TW202235366A - 由熱解油製備碳奈米結構之新方法 - Google Patents

由熱解油製備碳奈米結構之新方法 Download PDF

Info

Publication number
TW202235366A
TW202235366A TW110143919A TW110143919A TW202235366A TW 202235366 A TW202235366 A TW 202235366A TW 110143919 A TW110143919 A TW 110143919A TW 110143919 A TW110143919 A TW 110143919A TW 202235366 A TW202235366 A TW 202235366A
Authority
TW
Taiwan
Prior art keywords
carbon
pyrolysis oil
network
pyrolysis
zone
Prior art date
Application number
TW110143919A
Other languages
English (en)
Inventor
路格亞歷山大大衛 汎萊頓
丹尼拉 索爾迪
羅賓 克雷平
Original Assignee
荷蘭商碳素X股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商碳素X股份有限公司 filed Critical 荷蘭商碳素X股份有限公司
Publication of TW202235366A publication Critical patent/TW202235366A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Catalysts (AREA)

Abstract

本發明涉及一種用於在含有反應區3b及終止區3c的爐黑反應器3中由熱解油製備結晶碳奈米纖維網路的製程,藉由將包含金屬觸媒奈米顆粒的熱力學穩定含熱解油微乳液c注入反應區3b(反應區3b在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下)中,以製備結晶碳結構網路e,將這些網路e轉移至終止區3c,及藉由噴灑水d淬火或停止終止區中結晶碳結構網路之形成。

