TW202228131A - 記憶體裝置、記憶體系統及控制其記憶體裝置的方法 - Google Patents

記憶體裝置、記憶體系統及控制其記憶體裝置的方法 Download PDF

Info

Publication number
TW202228131A
TW202228131A TW110135261A TW110135261A TW202228131A TW 202228131 A TW202228131 A TW 202228131A TW 110135261 A TW110135261 A TW 110135261A TW 110135261 A TW110135261 A TW 110135261A TW 202228131 A TW202228131 A TW 202228131A
Authority
TW
Taiwan
Prior art keywords
memory
chip
table file
repair table
space
Prior art date
Application number
TW110135261A
Other languages
English (en)
Other versions
TWI789917B (zh
Inventor
闕欣男
文良 陳
劉景宏
Original Assignee
愛普科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛普科技股份有限公司 filed Critical 愛普科技股份有限公司
Publication of TW202228131A publication Critical patent/TW202228131A/zh
Application granted granted Critical
Publication of TWI789917B publication Critical patent/TWI789917B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/073Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a memory management context, e.g. virtual memory or cache management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • G11C29/42Response verification devices using error correcting codes [ECC] or parity check
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/76Masking faults in memories by using spares or by reconfiguring using address translation or modifications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing
    • G06F11/0772Means for error signaling, e.g. using interrupts, exception flags, dedicated error registers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1666Error detection or correction of the data by redundancy in hardware where the redundant component is memory or memory area
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一記憶體裝置包括記憶體芯片、非揮發性記憶體電路以及邏輯芯片。所述記憶體芯片包括第一記憶體空間及第二記憶體空間。所述非揮發性記憶體電路儲存對應於第一記憶體空間的修復表檔案。所述邏輯芯片耦接至記憶體芯片及非揮發性記憶體。所述邏輯芯片根據一輸入位址及修復表檔案的比較結果來選擇性地存取記憶體芯片的第一記憶體空間或第二記憶體空間。所述記憶體芯片和邏輯芯片不同。

Description

記憶體裝置、記憶體系統及控制其記憶體裝置的方法
本揭示內容是關於一記憶體裝置;特別是一種利用修復表檔案的記憶體裝置。
靜態隨機存取記憶體(static random-access memory,SRAM)及動態隨機存取記憶體(dynamic random-access memory,DRAM)是常用於在計算機系統運行期間暫時存儲數據的兩類記憶體。雖然SRAM的存取速度通常提供比DRAM更快,但DRAM單元可以用更簡單的結構來實現,因此更具成本效益。因此,DRAM常用於需要大記憶體容量的應用中。然而,隨著DRAM記憶體容量的增加,可靠性問題也隨之出現。
