TW202228192A - Semiconductor exposure machine calibration method and semiconductor structure manufacturing method - Google Patents

Semiconductor exposure machine calibration method and semiconductor structure manufacturing method Download PDF

Info

Publication number
TW202228192A
TW202228192A TW110100154A TW110100154A TW202228192A TW 202228192 A TW202228192 A TW 202228192A TW 110100154 A TW110100154 A TW 110100154A TW 110100154 A TW110100154 A TW 110100154A TW 202228192 A TW202228192 A TW 202228192A
Authority
TW
Taiwan
Prior art keywords
pattern
semiconductor
exposure machine
test layer
layer
Prior art date
Application number
TW110100154A
Other languages
Chinese (zh)
Other versions
TWI749985B (en
Inventor
陳和興
謝昊程
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW110100154A priority Critical patent/TWI749985B/en
Priority to CN202110192899.1A priority patent/CN114724970A/en
Application granted granted Critical
Publication of TWI749985B publication Critical patent/TWI749985B/en
Publication of TW202228192A publication Critical patent/TW202228192A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Abstract

A semiconductor exposure machine calibration method includes the following operations. A first test layer with a first pattern and a second test layer with a second pattern are formed by a first semiconductor exposure machine according to a first mask pattern and a second mask pattern and stacked sequentially. A third test layer with a third pattern is formed by a second semiconductor exposure machine according to a third mask pattern and stacked on the second test layer. An overlap error between the first pattern on the first test layer and the third pattern on the third test layer is measured by an electron microscope. Calibrate the first semiconductor exposure machine and the second semiconductor exposure machine according to the overlap error.

Description

半導體曝光機校正方法以及半導體結構製造方法Semiconductor exposure machine calibration method and semiconductor structure manufacturing method

本揭露有關於半導體曝光機校正方法以及半導體結構製造方法。The present disclosure relates to a calibration method for a semiconductor exposure machine and a method for fabricating a semiconductor structure.

對於半導體晶圓的製程來說,由於面積上的限制,只能針對主要相關層設計量測用的標記(mark),以供上下兩層直接疊對的圖案作確認。然而,當形成的層數為四層或以上,則將存在無法設計量測用標記的情況。由於是對於使用不同半導體曝光機來形成的二個次相關半導體層,在缺乏量測用標記,將難以確認二個次相關半導體層的圖案之間是否疊對正確,對應也難以確認半導體晶圓上的線路是否符合預期。For the manufacturing process of semiconductor wafers, due to the limitation of the area, only the main related layers can be designed with measurement marks, so as to confirm the pattern of the upper and lower layers directly overlapped. However, when the number of layers to be formed is four or more, there will be cases where the marking for measurement cannot be designed. Since the two sub-related semiconductor layers are formed using different semiconductor exposure machines, it is difficult to confirm whether the patterns of the two sub-related semiconductor layers are properly overlapped due to the lack of measurement marks, and it is also difficult to confirm the corresponding semiconductor wafer. Is the line on the line as expected.

因此,如何改善上述問題,是所屬領域技術人員所欲解決的問題之一。Therefore, how to improve the above problems is one of the problems to be solved by those skilled in the art.

本揭露之一態樣有關於一種半導體曝光機校正方法。One aspect of the present disclosure relates to a method for calibrating a semiconductor exposure machine.

根據本揭露之一實施方式,一種半導體曝光機校正方法包括以下流程。第一半導體曝光機通過第一光罩圖形與第二光罩圖形分別形成依序堆疊的第一測試層以及第二測試層。第一測試層與第二測試層分別具有第一圖案與第二圖案。第二半導體曝光機通過第三光罩圖形於第二測試層上堆疊第三測試層。第三測試層具有第三圖案。通過電子顯微鏡量測第一測試層上的第一圖案與第三測試層上的第三圖案之間的疊對誤差。根據疊對誤差校準第一半導體曝光機以及第二半導體曝光機。According to an embodiment of the present disclosure, a method for calibrating a semiconductor exposure machine includes the following processes. The first semiconductor exposure machine forms the first test layer and the second test layer sequentially stacked respectively through the first mask pattern and the second mask pattern. The first test layer and the second test layer respectively have a first pattern and a second pattern. The second semiconductor exposure machine stacks the third test layer on the second test layer through the third mask pattern. The third test layer has a third pattern. The stacking error between the first pattern on the first test layer and the third pattern on the third test layer is measured by an electron microscope. The first semiconductor exposure machine and the second semiconductor exposure machine are calibrated according to the stacking error.

在本揭露一或多個實施方式,疊對誤差包括第一圖案與第三圖案之間的水平偏移。In one or more embodiments of the present disclosure, the overlay error includes a horizontal offset between the first pattern and the third pattern.

在一些實施方式中,在根據疊對誤差校準第一半導體曝光機以及第二半導體曝光機的流程中,第二半導體曝光機根據疊對誤差向多個光罩圖形提供同一個補償相差,光罩圖形包括形成第三圖案的第三圖案光罩圖形。In some embodiments, in the process of calibrating the first semiconductor exposure machine and the second semiconductor exposure machine according to the stacking error, the second semiconductor exposure machine provides the same compensation phase difference to a plurality of reticle patterns according to the stacking error, and the reticle The pattern includes a third pattern reticle pattern forming a third pattern.

在本揭露一或多個實施方式,第一圖案與第二圖案設置使通道穿過第一測試層以及第二測試層。第三測試層延伸至通道內。In one or more embodiments of the present disclosure, the first pattern and the second pattern are arranged so that the channel passes through the first test layer and the second test layer. The third test layer extends into the channel.

在一些實施方式中,前述的半導體曝光機校正方法進一步包括以下流程。第二半導體曝光機通過第四光罩圖形於第三測試層上堆疊第四測試層。第四測試層包括第四圖案。通過電子顯微鏡量測第二測試層上的第二圖案與第四測試層上的第四圖案之間的疊對誤差。In some embodiments, the aforementioned semiconductor exposure machine calibration method further includes the following procedures. The second semiconductor exposure machine stacks the fourth test layer on the third test layer through the fourth mask pattern. The fourth test layer includes a fourth pattern. The stacking error between the second pattern on the second test layer and the fourth pattern on the fourth test layer is measured by an electron microscope.

在本揭露一或多個實施方式,第四測試層延伸至第二測試層。In one or more embodiments of the present disclosure, the fourth test layer extends to the second test layer.

在本揭露一或多個實施方式,前述的半導體曝光機校正方法進一步包括以下流程。在第四測試層形成後,量測第二測試層上多個導電圖案中任二個導電圖案是否短路。In one or more embodiments of the present disclosure, the aforementioned method for calibrating a semiconductor exposure machine further includes the following processes. After the fourth test layer is formed, it is measured whether any two conductive patterns of the plurality of conductive patterns on the second test layer are short-circuited.

在一些實施方式中,電子顯微鏡包括掃描式電子顯微鏡(SEM)。In some embodiments, the electron microscope comprises a scanning electron microscope (SEM).

本揭露之一態樣有關於一種半導體結構製造方法。One aspect of the present disclosure relates to a method of fabricating a semiconductor structure.

