肪族ポリエステルが、ポリブチレンサクシネートであることが好ましい。ポリブチレンサクシネートを鞘成分に使用することにより、得られるバインダー繊維を用いると、非常にソフトな風合いを有する不織布を得ることができるため好ましい。   Moreover, in this invention, it is preferable that the aliphatic polyester which comprises a sheath component is polybutylene succinate. By using polybutylene succinate as the sheath component, it is preferable to use the resulting binder fiber because a nonwoven fabric having a very soft texture can be obtained.

また、本発明においては、鞘成分を構成する脂肪族ポリエステルが、ポリブチレンサクシネートに乳酸が1〜10モル%共重合した共重合体であることが好ましい。ポリブチレンサクシネートに乳酸が1〜10モル%共重合した共重合体を鞘成分に使用することにより、得られるバインダー繊維は、ソフトな風合いを有しながらも、ポリ乳酸との相溶性が高くなるため、主体繊維であるポリ乳酸短繊維との接着性が向上するため好ましい。ポリブチレンサクシネートに共重合する乳酸は、L−乳酸、D−乳酸のいずれでもよい。共重合する乳酸が1モル%未満になると、ポリ乳酸との相溶性が十分上がらず、接着性向上の効果が期待できない。一方、10モル%より多いと、ポリブチレンサクシネートが本来有する柔軟性が損なわれる傾向となる。   In the present invention, the aliphatic polyester constituting the sheath component is preferably a copolymer obtained by copolymerizing 1 to 10 mol% of lactic acid with polybutylene succinate. By using, as a sheath component, a copolymer obtained by copolymerizing lactic acid with polybutylene succinate in an amount of 1 to 10 mol%, the resulting binder fiber has a soft texture and high compatibility with polylactic acid. Therefore, the adhesiveness with the polylactic acid short fiber as the main fiber is improved, which is preferable. The lactic acid copolymerized with polybutylene succinate may be either L-lactic acid or D-lactic acid. When the amount of lactic acid to be copolymerized is less than 1 mol%, the compatibility with polylactic acid is not sufficiently improved, and the effect of improving adhesiveness cannot be expected. On the other hand, when it is more than 10 mol%, the inherent flexibility of polybutylene succinate tends to be impaired.

バインダー繊維の芯成分と鞘成分との複合比率は、特に限定されるものではないが、接着性、製糸性などから、芯/鞘の質量比率で30/70〜70/30が好ましい。   The composite ratio of the core component and the sheath component of the binder fiber is not particularly limited, but is preferably 30/70 to 70/30 in terms of the mass ratio of the core / sheath from the viewpoint of adhesiveness, yarn production, and the like.

本発明の不織布を構成するポリ乳酸短繊維とポリ乳酸系バインダー繊維の繊度は、風合い、接着性能等を考慮して1.0〜80dtex程度が好ましく、1.7〜50dtexがより好ましい。また、カット長としては、5〜100mmが好ましく、25〜70mmがより好ましい。また、これら両繊維の断面形状は、円形断面に限定されるものではなく、扁平断面、多角形、多葉形、ひょうたん形、アルファベット形、その他各種の非円形(異形)などであってもよい。   The fineness of the polylactic acid short fibers and the polylactic acid-based binder fibers constituting the nonwoven fabric of the present invention is preferably about 1.0 to 80 dtex, more preferably 1.7 to 50 dtex in consideration of texture, adhesion performance, and the like. Moreover, as a cut length, 5-100 mm is preferable and 25-70 mm is more preferable. Further, the cross-sectional shape of both fibers is not limited to a circular cross section, and may be a flat cross section, a polygon, a multi-leaf shape, a gourd shape, an alphabet shape, and other various non-circular shapes (an irregular shape). .

さらに、本発明の不織布を構成する前記両繊維には、ポリ乳酸の耐久性を高める目的として、ポリ乳酸に脂肪族アルコール、カルボジイミド化合物、オキサゾリン化合物、オキサジン化合物、エポキシ化合物等の末端封鎖剤を添加したものでもよい。   Furthermore, the end fibers such as aliphatic alcohols, carbodiimide compounds, oxazoline compounds, oxazine compounds, and epoxy compounds are added to the polylactic acid for the purpose of enhancing the durability of the polylactic acid, to both the fibers constituting the nonwoven fabric of the present invention. You may have done.

さらに、本発明の不織布を構成する前記両繊維には、各種顔料、染料、撥水剤、吸水剤、難燃剤、安定剤、酸化防止剤、紫外線吸収剤、金属粒子、結晶核剤、滑剤、可塑剤、抗菌剤、香料その他の添加剤を混合してもよい。   Furthermore, the two fibers constituting the nonwoven fabric of the present invention include various pigments, dyes, water repellents, water absorbents, flame retardants, stabilizers, antioxidants, ultraviolet absorbers, metal particles, crystal nucleating agents, lubricants, You may mix a plasticizer, an antibacterial agent, a fragrance | flavor, and other additives.