Description

由熱解油製備碳奈米結構之新方法
本發明屬於來自永續資源的多孔、化學互連、含碳奈米纖維碳網路領域,並指向製造這種永續結構網路的新方法及包含這種永續結構的複合物。本發明尤其屬於碳黑製造領域。
碳黑產業的重點為提供一種碳同素異形體,其實體排列主要不同於石墨及無定形碳,用於製造橡膠製品(例如,輪胎)、用於多晶照片術、電子及電纜塗料,用於清漆及油漆的製備,包括使用需要碳黑增強及/或色素性質的應用。本領域內已知有用於製備碳黑的各種不同製程或技術。碳黑主要由部分燃燒製程產生,自諸如甲烷或乙炔的含碳氣體開始。這種製程有時稱為熔爐式碳黑製備製程,且其採用具有燃燒器或燃燒室的熔爐,接著是一反應器。熔爐式製程的典型特徵在於低氧位準、低密度、高溫及短滯留時間。
作為熔爐式碳黑製備製程的第一步驟,碳氫化合物在1200至1900℃的典型溫度下霧化,如Ullmanns Encyklopadie der technischen Chemie,第14卷,第637~640頁(1977年)中所述。為此,藉由使用氧或空氣燃燒燃料氣體或液體燃料來製備具有高能量密度的區域,並將碳黑原材料注入其中。碳黑原料在這些熱燃燒條件下霧化;氧位準的平均供應速率為兩體積碳黑原料對約一體積氧,以便在燃燒製程中完全消耗氧。碳黑最後產物的結構及/或細孔率可能會受到碳黑形成期間鹼金屬或鹼土金屬離子之存在的影響,因此此類添加劑經常以水溶液的形式添加,並噴灑於碳黑原材料附聚物上。僅藉由注入水(淬火)終止反應,並在約200~250℃的溫度下收集碳黑,且藉由慣用分離器或過濾器自廢氣分離開。由於碳黑的體密度低,故可粒化所得碳黑,例如在造粒機中添加可加入少量造粒助劑的水來進行。
US2672402、US4292291、US4636375、WO2000/032701及US 2004/0248731按時間順序提供傳統或慣用碳黑製備的描述,但絕不限制熔爐式碳黑技術。其內容藉由引用併入本文中。關於碳黑原料,全世界每年約有1750萬噸碳黑是使用蒽油、煤焦油及來自蒸汽裂解器的FCC漿料或瀝青為主要原料製備的。假設轉化率為50%,這意味著每年需要3500萬噸原油/煤製原料來供應市場。用永續原料來源替代這些原料可能可節省1.5億噸CO2排放量。
US2011/0200518描述自諸如輪胎橡膠的橡膠複合物製備熱解碳黑(feedstock source,pCB)的製程。然而,將熱解應用於輪胎以製備最終導致碳黑的炭;熱解油不用作碳黑原料。Okoye等人,「清潔生產雜誌(Journal of Cleaner Production)」,2020年(https://doi.org/10.1016/j.jclepro.2020.123336)回顧並揭示輪胎熱解油可用作碳黑的潛在原料(第6點,「廢輪胎熱解油作為碳黑之潛在原料」)。然而,其評估是基於實驗室規模的實驗,因此未評估因其工業規模應用而產生的問題,諸如製備之碳黑的產率及等級以及使用熱解油操作的物流。舉例而言,其提到Wójtowicz等人的實驗室研究(Advanced Fuel Research,Inc.,2004)顯示,使用廢輪胎熱解製程的油餾分,可使用在1100℃下操作、滯留時間為5秒及20秒的爐反應器獲得碳黑;以及Toth等人,「綠色化學(Green Chemistry)」,2018年,第20期,第3981~3992頁(https://doi.org/10.1039/c8gc01539b)報告,在溫度範圍為1100~1700℃下操作、滯留時間約30秒的模擬爐反應器中,使用乾木屑混合物熱解生物油自爐反應器中製備CB的情況。儘管如此,Okoye得出結論,目前還沒有研究對來自熱解油的碳黑的吸收性或結構性質進行研究(第6點,最後一行)。這與目前還沒有將熱解油用於碳黑製造的商業過程這一事實一起,證明在基於熱解油的碳黑製造方面存在知識缺口。
WO2013/170358描述在爐反應器中自熱解油製備多環芳香烴(PAH)含量極低的碳黑。然而,其非常籠統地聲稱能夠自廢輪胎熱解所得的油中製備任何N系列碳黑,而未提供任何具體的製程或產品資料來實施該發明。事實上,業界普遍認為,使用所述製程自熱解油製備碳黑將導致產率太低、品質太差,在商業上不可行,特別是考慮獲得使用常規碳黑原料可製備的相同等級範圍。源於基於碳黑的製造,WO 2018/002137描述一種在爐黑反應器中製備結晶碳結構網路的製程,使用的碳原料為熱力學穩定微乳液形式,包含金屬觸媒奈米顆粒。WO 2019/224396涉及使用多孔、化學互連、含碳奈米纖維碳網路來增強彈性體,以用於許多技術領域,諸如輪胎、傳送帶、軟管等。未特別提及熱解油用於碳源。
EP3486212使用不同的技術描述一種用於製造結晶碳奈米結構及/或結晶碳奈米結構網路的方法。其涉及使含有金屬奈米顆粒的雙連續微乳液與基板接觸,其中金屬奈米顆粒及氣態碳源經受化學氣相沉積。
熱解油是由不同來源的分子組成的液體摻合物,諸如報廢輪胎、廢塑膠或生物質。熱解油的確切成分在很大程度上取決於來源及加工條件兩者。批次之間成分的巨大差異以及獲得高品質油所需的幾個升級步驟(Zhang等人,「能源轉換及管理」,2007年,第48期,第87~92頁,以及Miandad等人,「製程安全及環境保護」,2016年,第102期,第822~838頁)將熱解油的商業用途限制於用於發熱及發電。根據來源及加工條件,硫及水位存在顯著變化。芳香烴含量亦是如此,這些變化阻礙了以熱解油為碳原料的工業可控碳黑製備的建立。
自永續性角度來看,仍然直接需要更新傳統的碳黑製造製程,其中永續性理解為透過設計、製造及使用高效、有效、安全及更環保的化學產品及製程(OECD定義),尋求提高自然資源使用效率,以滿足人類對化學產品及服務的需求。熱解精煉步驟使熱解不是使碳黑製造更具永續性的有吸引力的候選方法,若有,則其會增加製程的成本。因此,在碳黑製造的商業製程中直接使用熱解油將代表永續性成就。
發明者發現,完善的還原(熱解)或氧化(燃燒)碳黑製造製程可用於將熱解油轉化為由多孔、化學互連、含碳奈米纖維碳結構之網路組成的新穎碳填料,具有各種有利改善的電氣、機械及熱性質,藉由將單相乳化概念引入慣用(熔爐式)碳黑製備,使用w/o、o/w或雙連續型、較佳w/o或雙連續型、最佳雙連續型的熱力學穩定微乳液,具有金屬觸媒奈米顆粒,且具有包含熱解油或由熱解油組成的油相。與本發明背景下應用的單相乳化相關的優勢不僅在於使用大量現有且具有經濟吸引力的原材料而無需進行大量加工,其亦使得利用熱解製程中的回收油製備碳黑材料成為可能,使其永續(循環),並可作為產品的一項技術特徵進行商業化。亦發現,該製程產出的碳網路具有改善的潤濕性質。
因此,本發明涉及一種製備多孔、化學互連、含碳奈米纖維碳結構網路的製程,藉由提供包含熱解油、水及至少一種界面活性劑、以及金屬觸媒奈米顆粒的熱力學穩定單相乳液,並使乳化的熱解油經受碳黑製造製程,在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、最佳1100℃之上、較佳高達3000℃、更佳高達2500℃、尤其高達2000℃的升高溫度下碳化所述乳化熱解油。
上述製程為工業製程,其特徵在於單相乳液(以及因此以乳液形式提供至製程的熱解油)的反應器滯留時間小於5秒、較佳小於2秒、更佳1~1000毫秒、最佳10~500毫秒。
在一個相關態樣中,本發明涉及使用這種乳化熱解油的單相乳液,在碳黑製造製程(較佳熔爐式碳黑製造製程)中碳化乳液,從而獲得永續多孔、化學互連、含碳奈米纖維碳結構網路。較佳在上述高溫下將乳液噴灑並霧化至反應器中。
在較佳實施例中,熱解油為上述製程中的主要碳原料來源,較佳佔提供至製程的所有碳原料的至少50%、更佳75~100%。在最佳實施例中,熱解油為唯一的碳原料來源。
術語「熱解油」理解為自化學製程的不同流熱解(直接)得到的任何油,諸如生物質(例如,木材、藻類、大米、堅果殼)、報廢輪胎或不可回收塑膠,無需進一步處理即可進行本發明的製程。熱解油不指自這些原材料的熱解獲得的炭。熱解油的硫含量通常在0.002%至3%之間變化(根據ASTM D1619),水含量通常在1~40 wt%之間,氧原子含量自0.2%至50 wt%,且碳含量較佳至少為40 wt%。碳源的芳族性無關緊要;本發明的製程適用於脂肪族、芳香族或兩種碳類型之組合。鑒於上述情況,提供至製程的熱解油未經精煉,即事先未經精煉。
在整個本文及申請專利範圍中,「單相乳液」是指熱力學穩定的油包水(water-in-oil,w/o)或水包油(oil-in-water,o/w)微乳液或包含金屬觸媒奈米顆粒的雙連續微乳液。最佳為包含金屬觸媒奈米顆粒的雙連續微乳液。