根據本揭露之一實施方式,一種半導體結構製造方法包括以下流程。提供通過如前所述的半導體曝光機校正方法校準的第一半導體曝光機與第二半導體曝光機。通過第一半導體曝光機以第一光罩圖形與第二光罩圖形分別形成依序堆疊一半導體圖案層以及二半導體圖案層。通過第二半導體曝光機以第三光罩圖形與第四光罩圖形分別形成依序堆疊第二半導體圖案層的第三半導體圖案層以及第四半導體圖案層,以形成半導體結構。According to an embodiment of the present disclosure, a method for fabricating a semiconductor structure includes the following processes. A first semiconductor exposure machine and a second semiconductor exposure machine calibrated by the semiconductor exposure machine calibration method as described above are provided. A semiconductor pattern layer and two semiconductor pattern layers are sequentially stacked with a first mask pattern and a second mask pattern by a first semiconductor exposure machine. A third semiconductor pattern layer and a fourth semiconductor pattern layer which are sequentially stacked on the second semiconductor pattern layer are formed by a second semiconductor exposure machine with a third mask pattern and a fourth mask pattern respectively, so as to form a semiconductor structure.

在本揭露一或多個實施方式,前述的半導體結構製造方法進一步包括以下流程。切割半導體結構為複數個裸片。量測這些裸片的良率。In one or more embodiments of the present disclosure, the aforementioned method for fabricating a semiconductor structure further includes the following processes. The semiconductor structure is diced into a plurality of dies. The yield of these dies is measured.

綜上所述,本揭露提供的半導體曝光機校正方法,能夠修正次相關圖案因無法對齊而導致非預期的短路問題。To sum up, the semiconductor exposure machine calibration method provided by the present disclosure can correct the unintended short circuit problem caused by the sub-correlation pattern being unaligned.

應理解到,以上的一般說明與以下的詳細描述都是通過示例做進一步說明,旨在為本揭露提供做進一步的解釋。It should be understood that the above general description and the following detailed description are all further descriptions by way of examples, and are intended to provide further explanation of the present disclosure.

下文列舉實施例配合所附圖式進行詳細說明,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。另外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。The following examples are described in detail in conjunction with the accompanying drawings, but the provided examples are not intended to limit the scope of the present disclosure, and the description of the structure and operation is not intended to limit the order of its execution. Any recombination of elements The structure and the resulting device with equal efficacy are all within the scope of the present disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn on the original scale. For ease of understanding, the same or similar elements in the following description will be described with the same symbols.

除非另有定義,本文所使用的所有詞彙(包括技術和科學術語)具有其通常的意涵,其意涵是能夠被熟悉此領域者所理解。更進一步的說,上述的詞彙在普遍常用的字典中的定義,在本說明書的內容中應被解讀為與本揭露相關領域一致的意涵。除非有特別明確定義,這些詞彙將不被解釋為理想化的或過於正式的意涵。Unless otherwise defined, all terms (including technical and scientific terms) used herein have their ordinary meanings as understood by those skilled in the art. Furthermore, the definitions of the above words in commonly used dictionaries should be interpreted as meanings consistent with the relevant fields of the present disclosure in the content of this specification. Unless specifically defined, these terms are not to be construed in an idealized or overly formal sense.

關於本文中所使用之『第一』、『第二』、…等,並非特別指稱次序或順位的意思,亦非用以限定本揭露,其僅僅是為了區別以相同技術用語描述的元件或操作而已。The terms "first", "second", ... etc. used in this document do not specifically refer to the order or order, nor are they used to limit the present disclosure, but are only used to distinguish elements or operations described in the same technical terms. That's it.

其次,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指包含但不限於。Secondly, the terms "comprising", "including", "having", "containing" and the like used in this document are all open-ended terms, which means including but not limited to.

再者,於本文中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或多個。將進一步理解的是,本文中所使用之『包含』、『包括』、『具有』及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其所述或額外的其一個或多個其它特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。Furthermore, in this text, unless the content of the article is particularly limited, "a" and "the" can generally refer to a single one or a plurality of. It will be further understood that the terms "comprising", "including", "having" and similar words used herein designate the recited features, regions, integers, steps, operations, elements and/or components, but do not exclude one or more of its other features, regions, integers, steps, operations, elements, components, and/or groups thereof, described or additional thereto.

為解決次相關半導體疊層難以量測圖案之間疊對誤差問題,本揭露提供半導體曝光機校正方法,以及基於本揭露半導體曝光機校正方法結果來進行的半導體結構製造方法。In order to solve the problem that it is difficult to measure the alignment error between the sub-correlated semiconductor stacks, the present disclosure provides a semiconductor exposure machine calibration method, and a semiconductor structure fabrication method based on the results of the semiconductor exposure machine calibration method of the present disclosure.

請依序參照第1圖、第2圖。第1圖根據本揭露之一實施方式繪示一半導體曝光機校正方法100的一流程圖。第2圖根據本揭露之一實施方式繪示一半導體結構製造方法200的一流程圖。第2圖所繪示的半導體結構製造方法200,能夠基於半導體曝光機校正方法100的校正結果來進行。Please refer to Figure 1 and Figure 2 in order. FIG. 1 is a flowchart illustrating a calibration method 100 of a semiconductor exposure machine according to an embodiment of the present disclosure. FIG. 2 illustrates a flowchart of a method 200 for fabricating a semiconductor structure according to an embodiment of the present disclosure. The semiconductor structure manufacturing method 200 shown in FIG. 2 can be performed based on the calibration result of the semiconductor exposure machine calibration method 100 .

為進一步說明本揭露之一半導體曝光機校正方法100,請先依序參照第3圖與第4圖。第3圖至第4圖根據本揭露之一實施方式繪示半導體曝光機校正方法100不同流程之結構的剖面圖。應留意到,第3圖至第4圖僅示例地繪示疊對部分的局部,而不應以此限制本揭露。To further describe a semiconductor exposure machine calibration method 100 of the present disclosure, please refer to FIG. 3 and FIG. 4 in sequence. FIGS. 3 to 4 are cross-sectional views illustrating structures of different processes of the calibration method 100 for a semiconductor exposure machine according to an embodiment of the present disclosure. It should be noted that FIG. 3 to FIG. 4 only illustrate part of the overlapping portion by way of example, and should not limit the present disclosure.

在本實施方式中,使用的半導體曝光機包括曝光機,因此後述之第一半導體曝光機與第二半導體曝光機例如分別為第一曝光機與第二曝光機。第一曝光機與第二曝光機能夠通過設計的光罩圖形來形成圖案化的半導體層。但本揭露並不以此限制半導體曝光機的類型。In the present embodiment, since the semiconductor exposure machine used includes an exposure machine, the first semiconductor exposure machine and the second semiconductor exposure machine described later are, for example, a first exposure machine and a second exposure machine, respectively. The first exposure machine and the second exposure machine can form a patterned semiconductor layer through a designed mask pattern. However, the present disclosure does not limit the types of semiconductor exposure machines.

在一些實施方式中,圖案化的半導體層是形成於半導體晶圓或是半導體基板上,多個疊對的圖案化半導體層形成半導體結構,形成的半導體結構經切割能夠形成多個裸片。為了簡單說明的目的,半導體晶圓或是半導體基板被省略而未繪示。In some embodiments, the patterned semiconductor layer is formed on a semiconductor wafer or a semiconductor substrate, and a plurality of stacked patterned semiconductor layers form a semiconductor structure, and the formed semiconductor structure can be cut to form a plurality of dies. For the purpose of simple description, semiconductor wafers or semiconductor substrates are omitted and not shown.

請同時參照第1圖與第3圖。在流程110,通過第一半導體曝光機形成依序堆疊的第一測試層310以及第二測試層330。Please refer to Figure 1 and Figure 3 at the same time. In the process 110, a first test layer 310 and a second test layer 330 are sequentially stacked by a first semiconductor exposure machine.

在本實施方式中,如前所述,第一半導體曝光機通過第一光罩圖形形成圖案化的第一測試層310,第一測試層310具有第一圖案。如第3圖所示,在本實施方式中,圖案化的第一測試層310包括通道315。In this embodiment, as described above, the first semiconductor exposure machine forms the patterned first test layer 310 through the first mask pattern, and the first test layer 310 has a first pattern. As shown in FIG. 3 , in this embodiment, the patterned first test layer 310 includes channels 315 .