本発明の不織布は、主体繊維であるポリ乳酸短繊維とポリ乳酸系バインダー繊維とで構成されるものであるが、本発明の効果を損なわない範囲で、他の繊維が混綿されたものでもよい。他の繊維としては、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリプロピレン繊維等の合成繊維や、レーヨン繊維等の再生繊維、ウール、木綿、麻、パルプ等の天然繊維等が挙げられる。   The non-woven fabric of the present invention is composed of polylactic acid short fibers and polylactic acid-based binder fibers, which are main fibers, but may be mixed with other fibers within a range not impairing the effects of the present invention. . Examples of other fibers include synthetic fibers such as polyester fibers, nylon fibers, acrylic fibers, and polypropylene fibers, recycled fibers such as rayon fibers, and natural fibers such as wool, cotton, hemp, and pulp.

本発明の不織布は下記の方法によって得ることができる。   The nonwoven fabric of the present invention can be obtained by the following method.

まず、主体繊維となるポリ乳酸短繊維と、ポリ乳酸系バインダー繊維とを、所望の割合で混綿し、カード機等を用いてウェブを形成した後、熱処理によってバインダー成分を溶融または軟化させて構成繊維同士を融着させ、不織布として一体化させる。   First, composed of polylactic acid short fibers, which are the main fibers, and polylactic acid-based binder fibers in a desired ratio, and after forming a web using a card machine or the like, the binder component is melted or softened by heat treatment. The fibers are fused and integrated as a nonwoven fabric.

熱処理としては、連続熱処理機(サーマルスルー)のような加熱エアーを用いた熱融着処理装置で溶融接着する方法、あるいは、熱エンボス装置や熱カレンダー装置等の1対の熱ロールからなる装置に通してバインダー繊維を溶融圧着し、構成繊維間をバインダー成分の融着により一体化する方法等が挙げられる。なお、熱処理を施す前に、ニードリング加工や、スパンレース加工を行ってもよい。   For heat treatment, a method of fusion bonding with a heat fusion treatment device using heated air such as a continuous heat treatment machine (thermal through), or a device comprising a pair of heat rolls such as a heat embossing device and a heat calender device. Examples thereof include a method in which the binder fiber is melt-pressed through and the constituent fibers are integrated by fusing the binder components. Note that before the heat treatment, needling processing or spunlace processing may be performed.

次に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these.

なお、実施例における特性値等の測定法は、次の通りである。
(1)樹脂の数平均分子量とモノマー量
樹脂を10mg/mLの濃度になるようにクロロホルムに溶解して、クロロホルムを溶媒としてゲルパーミエーションクロマトグラフィー(GPC)法により測定した。検出器は屈折率計を使用し、分子量の標準物質としてポリスチレンを使用した。また、分子量1000以下の成分の割合から、樹脂中のモノマー量(質量%)を算出した。
In addition, the measuring methods, such as a characteristic value in an Example, are as follows.
(1) Number average molecular weight and monomer amount of resin The resin was dissolved in chloroform to a concentration of 10 mg / mL, and measured by gel permeation chromatography (GPC) using chloroform as a solvent. The detector used was a refractometer, and polystyrene was used as a molecular weight standard. Moreover, the monomer amount (mass%) in resin was computed from the ratio of the component of molecular weight 1000 or less.

(2)L−乳酸/D−乳酸(共重合モル比)
超純水と1Nの水酸化ナトリウムのメタノール溶液の等質量混合溶液を溶媒とし、高速液体クロマトグラフィー(HPLC)法によりL−乳酸とD−乳酸の共重合モル比を測定した。カラムにはsumichiral OA6100を使用し、UV吸収測定装置により検出した
(2) L-lactic acid / D-lactic acid (copolymerization molar ratio)
The copolymer molar ratio of L-lactic acid and D-lactic acid was measured by a high performance liquid chromatography (HPLC) method using a mixed solution of equal mass of ultrapure water and 1N sodium hydroxide in methanol as a solvent. The column used was sumichiral OA6100 and was detected by a UV absorption measurement device.

(3)ポリ乳酸の水分率
三菱化学社製水分気化装置 VA-06型と、同社水分測定装置 CA-06型を用いて測定した。
(3) Moisture content of polylactic acid It was measured using a moisture vaporizer VA-06 type manufactured by Mitsubishi Chemical Corporation and a company moisture analyzer CA-06 type.

(4)融点(℃)
パーキンエルマ社製の示差走査型熱量計DSC−2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。
(4) Melting point (° C)
Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., measurement was performed under the condition of a heating rate of 20 ° C./min, and the temperature giving an extreme value in the obtained melting endotherm curve was defined as the melting point.

(5)単糸繊度(dtex)
JIS L−1015 7−5−1−1Aの方法により測定した。
(5) Single yarn fineness (dtex)
It measured by the method of JIS L-1015 7-5-1A.

(6)単糸強度(cN/dtex)
JIS L−1015 8−7−1の方法により測定した。
(6) Single yarn strength (cN / dtex)
It measured by the method of JIS L-1015 8-7-1.

(7)乾熱収縮率(%)
JIS L−1015 7−15−2の方法により測定した。なお、処理温度は140℃、150℃の2点とした。
(7) Dry heat shrinkage (%)
It measured by the method of JIS L-1015 7-15-2. The treatment temperature was set at two points of 140 ° C. and 150 ° C.