發明者承認,對在商業規模上使用熱解油作為碳黑原料存在偏見。在熟習此項技術者看來,(未精煉的)熱解油不適合作為碳黑製備的原料,原因有幾個。首先,在傳統的碳黑製造製程中,至少應儘量減少用水,最好禁止在反應部門使用,以獲得適當的產率及較佳的球形碳黑結構。這導致在傳統的碳黑製造製程期間,除在結束階段用於淬火以外,普遍不願意使用任何水。以類似的方式,一些熱解油可能含有過量的硫原子或氧原子,以保證形成適當的碳黑結構,而其他熱解油不含有足夠的前驅物(芳香烴含量),以在工業規模的反應器中形成大量的碳黑,由於工業爐黑反應器的滯留時間較短,無法提供足夠的時間自非理想前驅物形成石墨層。高水含量、低芳香族、高氧原子及/或高硫含量以及需要高滯留時間的組合使得在爐反應器中使用(未精煉)熱解油製備碳黑(需要較低的滯留時間來製備適當品質的碳結構)不適於工業規模,這亦是阻礙技術人員轉向這種永續原料的原因。
發明者發現,藉由霧化帶有金屬觸媒顆粒的穩定單相乳液來修正慣用碳黑製造,使得無需進行前面的精煉步驟即可使用熱解油。發明者認為,界面活性劑分子、熱解油相及水相的取向及結構與金屬觸媒奈米顆粒一起產生新材料及製程所獨有的網路形成製程。發明者發現,以上述單相乳液的形式提供熱解油至霧化製程是關鍵。
金屬觸媒奈米顆粒對於本發明至關重要。經歷霧化及隨後碳化的單相乳液應包含金屬奈米顆粒,這些金屬奈米顆粒在形成這些多孔、化學互連、含碳奈米纖維碳網路時充當觸媒。增加金屬觸媒奈米顆粒濃度進一步提高產率。必須使用雙連續或油包水(water-in-oil,w/o)微乳液,其中乳液包含金屬觸媒奈米顆粒,這些乳液由連續油/界面活性劑相組成,從而已形成網路結構;或水包油(oil-in-water,o/w)微乳液,其中乳液包含金屬觸媒奈米顆粒。最佳為雙連續微乳液。乳液的微觀結構(油包水、水包油、或雙連續)被認為是最終碳結構網路的前驅物/藍曬圖,其中含碳分率(熱解油相及界面活性劑)將形成纖維及接面,而水分率有助於定向熱解油/界面活性劑相及網路細孔率。金屬觸媒的存在促進碳組分碳化為纖維結構,而非通常獲得的球形取向。不混溶的熱解油與水相的摻合物不會產出這些結構,即,在熱力學穩定的基質中沒有金屬觸媒存在。一旦乳液在高溫下霧化,在有金屬觸媒存在的情況下,碳化製程立即「凍結」其乳液結構中的碳分率,同時水蒸發,留下(奈米)纖維網路。
藉由使用上述含有有效組分的乳液,從而藉由催化(動力學)而非熱力學來驅動製程,發明者能夠在毫秒時間尺度內產生石墨層,這使得製程能夠在工業爐黑反應器規模內使用。這是基於發明者對窄微晶及粒子大小分佈上形成碳黑、單向微晶對準或細絲形成的理解。更重要地,觸媒能能不同原料(芳香族及脂肪族)的轉化,從而使熱解油能夠用於製備具有足夠技術性質的碳黑產品。
熱解油可自幾種廢物流中獲得,諸如生物質(木材、藻類、大米、堅果殼等)、報廢輪胎或不可回收塑膠,因此,根據本發明的碳填料製備製程可視為回收製程,甚至升級回收,有兩個原因。首先,鑒於熱解油是一種低端產品,用其來製備高端碳填料給來源帶來很大的價值。其次,由於碳填料對聚合物性質的顯著改善,諸如機械增強、導電性控制(ESD或EMI屏蔽範圍之目標)及導熱性,與本發明所述碳填料組合的這些回收聚合物(通常具有較差的性質)的性質可與原始聚合物及/或使用原油衍生原料製成的碳填料的原始聚合物的性質相當或更佳。
此外,由於本發明,碳填料製備製程藉由廢物流的升級循環而變得循環起來,進一步提高製程的永續性,從而亦提高藉由製程獲得的產品的永續性。舉例而言,將輪胎視為熱解油的來源,這意味著使用含有碳填料的輪胎作為來源來製備相同的碳填料,從而減少最終產物的碳足跡。此外,這種碳填料可在工業規模上循環製備,使其成為在商業規模上利用廢物流製成的第一升級循環碳填料。這種環狀碳填料的應用領域多種多樣:橡膠(輪胎及技術橡膠製品)、熱塑性塑膠、3D列印、熱固物、塗料及油墨、電池電極、儲能材料或水淨化膜。因此,本發明亦涉及永續多孔、化學互連、含碳奈米纖維碳網路的使用,特別是在提高橡膠(輪胎及技術橡膠製品)、熱塑性塑膠、3D列印、熱固物、塗料及油墨、電池電極、儲能材料或水淨化膜的永續性。
本發明涉及永續多孔、化學互連、含碳奈米纖維碳網路,較佳可藉由在反應器3(較佳爐黑反應器,其含有反應區3b及終止區3c)中製備多孔、化學互連、含碳奈米纖維碳網路的製程獲得,藉由將油包水、水包油或包含金屬觸媒奈米顆粒及熱解油的雙連續微乳液c注入反應區3b(反應區3b在600℃之上、較佳在700℃之上、更佳在900℃之上、甚至更佳在1000℃之上、更佳在1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下)中以製備結晶碳結構網路e,將這些網路e轉移至終止區3c,及藉由噴灑水d淬火或停止終止區中多孔、化學互連、含碳奈米纖維碳網路之形成。
在更佳的實施例中,網路可藉由上述製程獲得,所述反應器為熔爐式碳黑反應器3(沿反應器3的軸線含有燃燒區3a、反應區3b及終止區3c),在燃燒區中藉由在含氧氣體b中燃燒燃料a產生熱廢氣a1流,並將廢氣a1自燃燒區3a傳遞至反應區3b,噴灑油包水、水包油或包含金屬觸媒奈米顆粒及熱解油的雙連續微乳液c,在含有熱廢氣的反應區3b中,在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下碳化所述乳液,及藉由噴灑水d淬火或停止終止區3c中的反應,以產出多孔、化學互連、含碳奈米纖維碳網路e。
以上製程均為工業製程。工業反應器的典型生產率為每小時1~5噸永續多孔、化學互連、含碳奈米纖維碳網路。反應器3中的典型滯留時間在1與1000ms之間。
網路較佳可藉由上述製程獲得,其中下文標題為「獲得含碳奈米纖維碳網路的製程」一節以及隨附圖示中提供進一步的處理細節。
在整個說明書及申請專利範圍中,術語「碳結構網路」、「碳網路」、「含碳奈米纖維碳網路」及「碳奈米纖維網路」可互換使用。由碳奈米纖維形成的網路的細節及製造細節如下所示。 獲得含碳奈米纖維碳網路的製程
用於獲得永續多孔、化學互連、含碳奈米纖維碳網路的製程可最佳地描述為修飾碳黑製造製程,其中熱解油作為單相乳液的部分提供至碳黑反應器的反應區,是一種熱力學穩定的微乳液,包含金屬觸媒奈米顆粒。乳液較佳地藉由噴灑提供至反應區,從而將乳液霧化成液滴。修飾碳黑製造製程有利地作為連續製程進行。
在一個態樣中,本發明涉及在包含反應區3b及終止區3c的反應器3中自熱解油製備碳結構網路的製程,藉由將單相乳液c(為包含根據本發明的熱解油及金屬觸媒奈米顆粒的微乳液)注入反應區3b(在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下)中,以製備多孔、化學互連、含碳奈米纖維碳網路e,將這些網路e轉移至終止區3c,及藉由噴灑水d淬火或停止終止區中多孔、化學互連、含碳奈米纖維碳網路的形成。較佳將單相乳液噴灑至反應區中。參考第1圖。
在較佳實施例中,本發明涉及用於在熔爐式碳黑反應器3(沿反應器3的軸線含有燃燒區3a、反應區3b及終止區3c)中根據本發明製備多孔、化學互連、含碳奈米纖維碳網路的製程,藉由在燃燒區中藉由在含氧氣體b中燃燒燃料a而產生熱廢氣a1流,並將廢氣a1自燃燒區3a傳遞至反應區3b,噴灑(霧化)包含根據本發明的熱解油及金屬觸媒奈米顆粒的單相乳液c(較佳包含熱解油及金屬觸媒奈米顆粒的微乳液),在含有熱廢氣的反應區3b中,在升高的溫度下(在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下)碳化所述乳液,及藉由噴灑水d在終止區3c中淬火或停止反應(即,多孔、化學互連、含碳奈米纖維碳網路e之形成)。反應區3b包含至少一個入口(較佳噴嘴),用於引入乳液,較佳藉由霧化。參考第1圖。乳液在熔爐式碳黑反應器的反應區中的滯留時間相對短,較佳範圍為1~1000 ms,更佳10~500 ms。更長的滯留時間可能對碳網路的性質產生影響。一個實例可為,當使用更長的滯留時間時,微晶的尺寸更大。
熱解油相可為芳香族及/或脂肪族。帶有金屬觸媒奈米顆粒的單相乳液使熟習此項技術者能夠使用多種熱解源,而無需精煉步驟。好的實例是取自生物質、塑膠或報廢輪胎之熱解的油。這個熱解油的碳含量應至少為40 wt%,水含量可在1~40 wt%之間,硫含量高達4 wt%,及0.2~50%的氧原子含量。在一個實施例中,氧原子含量較佳在10%與50%之間。
在慣用碳黑處理中,熱解油較佳具有低硫含量,因為硫對產品品質有不利影響,導致產率降低並腐蝕設備。較佳地,根據ASTM D1619的熱解油的硫含量低於8.0 wt%,較佳低於4.0 wt%,更佳低於2.0 wt%。在一個實施例中,根據ASTM D1619的熱解油的硫含量在0.5與8 wt%之間,較佳在0.5與4.0 wt%之間;針對本發明的製程,無需使用精煉熱解油位準低於0.002 wt%的硫位準。
用於製備多孔、化學互連、含碳奈米纖維碳網路的網路之原料以乳液中的油組分之形式提供,該乳液至少包含熱解油、界面活性劑及水。乳液的油含量至少為50 wt%,添加的水可在1~50 wt%之間,而界面活性劑含量隨油及水含量的變化而變化。在較佳實施例中,所有碳原料由來自一個或不同熱解油源的一或多種熱解油提供。換言之,乳液中的油較佳由熱解油組成。在形成乳液時,熱解油的含水量亦是需考慮的一參數。這種乳液為單相乳液,肉眼看不到任何實體分離。在顯微鏡下觀察時,可區分分離的油相與水相。更精確而言,可觀察到油包水、水包油或雙連續微乳液。乳液為熱力學穩定的,這意味著不需要外力來保持至少1分鐘的恆定,且較佳地,水相的pH值保持在±1 pH單位的窗口內,並且乳液的黏度僅在±20%的窗口內顯示變化。