在第3圖中,通過第二光罩圖形,第一半導體曝光機形成圖案化的第二測試層330。第二測試層330堆疊在第一測試層310上。第二測試層330具有第二圖案。在本實施方式中,第二測試層330也包括通道335,並且圖案化的第二測試層330還包括間隔340。間隔340具有寬度W1。In FIG. 3, the first semiconductor exposure machine forms a patterned second test layer 330 through the second mask pattern. The second test layer 330 is stacked on the first test layer 310 . The second test layer 330 has a second pattern. In this embodiment, the second test layer 330 also includes channels 335 , and the patterned second test layer 330 further includes spaces 340 . The space 340 has a width W1.

在本實施方式中,第二測試層330的第二圖案在通道335之間包括二個分離的導電圖案330A與導電圖案330B,並且導電圖案330A與導電圖案330B之間存在間隔340。In this embodiment, the second pattern of the second test layer 330 includes two separated conductive patterns 330A and 330B between the channels 335 , and a space 340 exists between the conductive patterns 330A and 330B.

請回到第1圖,並同時參照第4圖。在流程120,通過第二半導體曝光機形成依序堆疊於第二測試層330的第三測試層350。在本實施方式中,如第4圖所示,於第三測試層350上,可以進一步堆疊第四測試層370。Please go back to Figure 1 and refer to Figure 4 at the same time. In the process 120, a third test layer 350 sequentially stacked on the second test layer 330 is formed by a second semiconductor exposure machine. In this embodiment, as shown in FIG. 4 , a fourth test layer 370 may be further stacked on the third test layer 350 .

如前所述,第二半導體曝光機通過第三光罩圖形與第四光罩圖形來分別形成圖案化的第三測試層350以及第四測試層370。第三測試層350與第四測試層370分別具有第三圖案與第四圖案。As mentioned above, the second semiconductor exposure machine forms the patterned third test layer 350 and the fourth test layer 370 respectively through the third mask pattern and the fourth mask pattern. The third test layer 350 and the fourth test layer 370 have a third pattern and a fourth pattern, respectively.

如第4圖所示,第三測試層350對準第一測試層310的通道315以及第二測試層330的通道335設置。換言之,通道315與通道335形成一個穿過第一測試層310與第二測試層330的總成通道345,而第三測試層350設置形成延伸於總成通道345上,從而在總成通道345內相鄰於第一測試層310。在第3圖與第4圖中,通道315與通道335形成的總成通道345以虛線呈現。於總成通道345上,第四測試層370堆疊於第三測試層350上。As shown in FIG. 4 , the third test layer 350 is aligned with the channel 315 of the first test layer 310 and the channel 335 of the second test layer 330 . In other words, the channel 315 and the channel 335 form an assembly channel 345 passing through the first test layer 310 and the second test layer 330 , and the third test layer 350 is arranged and formed to extend on the assembly channel 345 , so that the assembly channel 345 is formed in the assembly channel 345 . The inner adjacent to the first test layer 310 . In Figures 3 and 4, the assembly channel 345 formed by the channel 315 and the channel 335 is shown in phantom. On the assembly channel 345 , the fourth test layer 370 is stacked on the third test layer 350 .

然而,如第4圖所示,一旦第一半導體曝光機與第二半導體曝光機之間存在非預期的偏差/機差,將使得圖案化的第三測試層350相對於第一測試層310存在非預期的偏移。如第4圖所示,雖然圖案化的第三測試層350設計上對準通道315與通道335,但由於第一半導體曝光機與第二半導體曝光機之間存在非預期的偏差/機差,使得第三測試層350相對總成通道345具有水平偏移d,以致於部分的第三測試層350重疊到圖案化的第一測試層310與第二測試層330。However, as shown in FIG. 4 , once there is an unexpected deviation/difference between the first semiconductor exposure machine and the second semiconductor exposure machine, the patterned third test layer 350 will exist relative to the first test layer 310 Unexpected offset. As shown in FIG. 4, although the patterned third test layer 350 is designed to be aligned with the channel 315 and the channel 335, due to the unexpected deviation/machine difference between the first semiconductor exposure machine and the second semiconductor exposure machine, The third test layer 350 is made to have a horizontal offset d relative to the assembly channel 345 so that a portion of the third test layer 350 overlaps the patterned first test layer 310 and the second test layer 330 .

此外,如第4圖所示,在本實施方式中,圖案化的第四測試層370形成堆疊於第三測試層350上,第四測試層370的第四圖案部分370A設計連接第二測試層330上以間隔340分離的導電圖案330A與導電圖案330B其中之一。然而,由於第一半導體曝光機與第二半導體曝光機之間非預期的偏差/機差,使得第四測試層370同時連接到第二測試層330的二個應電性分離的導電圖案330A與導電圖案330B。如此一來,將可能會產生非預期的短路。In addition, as shown in FIG. 4, in this embodiment, the patterned fourth test layer 370 is formed and stacked on the third test layer 350, and the fourth pattern portion 370A of the fourth test layer 370 is designed to be connected to the second test layer One of the conductive patterns 330A and the conductive patterns 330B separated by a space 340 on 330 . However, due to the unexpected deviation/difference between the first semiconductor exposure machine and the second semiconductor exposure machine, the fourth test layer 370 is simultaneously connected to the two electrically separated conductive patterns 330A of the second test layer 330 and the Conductive pattern 330B. As a result, unexpected short circuits may occur.

如第4圖所示第四測試層370於總成通道345外具有與第二測試層330相連的部分,第四測試層370與第二測試層330相連的部分具有寬度W2,寬度W2大於寬度W1。因此,一旦發生偏離,第四測試層370將可能同時連接第二測試層330上二個應分離的導電圖案330A與導電圖案330B,產生非預期的短路。As shown in FIG. 4, the fourth test layer 370 has a portion connected to the second test layer 330 outside the assembly channel 345, and the portion of the fourth test layer 370 connected to the second test layer 330 has a width W2, and the width W2 is greater than the width W1. Therefore, once the deviation occurs, the fourth test layer 370 may simultaneously connect the two conductive patterns 330A and 330B on the second test layer 330 that should be separated, resulting in an unexpected short circuit.

在一些實施方式中,也可以通過測試第二測試層330上應分離的導電圖案330A與導電圖案330B之間是否短路,來確認第二測試層330與第四測試層370之間是否存在疊對誤差。In some embodiments, whether there is an overlap between the second test layer 330 and the fourth test layer 370 can also be confirmed by testing whether there is a short circuit between the conductive patterns 330A and 330B that should be separated on the second test layer 330 error.

在第4圖中,於第三測試層350與第四測試層370形成後,依序堆疊的第一測試層310、第二測試層330、第三測試層350以及第四測試層370能夠參照作為一個測試半導體結構。通過確認第一測試層310、第二測試層330、第三測試層350以及第四測試層370之間的疊對情況,將能夠獲得第一半導體曝光機與第二半導體曝光機之間存在的非預期的偏差/機差。In FIG. 4 , after the third test layer 350 and the fourth test layer 370 are formed, the sequentially stacked first test layer 310 , the second test layer 330 , the third test layer 350 and the fourth test layer 370 can be referred to as a test semiconductor structure. By confirming the overlapping of the first test layer 310 , the second test layer 330 , the third test layer 350 and the fourth test layer 370 , it is possible to obtain the existence of the first semiconductor exposure machine and the second semiconductor exposure machine. Unexpected deviation/machine error.