ポリ乳酸短繊維(主体繊維)の製造
実施例1
数平均分子量が85100であり、L−乳酸/D−乳酸(共重合モル比)が99.2/0.8、モノマー量が0.05質量%、水分率が38ppmのL−乳酸を主体とするポリ乳酸を、孔数が720である通常の単成分繊維用のノズルを用いて、吐出量320g/分、紡糸温度220℃で溶融紡糸し、引取速度900m/分で引き取り、未延伸糸を得た。この時、紡糸断糸はなく、工程の調子は極めて良好であった。
Production Example 1 of Polylactic Acid Short Fiber (Main Fiber)
Mainly L-lactic acid having a number average molecular weight of 85100, L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99.2 / 0.8, monomer amount of 0.05% by mass and moisture content of 38 ppm. Polylactic acid to be melt melt spun at a discharge rate of 320 g / min and a spinning temperature of 220 ° C. using a normal single component fiber nozzle having a pore number of 720, and taken out at a take-up speed of 900 m / min. Obtained. At this time, there was no spun yarn and the tone of the process was very good.

得られた未延伸糸を、延伸温度60℃、延伸倍率3.50倍で延伸してから、150℃のヒートドラムで緊張熱処理を行い、押し込み式のクリンパーにて捲縮数10ヶ/25mm、捲縮率10%の機械捲縮を付与した後、仕上げ油剤を付与し、70℃で乾燥(弛緩熱処理)させ、繊維長51mmに切断し、繊度が1.7dtexであるポリ乳酸短繊維を得た。このポリ乳酸短繊維の物性を表1に示す。   The obtained undrawn yarn was drawn at a drawing temperature of 60 ° C. and a draw ratio of 3.50 times, and then subjected to tension heat treatment with a 150 ° C. heat drum, and the number of crimps was 10/25 mm with an indentation type crimper. After applying mechanical crimping with a crimp rate of 10%, a finishing oil is applied, dried at 70 ° C. (relaxation heat treatment), cut to a fiber length of 51 mm, and a polylactic acid short fiber having a fineness of 1.7 dtex is obtained. It was. Table 1 shows the physical properties of this polylactic acid short fiber.

実施例2、比較例1
ポリ乳酸短繊維を製造する時の熱セット温度を140℃(実施例2)、130℃(比較例1)と変更したこと以外は、実施例1と同様にしてポリ乳酸短繊維を得た。得られたポリ乳酸短繊維の物性を表1に示す。
Example 2 and Comparative Example 1
Polylactic acid short fibers were obtained in the same manner as in Example 1, except that the heat setting temperature at the time of producing the polylactic acid short fibers was changed to 140 ° C. (Example 2) and 130 ° C. (Comparative Example 1). Table 1 shows the physical properties of the obtained polylactic acid short fibers.

比較例2
ポリ乳酸短繊維を製造する時の熱セットを150℃の緊張熱処理に替えて、150℃の弛緩熱処理(非緊張下での熱処理)としたこと以外は、実施例1と同様にしてポリ乳酸短繊維を得た。得られたポリ乳酸短繊維の物性を表1に示す。
Comparative Example 2
In the same manner as in Example 1, except that the heat setting at the time of producing the polylactic acid short fibers was changed to 150 ° C. tension heat treatment, and the heat treatment was 150 ° C. relaxation heat treatment (heat treatment under non-tension). Fiber was obtained. Table 1 shows the physical properties of the obtained polylactic acid short fibers.

比較例3
ポリ乳酸として、数平均分子量が85800であり、L−乳酸/D−乳酸(共重合モル比)が98.8/1.2、モノマー量が0.05質量%、水分率が33ppmのL−乳酸を主体とするポリ乳酸を用いたこと以外は、実施例1と同様にしてポリ乳酸短繊維を得た。得られたポリ乳酸短繊維の物性を表1に示す。
Comparative Example 3
The polylactic acid has a number average molecular weight of 85,800, L-lactic acid / D-lactic acid (copolymerization molar ratio) of 98.8 / 1.2, a monomer amount of 0.05% by mass, and a moisture content of 33 ppm. Polylactic acid short fibers were obtained in the same manner as in Example 1 except that polylactic acid mainly composed of lactic acid was used. Table 1 shows the physical properties of the obtained polylactic acid short fibers.

比較例4
ポリ乳酸として、数平均分子量が86100であり、L−乳酸/D−乳酸(共重合モル比)が99.2/0.8、モノマー量が0.10質量%、水分率が31ppmのL−乳酸を主体とするポリ乳酸を用いたこと以外は、実施例1と同様にしてポリ乳酸短繊維を得た。得られたポリ乳酸短繊維の物性を表1に示す。
Comparative Example 4
The polylactic acid has a number average molecular weight of 86100, L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99.2 / 0.8, a monomer amount of 0.10% by mass, and a moisture content of 31 ppm. Polylactic acid short fibers were obtained in the same manner as in Example 1 except that polylactic acid mainly composed of lactic acid was used. Table 1 shows the physical properties of the obtained polylactic acid short fibers.