為了提高DRAM的可靠性,已經提出了修復機制。然而,修復機制引入的邏輯操作可能會降低DRAM的性能並增加其功耗。因此,需要在不降低DRAM的性能的情況下提高DRAM的可靠性。
先前技術的討論僅用於背景信息。本先前技術中的陳述並非承認此部分中公開的主題構成本揭示內容的現有技術,並且本先前技術的任何部分均不得視為本申請的任何部分,包括先前技術的討論,構成本揭示內容的現有技術。
本揭示內容的一實施例提供一種記憶體裝置。記憶體裝置包括一第一記憶體芯片、一非揮發性記憶體電路及一邏輯芯片。該第一記憶體芯片包括一第一記憶體空間及一第二記憶體空間。該非揮發性記憶體電路用以儲存對應於該第一記憶體空間的一第一修復表檔案。該邏輯芯片耦接至該第一記憶體芯片及該非揮發性記憶體電路,該邏輯芯片用以根據一輸入位址及該第一修復表檔案的一比較結果而選擇性地存取該第一記憶體芯片的該第二記憶體空間或該第一記憶體空間。其中該第一記憶體芯片不同於該邏輯芯片。
本揭示內容的另一實施例提供一種記憶體系統。記憶體系統包括該記憶體裝置及一控制器。該控制器用以產生該輸入位址至該記憶體裝置。其中該控制器更用以利用一更新後修復表檔案覆寫該非揮發性記憶體電路中的該第一修復表檔案。
本揭示內容的另一實施例提供一種控制一記憶體裝置的方法。該方法包括提供一記憶體芯片,其包括一第一記憶體空間及一第二記憶體空間,產生對應於該第一記憶體空間之一修復表檔案,以及提供一邏輯芯片,以根據一輸入位址及該修復表檔案的一比較結果,選擇性地存取該記憶體芯片的該第二記憶體空間或該第一記憶體空間,其中該邏輯芯片不同於該記憶體芯片。
下文的實施例以及附隨圖式,這些圖式屬於並構成本說明書的一部分,說明了本揭示內容的實施例,但本揭示內容不限於這些實施例。另外,以下實施例可以適當地結合起來完成另一個實施例。
本文所述的「一實施例」、「一個實施例」、「例示性實施例」、「其他實施例」、「另一實施例」等用語表示如此描述的本揭示內容之實施例可以包括特定特徵、結構或特性,但並非每個實施例都必須包括該特定特徵、結構或特性。此外,「在該實施例中」的重複使用不一定指稱相同的實施例,但亦不排除此種用法。
為使本揭示內容更易於理解,以下提供詳細的步驟和結構。顯然,本揭示內容的實施並不限制本領域技術人員已知的具體細節。另外,對已知的結構和步驟不再贅述,以免對本揭示內容造成不必要的限制。下面將詳細描述本揭示內容的較佳實施例。然而,除了實施例之外,本揭示內容還可以廣泛地實施在其他實施例中。本揭示內容的範圍不限於實施例,而是由申請專利範圍所限定。
圖1繪示根據本揭示內容一實施例的記憶體裝置100。所述記憶體裝置100包括一記憶體芯片110、一非揮發性記憶體電路120及一邏輯芯片130。
於本實施例中,記憶體芯片110包括由複數個動態隨機存取記憶體(DRAM)單元提供的一第一記憶體空間AS1及一第二記憶體空間AS2。一般來說,當記憶體裝置100接收一輸入位址ADD1時,邏輯芯片130可存取第一記憶體空間AS1中的輸入位址ADD1。然而,由於不可控制的缺陷,第一記憶體空間AS1中的某些位址可能失效,亦即,於儲存DRAM單元中此種缺陷(或「失效」)位址的資料可能無法供正確存取。
於某些實施例中,第一記憶體空間AS1中的失效位址可預先被偵測並被儲存於修復表檔案F1中。此外,所述修復表檔案F1可以是一個查找表,並可針對致使失效的每一個位址,記錄其在第二記憶體空間AS2所對應之一特定位址。因此,若輸入位址ADD1符合記錄於修復表檔案F1中的一位址,就表示第一記憶體空間AS1中的輸入位址ADD1可能無法被正確存取、或是對應於第一記憶體空間AS1中的輸入位址ADD1的記憶體單元可能有缺陷。在這種情形中,邏輯芯片130會參照修復表檔案F1以選擇第二記憶體空間AS2中的一特定位址來取代原始輸入位址ADD1,而不會存取原始第一記憶體空間AS1中的輸入位址ADD1。亦即,邏輯芯片130可比較輸入位址和記錄於修復表檔案F1中的位址,且邏輯芯片130可根據輸入位址及修復表檔案F1的比較結果,而選擇性地存取第一記憶體空間AS1或第二記憶體空間AS2。舉例來說,若比較結果指出輸入位址ADD1符合記錄於修復表檔案F1中的一位址,邏輯芯片130可利用該特定位址來存取記憶體芯片110的第二記憶體空間AS2。若比較結果指出輸入位址ADD1不符合記錄於修復表檔案F1中的一位址,邏輯芯片130可利用該原始輸入位址來存取記憶體芯片110的第一記憶體空間AS1。
如此一來,若第一記憶體空間AS1中的某些位址無法被正確存取,第二記憶體空間AS2便可作為一種備用空間,而在不改變或重新傳送輸入位址的情形下,藉由參照修復表檔案F1而使得讀取或寫入作業能夠進行。由於第二記憶體空間AS2是刻意創建出來用於備份第一記憶體空間AS1中缺陷記憶體單元的額外記憶體空間,因此第二記憶體空間AS2的記憶體大小遠小於第一記憶體空間AS1。