請回到第1圖。在流程130,通過電子顯微鏡量測第一測試層310的第一圖案與第三測試層350的第三圖案之間的疊對誤差。在本實施方式中,所使用的電子顯微鏡包括掃描式電子顯微鏡(Scanning Electron Microscope)。Please go back to Figure 1. In the process 130 , the alignment error between the first pattern of the first test layer 310 and the third pattern of the third test layer 350 is measured by an electron microscope. In this embodiment, the electron microscope used includes a scanning electron microscope (Scanning Electron Microscope).

第5A圖至第5C圖繪示的第一測試層310、第二測試層330、第三測試層350以及第四測試層370形成的測試半導體結構不同圖案疊對的多個頂視示意圖。FIGS. 5A to 5C illustrate a plurality of top views of stacks of different patterns of test semiconductor structures formed by the first test layer 310 , the second test layer 330 , the third test layer 350 and the fourth test layer 370 .

同時參照第1圖與第5A圖。第5A圖繪示電子顯微鏡下,第一測試層310與第三測試層350疊對的一局部。由於直接通過電子顯微鏡來觀察,將能夠確認光罩模擬軟體上未能呈現到的第一半導體曝光機與第二半導體曝光機之間的疊對機差。在第5A圖繪示的局部中,第一測試層310包括類方形的第一圖案部分310A,第三測試層350包括第三圖案部分350A、第三圖案部分350B、位於第一圖案部分310A上之長條第三圖案部分350C與第三圖案部分350D、第三圖案部分350E以及第三圖案部分350F。第三圖案部分350A於第三圖案部分350B設置於類方形的第一圖案部分310A左側。第三圖案部分350E於第三圖案部分350F設置於類方形的第一圖案部分310A右側。Refer to Figure 1 and Figure 5A at the same time. FIG. 5A shows a part of the overlapping of the first test layer 310 and the third test layer 350 under the electron microscope. Due to direct observation with an electron microscope, it is possible to confirm a lamination difference between the first semiconductor exposure machine and the second semiconductor exposure machine that cannot be seen on the mask simulation software. In the part shown in FIG. 5A, the first test layer 310 includes a first pattern portion 310A that is quasi-square, and the third test layer 350 includes a third pattern portion 350A, a third pattern portion 350B, and is located on the first pattern portion 310A The elongated third pattern portion 350C and the third pattern portion 350D, the third pattern portion 350E and the third pattern portion 350F. The third pattern portion 350A is disposed on the left side of the square-like first pattern portion 310A in the third pattern portion 350B. The third pattern portion 350E is disposed on the right side of the square-like first pattern portion 310A in the third pattern portion 350F.

在預定的設計與光罩軟體的模擬中,在第5A圖繪示的局部,第三測試層350應對稱疊對於第一測試層310上,意即,第三圖案部分350A~350F相對類方形的第一圖案部分310A,應是對稱分布的。相對於第一圖案部分310A,第三圖案部分350A、350B與第三圖案部分350E、350F應設置為對稱地相對,長條的第三圖案部分350C對第一圖案部分310A右邊緣的距離應設計等同於第三圖案部分350D對第一圖案部分310A左邊緣的距離。然而,由於第一測試層310與第三測試層350非預期的疊對誤差,使得第三測試層350相對第一測試層310偏移。如第5A圖所示,對於第三測試層350的第三圖案來說,中間的二長條的第三圖案部分350C與第三圖案部分350D相對第一測試層310的類方形的第一圖案部分310A相對二邊緣的距離並不相等。第三測試層350左邊的長條第三圖案部分350D相對類方形第一圖案部分310A左邊緣距離d1,第三測試層350右邊的長條第三圖案部分350C相對類方形右邊緣距離d2,而距離d2大於距離d1,說明第三測試層350相對第一測試層310是向左偏移。In the predetermined design and simulation of the mask software, in the part shown in FIG. 5A, the third test layer 350 should be symmetrically stacked on the first test layer 310, that is, the third pattern parts 350A-350F are relatively square-like The first pattern portion 310A should be symmetrically distributed. Relative to the first pattern portion 310A, the third pattern portions 350A, 350B and the third pattern portions 350E, 350F should be arranged to be symmetrically opposite, and the distance between the elongated third pattern portion 350C and the right edge of the first pattern portion 310A should be designed. Equivalent to the distance of the third pattern portion 350D to the left edge of the first pattern portion 310A. However, due to the unintended stacking error of the first test layer 310 and the third test layer 350 , the third test layer 350 is offset relative to the first test layer 310 . As shown in FIG. 5A , for the third pattern of the third test layer 350 , the third pattern portion 350C and the third pattern portion 350D of the middle two strips are opposite to the square-like first pattern of the first test layer 310 The distances of the portion 310A relative to the two edges are not equal. The long strip third pattern portion 350D on the left side of the third test layer 350 is at a distance d1 from the left edge of the square-like first pattern portion 310A, the long strip third pattern portion 350C on the right side of the third test layer 350 is at a distance d2 from the square-like right edge, and The distance d2 is greater than the distance d1 , indicating that the third test layer 350 is offset to the left relative to the first test layer 310 .

第4圖的水平偏移d,對應為二分之一的距離d2減去二分之一的距離d1。The horizontal offset d in Figure 4 corresponds to one-half of the distance d2 minus one-half of the distance d1.

第5B圖繪示通過電子顯微鏡獲得之第三測試層350與第四測試層370疊對的一局部。由於第三測試層350與第四測試層370同為第二半導體曝光機所形成,因此第三測試層350與第四測試層370之間不會有疊對誤差。如第5B圖所示,第三測試層350的橢圓第三圖案部分350G設置於第四測試層370的第四圖案部分370B的橢圓孔的中心,符合預期設計。若第三測試層350與第四測試層370在疊對上存在錯位或偏移,由於第三測試層350與第四測試層370同為第二半導體曝光機所形成,第二半導體曝光機的光罩模擬軟體應當即時反映。一般而言,同為第二半導體曝光機形成的第三測試層350與第四測試層370,之間應不會有疊對誤差。FIG. 5B shows a part of the overlapping of the third test layer 350 and the fourth test layer 370 obtained by an electron microscope. Since the third test layer 350 and the fourth test layer 370 are both formed by the second semiconductor exposure machine, there is no stacking error between the third test layer 350 and the fourth test layer 370 . As shown in FIG. 5B , the elliptical third pattern portion 350G of the third test layer 350 is disposed at the center of the elliptical hole of the fourth pattern portion 370B of the fourth test layer 370 , which conforms to the expected design. If the third test layer 350 and the fourth test layer 370 are misaligned or offset in the stack, since the third test layer 350 and the fourth test layer 370 are both formed by the second semiconductor exposure machine, the second semiconductor exposure machine The mask simulation software should respond instantly. Generally speaking, there should be no stacking error between the third test layer 350 and the fourth test layer 370 formed by the second semiconductor exposure machine.

第5C圖繪示通過電子顯微鏡獲得之第二測試層330與第四測試層370疊對的一局部。其中第二測試層330的第四測試層370之間為次相關的疊對關係,因此並無設計用以量測對準的測量標記。此時,通過電子顯微鏡,來確認疊對是否對準。FIG. 5C shows a part of the overlapping of the second test layer 330 and the fourth test layer 370 obtained by an electron microscope. The second test layer 330 and the fourth test layer 370 are in a sub-correlated stacking relationship, so there is no measurement mark designed to measure alignment. At this time, it was confirmed by an electron microscope whether or not the stacks were aligned.