ポリ乳酸系バインダー繊維の製造
バインダー繊維A
数平均分子量が85100であり、L−乳酸/D−乳酸(共重合モル比)が99.2/0.8、モノマー量が0.05質量%、水分率が38ppmのL−乳酸を主体とするポリ乳酸を芯成分、数平均分子量が82800であり、L−乳酸/D−乳酸(共重合モル比)が91.2/8.8(融点が132℃)、モノマー量が0.13質量%、水分率が31ppmのL−乳酸を主体とするポリ乳酸を鞘成分として用い、孔数が560である通常の同心芯鞘複合繊維用のノズルを用いて、吐出量290g/分、紡糸温度220℃にて複合紡糸し(複合比50/50)、引取速度800m/分で引き取り、未延伸糸を得た。この時、紡糸断糸はなく、工程の調子は極めて良好であった。
Manufacture of polylactic acid binder fiber Binder fiber A
Mainly L-lactic acid having a number average molecular weight of 85100, L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99.2 / 0.8, monomer amount of 0.05% by mass and moisture content of 38 ppm. Polylactic acid as a core component, number average molecular weight is 82800, L-lactic acid / D-lactic acid (copolymerization molar ratio) is 91.2 / 8.8 (melting point is 132 ° C.), monomer amount is 0.13 mass %, A polylactic acid mainly composed of L-lactic acid having a moisture content of 31 ppm as a sheath component, and using a nozzle for a normal concentric core-sheath composite fiber having a pore number of 560, a discharge rate of 290 g / min, a spinning temperature Composite spinning was carried out at 220 ° C. (composite ratio 50/50) and taken up at a take-up speed of 800 m / min to obtain undrawn yarn. At this time, there was no spun yarn and the tone of the process was very good.

得られた未延伸糸を、延伸温度60℃、延伸倍率4.00倍で延伸してから、押し込み式のクリンパーにて捲縮数10ヶ/25mm、捲縮率10%の機械捲縮を付与した後、仕上げ油剤を付与して70℃で乾燥させ、繊維長51mmに切断して繊度が2.2dtexのポリ乳酸系バインダー繊維(バインダー繊維A)を得た。   The obtained undrawn yarn was drawn at a drawing temperature of 60 ° C. and a draw ratio of 4.00 times, and then a mechanical crimp with a crimping number of 10 pieces / 25 mm and a crimping rate of 10% was imparted by an indentation type crimper. Then, a finishing oil was applied, dried at 70 ° C., and cut to a fiber length of 51 mm to obtain a polylactic acid-based binder fiber (binder fiber A) having a fineness of 2.2 dtex.

バインダー繊維B
バインダー繊維の鞘成分として、融点が114℃、数平均分子量が45300のポリブチレンサクシネート(PBS)を用いたこと以外は、上記バインダー繊維Aの製造方法と同様の方法でポリ乳酸系バインダー繊維(バインダー繊維B)を得た。
Binder fiber B
As a sheath component of the binder fiber, a polylactic acid-based binder fiber (in the same manner as the production method of the binder fiber A) except that polybutylene succinate (PBS) having a melting point of 114 ° C. and a number average molecular weight of 45300 was used. Binder fiber B) was obtained.

バインダー繊維C
バインダー繊維の鞘成分として、ポリブチレンサクシネートにL−乳酸が4モル%共重合した共重合体(融点が114℃、数平均分子量が49800)を用いたこと以外は、上記バインダー繊維Aの製造方法と同様の方法でポリ乳酸系バインダー繊維(バインダー繊維C)を得た。
Binder fiber C
Production of binder fiber A described above, except that a polybutylene succinate copolymer of 4 mol% of L-lactic acid (melting point: 114 ° C., number average molecular weight: 49800) was used as the sheath component of the binder fiber. A polylactic acid-based binder fiber (binder fiber C) was obtained by the same method.

バインダー繊維D
バインダー繊維の芯成分として、数平均分子量が86300であり、L−乳酸/D−乳酸(共重合モル比)が98.4/1.6、モノマー量が0.14質量%、水分率が36ppmのL−乳酸を主体とするポリ乳酸を用いたこと以外は、上記バインダー繊維Aの製造方法と同様の方法でポリ乳酸系バインダー繊維(バインダー繊維D)を得た。
Binder fiber D
As a core component of the binder fiber, the number average molecular weight is 86300, L-lactic acid / D-lactic acid (copolymerization molar ratio) is 98.4 / 1.6, the monomer amount is 0.14% by mass, and the moisture content is 36 ppm. A polylactic acid-based binder fiber (binder fiber D) was obtained by the same method as the method for producing the binder fiber A except that polylactic acid mainly composed of L-lactic acid was used.