於一實施例中,邏輯芯片130可經由其外部之耦接於邏輯芯片130與記憶體芯片110之間的相同位址引腳(即,相同訊號路徑)來存取第一記憶體空間AS1及第二記憶體空間AS2。在此一實施例中,邏輯芯片130可根據上述比較結果透過位址引腳而選擇性地存取第一記憶體空間AS1或第二記憶體空間AS2。具體來說,透過使用相同訊號路徑來指派位址空間,當比較結果指出輸入位址不符合記錄於修復表檔案F1中的任一位址時,邏輯芯片130可存取第一記憶體空間AS1中的輸入位址,而當比較結果指出輸入位址符合記錄於修復表檔案F1中的一位址,邏輯芯片130可存取第二記憶體空間AS2中的一特定位址或預定位址。
於另一實施例中,邏輯芯片130可經由其外部分別耦接至第一記憶體空間AS1及第二記憶體空間AS2的不同位址引腳(即,不同訊號路徑)來存取第一記憶體空間AS1及第二記憶體空間AS2。在此一實施例中,邏輯芯片130可根據上述比較結果透過不同的位址引腳而選擇性地存取第一記憶體空間AS1或第二記憶體空間AS2。
為了進一步說明,圖1是以兩個訊號路徑,即,一第一訊號路徑SP1及一第二訊號路徑SP2,來說明耦接於邏輯芯片130及記憶體芯片110之間的位址引腳,其中第一訊號路徑SP1係連接於第一記憶體空間AS1與邏輯芯片130間,且第二訊號路徑SP2係連接於第二記憶體空間AS2與邏輯芯片130間。應注意到,第一訊號路徑SP1及第二訊號路徑SP2可透過相同的訊號路徑或兩個實體上不同的路徑來實施。
如圖1,當比較結果指出輸入位址不符合記錄於修復表檔案F1中的任一位址時,邏輯芯片130可經由第一訊號路徑SP1來存取第一記憶體空間AS1中的一輸入位址,且當比較結果指出輸入位址符合記錄於修復表檔案F1中的一位址時,邏輯芯片130可經由第二訊號路徑SP2來存取第二記憶體空間AS2中的一特定位址或一預定位址。
此外,於本實施例中,可將對應於第一記憶體空間AS1的修復表檔案F1儲存於非揮發性記憶體電路120中,使得即便當記憶體裝置100關機時,仍能保存修復表檔案F1中的資料。於某些實施例中,非揮發性記憶體電路120可以是一次性編程(one-time programmable,OTP)記憶體。在這種情形中,可利用相應的硬體設備將修復表檔案F1永久性地寫入非揮發性記憶體電路120中。然而,在另一些實施例中,非揮發性記憶體電路120可以是可多次編程(multiple times programmable,MTP)記憶體,因此可根據系統需求來更新修復表檔案F1。
此外,相較於揮發性記憶體,非揮發性記憶體,不論是OTP記憶體或MTP記憶體,在讀寫作業中都具有較慢的存取速率且需要較高的操作電壓。為克服此一問題,如圖1所示,邏輯芯片130可包括一影子記憶體132。影子記憶體132可以是一種靜態隨機存取記憶體(SRAM),其包括複數個SRAM單元。當記憶體裝置100通電時,可使影子記憶體132映射或複製儲存於非揮發性記憶體電路120中的修復表檔案F1的複本。因此,當記憶體裝置100通電時,可將修復表檔案F1的複本儲存或載入到影子記憶體132中。在這種情形中,邏輯芯片130可自影子記憶體132取得修復表檔案F1的複本,而非存取非揮發性記憶體電路120,因此,邏輯芯片130可比較輸入位址及修復表檔案F1的複本,以產生比較結果。如此一來,邏輯芯片130可更快速地取得所需資料且可消耗較低的電量。然而,於有些實施例中,若非揮發性記憶體電路120的電量消耗以及存取速率是可接受的,則可將影子記憶體132省略,而邏輯芯片130可在有需要時直接存取非揮發性記憶體電路120。
於本實施例中,記憶體芯片110及邏輯芯片130是不同的芯片,且可由不同的半導體製程所製備。舉例來說,由於記憶體芯片110包括複數個DRAM單元,可利用能夠形成DRAM單元所需之高品質電容器的半導體製程來製備記憶體芯片110。此外,由於每當記憶體裝置100接收一輸入位址時,邏輯芯片130便需要進行邏輯操作以決定應存取第一記憶體空間AS1或第二記憶體空間AS2,因此邏輯芯片130的速率必須夠高而不至於延遲讀取作業或寫入作業。於本實施例中,邏輯芯片130可利用能夠形成所需之邏輯元件的半導體製程來製備。舉例來說,但不限於,可利用互補金氧半(complementary metal-oxide semiconductor,CMOS)製程來製備邏輯芯片130,而使得邏輯芯片130可具有較高的操作速率以及較低的功耗。如此一來,記憶體芯片110便可擁有較高的記憶體單元密度,且邏輯芯片130也可提供較佳的控制效能。
圖2繪示本揭示之一實施例中用以封裝記憶體裝置100的封裝物P1的剖面圖。如圖2所示,記憶體裝置100更包括一基板S1,其可為半導體基板。於此實施例中,記憶體芯片110可透過互連結構B1堆疊於邏輯芯片130上。然而,本申請不限於此。於另一實施例中,邏輯芯片130可以透過互連結構B1堆疊於記憶體芯片110上。邏輯芯片130及記憶體芯片110的堆疊物或組合可設於基板S1上。邏輯芯片130及記憶體芯片110的組合可透過複數個導電凸塊而耦接至基板S1。然而,本申請不限於此。邏輯芯片130及記憶體芯片110的組合可透過任何類型的互連結構而耦接至基板S1,如,接合墊(bonding pad)或微凸塊(micro bumps)。如圖2所示,記憶體芯片110及邏輯芯片130是透過3D積體電路(IC)封裝技術以配置於相同封裝結構中P1。在這種情形中,記憶體裝置100更包括複數個互連結構B1夾設於記憶體芯片110及邏輯芯片130間,以供電性連接記憶體芯片110及邏輯芯片130,如圖2所示。