乳液的水相含有一種活性組分,該活性組分在多孔、化學互連、含碳奈米纖維碳網路之形成期間具有催化功能。活性組分由金屬顆粒或金屬錯合物構成,其大小範圍為1~100 nm。金屬可為貴金屬(Au、Ag、Pd、Pt等)、過渡金屬(Fe、Ru等)或其他金屬,如Ti或Cu。適合的金屬錯合物包括但不限於鉑前驅物,諸如H2PtCl6;釕前驅物,諸如Ru(NO)(NO3)3;或(iii)鈀前驅物,諸如Pd(NO3)2,或鎳前驅物,諸如NiCl2。水相中的活性金屬濃度應為>1mM。
熱解油乳液為「單相乳液」,這意味著熱解油相與水相在光學上表現為一種混溶混合物,肉眼看不到熱解油、水或界面活性劑的實體分離。單相乳液為微乳液。乳液完全斷裂(聚結)的製程,即,系統分離成體油相與水相的製程,一般認為由四種不同的液滴損失機制控制,即,布朗絮凝、乳油分離、沉積絮凝及歧化。
若獲得穩定、單相乳液,則添加的水及熱解油的量不受限制,但應注意,減少水的量(及增加熱解油的量)可提高產率。添加的水含量(即,不包括熱解油的水含量)通常在乳液的5 wt%與50 wt%之間、較佳10~40 wt%,甚至更佳高達乳液的30 wt%、更佳10~20 wt%。添加的水位應考慮到熱解油已提供多少水。雖然可考慮增加水量,但這將以產率為代價。在不希望受到任何理論的約束的情況下,發明者認為,水相歸結為由此獲得的網路的形狀及形態。
通常存在5~30 wt%的界面活性劑,較佳10~20 wt%,按步驟a)中提供的乳液重量計算。界面活性劑可為非離子界面活性劑,其親水-親脂平衡(hydrophilic- lipophilic balance,HLB)值至少為7、較佳HLB值為10。亦可使用離子界面活性劑,諸如(但不限於)磺琥珀酸鈉二辛酯(AOT),穩定油包水混合物。界面活性劑的選擇不被視為限制因素,前提是熱解油、水及界面活性劑(多個)之組合會產生上文定義的穩定微乳液。作為對熟習此項技術者的進一步指導,應注意,界面活性劑可基於系統的疏水性或親水性來選擇,即,親水-親脂平衡(hydrophilic- lipophilic balance,HLB)。界面活性劑的HLB是對其親水性或親脂性程度的量測,根據Griffin或Davies方法,藉由計算分子不同區域的值來判定。適當的HLB值取決於熱解油的類型以及乳液中熱解油及水的量,並可由熟習此項技術者在保留上述定義的熱力學穩定的單相乳液的要求的基礎上容易地判定。發現含有超過50 wt%熱解油的乳液,較佳具有小於30 wt%水相,用HLB值高於7、較佳高於8、更佳高於9、最佳高於10的界面活性劑來最佳地穩定。另一方面,具有最多50 wt%熱解油的乳液用HLB值低於12、較佳低於11、更佳低於10、最佳低於9、特別低於8的界面活性劑來最佳地穩定。
較佳選擇與熱解油相相容的界面活性劑。若熱解油具有高BMCI,則較佳具有高芳香性的界面活性劑,而具有低BMCI的熱解油(諸如以BMCI<15為特徵)將使用脂肪族界面活性劑來最佳地穩定。界面活性劑(多個)可為陽離子、陰離子或非離子,或其混合物。較佳一或多個非離子界面活性劑,以便提高產率,因為最終產物中不會有殘餘離子。為了獲得清潔的尾氣流,界面活性劑結構較佳低硫及低氮,較佳不含硫及氮。可用於獲得穩定乳液的典型非離子界面活性劑的非限制性實例為市售的系列吐溫、斯潘、Hypermer、Pluronic、Emullan、Neodol、Triton X及Tergitol。
在本發明的上下文中,微乳液是由水、熱解油及界面活性劑(多個)製成的分散體,其是單一光學各向同性且熱力學穩定的液體,其分散域直徑約在1至500 nm之間,較佳1至100 nm,通常為10至50 nm。在微乳液中,分散相的域為球狀(即,液滴)或互連的(形成雙連續微乳液)。在較佳實施例中,界面活性劑的尾部在油包水(water-in-oil,w/o)或水包油乳液或雙連續微乳液的油相中形成連續網路。水域應含有金屬觸媒,其平均粒子大小較佳在1 nm與100 nm之間。
單相乳液,即,w/o、o/w或雙連續微乳液,較佳雙連續微乳液,進一步包含較佳平均粒子大小在1與100 nm之間的金屬觸媒奈米顆粒。熟習此項技術者將在碳奈米管(carbon nanotube,CNT)領域找到充分的指導,以製備及使用這些種類的奈米顆粒。發現這些金屬奈米顆粒在速率、產率、及再現性方面都能改善網路之形成。可自以下各者找到製造適合金屬奈米顆粒的方法:Vinciguerra等人的「化學氣相沉積碳奈米管的生長機制」(「奈米技術」(2003年)第14期,第655頁);Perez Cabero等人的「CNT生長機制:動力學方法」(「J.Catal.」(2004年)第224期,第197~205頁);Gavillet等人的「單壁碳奈米管的觸媒輔助生長之微觀機制」(「Carbon.」(2002年)第40期,第1649~1663頁),以及Amelinkx等人的「催化生長螺旋形石墨奈米管之形成機制」(「科學」(1994年)第265期,第635~639頁),其等關於製造金屬奈米顆粒的內容藉由引用併入本文中。在一個實施例中,水:界面活性劑的重量比在2:1與1:5之間,較佳在1:1與1:4之間。
金屬觸媒奈米顆粒用於包含熱解油的雙連續、w/o或o/w微乳液中。在一個實施例中,最佳的是雙連續微乳液。有利地,藉由混合第一(雙連續)微乳液(其中水相含有能夠還原為最終金屬顆粒的金屬錯合物鹽)與第二(雙連續)微乳液(其中水相含有能夠還原所述金屬錯合物鹽的還原劑),在所述(雙連續)微乳液中控制金屬顆粒的均勻性;混合後金屬錯合物經還原,從而形成金屬顆粒。受控(雙連續)乳液環境可穩定顆粒,防止結塊或奧斯華熟化。觸媒顆粒的大小、濃度及耐久性易於控制。將平均金屬粒子大小調整在上述範圍內視為常規實驗,例如藉由修改金屬前驅物與還原劑的莫耳比。增加還原劑的相對量可產生更小的顆粒。由此獲得的金屬顆粒為單分散的,與平均粒子大小的偏差較佳在10%以內,更佳在5%以內。此外,本技術對實際金屬前驅物沒有限制,前提是其可經還原。
包括於含碳奈米纖維碳網路中的奈米顆粒之非限制性實例為貴金屬(Pt、Pd、Au、Ag)、鐵族元素(Fe、Co及Ni)、Ru、及Cu。適合的金屬錯合物包括但不限於(i)鉑前驅物,諸如H2PtCl6;H2PtCl6.xH2O;K2PtCl4;K2PtCl4.xH2O;Pt(NH3)4(NO3)2;Pt(C5H7O2)2,(ii)釕前驅物,諸如Ru(NO)(NO3)3;Ru(dip)3Cl2 [dip=4,7-二苯基-1,10-菲羅啉];RuCl3,或(iii)鈀前驅物,諸如Pd(NO3)2,或(iv)鎳前驅物,諸如NiCl2或NiCl2.xH2O;Ni(NO3)2;Ni(NO3)2.xH2O;Ni(CH3COO)2;Ni(CH3COO)2.xH2O;Ni(AOT)2 [AOT=雙(2-乙基己基)磺基琥珀酸鹽],其中x可為選自1、2、3、4、5、6、7、8、9或10中的任何整數,且通常為6、7或8。非限制性適合還原劑為氫氣、硼氫化鈉、硫酸氫鈉、肼或水合肼、乙二醇、甲醇及乙醇。檸檬酸及十二胺亦適用。金屬前驅物的類型非本發明的必要部分。
為控制最終形成的碳結構網路之形態,(雙連續)微乳液的顆粒的金屬較佳選自由Pt、Pd、Au、Ag、Fe、Co、Ni、Ru及Cu、及其混合物組成的群組。金屬奈米顆粒最終嵌入這些結構內部,金屬顆粒實體附著於這些結構。雖然不存在形成這些網路的金屬顆粒的最低濃度(事實上,網路是使用根據本發明的修飾碳黑製造製程形成的),但發現產率隨著金屬顆粒濃度的增加而增加。在較佳實施例中,活性金屬濃度為至少1 mM、較佳至少5 mM、較佳至少10 mM、更佳至少15 mM、更佳至少20 mM、特別地至少25 mM、最佳高達3500 mM、較佳高達3000 mM。在一個實施例中,金屬奈米顆粒包含高達250 mM的顆粒。這些是相對於(雙連續)微乳液的水相量的觸媒濃度。
包含熱解油的單相乳液的霧化較佳藉由噴灑來實現,使用噴嘴系統4,使乳液液滴與反應區3b中的熱廢氣a1接觸,導致傳統的碳化、網路形成及後續附聚,以產生根據本發明的多孔、化學互連、含碳奈米纖維碳網路e。注入步驟較佳涉及將溫度升高至600℃之上、較佳在700℃與3000℃之間、更佳在900℃與2500℃之間、更佳在1100℃與2000℃之間。 永續多孔碳網路
本發明的網路可具有以下特徵。
術語「永續多孔碳網路」及「永續多孔碳網路材料互換使用。
首先亦是最重要的,這些網路是循環的,這意味著碳自廢物(即,報廢輪胎、不可回收塑膠或生物質廢物)製備。藉由將這種廢物轉化為有用的碳產品,每年可節省高達1.5億噸的CO 2。這不包括碳產品在與彈性體或塑膠的複合物中使用時所能帶來的任何益處。循環或永續碳產品可用於降低輪胎的滾動阻力及/或耐磨性,或提高回收塑膠的機械及電氣性質;為真正永續的高效能塑膠及輪胎鋪平道路,在使用壽命結束時,產品可完全回收或再次用作熱解原料,完成循環。在此上下文中,本發明上下文中的術語「永續」及「循環」可互換使用,且該術語具有超出其製造方法的商業及技術含義。自未精煉的熱解油中獲得的產品可確認為是如此,亦可描述為減少碳足跡的產品。