バインダー繊維E
バインダー繊維の芯成分として、数平均分子量が86300であり、L−乳酸/D−乳酸(共重合モル比)が98.4/1.6、モノマー量が0.14質量%、水分率が36ppmのL−乳酸を主体とするポリ乳酸を用いたこと、鞘成分として、融点が114℃、数平均分子量が45300のポリブチレンサクシネート(PBS)を用いたこと以外以外は、上記バインダー繊維Aの製造方法と同様の方法でポリ乳酸系バインダー繊維(バインダー繊維E)を得た。
Binder fiber E
As a core component of the binder fiber, the number average molecular weight is 86300, L-lactic acid / D-lactic acid (copolymerization molar ratio) is 98.4 / 1.6, the monomer amount is 0.14% by mass, and the moisture content is 36 ppm. Of the binder fiber A except that polylactic acid mainly composed of L-lactic acid was used, and polybutylene succinate (PBS) having a melting point of 114 ° C. and a number average molecular weight of 45300 was used as the sheath component. A polylactic acid-based binder fiber (binder fiber E) was obtained by the same method as the production method.

バインダー繊維F
バインダー繊維の芯成分として、数平均分子量が86300であり、L−乳酸/D−乳酸(共重合モル比)が98.4/1.6、モノマー量が0.14質量%、水分率が36ppmのL−乳酸を主体とするポリ乳酸を用いたこと、鞘成分として、ポリブチレンサクシネートにL−乳酸が4モル%共重合した共重合体(融点が114℃、数平均分子量が49800)を用いたこと以外は、上記バインダー繊維Aの製造方法と同様の方法でポリ乳酸系バインダー繊維(バインダー繊維F)を得た。
Binder fiber F
As a core component of the binder fiber, the number average molecular weight is 86300, L-lactic acid / D-lactic acid (copolymerization molar ratio) is 98.4 / 1.6, the monomer amount is 0.14% by mass, and the moisture content is 36 ppm. Polylactic acid mainly composed of L-lactic acid was used, and as a sheath component, a copolymer (melting point: 114 ° C., number average molecular weight: 49800) obtained by copolymerizing 4 mol% of L-lactic acid with polybutylene succinate. A polylactic acid-based binder fiber (binder fiber F) was obtained in the same manner as the method for producing the binder fiber A except that it was used.

不織布の製造
実施例11
実施例1のポリ乳酸短繊維と、ポリ乳酸系バインダー繊維(バインダー繊維A)とを、混綿質量比が主体繊維/バインダー繊維=80/20となるように混綿し、カード機によって50g/m2のウェブを作成した後、針密度192本/cm2でニードルパンチ加工処理を行い、ニードルパンチ不織布を得た。
Nonwoven Fabric Production Example 11
The polylactic acid short fiber of Example 1 and the polylactic acid-based binder fiber (binder fiber A) were mixed so that the mixed cotton mass ratio was main fiber / binder fiber = 80/20, and 50 g / m 2 by a card machine. After creating the web, needle punching was performed at a needle density of 192 / cm 2 to obtain a needle punched nonwoven fabric.

この不織布を30cm×30cmに切断し、連熱処理機にて150℃で2分間の熱処理を行って本発明の不織布を得た。   This nonwoven fabric was cut into 30 cm × 30 cm and heat-treated at 150 ° C. for 2 minutes with a continuous heat treatment machine to obtain the nonwoven fabric of the present invention.

なお、上の製造工程中ニードルパンチ加工処理を行った後のニードルパンチ不織布(30cm×30cm)に対して、連熱処理機(150℃×2分間)により熱処理後に得られた不織布の縦、横の長さを測定して、熱収縮率を次式にて算出した値を表2に示す。
熱収縮率(%)=(1−(縦の長さ)×(横の長さ)/900)×100
In addition, with respect to the needle punched nonwoven fabric (30 cm × 30 cm) subjected to the needle punch processing in the above manufacturing process, the longitudinal and lateral of the nonwoven fabric obtained after the heat treatment by the continuous heat treatment machine (150 ° C. × 2 minutes) Table 2 shows the values obtained by measuring the length and calculating the thermal shrinkage rate by the following equation.
Thermal contraction rate (%) = (1− (vertical length) × (horizontal length) / 900) × 100

また、得られた不織布の物性について、以下の評価を行った。その結果も併せて表2に示す。
(不織布の引張強力)
得られた不織布より、CD方向(機械方向と直交する方向)に25mm、MD方向(機械方向)に150mmの短冊状に切断して試料を作成した。この試料をオリエンテック社製UTM−4型のテンシロンを用いて、引張速度100mm/分の条件でMD方向に伸長切断し、最大強力を読みとった。試料数は、20点とし、これらの平均値を引張強力とした。なお、本発明では、1500cN/25mm幅以上のものを合格とした。
(不織布の風合い)
不織布を10人のパネラーによる手触りにより、風合いのソフト性を官能評価した。風合いがソフトであると評価した人数が、10人中9人以上の場合は◎、5〜8人の場合は○、2〜4人の場合は△、0〜1人の場合は×とした。
Moreover, the following evaluation was performed about the physical property of the obtained nonwoven fabric. The results are also shown in Table 2.
(Tensile strength of nonwoven fabric)
The obtained nonwoven fabric was cut into strips of 25 mm in the CD direction (direction perpendicular to the machine direction) and 150 mm in the MD direction (machine direction) to prepare a sample. This sample was stretched and cut in the MD direction with a tensile speed of 100 mm / min using UTM-4 type Tensilon manufactured by Orientec, and the maximum strength was read. The number of samples was 20 points, and the average value of these was the tensile strength. In addition, in this invention, the thing more than 1500cN / 25mm width was set as the pass.
(Nonwoven texture)
The softness of the texture was sensorially evaluated by touching the nonwoven fabric with 10 panelists. The number of people evaluated that the texture is soft is ◎ for 9 or more of 10 people, ○ for 5 to 8 people, △ for 2 to 4 people, × for 0 to 1 people .