應注意到,於本揭示內容中,互連結構B1可在3D封裝技術過程中形成。因此,互連結構B1可以是3D封裝技術所提供的任何種類的芯片-至-芯片之垂直互連結構。舉例來說,互連結構B1可以是晶圓-至-晶圓接合墊、芯片-至-晶圓接合墊、將芯片堆疊至晶圓之過程中形成的微凸塊、將芯片堆疊至另一芯片之過程中形成的微凸塊等。
舉例來說,第一訊號路徑SP1可由某些互連結構B1所組成,使得記憶體芯片110中的第一記憶體空間AS1能夠與邏輯芯片130相連接。相似地,第二訊號路徑SP2可由某些互連結構B1所組成,使得記憶體芯片中的第二記憶體空間AS2能夠與邏輯芯片130相連接。
然而,在另一些實施例中,記憶體芯片110及邏輯芯片130也可利用其他方式或根據其他封裝技術來排置。圖3繪示本揭示內容之另一實施例中,用以封裝記憶體裝置100的封裝物P2之剖面圖。如圖3所示,記憶體芯片110及邏輯芯片130可並排於基板S2上,基板S2可以是半導體基板,且記憶體芯片110可側向鄰近邏輯芯片130。邏輯芯片130及記憶體芯片110可透過複數個導電凸塊耦接至基板S2。然而,本申請不限於此。在這種情形中,記憶體芯片110可透過形成於基板S2上/中的導電層(如,訊號路徑SP1及SP2)耦接至邏輯芯片130。也就是說,記憶體芯片110及邏輯芯片130可利用2.5D積體電路(IC)封裝技術而配置在相同的封裝物P2中。
於另一實施例中,基板可以是一印刷電路板(printed circuit board,PCB),且記憶體芯片110及邏輯芯片130可並排設置於PCB上並透過PCB上的導電線路而彼此耦接。
雖然如圖1所示,非揮發性記憶體電路120可設置在邏輯芯片130中,然而本揭示內容不限於此。在另一些實施例中,非揮發性記憶體電路120可設置於其他芯片上。圖4繪示本揭示內容另一實施例的記憶體裝置200。記憶體裝置200及記憶體裝置100的結構相似,且可以依據相似的機制運作。然而,非揮發性記憶體電路220係設置於記憶體芯片210中,而非邏輯芯片230中。在這種情形中,由於當記憶體裝置200通電時,影子記憶體232可以映射或複製修復表檔案F1的複本,因此邏輯芯片230可在就近取得修復表檔案F1的複本,而不需要存取記憶體芯片210中的非揮發性記憶體電路220。
圖5繪示本揭示內容另一實施例的記憶體裝置300。記憶體裝置300及記憶體裝置100的結構相似,且可以依據相似的機制運作。然而,非揮發性記憶體電路320是形成在和記憶體芯片310及邏輯芯片330不同的芯片340上。在這種情形中,由於當記憶體裝置300通電時,影子記憶體332可映射或複製修復表檔案F1的複本,邏輯芯片330可就近取得修復表檔案F1的複本,而不需要存取芯片340中的非揮發性記憶體電路320。此外,由於非揮發性記憶體電路320是形成於芯片340中,因此可利用更適合非揮發性記憶體電路320的半導體製程來製備非揮發性記憶體電路320。舉例來說,可利用高壓製程來製備非揮發性記憶體電路320,以確保非揮發性記憶體電路320的單元可在高壓下穩定運作。
於某些實施例中,由於導致記憶體芯片中位址失效的缺陷大多與該記憶體芯片的製造過程相關,因此每一記憶體芯片會擁有其各自的對應修復表檔案。舉例來說,修復表檔案F1應僅能用於記憶體芯片110,而不應用於其他記憶體芯片。在這種情形中,為了確保邏輯芯片130能夠從對應於記憶體芯片110的正確修復表檔案取得資料,記憶體芯片110可更包括一電子識別(EID),以供記錄記憶體芯片100的識別資料。如此一來,可將修復表檔案F1和記憶體芯片110的電子識別相關地儲存至非揮發性記憶體電路120,而邏輯芯片130即可根據電子識別而正確地選擇或識別出修復表檔案F1。根據本實施例,電子識別可以是形成在記憶體芯片110中的主動或被動熔斷電路。再者,記憶體芯片110的電子識別可在記憶體芯片110的檢測操作之前、之中或之後指派與編程。在記憶體芯片110的電子識別完成編程之後,控制器或邏輯芯片130便能夠據以識別記憶體芯片110。
圖6繪示本揭示內容另一實施例的記憶體裝置400。記憶體裝置400及記憶體裝置100的結構相似,且可以依據相似的機制運作。然而,記憶體裝置400包括兩個記憶體芯片410A及410B。記憶體芯片410A有兩個記憶體空間ASA1及ASA2,且記憶體芯片410B有兩個記憶體空間ASB1及ASB2。此外,記憶體芯片410A包括電子識別ID1且記憶體芯片410B包括電子識別ID2。電子識別ID1及ID2可分別儲存記憶體芯片410A及410B的識別資料。因此,非揮發性記憶體電路420可連同電子識別ID1儲存對應於記憶體芯片410A之記憶體空間ASA1的修復表檔案F1,且可連同電子識別ID2儲存對應於記憶體芯片410B之記憶體空間ASB1的修復表檔案F2。