在本發明的上下文中,永續性較佳理解為透過設計、製造及使用高效、有效的、安全及更環保的化學產品及製程(OECD定義),尋求提高自然資源的使用效率,以滿足人類對化學產品和服務的需求。熱解精煉步驟使熱解不是使碳黑製造更具永續性的有吸引力的候選方案,若有,則其會增加製程的成本。因此,在碳黑製造的商業製程中直接使用熱解油將是永續性成就。技術熟練的技工及消費者認為,這種未精煉回收熱解處理的結果為永續產品(即,由未精煉的熱解油製成的碳網路產品)。
與原油中的碳相比,自熱解油產生的碳具有較低的pH值,並且在這些網路的表面處有大量的極性基,諸如羧基、羥基及環氧基。這些基增加極性聚合物(即,環氧樹脂、聚醯胺及聚酯、二氧化矽官能基化SSBR)及酸性反應分子(馬來酸酐接枝聚乙烯的聚丙烯、矽烷及氨基矽烷)中網路結構的親和力。特別地,自熱解油產生的碳的pH值最多為7.5。在不受理論約束的情況下,這可導致與基體的較佳的交互作用,從而衍生出具有增強特性的產品,諸如改善填料與基體的交互作用。最後產物的pH值較佳在4與7.5之間,最佳在5.5與7.5之間,更佳在5.5~7.3之間,最佳在5.5~7.0之間。
熟習此項技術者將理解,多孔網路是指允許流體或氣體通過的三維結構。多孔網路亦可表示為多孔介質或多孔材料。根據本發明的多孔碳網路如使用Brunauer、Emmett及Teller (Brunauer, Emmett, and Teller,BET)方法(ASTM D6556-09)量測的孔隙體積為0.1~1.5 cm 3/g,較佳0.2~1.5 cm 3/g,更佳0.3~1.3 cm 3/g,及最佳0.4~1.5 cm 3/g。
含碳奈米纖維碳網路可具有如使用壓汞式孔隙儀法(ASTM D4404-10)量測的粒內孔徑大小5~150 nm,較佳10~120 nm,及最佳10~100 nm。
含碳奈米纖維碳網路可具有如使用壓汞式孔隙儀法(ASTM D4404-10)量測的粒內體積0.10~1.1 cm 3/g,較佳0.51~1.0 cm 3/g,及最佳0.59~0.91 cm 3/g。
根據本發明的多孔碳網路(或本發明的多孔碳網路顆粒)可視為大分子,其中碳原子固有地共價互連。在此可理解,多孔碳網路顆粒為帶有化學互連(即,共價鍵合)纖維且具有粒內多孔的顆粒,與粒間多孔相反,粒間多孔是指由多個分子或顆粒形成的多孔網路,其中孔隙由實體聚集的顆粒或分子之間的空間形成。在本發明的上下文中,粒內多孔亦可表示為分子內多孔,因為根據本發明的碳網路顆粒可視為大分子,其中嵌入孔隙。因此,粒內多孔及分子內多孔在當前本文中具有相同的含義,且可互換使用,以描述本發明的多孔網路。與碳黑顆粒內沒有粒內多孔結構的傳統碳黑相比,但碳黑顆粒的聚集體可能具有粒間多孔性質。粒間/分子間是實體聚集顆粒(網路)之間的空間,而粒內/分子內是網路本身內的空間。
在不受理論約束的情況下,人們認為,與帶有粒間多孔的網路相比,帶有粒內多孔的網路的益處在於其更堅固且更具彈性,在受力時可抗擠壓及斷裂。粒內多孔是指孔隙存在於(奈米)顆粒內部。粒間多孔是指由於單獨顆粒堆疊之效果而存在的孔隙。粒間孔隙由於顆粒-顆粒界面而較弱,且容易坍塌。粒內孔隙由於其周圍的共價鍵合結構而非常堅固,且能夠承受高壓而不坍塌。
如上文所述,已知的增強劑,諸如碳黑,由球形顆粒的聚集物或附聚物組成,可形成3維結構,但單獨顆粒之間沒有任何共價連接(非「化學互連」),因此具有粒間多孔。總之,粒內多孔是指孔隙周圍的碳原子共價連接的情況,粒間多孔是指駐留於實體聚集、附聚、或類似者的顆粒之間的孔隙。
由於本發明的網路可視為一個大分子,因此無需將顆粒或網路的部分熔融在一起。因此,較佳地,化學互連、碳奈米纖維的多孔網路是非熔融、粒內多孔、化學互連、含碳奈米纖維碳網路,具有粒內多孔。在較佳實施例中,粒內孔隙體積可按下文進一步所述進行表徵,例如,根據壓汞式孔隙儀法(ASTM D4404-10)或Brunauer、Emmett及Teller (Brunauer, Emmett, and Teller,BET)方法(ISO 9277:10)。
熟習此項技術者將容易理解,在多孔、化學互連、含碳奈米纖維碳網路中之化學互連意謂碳奈米纖維是藉由化學鍵與其他碳奈米纖維互連。亦可理解,化學鍵是分子鍵或共價鍵之同義詞。通常,碳奈米纖維連接的地方表示為接面或纖維接面,因此可方便地稱為「共價接面」。這些術語在文本中可互換使用。在根據本發明的碳網路中,接面由共價連接的碳原子形成。此外,纖維長度界定為由纖維碳材料連接的接面之間的距離。
本發明的含碳奈米纖維網路中的至少部分纖維為結晶碳奈米纖維。較佳地,本發明中碳網路中至少20 wt.%的碳是結晶的、更佳至少40 wt.%、甚至更佳至少60 wt.%、甚至更佳至少80 wt.%、及最佳至少90 wt.%。或者,與本發明的碳網路中的總碳量相比,結晶碳的量為20~90 wt.%、更佳30~70 wt.%、及更佳40~50 wt.%。這裡的晶體有其通常的含義,是指材料中的結構有序程度。換言之,奈米纖維中的碳原子在某種程度上是以規則的、週期性的方式排列的。結晶的面積或體積可表示為微晶。因此,碳微晶是單獨碳晶體。量測碳微晶大小的一個指標是石墨層的堆疊高度。標準ASTM等級的碳黑在這些微晶中石墨層的堆疊高度範圍為11~13 Å(埃)。本發明的含碳奈米纖維碳網路具有至少15 Å(埃)、較佳至少16 Å、更佳至少17 Å、甚至更佳至少18 Å、甚至更佳至少19 Å以及又更佳至少20 Å的堆疊高度。若需要,可製備具有100 Å(埃)大小微晶的碳網路。因此,本發明的碳網路具有高達100 Å(埃)、更佳高達80 Å、甚至更佳高達60 Å、甚至更佳高達40 Å、又更佳高達30 Å的堆疊高度。因此,應理解,本發明的碳網路中微晶內石墨層的堆疊高度為15~90 Å(埃)、更佳16~70 Å埃、甚至更佳17~50 Å、更佳18~30 Å以及最佳19~25 Å。
多孔、化學互連、含碳奈米纖維碳網路可定義為具有化學互連的碳奈米纖維,其中碳奈米纖維透過接面部分來互連,其中幾個(通常3個或更多個、較佳至少10個或更多個)奈米纖維共價連結。所述碳奈米纖維是接面之間網路的那些部分。這些纖維通常是固體(即,非空心)的細長體,較佳具有1~500 nm、較佳5~350 nm、更佳高達100 nm的平均直徑或厚度,在一個實施例中為50~100 nm,而碳黑顆粒的平均粒子大小為10~400 nm。在一個實施例中,平均纖維長度(即,兩個接面之間的平均距離)較佳在30~10000 nm、更佳50~5000 nm、更佳100~5000 nm、更佳至少200~5000 nm的範圍內,例如可使用SEM判定。
奈米纖維或結構可較佳地根據纖維長度與厚度之平均縱橫比為至少2、較佳至少3、更佳至少4、及最佳至少5、較佳至少50之下來描述;與經由慣用碳黑製造獲得的球形顆粒形成的無定形(實體關聯)聚集體形成鮮明對比。
碳奈米纖維結構可定義為由化學互連的碳奈米纖維形成的碳網路。所述碳網路具有3維結構,其中碳奈米纖維之間具有開口,該開口可進入連續相,該連續相可為液體(諸如溶劑或水相)、氣體或任何其他相。所述碳網路的直徑至少為0.5 μm,較佳直徑至少為1 μm,較佳直徑至少為5 μm,更佳直徑至少為10 μm,甚至更佳直徑至少為20 μm,及最佳所有尺寸為25 μm。或者,所述碳網路在2維中的直徑至少為1 μm,在另一維中的直徑至少為5 μm,較佳直徑至少為10 μm,更佳直徑至少為20μm,最佳直徑至少為25 μm。這裡,以及在整個本文中,術語維度以其正常方式使用,且是指空間維度。有3個彼此正交的空間維度,其在正常實體意義上界定空間。此外,所述碳網路在2維中的直徑至少為10 μm,在另一維中的直徑至少為15 μm,較佳直徑至少為20 μm,更佳直徑至少為25 μm,更佳直徑至少為30 μm,最佳直徑至少為50 μm。
含碳奈米纖維碳網路可具有基於體積的聚集物大小,如使用雷射繞射(ISO 13320)或動態光散射分析量測的0.1~100 μm、較佳1~50 μm、更佳4~40 μm、更佳5~35 μm、更佳6~30 pm、更佳7~25 μm以及最佳8~20 μm。
根據Brunauer、Emmett及Teller (Brunauer, Emmett, and Teller,BET)方法(ISO 9277:10)量測的含碳奈米纖維碳網路的表面積在較佳40~120 m 2/g、更佳45~110 m 2/g、甚至更佳50~100 m 2/g以及最佳50~90 m 2/g的範圍內。
多孔、化學互連、含碳奈米纖維碳網路亦可包含內建為網路的部分的碳黑顆粒。這些顆粒主要存在於碳奈米纖維之間的接面處,但在網路的其他部分亦可能存在碳黑顆粒。碳黑顆粒的直徑較佳至少為碳奈米纖維直徑的0.5倍,更佳至少與碳奈米纖維直徑相同,甚至更佳至少為碳奈米纖維直徑的2倍,甚至更佳至少為碳奈米纖維直徑的3倍,更佳至少為碳奈米纖維直徑的4倍,及最佳至少為碳奈米纖維直徑的5倍。較佳碳黑顆粒的直徑最多為碳奈米纖維直徑的10倍。這種混合的網路稱為混合網路。