実施例12
実施例2のポリ乳酸短繊維を用いたこと以外は、実施例11と同様の方法で不織布を得た。
Example 12
A nonwoven fabric was obtained in the same manner as in Example 11 except that the polylactic acid short fibers of Example 2 were used.

比較例11
比較例1のポリ乳酸短繊維を用いたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 11
A nonwoven fabric was obtained in the same manner as in Example 11 except that the polylactic acid short fibers of Comparative Example 1 were used.

比較例12
比較例2のポリ乳酸短繊維を用いたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 12
A nonwoven fabric was obtained in the same manner as in Example 11 except that the polylactic acid short fibers of Comparative Example 2 were used.

実施例13〜16、比較例13、14
ポリ乳酸短繊維とバインダー繊維の混率を、主体繊維/バインダー繊維=90/10(実施例13)、主体繊維/バインダー繊維=70/30(実施例14)、主体繊維/バインダー繊維=60/40(実施例15)、主体繊維/バインダー繊維=50/50(実施例16)、主体繊維/バインダー繊維=40/60(比較例13)、主体繊維/バインダー繊維=95/5(比較例14)としたこと以外は、実施例11と同様の方法で不織布を得た。
Examples 13 to 16 and Comparative Examples 13 and 14
The mixing ratio of the polylactic acid short fiber and the binder fiber is as follows: main fiber / binder fiber = 90/10 (Example 13), main fiber / binder fiber = 70/30 (Example 14), main fiber / binder fiber = 60/40 (Example 15), main fiber / binder fiber = 50/50 (Example 16), main fiber / binder fiber = 40/60 (Comparative Example 13), main fiber / binder fiber = 95/5 (Comparative Example 14) A nonwoven fabric was obtained in the same manner as in Example 11 except that.

実施例17
バインダー繊維としてバインダー繊維Bを用いたこと以外は、実施例11と同様の方法で不織布を得た。
Example 17
A nonwoven fabric was obtained in the same manner as in Example 11 except that binder fiber B was used as the binder fiber.

実施例18
バインダー繊維としてバインダー繊維Cを用いたこと以外は、実施例11と同様の方法で不織布を得た。
Example 18
A nonwoven fabric was obtained in the same manner as in Example 11 except that binder fiber C was used as the binder fiber.

比較例15
バインダー繊維としてバインダー繊維Dを用いたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 15
A nonwoven fabric was obtained in the same manner as in Example 11 except that binder fiber D was used as the binder fiber.

比較例16
バインダー繊維としてバインダー繊維Dを用いたこと、ポリ乳酸短繊維とバインダー繊維の混率を、主体繊維/バインダー繊維=90/10としたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 16
A nonwoven fabric was obtained in the same manner as in Example 11, except that the binder fiber D was used as the binder fiber, and the mixing ratio of the polylactic acid short fibers and the binder fibers was changed to main fiber / binder fiber = 90/10.

比較例17
バインダー繊維としてバインダー繊維Eを用いたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 17
A nonwoven fabric was obtained in the same manner as in Example 11 except that binder fiber E was used as the binder fiber.

比較例18
バインダー繊維としてバインダー繊維Fを用いたこと以外は、実施例11と同様の方法で不織布を得た。
Comparative Example 18
A nonwoven fabric was obtained in the same manner as in Example 11 except that binder fiber F was used as the binder fiber.

得られた実施例13〜17、比較例13〜18の不織布について、熱収縮率および物性の評価結果を表2、表3に示す。
Tables 2 and 3 show the evaluation results of the heat shrinkage rate and physical properties of the obtained nonwoven fabrics of Examples 13 to 17 and Comparative Examples 13 to 18, respectively.

表1から明らかなように、実施例1、2は、乾熱収縮率が小さく、単糸強度の優れたポリ乳酸短繊維を得ることができた。これらのポリ乳酸短繊維を主体繊維として50〜90質量%の混率で用いた不織布(実施例11〜18)は、不織布形成時の収縮率が低く、風合いがソフトであり、さらに十分な機械的強度を有するものであった。 As is clear from Table 1, Examples 1 and 2 were able to obtain short polylactic acid fibers having a low dry heat shrinkage ratio and excellent single yarn strength. Nonwoven fabrics (Examples 11 to 18) using these polylactic acid short fibers as main fibers at a blending ratio of 50 to 90% by mass have low shrinkage when forming the nonwoven fabric, soft texture, and sufficient mechanical properties. It had strength.