於本實施例中,由於記憶體芯片410A之記憶體空間ASA1中的位址和記憶體芯片410B之記憶體空間ASB1中的位址不同,因此邏輯芯片430可根據接收輸入位址ADD1來選擇對應於記憶體空間ASA1的修復表檔案F1或對應於記憶體空間ASB1的修復表檔案F2。在選擇對應的修復表檔案之後,邏輯芯片430更可比較輸入位址ADD1和所選的修復表檔案。若選擇了修復表檔案F1,則邏輯芯片430會根據輸入位址ADD1及修復表檔案F1的比較結果而選擇性地存取記憶體芯片410A的記憶體空間AS1或AS2。反之,若選擇了修復表檔案F2,邏輯芯片430則會根據輸入位址ADD1及修復表檔案F2的比較結果而選擇性地存取記憶體芯片410B的記憶體空間ASB1或ASB2。
此外,於本實施例中,由於影子記憶體432可映射或複製修復表檔案F1及F2的複本,因此當邏輯芯片430決定選擇修復表檔案F1或F2時,邏輯芯片430可就近取得影子記憶體432中修復表檔案F1及F2的複本的資料。
此外,如圖6所示,非揮發性記憶體420係形成於與記憶體芯片410A、410B及邏輯芯片430不同的芯片440中。然而,本揭示內容不限於此。於某些實施例中,非揮發性記憶體420可以形成於記憶體芯片410A、記憶體芯片410B或邏輯芯片430中。
圖7繪示本揭示內容一實施例的記憶體系統50。記憶體系統50包括一記憶體裝置500及一控制器52。於本實施例中,控制器52可以是一記憶體控制器,且可根據記憶體系統50的記憶體存取請求而產生輸入位址ADD1。此外,於某些實施例中,控制器52更可利用一更新後修復表檔案來覆寫非揮發性記憶體電路520中的修復表檔案F1或F2。舉例來說,在記憶體系統50已運作一段時間後,控制器52可指示記憶體芯片510A及510B進行自我檢測作業,以偵測記憶體芯片510A及510B的實際失效狀況,以便相應地產生更新後修復表檔案UF1及UF2。在這種情形中,控制器52可利用更新後修復表檔案UF1及UF2來覆寫儲存於非揮發性記憶體電路520中的修復表檔案F1及F2,從而確保記憶體系統50的可靠性。此外,在將更新後修復表檔案UF1及UF2儲存到非揮發性記憶體電路520後,影子記憶體532可對應地映射儲存於非揮發性記憶體電路520中之更新後修復表檔案UF1及UF2的複本,使得邏輯芯片530能夠就近在本機取得影子記憶體532中之更新後修復表檔案UF1及UF2的複本資料。
於某些實施例中,控制器52可以在記憶體系統50的實際作業環境下進行上述的自我檢測作業。然而,用於產生先前修復表檔案F1及F2的檢測條件可能遠比實際作業環境來得嚴格;舉例來說,用於產生先前修復表檔案F1及F2的檢測溫度可能遠高於實際作業環境。因此,記錄在先前修復表檔案F1及F2中的某些失效位址可能不會被包括在更新後修復表檔案UF1及UF2中。在這種情形中,更新後修復表檔案UF1及UF2不僅可以提升記憶體系統50的可靠度,也可增加記憶體芯片510A及510B的運用效能。
此外,於某些實施例中,控制器52可不指示記憶體芯片510A及510B進行自我檢測作業,而對記憶體芯片510A及510B進行掃描以產生更新後修復表檔案UF1及UF2。舉例來說,使用者可根據實際需求建立自己對失效位址的定義,而控制器52可根據使用者建立的定義來掃描記憶體芯片510A及510B以偵測缺陷失效位址。如此一來,控制器52便可對應地產生更新後修復表檔案UF1及UF2以取代修復表檔案F1及F2,進而提升記憶體芯片510A及510B的使用效能以符合實際需求。
此外,於某些實施例中,記憶體裝置500的終端使用者可透過記憶體芯片510A及510B製造商提供的OTA韌體更新來下載更新後修復表檔案UF1及UF2,且當接收到更新後修復表檔案UF1及UF2時,控制器52可以利用更新後修復表檔案UF1及UF2來覆寫儲存於非揮發性記憶體電路520中的修復表檔案F1及F2。舉例來說,若記憶體芯片510A及510B的製造商發現同一批芯片之某些行或某些列的記憶體單元較為脆弱,且想要將此類單元的位址加入對應的修復表檔案時,製造商可通知終端使用者需要下載韌體更新檔。亦即,即便在記憶體芯片510A及510B已經運送與組裝後,記憶體芯片510A及510B的製造商仍可持續更新修復表檔案。此外,由於韌體更新作業是線上進行,因此可以進一步提升記憶體系統50的可靠度。
如圖7所示,非揮發性記憶體電路520可形成於和記憶體芯片510A及510B及邏輯芯片530不同的芯片540中。然而,在另一些實施例中,非揮發性記憶體電路520亦可形成於邏輯芯片530、記憶體芯片510A或記憶體芯片510B中。