多孔、化學互連、含碳奈米纖維碳網路具有官能基化表面。換言之,表面包含將表面的疏水性質(碳的典型特性)改變為更親水的性質的基。碳網路的表面包含羧基、羥基及含酚物。這些基給表面增加一些極性,並可改變官能基化碳網路所嵌入的化合物材料的性質。在不希望受到理論約束的情況下,人們認為官能基化基與彈性體結合,例如藉由形成H鍵,從而增加材料的彈性。因此,至少改變材料的剛性及耐久性,這可導致增強彈性體,特別是包含所述增強彈性體的輪胎或傳送帶的滾動阻力降低及操作壽命增加。
多孔、化學互連、含碳奈米纖維碳網路可包含金屬觸媒奈米顆粒。這些是製備方法的指紋。這些顆粒可具有1 nm與100 nm之間的平均粒子大小。較佳地,所述顆粒為單分散顆粒,其偏離其平均粒子大小的範圍在10%以內,更佳在5%以內。包括於含碳奈米纖維碳網路中的奈米顆粒之非限制性實例為貴金屬(Pt、Pd、Au、Ag)、鐵族元素(Fe、Co及Ni)、Ru、及Cu。適合的金屬錯合物可為(i)鉑前驅物,諸如H 2PtCl 6;H 2PtCl 6.xH 2O;K 2PtCl 4;K 2PtCl 4.xH 2O;Pt(NH 3) 4(NO 3) 2;Pt(C 5H 7O 2) 2,(ii)釕前驅物,諸如Ru(NO)(NO 3) 3;Ru(dip) 3Cl 2[dip=4,7-二苯基-1,10-菲羅啉];RuCl 3,或(iii)鈀前驅物,諸如Pd(NO 3) 2,或(iv)鎳前驅物,諸如NiCl 2或NiCl 2.xH 2O;Ni(NO 3) 2;Ni(NO 3) 2.xH 2O;Ni(CH 3COO) 2;Ni(CH 3COO) 2.xH 2O;Ni(AOT) 2[AOT=雙(2-乙基己基)磺基琥珀酸鹽],其中x可為選自1、2、3、4、5、6、7、8、9或10中的任何整數,且通常可為6、7或8。
雖然這些永續多孔網路的使用不受限制,但本發明特別涉及這些網路在複合物中的使用,以及包括根據本發明的碳結構網路的永續複合物,其進一步包含一或多個聚合物,網路為了機械強度、導電性或導熱性添加至所述基於聚合物的複合物中。可基於複合物中總聚合物重量,以適於所需效能的任何量(例如1~70 wt%、更佳10~50 wt%、甚至更佳20~40 wt%)添加網路。在一個態樣中,複合物顯示網路濃度相依彈性模數(E-模數,即,隨著網路濃度的增加而增加),例如,如根據ISO 527所量測。 實例 實例1   結晶碳結構網路之製備。
熱解油o/w微乳液在根據本發明的製程中由以下各者製成: a) 自Scandinavian Enviro系統獲得的輪胎熱解油(Tire Pyrolysis oil,TPO),具有碳含量86~85 wt%,硫含量0.7~0.9 wt%,及水含量9~13 wt%。 b) 含有氯化鐵為觸媒的水相。 c) 界面活性劑:帶有芳香疏水基的聚氧化乙烯基界面活性劑
針對不同成分的微乳液,用SEM觀察到的細長結構的外觀進行分析。觀察到細長結構的情況如下:
熱解油 界面活性劑 添加水 觸媒
79% 16% 6% 0.73%
74% 20% 6% 0.83%
72% 20% 8% 0.96%
72% 20% 8% 1.12%
70% 20% 10% 1.38%
70% 20% 10% 1.17%
藉由在根據本發明的製程中注入先前描述的熱解油乳液,可產生結晶碳結構網路。在這個實例中,使用的爐反應器是Carcass N550反應器,操作時滯留時間為294 ms,溫度在攝氏1200至2000度之間,原料製備速率為3.65噸/小時。透過這個製程獲得的這種網路的特性如下:
特性 單元  
      標準及/或分析技術
IAN   40~55 mg/g ASTM D1510
OAN   70~85 cc/100g ASTM D2414
N2SA   38~53 m 2/g ASTM D6556
STSA   38~53 m 2/g ASTM D6556
纖維        
  直徑 60~75 nm SEM
  長度 120~375 nm SEM
  縱橫比 2~5   SEM
  接面數目 1~10   SEM
附聚物大小(D50) 1~15 μm 雷射繞射 ISO 13320~1:2009
pH 5.3~6.8   內部標準
根據該製程為產品獲得的較低pH值被認為藉由改善與這些網路表面的界面活性基的交互作用,而改善由熱解油製成的碳的填料與基質的交互作用,從而使其成為與來自蒽油的碳相比的改善的填料。 例2  來自不同油的碳的pH值
使用三種乳液合成三批次碳網路,各個含有具有聚氧化乙烯基界面活性劑,該界面活性劑具有芳香族疏水基(70%wt)、水(10%wt)及FeCl3(<1%wt),但油組分為變量: - 成分1:蒽油; - 成分2:輪胎熱解油(Scandinavian Enviro系統);及 - 成分3:生物熱解油(自BTG獲得)。
將30毫克所製備網路粉末磨碎,並將磨碎的粉末與去礦質水及2滴丙酮混合。在量測pH值之前,將混合物超聲處理1分鐘。
所得pH值分別為7.7、7.3及6.8。
成分2及3的熱解油基碳網路的表面含有羧基、羥基及/或環氧基。這些極性基增加極性聚合物(即,環氧樹脂、聚醯胺及聚酯、二氧化矽官能基化SSBR)及酸性反應分子(馬來酸酐接枝聚乙烯的聚丙烯、矽烷及氨基矽烷)中此類結構的親和力。
3:反應器 3a:燃燒區 3b:反應區 3c:終止區 4:噴嘴系統 a:燃料 a1:廢氣 b:含氧氣體 c:單相乳液/微乳液 d:水 e:結晶碳結構網路
第1A圖是根據本發明的連續熔爐式碳黑製備製程的示意圖,其沿反應器3的軸線含有燃燒區3a、反應區3b及終止區3c,在燃燒區中藉由在含氧氣體b中燃燒燃料a產生熱廢氣a1流,並將廢氣a1自燃燒區3a傳遞至反應區3b,在含有熱廢氣的反應區3b中噴灑(霧化)單相乳液c,在升高的溫度下碳化所述乳液,及藉由噴灑水d淬火或停止終止區3c中的反應,以獲得多孔、化學互連、含碳奈米纖維碳網路e; 發明條款 1. 在含有反應區3b及終止區3c的反應器3中自熱解油製備結晶碳結構網路的製程,藉由將單相乳液c(為包含根據本發明的熱解油及金屬觸媒奈米顆粒的微乳液)注入反應區3b(反應區3b在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下)中以製備結晶碳結構網路e,將這些網路e轉移至終止區3c,及藉由噴灑水d淬火或停止終止區中結晶碳結構網路的形成。 2. 根據條款1所述之製程,所述反應器為熔爐式碳黑反應器3(沿反應器3的軸線含有燃燒區3a、反應區3b及終止區3c),在燃燒區中藉由在含氧氣體b中燃燒燃料a來產生熱廢氣a1流,並將廢氣a1自燃燒區3a傳遞至反應區3b中,在含有熱廢氣的反應區3b中噴灑包含熱解油及金屬觸媒奈米顆粒c的微乳液,在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的溫度下碳化所述微乳液,及藉由噴灑水d淬火或停止終止區3c中的反應,以產出結晶碳結構網路e。 3. 根據前述條款中任一項所述之製程,其中乳液中熱解油相基於熱解油的總重量具有至少40 wt%的碳含量、及高達50 wt%的添加水含量、高達4 wt%的硫含量及高達50 wt%的氧原子含量。 4. 根據前述條款中任一項所述之製程,所述乳液包含至少1 mM金屬觸媒奈米顆粒,較佳具有1與100 nm之間的平均粒子大小。 5. 根據前述條款中任一項所述之製程,其中製造網路的碳原料的至少50 wt%、較佳全部是作為單相乳液中的熱解油提供的。 6. 根據前述條款中任一項所述之製程,其中在單相乳液c中提供的熱解油的反應器滯留時間小於5秒、較佳小於2秒、更佳1~1000毫秒、最佳10~500毫秒。 7. 根據前述條款中任一項所述之製程,其中提供至反應器3的熱解油具有基於熱解油的重量的0.5與4.0 wt%之間的硫含量。 8. 根據前述條款中任一項所述之製程,其中提供至反應器3的熱解油具有基於熱解油的重量的10與50 wt%之間的氧原子含量。 9. 一種永續多孔碳網路材料,其包含可藉由根據前述條款中任一項所述之製程獲得的化學互連碳奈米纖維,其中網路中的孔隙具有根據ASTM D4404-10使用壓汞式孔隙儀法的5~150 nm的粒內孔徑大小,其中碳網路中至少20 wt%的碳呈結晶形式,且碳奈米纖維具有至少為2的纖維長度與厚度之平均縱深比,其中所獲得的碳網路pH值最多為8.5、較佳在4與8.5之間、最佳在5.5與7.5之間,且其中碳由熱解油提供。 10.   在碳黑製造製程(較佳熔爐式碳黑製造製程)中使用乳化熱解油,用於製備永續結晶碳結構網路。 11.   一種包含根據條款9所述的永續多孔碳網路的永續產品。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
3:反應器
3a:燃燒區
3b:反應區
3c:終止區
4:噴嘴系統
a:燃料
a1:廢氣
b:含氧氣體
c:單相乳液/微乳液
d:水
e:結晶碳結構網路