一方、比較例1のポリ乳酸短繊維は、熱セット温度を130としたため、熱処理の効果が少なく乾熱収縮率が大きくなり、これを主体繊維として用いた比較例11の不織布は、不織布製造時の熱収縮も大きくなった。   On the other hand, since the polylactic acid short fiber of Comparative Example 1 had a heat setting temperature of 130, the effect of heat treatment was small and the dry heat shrinkage ratio was large. The heat shrinkage of the also increased.

比較例2のポリ乳酸短繊維は、緊張熱処理を施さなかったため、単糸強度が目的とする範囲に達成せず、これを主体繊維として用いた比較例12の不織布についても、不織布強度が低かった。   Since the polylactic acid short fiber of Comparative Example 2 was not subjected to tension heat treatment, the single yarn strength did not reach the target range, and the nonwoven fabric of Comparative Example 12 using this as a main fiber also had low nonwoven fabric strength. .

比較例3のポリ乳酸短繊維は、共重合モル比が本発明の範囲外であったため、目的とする乾熱収縮率のものを得ることができなかった。   Since the polylactic acid short fiber of Comparative Example 3 had a copolymerization molar ratio outside the range of the present invention, the desired dry heat shrinkage rate could not be obtained.

比較例4のポリ乳酸短繊維は、原料として用いたポリ乳酸のモノマー量が、本発明の範囲外であったため、目的とする乾熱収縮率のものを得ることができなかった。   As for the polylactic acid short fiber of Comparative Example 4, since the amount of the polylactic acid monomer used as a raw material was outside the range of the present invention, the desired dry heat shrinkage rate could not be obtained.

比較例13、14の不織布は、ポリ乳酸短繊維とバインダー繊維との混率が本発明の要件を満たさなかったので、不織布の収縮率や強度が劣るものであった。   The nonwoven fabrics of Comparative Examples 13 and 14 were inferior in the shrinkage rate and strength of the nonwoven fabric because the mixing ratio of the polylactic acid short fibers and the binder fibers did not satisfy the requirements of the present invention.

比較例15〜18の不織布は、バインダー繊維の芯成分を構成するポリ乳酸のL−乳酸/D−乳酸(共重合モル比)が99/1〜100/0の範囲を外れるものであり、不織布製造時の熱収縮が大きかった。
The nonwoven fabrics of Comparative Examples 15 to 18 are those in which L-lactic acid / D-lactic acid (copolymerization molar ratio) of polylactic acid constituting the core component of the binder fiber is out of the range of 99/1 to 100/0. Thermal shrinkage during production was large.

Claims (6)

ポリ乳酸短繊維であって、該繊維は、L−乳酸/D−乳酸(共重合モル比)が99/1以上のポリ乳酸によって構成され、140℃における乾熱収縮率が3.0%以下、単糸強度が3.0cN/dtex以上であることを特徴とする請求項1記載のポリ乳酸であることを特徴とするポリ乳酸短繊維。   Polylactic acid short fiber, which is composed of polylactic acid having L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more, and has a dry heat shrinkage at 140 ° C. of 3.0% or less. 2. The polylactic acid short fiber according to claim 1, wherein the single yarn strength is 3.0 cN / dtex or more. L−乳酸/D−乳酸(共重合モル比)が99/1以上、モノマー量が0.08質量%以下のポリ乳酸を溶融紡糸し、次いで、得られた未延伸糸を延伸した後、緊張熱処理を施すことを特徴とする請求項1記載のポリ乳酸短繊維の製造方法。   Polylactic acid having an L-lactic acid / D-lactic acid (copolymerization molar ratio) of 99/1 or more and a monomer amount of 0.08% by mass or less is melt-spun, and then the obtained undrawn yarn is drawn and then tensioned. The method for producing a polylactic acid short fiber according to claim 1, wherein heat treatment is performed. 請求項1記載のポリ乳酸短繊維50〜90質量%と、融点が100〜140℃である脂肪族ポリエステルを鞘成分とし、L−乳酸/D−乳酸(共重合モル比)が99/1以上のポリ乳酸を芯成分とするポリ乳酸系バインダー繊維50〜10質量%とからなることを特徴とする短繊維不織布。   A polylactic acid short fiber according to claim 1 of 50 to 90% by mass and an aliphatic polyester having a melting point of 100 to 140 ° C as a sheath component, L-lactic acid / D-lactic acid (copolymerization molar ratio) is 99/1 or more. A short fiber nonwoven fabric comprising 50 to 10% by mass of a polylactic acid-based binder fiber having a polylactic acid as a core component. ポリ乳酸系バインダー繊維の鞘成分を構成する脂肪族ポリエステルが、L−乳酸/D−乳酸(共重合モル比)が94/6〜90/10のポリ乳酸であることを特徴とする請求項3記載の短繊維不織布。   The aliphatic polyester constituting the sheath component of the polylactic acid-based binder fiber is polylactic acid having an L-lactic acid / D-lactic acid (copolymerization molar ratio) of 94/6 to 90/10. The short fiber nonwoven fabric described. ポリ乳酸系バインダー繊維の鞘成分を構成する脂肪族ポリエステルが、ポリブチレンサクシネートであることを特徴とする請求項3記載の短繊維不織布。   4. The short fiber nonwoven fabric according to claim 3, wherein the aliphatic polyester constituting the sheath component of the polylactic acid-based binder fiber is polybutylene succinate. ポリ乳酸系バインダー繊維の鞘成分を構成する脂肪族ポリエステルが、ポリブチレンサクシネートに乳酸が1〜10モル%共重合した共重合体であることを特徴とする請求項3記載の短繊維不織布。
The short fiber nonwoven fabric according to claim 3, wherein the aliphatic polyester constituting the sheath component of the polylactic acid-based binder fiber is a copolymer obtained by copolymerizing 1 to 10 mol% of lactic acid with polybutylene succinate.
JP2005014478A 2005-01-21 2005-01-21 Polylactic acid short fiber, method for producing the same and nonwoven fabric Pending JP2006200085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014478A JP2006200085A (en) 2005-01-21 2005-01-21 Polylactic acid short fiber, method for producing the same and nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014478A JP2006200085A (en) 2005-01-21 2005-01-21 Polylactic acid short fiber, method for producing the same and nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2006200085A true JP2006200085A (en) 2006-08-03