圖8繪示本揭示內容一實施例中,用以控制記憶體裝置的方法600的流程圖。方法600包括步驟S610至S630。在能夠達到實質相同結果的情況下,圖8的流程中所示的操作可以不用依照圖示的順序進行或不需連續進行。於某些實施例中,其流程也可以包括其他的中間操作。於本實施例中,方法600可用以控制記憶體裝置100、200、300或400。舉例來說,若方法600係用於控制如圖1所示的記憶體裝置100,則在步驟S610中可提供包括記憶體空間AS1及AS2的記憶體芯片110,且在步驟S620中可產生對應於記憶體芯片110的修復表檔案F1。如此一來,在步驟S630中,邏輯芯片130便可根據輸入位址ADD1及修復表檔案F1的比較結果存取記憶體芯片110的記憶體空間AS1或AS2。
圖9繪示根據本揭示內容一實施例中,產生修復表檔案的步驟S620的子步驟。如圖9所示,在子步驟S622中,可對記憶體芯片110的第一記憶體空間AS1進行檢測作業,且在子步驟S624中可讀取記憶體芯片110的電子識別。在子步驟S622中,亦可對記憶體芯片110的第二記憶體空間AS2進行檢測作業,以偵測在第二記憶體空間AS2中無法使用的或失效的記憶體單元位址。第二記憶體空間AS2中的失效記憶體位址會被排除在修復檔案F1的備份位址之外,使得邏輯芯片130不會選擇第二記憶體空間AS2中的失效記憶體位址。
應注意到,記憶體芯片110的電子識別可在記憶體芯片110的檢測作業(即,子步驟S622)之前、當中或之後進行指派與編程。當記憶體芯片110的電子識別是在記憶體芯片110的檢測作業之前或當中進行指派與編程時,便可在子步驟S624中可直接讀出記憶體芯片110的電子識別。
另一方面,當記憶體芯片110的電子識別並未在記憶體芯片110的檢測作業之前或當中進行指派與編程時,則可在子步驟S624中指派與編程記憶體芯片110的電子識別。在這種情形中,子步驟S624可更包括指派與編程及/或讀取記憶體芯片110的電子識別的操作。
之後,在子步驟S626中,可根據檢測作業的結果產生並與記憶體芯片110之電子識別建立關聯以產生修復表檔案F1,從使得邏輯芯片130能夠正確地選擇與記憶體芯片110對應的修復表檔案F1。
圖10繪示本揭示內容一實施例中,提供邏輯芯片以存取記憶體芯片之記憶體空間的步驟S630的子步驟。如圖10所示,在子步驟S632中,可提供非揮發性記憶體電路120以儲存修復表檔案F1,並在子步驟S634中,提供影子記憶體132以當記憶體裝置100通電時,映射修復表檔案F1的複本。其後,邏輯芯片130可在步驟S636中,就近於本機快速地由影子記憶體132取得修復表檔案F1的複本,且可比較輸入位址ADD1及修復表檔案F1的複本,以產生比較結果。如此一來,邏輯芯片130便可在步驟S630中,根據比較結果來存取記憶體空間AS1或AS2。
總結來說,本揭示內容多個實施例提供的記憶體裝置、記憶體系統與用以控制記憶體裝置的方法能夠利用不同而適當的製程來製備邏輯芯片及記憶體芯片,進而能夠同時提升邏輯芯片的效率以及記憶體芯片的密度。此外,透過利用多次編程非揮發性記憶體來儲存記憶體芯片的修復表檔案,使用者就能夠根據當前需求來更新修復表檔案,進而能夠改善記憶體裝置及記憶體系統的效率與可靠性。
雖然此處已詳細描述了本揭示內容及其優點,但是應當理解,在不脫離由所附申請專利範圍限定的本揭示內容的精神和範圍的情況下,可以對揭示內容進行各種改變、替換和變更。例如,上面討論的許多過程可以用不同的方法來實現並被其他過程替代,或者它們的組合。
此外,本揭示內容的範圍不限於說明書中描述的過程、機器、製造物、物質組成、手段、方法或步驟的特定實施例。本發明所述技術領域具有通常知識者將可輕易地由本揭示內容理解,可根據本揭示內容運用目前存在的或以後將開發的、執行基本上相同的功能或基本上實現相同功能的過程、機器、製造物、物質組合物、手段、方法或步驟,只要其能夠達成與此處所述實施例實質上相同的功能或實現實質上相同的結果。因此,所附申請專利範圍的本意應涵蓋這些過程、機器、製造物、物質組成、手段、方法和步驟。
50:記憶體系統 52:控制器 100, 200, 300, 400, 500:記憶體裝置 110, 210, 310, 410A, 410B, 510A, 510B:記憶體芯片 120, 220, 320, 420, 520:非揮發性記憶體電路 130, 230, 330, 430, 530:邏輯芯片 132, 232, 332, 432, 532:影子記憶體 340, 440, 540:芯片 ID1, ID2:電子識別 ADD1:輸入位址 AS1, AS2, ASA1, ASA2, ASB1, ASB2:記憶體空間 B1:互連結構 F1, F2:修復表檔案 P1, P2:封裝物 S1, S2:基板 SP1:第一訊號路徑 SP2:第二訊號路徑 UF1, UF2:更新後修復表檔案 600:方法 S610~S636:步驟
連同圖示參照實施例與申請專利範圍,可完整理解本揭示內容,圖示中相似的元件符號指稱相似元件。
圖1繪示本揭示內容一實施例一記憶體裝置。
圖2繪示本揭示內容一實施例之一記憶體裝置封裝。
圖3繪示本揭示內容另一實施例之一記憶體裝置封裝。
圖4繪示本揭示內容另一實施例之一記憶體裝置。
圖5繪示本揭示內容另一實施例一記憶體裝置。