Claims (11)

  1. 一種在含有一反應區3b及一終止區3c的一反應器3中自熱解油製備結晶碳奈米纖維網路的製程,藉由將一單相乳液c(為包含根據本發明的熱解油及金屬觸媒奈米顆粒的一微乳液)注入該反應區3b(該反應區3b在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的一溫度下)中,以製備結晶碳奈米纖維網路e,將這些網路e轉移至該終止區3c,及藉由噴灑水d淬火或停止該終止區中結晶碳奈米纖維網路之該形成。
  2. 如請求項1所述之製程,該反應器為一熔爐式碳黑反應器3(沿該反應器3的軸線含有一燃燒區3a、一反應區3b及一終止區3c),藉由在該燃燒區中藉由在一含氧氣體b中燃燒一燃料a產生一熱廢氣a1流,並將該廢氣a1自該燃燒區3a傳遞至該反應區3b中,在含有該熱廢氣的該反應區3b中噴灑包含熱解油及金屬觸媒奈米顆粒的一微乳液c,在600℃之上、較佳700℃之上、更佳900℃之上、甚至更佳1000℃之上、更佳1100℃之上、較佳高達3000℃、更佳高達2500℃、最佳高達2000℃的一溫度下碳化該微乳液,及藉由在該終止區3c中噴灑水d淬火或停止該反應,以產出結晶碳奈米纖維網路e。
  3. 如前述請求項中任一項所述之製程,其中該乳液中的該熱解油相具有基於該熱解油的該總重量的至少40 wt%的一碳含量、及高達50 wt%的添加水含量、高達4 wt%的一硫含量及高達50 wt%的氧原子含量。
  4. 如請求項1至2中任一項所述之製程,該乳液包含至少1 mM金屬觸媒奈米顆粒,較佳具有1與100 nm之間的一平均粒子大小。
  5. 如請求項1至2中任一項所述之製程,其中製造該些網路的該些碳原料的至少50 wt%、較佳全部是作為該單相乳液中之熱解油提供的。
  6. 如請求項1至2中任一項所述之製程,其中在該單相乳液c中提供的該熱解油的該反應器滯留時間小於5秒、較佳小於2秒、更佳1~1000毫秒、最佳10~500毫秒。
  7. 如請求項1至2中任一項所述之製程,其中提供至反應器3之該熱解油具有基於該熱解油的該重量的0.5與4.0 wt%之間的一硫含量。
  8. 如請求項1至2中任一項所述之製程,其中提供至反應器3的該熱解油具有基於該熱解油的該重量的10與50 wt%之間的一氧原子含量。
  9. 一種永續多孔碳網路材料,其包含可藉由根據前述請求項中任一項所述之製程獲得的化學互連碳奈米纖維,其中該網路中該些孔隙根據ASTM D4404-10使用壓汞式孔隙儀法具有5~150 nm的一粒內孔徑大小,其中該些碳網路中至少20 wt%的碳呈結晶形式,且該些碳奈米纖維的纖維長度與厚度之一平均縱深比至少為2,其中獲得的該碳網路的該pH值最多為7.5,較佳在4與7.5之間,最佳在5.5與7.5之間,且其中碳由熱解油提供。
  10. 在一碳黑製造製程(較佳一熔爐式碳黑製造製程)中使用一乳化熱解油,用於製備永續結晶碳奈米纖維網路。
  11. 一種永續產品,較佳一種永續塑膠或輪胎產品,包含根據請求項9所述之永續多孔碳網路。
TW110143919A 2020-11-25 2021-11-25 由熱解油製備碳奈米結構之新方法 TW202235366A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20209899.2 2020-11-25
EP20209899 2020-11-25