如第5C圖所示,第二測試層330包括多個長條的導電圖案330A與330B,其中二個長條為一組作為彼此應以間隔340隔開的導電圖案330A與330B。然而,由於第一半導體曝光機與第二半導體曝光機之間的疊對機差,致使由第一半導體曝光機形成的第二測試層330與第二半導體曝光機形成的第四測試層370的第四圖案部分370A之間存在疊對誤差,從而使得圖案化的第四測試層370的第四圖案部分370A連接第二測試層330的二個應分離的長條導電圖案330A與330B,產生非預期的短路。As shown in FIG. 5C , the second test layer 330 includes a plurality of strips of conductive patterns 330A and 330B, wherein the two strips are a group of conductive patterns 330A and 330B that should be separated from each other by a gap 340 . However, due to the lamination machine difference between the first semiconductor exposure machine and the second semiconductor exposure machine, the second test layer 330 formed by the first semiconductor exposure machine and the fourth test layer 370 formed by the second semiconductor exposure machine There is a stacking error between the fourth pattern parts 370A, so that the fourth pattern part 370A of the patterned fourth test layer 370 connects the two long strip conductive patterns 330A and 330B of the second test layer 330 that should be separated, resulting in non-conductive Expected short circuit.

從第5A圖至第5C圖可知,首先,由於不同的第一半導體曝光機與第二半導體曝光機之間的疊對機差,使得第一測試層310與第二測試層330相對第三測試層350與第四測試層370存在疊對誤差。再者,由於第一半導體曝光機與第二半導體曝光機為不同機台,因此各自的光罩模擬軟體無法反映第一半導體曝光機與第二半導體曝光機之間的疊對機差,因此第一測試層310與第二測試層330相對第三測試層350與第四測試層370存在疊對誤差。而對於同一半導體曝光機的疊對,通常是能夠符合預期設計的,如第5B圖所示的第三測試層350以及第四測試層370,第四測試層370的橢圓第四圖案部分370B能夠符合設計地設置於第三測試層350的第三圖案部分350G的橢圓孔的中心。It can be seen from FIG. 5A to FIG. 5C that, first, due to the lamination machine difference between the different first semiconductor exposure machines and the second semiconductor exposure machines, the first test layer 310 and the second test layer 330 are relatively tested for the third There is a stacking error between the layer 350 and the fourth test layer 370 . Furthermore, since the first semiconductor exposure machine and the second semiconductor exposure machine are different machines, the respective mask simulation software cannot reflect the stacking machine difference between the first semiconductor exposure machine and the second semiconductor exposure machine. A test layer 310 and the second test layer 330 have a stacking error relative to the third test layer 350 and the fourth test layer 370 . For the stacking of the same semiconductor exposure machine, it is usually possible to meet the expected design. For the third test layer 350 and the fourth test layer 370 shown in FIG. 5B, the elliptical fourth pattern portion 370B of the fourth test layer 370 can be The center of the elliptical hole of the third pattern portion 350G of the third test layer 350 is arranged in accordance with the design.

因此,回到第1圖。在流程140,在根據流程130得出的疊對誤差後,根據疊對誤差來校準第一半導體曝光機與第二半導體曝光機。舉例而言,以第一半導體曝光機為基準來校準第二半導體曝光機。具體而言,第二半導體曝光機的校正,可以通過提供用於修正的補償相差來實現。意即,在後續的製造流程中,在第一半導體曝光機的光罩與第二半導體曝光機的光罩都設計完後,於第二半導體曝光機執行時,第二半導體曝光機於形成的圖案都加上一個額外的補償相差。So, back to Figure 1. In the process 140, after the stacking error obtained in the process 130, the first semiconductor exposure machine and the second semiconductor exposure machine are calibrated according to the stacking error. For example, the second semiconductor exposure machine is calibrated based on the first semiconductor exposure machine. Specifically, the correction of the second semiconductor exposure machine can be achieved by providing a compensation phase difference for correction. That is, in the subsequent manufacturing process, after the mask of the first semiconductor exposure machine and the mask of the second semiconductor exposure machine are designed, when the second semiconductor exposure machine is executed, the second semiconductor exposure machine is formed in the Patterns are added with an additional offset to compensate for the phase difference.

例如,在本實施方式中,於後續通過第三光罩圖形與第四光罩圖形來形成具第三圖案與第四圖案的半導體層時,對第三光罩圖形與第四光罩圖形都提供一個補償相差,使得第三圖案與第四圖案的位置都能夠獲得一個補償的水平偏移d。如此一來,以第5A圖的第三測試層350為例,將能夠使得第三測試層350的第三圖案與第一測試層310的第一圖案回到設計的對稱關係,即第三圖案對準第一圖案,而這對應到第5C圖中第四測試層370的第四圖案部分370A亦能被修正,使第二測試層330鄰近的導電圖案330A與導電圖案330B不再電性相接。For example, in this embodiment, when the semiconductor layer with the third pattern and the fourth pattern is subsequently formed by the third mask pattern and the fourth mask pattern, both the third mask pattern and the fourth mask pattern are A compensated phase difference is provided, so that a compensated horizontal offset d can be obtained for the positions of the third pattern and the fourth pattern. In this way, taking the third test layer 350 of FIG. 5A as an example, the third pattern of the third test layer 350 and the first pattern of the first test layer 310 can be returned to the symmetrical relationship as designed, that is, the third pattern Align the first pattern, which corresponds to the fourth pattern portion 370A of the fourth test layer 370 in FIG. 5C can also be modified, so that the conductive pattern 330A and the conductive pattern 330B adjacent to the second test layer 330 are no longer electrically connected to each other. catch.

基於第一測試層310與第三測試層350之間的疊對誤差,能夠使第一半導體曝光機與第二半導體曝光機之間的疊對機差能夠通過補償相差偏移的方式獲得校準。在根據疊對誤差校準第二半導體曝光機的流程中,第二半導體曝光機根據疊對誤差向多個光罩圖形提供同一個補償相差,光罩圖形包括形成第三圖案的第三圖案光罩圖形。如此一來,由於第一測試層310的第一圖案與第三測試層350的第三圖案疊對能夠對準,次相關的第二測試層330的第二圖案與第四測試層370的第四圖案也將能夠對準。Based on the stacking error between the first test layer 310 and the third test layer 350 , the stacking error between the first semiconductor exposure machine and the second semiconductor exposure machine can be calibrated by compensating for the phase difference offset. In the process of calibrating the second semiconductor exposure machine according to the stacking error, the second semiconductor exposure machine provides the same compensation phase difference to a plurality of mask patterns according to the stacking error, and the mask patterns include a third pattern mask forming a third pattern graphics. In this way, since the first pattern of the first test layer 310 and the third pattern of the third test layer 350 can be overlapped and aligned, the second pattern of the second related second test layer 330 and the second pattern of the fourth test layer 370 can be aligned. Quad patterns will also be able to be aligned.

請回到第2圖。在半導體結構製造方法200的流程210中,提供校準的第一半導體曝光機以及第二半導體曝光機。流程210的校準,即通過本揭露之一實施方式的半導體曝光機校正方法100來實現。Please go back to picture 2. In a flow 210 of the semiconductor structure fabrication method 200, a calibrated first semiconductor exposure machine and a second semiconductor exposure machine are provided. The calibration of the process 210 is implemented by the semiconductor exposure machine calibration method 100 according to an embodiment of the present disclosure.

第6至第7圖根據本揭露之一實施方式繪示半導體結構製造方法200不同流程之結構的剖面圖。請參照第2圖,並依序參照第6圖與第7圖,以進一步說明半導體結構製造方法200。FIGS. 6 to 7 are cross-sectional views illustrating structures of different processes of the method 200 for fabricating a semiconductor structure according to an embodiment of the present disclosure. Please refer to FIG. 2, and to FIG. 6 and FIG. 7 in sequence, to further describe the method 200 for fabricating the semiconductor structure.