圖6繪示本揭示內容另一實施例一記憶體裝置。
圖7繪示本揭示內容一實施例之一記憶體系統。
圖8繪示本揭示內容一實施例,記憶體裝置之一方法的流程圖。
圖9繪示本揭示內容一實施例,用以產生修復表檔案之子步驟。
圖10繪示本揭示內容一實施例,用以提供邏輯芯片以存取記憶體芯片之記憶體空間的子步驟。
100:記憶體裝置
110:記憶體芯片
120:非揮發性記憶體電路
130:邏輯芯片
132:影子記憶體
ADD1:輸入位址
AS1,AS2:記憶體空間
F1:修復表檔案
SP1:第一訊號路徑
SP2:第二訊號路徑

Claims (20)

  1. 一記憶體裝置,包括: 一第一記憶體芯片,包括一第一記憶體空間及一第二記憶體空間; 一非揮發性記憶體電路,用以儲存對應於該第一記憶體空間的一第一修復表檔案;以及 一邏輯芯片,耦接至該第一記憶體芯片及該非揮發性記憶體電路,該邏輯芯片用以根據一輸入位址及該第一修復表檔案的一比較結果而選擇性地存取該第一記憶體芯片的該第二記憶體空間或該第一記憶體空間; 其中該第一記憶體芯片不同於該邏輯芯片。
  2. 如請求項1所述的記憶體裝置,其中: 該非揮發性記憶體電路係形成於該第一記憶體芯片中; 該非揮發性記憶體電路係形成於該邏輯芯片中;或 該非揮發性記憶體電路係形成於與該第一記憶體芯片及該邏輯芯片不同的一第三芯片中。
  3. 如請求項1所述的記憶體裝置,更包括: 複數個互連結構,夾設於該第一記憶體芯片及該邏輯芯片間,以供電性連接該第一記憶體芯片及該邏輯芯片。
  4. 如請求項1所述的記憶體裝置,更包括: 一第一訊號路徑,用以連接該第一記憶體空間及該邏輯芯片;以及 一第二訊號路徑,用以連接該第二記憶體空間及該邏輯芯片; 其中當該比較結果指出該輸入位址不符合記錄於該第一修復表檔案中的任一位址時,該邏輯芯片用以經由該第一訊號路徑存取該第一記憶體空間中的該輸入位址,且當該比較結果指出該輸入位址符合記錄於該第一修復表檔案中的一位址時,該邏輯芯片用以經由該第二訊號路徑存取該第二記憶體空間中的一特定位址。
  5. 如請求項4所述的記憶體裝置,其中該特定位址係記錄於該第一修復表檔案中。
  6. 如請求項4所述的記憶體裝置,其中該第一訊號路徑係由夾設於該第一記憶體芯片及該邏輯芯片間的複數個第一互連結構所組成,且該第二訊號路徑係由夾設於該第一記憶體芯片及該邏輯芯片間的複數個第二互連結構所組成。
  7. 如請求項1所述的記憶體裝置,其中: 該第一記憶體芯片更包括一第一電子識別(EID),用於記錄該第一記憶體芯片的一第一識別資料;以及 該第一修復表檔案係與該第一記憶體芯片之該第一識別資料的相關地儲存於該非揮發性記憶體電路中。
  8. 如請求項7所述的記憶體裝置,更包括: 一第二記憶體芯片,其不同於該第一記憶體芯片及該邏輯芯片,該第二記憶體芯片包括一第三記憶體空間及一第四記憶體空間,該第二記憶體芯片更包括一第二電子識別,用於記錄該第二記憶體芯片的一第二識別資料,其中該第三記憶體空間的一第二修復表檔案係與該第二識別資料相關地儲存於該非揮發性記憶體電路中,且該邏輯芯片更用以: 根據該輸入位址選擇該第一修復表檔案及該第二修復表檔案其中之一作為一所選修復表檔案, 比較該輸入位址與該所選修復表檔案;以及 當該所選修復表檔案是該第二修復表檔案時,根據該輸入位址及該所選修復表檔案的一比較結果,選擇性地存取該第二記憶體芯片的該第四記憶體空間或該第三記憶體空間。
  9. 如請求項1所述的記憶體裝置,其中該非揮發性記憶體電路為一可多次編程(multiple-time programmable,MTP)記憶體。
  10. 如請求項1所述的記憶體裝置,其中: 該邏輯芯片包括一影子記憶體,用以在該記憶體裝置通電時,自該非揮發性記憶體電路映射該第一修復表檔案的一複本;以及 該邏輯芯片用以自該影子記憶體取得該第一修復表檔案的該複本,以及比較該輸入位址及該第一修復表檔案的該複本以產生該比較結果。
  11. 如請求項10所述的記憶體裝置,其中該影子記憶體包括複數個靜態隨機存取記憶體(SRAM)單元。
  12. 如請求項1所述的記憶體裝置,其中該第一記憶體芯片包括複數個動態隨機存取記憶體(DRAM)單元。
  13. 如請求項1所述的記憶體裝置,更包括一基板,其中該第一記憶體芯片及該邏輯芯片其中之一透過複數個互連結構堆疊於該第一記憶體芯片及該邏輯芯片的其中另一者之上,且該第一記憶體芯片及該邏輯芯片的一組合設於該基板上。
  14. 如請求項1所述的記憶體裝置,更包括一基板,其中該第一記憶體芯片及該邏輯芯片設於該基板上,且該第一記憶體芯片側向鄰近該邏輯芯片。
  15. 一種記憶體系統,包括: 如請求項1所述的記憶體裝置;以及 一控制器,用以產生該輸入位址至該記憶體裝置; 其中該控制器更用以利用一更新後修復表檔案覆寫該非揮發性記憶體電路中的該第一修復表檔案。
  16. 如請求項15所述的記憶體系統,其中: 該控制器更用以指示該第一記憶體芯片進行一自我檢測作業,以產生該第一記憶體空間的該更新後修復表檔案。