Family

ID=36958332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014478A Pending JP2006200085A (en) 2005-01-21 2005-01-21 Polylactic acid short fiber, method for producing the same and nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2006200085A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214817A (en) * 2007-03-06 2008-09-18 Nippon Ester Co Ltd Binder fiber and nonwoven fabric obtained using the same
JP2009062644A (en) * 2007-09-06 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric
JP2010270407A (en) * 2009-05-20 2010-12-02 Unitika Ltd Polylactic acid-based latent crimped fiber
JP2011246853A (en) * 2010-05-27 2011-12-08 Nippon Ester Co Ltd Short-cut conjugate fiber comprising polylactic acid
JP2014037656A (en) * 2012-08-17 2014-02-27 Nippon Ester Co Ltd Method for manufacturing core-sheath type composite fiber
JP2019508602A (en) * 2015-12-14 2019-03-28 アールストローム−ムンクショー オーイューイー Polylactic acid fiber non-woven fabric, method for producing the same
WO2021171854A1 (en) * 2020-02-27 2021-09-02 ユニチカ株式会社 Water purification filter
JP2021133319A (en) * 2020-02-27 2021-09-13 ユニチカ株式会社 Water purification filter for pot type water purifier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214817A (en) * 2007-03-06 2008-09-18 Nippon Ester Co Ltd Binder fiber and nonwoven fabric obtained using the same
JP2009062644A (en) * 2007-09-06 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric
JP2010270407A (en) * 2009-05-20 2010-12-02 Unitika Ltd Polylactic acid-based latent crimped fiber
JP2011246853A (en) * 2010-05-27 2011-12-08 Nippon Ester Co Ltd Short-cut conjugate fiber comprising polylactic acid
JP2014037656A (en) * 2012-08-17 2014-02-27 Nippon Ester Co Ltd Method for manufacturing core-sheath type composite fiber
JP2019508602A (en) * 2015-12-14 2019-03-28 アールストローム−ムンクショー オーイューイー Polylactic acid fiber non-woven fabric, method for producing the same
WO2021171854A1 (en) * 2020-02-27 2021-09-02 ユニチカ株式会社 Water purification filter
JP2021133319A (en) * 2020-02-27 2021-09-13 ユニチカ株式会社 Water purification filter for pot type water purifier

Similar Documents

Publication Publication Date Title
JP2006200085A (en) Polylactic acid short fiber, method for producing the same and nonwoven fabric
JP4498001B2 (en) Polyester composite fiber
JP5199537B2 (en) Polylactic acid based composite fiber and nonwoven fabric and cushion material using the same
JP2013011051A (en) Polylactic acid-based composite fiber, nonwoven fabric and cushioning material using the same and method for manufacturing the same
JP4589417B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
JPH0593317A (en) Microorganism degradable conjugate fiber having latently crimping ability
JP2002177148A (en) Filter bag for drink
JP4418869B2 (en) Biodegradable composite short fiber, method for producing the same, and heat-bonding nonwoven fabric using the same
JP4578929B2 (en) Polylactic acid composite binder fiber
JP4809015B2 (en) Polylactic acid stretchable nonwoven fabric and method for producing the same
TW202240038A (en) Biologically degradable multi-component polymer fibres
JP2007143945A (en) Primary ground fabric for tufted carpet
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP2003336124A (en) Non-crimped short-cut fiber of polylactic acid
JP2011246853A (en) Short-cut conjugate fiber comprising polylactic acid
JP3886808B2 (en) Polylactic acid spontaneous crimped fiber
JP2007230284A (en) Surface member for interior material of automobile
JP4795278B2 (en) Binder fiber and non-woven fabric using the same
JP2008237257A (en) Polyester conjugated fiber aggregate for hygienic material
JP2795487B2 (en) Fiber laminate
JPH10325064A (en) Biodegradable nonwoven fabric with excellent stretching property and its production
JP2006030905A (en) Sound absorbing material
JP4783162B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2004097970A (en) Filtration material for air filter, production method of the same, and air filter