在流程220,通過第一半導體基台形成依序堆疊的第一半導體圖案層410與第二半導體圖案層430。第一半導體圖案層410具有第一圖案,因此與第一測試層310相近而具有通道415。第二半導體圖案層430具有第二圖案,因此也具有通道435以及間隔440,間隔440分離第二半導體圖案層430的導電圖案430A與導電圖案430B,如第6圖所示。In the process 220 , the first semiconductor pattern layer 410 and the second semiconductor pattern layer 430 are sequentially stacked by the first semiconductor substrate. The first semiconductor pattern layer 410 has a first pattern, and thus has a channel 415 close to the first test layer 310 . The second semiconductor pattern layer 430 has a second pattern, and therefore also has a channel 435 and a spacer 440 that separates the conductive patterns 430A and 430B of the second semiconductor pattern layer 430 , as shown in FIG. 6 .

進入流程230,通過第二半導體曝光機形成依序堆疊於第二半導體圖案層430的第三半導體圖案層450以及第四半導體圖案層470。Entering the process 230 , the third semiconductor pattern layer 450 and the fourth semiconductor pattern layer 470 sequentially stacked on the second semiconductor pattern layer 430 are formed by the second semiconductor exposure machine.

如第7圖所示,第三半導體圖案層450以及第四半導體圖案層470也分別具有第三圖案以及第四圖案,因此分別相似於第三測試層350與第四測試層370。然而,通過流程210的校正後,第三半導體圖案層450能夠對準通道415與通道435形成的總成通道445做設置,並且第四半導體圖案層470的第四圖案部分470A不會橫跨第二半導體圖案層430位於總成通道445外以間隔440分離的導電圖案430A與導電圖案430B。As shown in FIG. 7 , the third semiconductor pattern layer 450 and the fourth semiconductor pattern layer 470 also have the third pattern and the fourth pattern, respectively, and thus are similar to the third test layer 350 and the fourth test layer 370 respectively. However, after the correction in the process 210, the third semiconductor pattern layer 450 can be aligned with the channel 445 formed by the channel 415 and the channel 435, and the fourth pattern portion 470A of the fourth semiconductor pattern layer 470 will not cross the The two semiconductor pattern layers 430 are located outside the assembly channel 445 to separate the conductive pattern 430A and the conductive pattern 430B separated by an interval 440 .

如此一來,經歷半導體結構製造方法200的流程210至流程230,半導體結構400成形。In this way, through the process 210 to the process 230 of the semiconductor structure manufacturing method 200 , the semiconductor structure 400 is formed.

第8A圖至第8C圖繪示形成之半導體結構400不同圖案疊對的多個頂視示意圖。FIGS. 8A to 8C illustrate a plurality of top-view schematic diagrams of different pattern stacks of the formed semiconductor structure 400 .

第8A圖繪示第一半導體圖案層410與第三半導體圖案層450的疊對的局部。如第8A圖所示,第一半導體圖案層410包括第一圖案部分410A,第三半導體圖案層450包括第三圖案部分450A、第三圖案部分450B、長條的第三圖案部分450C與第三圖案部分450D、第三圖案部分450E以及第三圖案部分450F。對於第三半導體圖案層450的第三圖案來說,中間的二長條第三圖案部分450C與第三圖案部分450D相對第一半導體圖案層410的類方形的第一圖案部分410A的相對二邊的距離相等。第三半導體圖案層450左邊的長條第三圖案部分450D相對類方形第一圖案部分410A左邊距離d3,第三半導體圖案層450右邊的長條第三圖案部分450C相對類方形第一圖案部分410A右邊距離d4,而距離d3等於距離d4。這對應到,第三圖案部分450A、450B以及第三圖案部分450E、450F相對於類方形第一圖案部分410A是對稱地相對的,例如第三圖案部分450A到第一圖案部分410A右邊的距離等同第三圖案部分450E到第一圖案部分410A左邊的距離,說明第一半導體圖案層410與第三半導體圖案層450符合預期之對稱疊對設計。FIG. 8A shows a part of the overlapping of the first semiconductor pattern layer 410 and the third semiconductor pattern layer 450 . As shown in FIG. 8A , the first semiconductor pattern layer 410 includes a first pattern portion 410A, and the third semiconductor pattern layer 450 includes a third pattern portion 450A, a third pattern portion 450B, a long third pattern portion 450C and a third pattern portion 450A. The pattern portion 450D, the third pattern portion 450E, and the third pattern portion 450F. For the third pattern of the third semiconductor pattern layer 450 , the middle two strips of the third pattern portion 450C and the third pattern portion 450D are opposite to the opposite sides of the square-like first pattern portion 410A of the first semiconductor pattern layer 410 distances are equal. The long third pattern portion 450D on the left side of the third semiconductor pattern layer 450 is a distance d3 from the left side of the square-like first pattern portion 410A, and the long third pattern portion 450C on the right side of the third semiconductor pattern layer 450 is opposite to the square-like first pattern portion 410A The right is distance d4, and distance d3 is equal to distance d4. This corresponds to the fact that the third pattern parts 450A, 450B and the third pattern parts 450E and 450F are symmetrically opposite to the first pattern part 410A of the square-like shape, for example, the distance from the third pattern part 450A to the right side of the first pattern part 410A is the same The distance from the third pattern portion 450E to the left side of the first pattern portion 410A indicates that the first semiconductor pattern layer 410 and the third semiconductor pattern layer 450 meet the expected symmetrical overlapping design.

第8B圖繪示通過電子顯微鏡獲得之第三半導體圖案層450與第四半導體圖案層470疊對的一局部。由於第三半導體圖案層450與第四半導體圖案層470同為第二半導體曝光機所形成,因此第三半導體圖案層450與第四半導體圖案層470之間不會有疊對誤差。如第8B圖所示,第四半導體圖案層470的橢圓第四圖案部分470B設置於第三半導體圖案層450的第三圖案部分450G的橢圓孔的中心,符合預期設計。FIG. 8B shows a part of the overlapping of the third semiconductor pattern layer 450 and the fourth semiconductor pattern layer 470 obtained by an electron microscope. Since the third semiconductor pattern layer 450 and the fourth semiconductor pattern layer 470 are both formed by the second semiconductor exposure machine, there is no stacking error between the third semiconductor pattern layer 450 and the fourth semiconductor pattern layer 470 . As shown in FIG. 8B , the elliptical fourth pattern portion 470B of the fourth semiconductor pattern layer 470 is disposed at the center of the elliptical hole of the third pattern portion 450G of the third semiconductor pattern layer 450 , which conforms to the expected design.

第8C圖繪示通過電子顯微鏡獲得之第二測試層330與第四半導體圖案層470疊對的一局部。如第8C圖所示,由於第二半導體曝光機已校準,第四半導體圖案層470的第四圖案部分470A不會同時連接到第二半導體圖案層430的二個分離的導電圖案430A與430B。FIG. 8C shows a part of the overlapping of the second test layer 330 and the fourth semiconductor pattern layer 470 obtained by an electron microscope. As shown in FIG. 8C , since the second semiconductor exposure machine is calibrated, the fourth pattern portion 470A of the fourth semiconductor pattern layer 470 is not simultaneously connected to the two separate conductive patterns 430A and 430B of the second semiconductor pattern layer 430 .

在一些實施方式中,於半導體結構400成形後,能夠切割半導體結構400為複數個裸片。量測這些裸片的良率。如此,也能夠確認半導體圖案層疊層是否還存在偏移。若有,則能夠記錄下來,以供後續製造製程參考。In some embodiments, after the semiconductor structure 400 is formed, the semiconductor structure 400 can be diced into a plurality of dies. The yield of these dies is measured. In this way, it can also be confirmed whether or not there is still a shift in the semiconductor pattern lamination layer. If so, it can be recorded for reference in subsequent manufacturing processes.