Publications (1)

Publication Number Publication Date
TW202235366A true TW202235366A (zh) 2022-09-16

Family

ID=73598003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110143919A TW202235366A (zh) 2020-11-25 2021-11-25 由熱解油製備碳奈米結構之新方法

Country Status (10)

Country Link
US (1) US20240092642A1 (zh)
EP (1) EP4251698A1 (zh)
JP (1) JP2023550566A (zh)
KR (1) KR20230138443A (zh)
CN (1) CN116783254A (zh)
AU (1) AU2021386287A1 (zh)
CA (1) CA3200050A1 (zh)
CO (1) CO2023007889A2 (zh)
TW (1) TW202235366A (zh)
WO (1) WO2022112254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240043586A1 (en) * 2022-07-27 2024-02-08 The Goodyear Tire & Rubber Company Rubber composition and a tire comprising said composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672402A (en) 1951-05-23 1954-03-16 Cabot Godfrey L Inc Process of producing carbon black and synthesis gas
DE2827872C2 (de) 1978-06-24 1986-02-13 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Furnaceruß
DE2944855C2 (de) 1979-11-07 1986-10-16 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Furnacerußen mit abgesenkter Struktur
CA2353392C (en) 1998-12-04 2010-10-05 Cabot Corporation Process for production of carbon black
ES2174560T3 (es) 1999-08-27 2002-11-01 Degussa Negro de carbono de horno, procedimiento para su preparacion y su empleo.
CA2689855C (en) 2009-03-24 2011-01-04 Recycling International Petroleum Products Inc. Method of reclaiming carbonaceous materials from scrap tires and products derived therefrom
NL2005365C2 (en) 2010-09-17 2012-03-20 Univ Delft Tech Carbon nanostructures and networks produced by chemical vapor deposition.
JP2015520259A (ja) 2012-05-17 2015-07-16 ウォン ウィン−ヤン カーボンブラック製造のための熱分解油
CA3028865A1 (en) 2016-06-28 2018-01-04 Carbonx Ip 3 B.V. Production of crystalline carbon structure networks
CN112513156B (zh) 2018-05-25 2023-07-28 卡波恩科斯Ip4私人有限公司 包含纳米碳纤维的碳网状物的用途

Also Published As

Publication number Publication date
CN116783254A (zh) 2023-09-19
AU2021386287A1 (en) 2023-06-22
JP2023550566A (ja) 2023-12-01
KR20230138443A (ko) 2023-10-05
CO2023007889A2 (es) 2023-09-08
CA3200050A1 (en) 2022-06-02
US20240092642A1 (en) 2024-03-21
EP4251698A1 (en) 2023-10-04
WO2022112254A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
CN109563356B (zh) 晶体碳结构网状物的制备
JP2020128548A (ja) 炭素コーティング粒子
KR20210024491A (ko) 탄소-나노섬유를 포함하는 탄소 네트워크의 용도
TW202235366A (zh) 由熱解油製備碳奈米結構之新方法
Jiang et al. Recent developments of waste tires derived multifunctional carbonaceous nanomaterials
RU2562278C2 (ru) Способ получения наноструктурированного углеродного материала на основе технического углерода
TW202124269A (zh) 用於電磁干擾屏蔽的組成物
US20230287187A1 (en) Use of carbon-nanofibers comprising carbon networks
EA042394B1 (ru) Получение сетки из кристаллических углеродных структур
Phasha Synthesis of Carbon Nanotubes-Polyphenylene Sulfone Composite Membranes for Waste Water Treatment from Petroleum Sources