綜上所述,本揭露提供的半導體曝光機校正方法,能夠修正次相關圖案因無法對齊而導致非預期的短路問題。基於上述的校正,製造出的半導體結構次相關的圖案彼此之間能夠對準。揭露提供的半導體曝光機校正方法以及半導體結構製造方法,能夠應用在二個或以上半導體曝光機形成的多層疊對結構上。半導體曝光機例如是黃光曝光機。To sum up, the semiconductor exposure machine calibration method provided by the present disclosure can correct the unintended short circuit problem caused by the sub-correlation pattern being unaligned. Based on the above-mentioned correction, the sub-correlated patterns of the fabricated semiconductor structure can be aligned with each other. The disclosed method for calibrating a semiconductor exposure machine and a method for fabricating a semiconductor structure can be applied to a multi-layer stack structure formed by two or more semiconductor exposure machines. The semiconductor exposure machine is, for example, a yellow light exposure machine.

雖然本揭露已以實施例揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed above with examples, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection of the present disclosure The scope shall be determined by the scope of the appended patent application.

對於本領域技術人員將顯而易見的是,在不脫離本公開的範圍或精神的情況下,可以對本揭露實施例的結構進行各種修改和變化。鑑於前述內容,本揭露旨在覆蓋各種的修改與變形,只要它們落入所附權利要求的範圍內。It will be apparent to those skilled in the art that various modifications and changes can be made in the structures of the embodiments of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, the present disclosure is intended to cover various modifications and variations insofar as they fall within the scope of the appended claims.

100:半導體曝光機校正方法 110~140:流程 200:半導體結構製造方法 210~230:流程 310:第一測試層 310A:第一圖案部分 315:通道 330:第二測試層 330A,330B:導電圖案 335:通道 340:間隔 345:總成通道 350:第三測試層 350A,350B,350C,350D,350E,350F:第三圖案部分 350G:第三圖案部分 370:第四測試層 370A,370B:第四圖案部分 400:半導體結構 410:第一半導體圖案層 410A:第一圖案部分 415:通道 430:第二半導體圖案層 430A,430B:導電圖案 435:通道 440:間隔 445:總成通道 450:第三半導體圖案層 450A,450B,450C,450D,450E,450F:第三圖案部分 450G:第三圖案部分 470:第四半導體圖案層 470A,470B:第四圖案部分 W1,W2:寬度 d:偏移 d1,d2,d3,d4:距離 100: Semiconductor exposure machine calibration method 110~140: Process 200: Method of fabricating semiconductor structures 210~230: Process 310: First Test Layer 310A: The first pattern part 315: Channel 330: Second Test Layer 330A, 330B: Conductive pattern 335: Channel 340:Interval 345: Assembly channel 350: Third Test Layer 350A, 350B, 350C, 350D, 350E, 350F: The third pattern part 350G: The third pattern part 370: Fourth Test Layer 370A, 370B: The fourth pattern part 400: Semiconductor Structure 410: the first semiconductor pattern layer 410A: The first pattern part 415: Channel 430: the second semiconductor pattern layer 430A, 430B: Conductive pattern 435: Channel 440:Interval 445: Assembly channel 450: the third semiconductor pattern layer 450A, 450B, 450C, 450D, 450E, 450F: The third pattern part 450G: The third pattern part 470: the fourth semiconductor pattern layer 470A, 470B: Fourth pattern part W1,W2: width d: offset d1,d2,d3,d4: distance

本揭露的優點與圖式,應由接下來列舉的實施方式,並參考附圖,以獲得更好的理解。這些圖式的說明僅僅是列舉的實施方式,因此不該認為是限制了個別實施方式,或是限制了發明申請專利範圍的範圍。 第1圖根據本揭露之一實施方式繪示一半導體曝光機校正方法的一流程圖; 第2圖根據本揭露之一實施方式繪示一半導體結構製造方法的一流程圖; 第3圖至第4圖根據本揭露之一實施方式繪示半導體曝光機校正方法不同流程之結構的剖面圖; 第5A圖至第5C圖繪示測試半導體結構不同圖案疊對的多個頂視示意圖; 第6至第7圖根據本揭露之一實施方式繪示半導體結構製造方法不同流程之結構的剖面圖;以及 第8A圖至第8C圖繪示形成之半導體結構不同圖案疊對的多個頂視示意圖。 The advantages and drawings of the present disclosure should be better understood from the following embodiments and with reference to the drawings. The descriptions of these drawings are merely exemplary embodiments, and therefore should not be construed to limit individual embodiments or to limit the scope of the claimed invention. FIG. 1 shows a flowchart of a calibration method for a semiconductor exposure machine according to an embodiment of the present disclosure; FIG. 2 illustrates a flowchart of a method for fabricating a semiconductor structure according to an embodiment of the present disclosure; FIGS. 3 to 4 are cross-sectional views illustrating structures of different processes of a calibration method for a semiconductor exposure machine according to an embodiment of the present disclosure; 5A to 5C illustrate a plurality of top-view schematic diagrams of different pattern stacks of tested semiconductor structures; FIGS. 6 to 7 are cross-sectional views illustrating structures of different processes of a method for fabricating a semiconductor structure according to an embodiment of the present disclosure; and FIGS. 8A to 8C are schematic top views illustrating stacks of different patterns of the formed semiconductor structure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

100:半導體曝光機校正方法 100: Semiconductor exposure machine calibration method

110~140:流程 110~140: Process

Claims (10)

一種半導體曝光機校正方法,包括: 一第一半導體曝光機通過一第一光罩圖形與一第二光罩圖形分別形成依序堆疊的一第一測試層以及一第二測試層,其中該第一測試層與該第二測試層分別具有一第一圖案與一第二圖案; 一第二半導體曝光機通過一第三光罩圖形於該第二測試層上堆疊一第三測試層,其中該第三測試層具有一第三圖案; 通過一電子顯微鏡量測該第一測試層上的該第一圖案與該第三測試層上的該第三圖案之間的一疊對誤差;以及 根據該疊對誤差校準該第一半導體曝光機以及該第二半導體曝光機。 A method for calibrating a semiconductor exposure machine, comprising: A first semiconductor exposure machine forms a first test layer and a second test layer sequentially stacked through a first mask pattern and a second mask pattern, wherein the first test layer and the second test layer respectively have a first pattern and a second pattern; a second semiconductor exposure machine stacks a third test layer on the second test layer through a third mask pattern, wherein the third test layer has a third pattern; measuring a stacking error between the first pattern on the first test layer and the third pattern on the third test layer by an electron microscope; and The first semiconductor exposure machine and the second semiconductor exposure machine are calibrated according to the stacking error. 如請求項1所述之半導體曝光機校正方法,其中該疊對誤差包括該第一圖案與該第三圖案之間的一水平偏移。The method for calibrating a semiconductor exposure machine as claimed in claim 1, wherein the alignment error includes a horizontal offset between the first pattern and the third pattern. 如請求項2所述之半導體曝光機校正方法,其中在該根據該疊對誤差校準該第一半導體曝光機以及該第二半導體曝光機的流程中,該第二半導體曝光機根據該疊對誤差向多個光罩圖形提供同一個補償相差,該些光罩圖形包括形成該第三圖案的該第三光罩圖形。The method for calibrating a semiconductor exposure machine according to claim 2, wherein in the process of calibrating the first semiconductor exposure machine and the second semiconductor exposure machine according to the stacking error, the second semiconductor exposure machine is calibrated according to the stacking error The same compensated phase difference is provided to a plurality of reticle patterns, the reticle patterns including the third reticle pattern forming the third pattern. 如請求項1所述之半導體曝光機校正方法,其中該第一圖案與該第二圖案設置使一通道穿過該第一測試層以及該第二測試層,該第三測試層延伸至該通道內。The method for calibrating a semiconductor exposure machine as claimed in claim 1, wherein the first pattern and the second pattern are arranged so that a channel passes through the first test layer and the second test layer, and the third test layer extends to the channel Inside. 如請求項4所述之半導體曝光機校正方法,進一步包括: 該第二半導體曝光機通過一第四光罩圖形於該第三測試層上堆疊一第四測試層,其中該第四測試層包括一第四圖案;以及 通過一電子顯微鏡量測該第二測試層上的該第二圖案與該第四測試層上的該第四圖案之間的一疊對誤差。 The method for calibrating a semiconductor exposure machine according to claim 4, further comprising: The second semiconductor exposure machine stacks a fourth test layer on the third test layer through a fourth mask pattern, wherein the fourth test layer includes a fourth pattern; and A stacking error between the second pattern on the second test layer and the fourth pattern on the fourth test layer is measured by an electron microscope. 如請求項5所述之半導體曝光機校正方法,其中該第四測試層延伸至該第二測試層。The semiconductor exposure machine calibration method as claimed in claim 5, wherein the fourth test layer extends to the second test layer. 如請求項6所述之半導體曝光機校正方法,進一步包括: 在該第四測試層形成後,量測該第二測試層上多個導電圖案中任二個該導電圖案是否短路。 The method for calibrating a semiconductor exposure machine according to claim 6, further comprising: After the fourth test layer is formed, it is measured whether any two of the conductive patterns on the second test layer are short-circuited. 如請求項1所述之半導體曝光機校正方法,其中該電子顯微鏡包括一掃描式電子顯微鏡。The method for calibrating a semiconductor exposure machine according to claim 1, wherein the electron microscope comprises a scanning electron microscope. 一種半導體結構製造方法,包括: 提供通過如請求項1所述的該半導體曝光機校正方法校準的該第一半導體曝光機與該第二半導體曝光機; 通過該第一半導體曝光機以該第一光罩圖形與該第二光罩圖形分別形成依序堆疊的一第一半導體圖案層以及一第二半導體圖案層,其中該第一半導體圖案層與第二半導體圖案層分別具有該第一圖案與該第二圖案;以及 通過該第二半導體曝光機以該第三光罩圖形與一第四光罩圖形分別形成依序堆疊該第二半導體圖案層的一第三半導體圖案層以及一第四半導體圖案層,以形成一半導體結構,其中該第三半導體圖案層與該第四半導體圖案層分別具有該第三圖案與一第四圖案。 A method of fabricating a semiconductor structure, comprising: Provide the first semiconductor exposure machine and the second semiconductor exposure machine calibrated by the semiconductor exposure machine calibration method as claimed in claim 1; A first semiconductor pattern layer and a second semiconductor pattern layer stacked in sequence are respectively formed with the first mask pattern and the second mask pattern by the first semiconductor exposure machine, wherein the first semiconductor pattern layer and the second pattern layer are respectively formed. The two semiconductor pattern layers respectively have the first pattern and the second pattern; and A third semiconductor pattern layer and a fourth semiconductor pattern layer which are sequentially stacked on the second semiconductor pattern layer are formed by the second semiconductor exposure machine with the third mask pattern and a fourth mask pattern, respectively, to form a The semiconductor structure, wherein the third semiconductor pattern layer and the fourth semiconductor pattern layer respectively have the third pattern and a fourth pattern. 如請求項9所述之半導體結構製造方法,進一步包括: 切割該半導體結構為複數個裸片;以及 量測該些裸片的良率。 The method for manufacturing a semiconductor structure according to claim 9, further comprising: dicing the semiconductor structure into a plurality of dies; and The yield of these dies is measured.
TW110100154A 2021-01-04 2021-01-04 Semiconductor exposure machine calibration method and semiconductor structure manufacturing method TWI749985B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110100154A TWI749985B (en) 2021-01-04 2021-01-04 Semiconductor exposure machine calibration method and semiconductor structure manufacturing method
CN202110192899.1A CN114724970A (en) 2021-01-04 2021-02-20 Semiconductor exposure machine correction method and semiconductor structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110100154A TWI749985B (en) 2021-01-04 2021-01-04 Semiconductor exposure machine calibration method and semiconductor structure manufacturing method

Publications (2)

Publication Number Publication Date
TWI749985B TWI749985B (en) 2021-12-11
TW202228192A true TW202228192A (en) 2022-07-16

Family

ID=80681311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100154A TWI749985B (en) 2021-01-04 2021-01-04 Semiconductor exposure machine calibration method and semiconductor structure manufacturing method

Country Status (2)

Country Link
CN (1) CN114724970A (en)
TW (1) TWI749985B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818757B (en) * 2022-10-04 2023-10-11 科毅科技股份有限公司 Yaw and pitch angle automatically adjusting mechanism for wedge error compenation (wec) between wafer edge and mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809784B (en) * 2022-01-04 2023-07-21 南亞科技股份有限公司 Method for overlay error correction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772858B2 (en) * 2006-10-11 2014-07-08 Macronix International Co., Ltd. Vertical channel memory and manufacturing method thereof and operating method using the same
TWI373694B (en) * 2007-08-09 2012-10-01 Nanya Technology Corp Exposure methiod
CN101398630B (en) * 2007-09-25 2010-10-13 南亚科技股份有限公司 Aligning and stacking marker, mask structure and using method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818757B (en) * 2022-10-04 2023-10-11 科毅科技股份有限公司 Yaw and pitch angle automatically adjusting mechanism for wedge error compenation (wec) between wafer edge and mask

Also Published As

Publication number Publication date
CN114724970A (en) 2022-07-08
TWI749985B (en) 2021-12-11

Similar Documents

Publication Publication Date Title
TWI749985B (en) Semiconductor exposure machine calibration method and semiconductor structure manufacturing method
CN103165417B (en) Multi-layered patterned covering method for splitting
US6833595B1 (en) Semiconductor device having an improved layout pattern of pair transistors
JPH08116141A (en) Superposition accuracy measurement mark
WO2022057214A1 (en) Overlay mark, overlay error measurement method for wafer, and wafer stacking method
US5910830A (en) Liquid crystal display panels including alignment keys in the active regions thereof, and methods for manufacturing
US10707175B2 (en) Asymmetric overlay mark for overlay measurement
US20080014511A1 (en) Photomask with overlay mark and method of fabricating semiconductor device
US20080268350A1 (en) Semiconductor structure
US8288242B2 (en) Overlay vernier key and method for fabricating the same
US11605550B2 (en) Alignment system
JP2007142328A (en) Method for manufacturing semiconductor device, mask and semiconductor device
KR20000047555A (en) Semiconductor device manufacturing method and semiconductor device
US7602072B2 (en) Substrate having alignment marks and method of obtaining alignment information using the same
US6943458B2 (en) Semiconductor device and manufacturing method thereof, and registration accuracy measurement enhancement method
JP2001092109A (en) Photomask, semiconductor device and exposing method using photomask
US7136520B2 (en) Method of checking alignment accuracy of patterns on stacked semiconductor layers
US9857678B1 (en) Methods of controlling distortion of exposure processes
CN111505910B (en) Alignment method of overlay mark
JPH11307418A (en) Mask alignment mark and mask aligning method
US10180624B1 (en) Systems and methods for forming contact definitions
KR100650733B1 (en) Measurement mark of semiconductor device
KR20080019961A (en) Overlay mark and method for measuring overlay using the overlay mark
KR20060107653A (en) Semiconductor device having overlay mark of multi-layer
CN111199981A (en) Array substrate, preparation method thereof and display device