  17. 如請求項15所述的記憶體系統,其中: 該控制器更用以掃描該第一記憶體芯片,以產生該第一記憶體空間的該更新後修復表檔案。
  18. 一種控制一記憶體裝置的方法,該方法包括: 提供一記憶體芯片,其包括一第一記憶體空間及一第二記憶體空間; 產生對應於該第一記憶體空間之一修復表檔案;以及 提供一邏輯芯片,以根據一輸入位址及該修復表檔案的一比較結果,選擇性地存取該記憶體芯片的該第二記憶體空間或該第一記憶體空間,其中該邏輯芯片不同於該記憶體芯片。
  19. 如請求項18所述的方法,其中產生對應於該第一記憶體空間之該修復表檔案的步驟包括: 對該第一記憶體空間進行一檢測作業; 讀取該記憶體芯片的一電子識別(EID);以及 藉由將該檢測作業的一檢測結果和該記憶體芯片的該電子識別建立關聯以產生該修復表檔案。
  20. 如請求項18所述的方法,其中提供該邏輯芯片,以根據該輸入位址及該修復表檔案的該比較結果,選擇性地存取該記憶體芯片的該第二記憶體空間或該第一記憶體空間的步驟包括: 提供一非揮發性記憶體電路,以儲存對應於該第一記憶體空間的該修復表檔案; 提供一影子記憶體,以在通電該記憶體裝置時,自該非揮發性記憶體電路映射該修復表檔案的一複本;以及 操作該邏輯芯片,以自該影子記憶體取得該修復表檔案的該複本,以及比較該輸入位址及該第一修復表檔案的該複本,以產生該比較結果。
TW110135261A 2020-12-31 2021-09-23 記憶體裝置、記憶體系統及控制其記憶體裝置的方法 TWI789917B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063132484P 2020-12-31 2020-12-31
US63/132,484 2020-12-31

Publications (2)

Publication Number Publication Date
TW202228131A true TW202228131A (zh) 2022-07-16
TWI789917B TWI789917B (zh) 2023-01-11

Family

ID=82119506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135261A TWI789917B (zh) 2020-12-31 2021-09-23 記憶體裝置、記憶體系統及控制其記憶體裝置的方法

Country Status (3)

Country Link
US (1) US20220208295A1 (zh)
CN (1) CN114694715A (zh)
TW (1) TWI789917B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131058A2 (en) * 2007-04-17 2008-10-30 Rambus Inc. Hybrid volatile and non-volatile memory device
US11869874B2 (en) * 2020-12-14 2024-01-09 Advanced Micro Devices, Inc. Stacked die circuit routing system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740349A (en) * 1993-02-19 1998-04-14 Intel Corporation Method and apparatus for reliably storing defect information in flash disk memories
US5856708A (en) * 1996-10-23 1999-01-05 Advanced Micro Devices, Inc. Polycide/poly diode SRAM load
US6728910B1 (en) * 2000-09-20 2004-04-27 Lsi Logic Corporation Memory testing for built-in self-repair system
US6889305B2 (en) * 2003-02-14 2005-05-03 Hewlett-Packard Development Company, L.P. Device identification using a memory profile
US8254191B2 (en) * 2008-10-30 2012-08-28 Micron Technology, Inc. Switched interface stacked-die memory architecture
US20110041016A1 (en) * 2009-08-12 2011-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Memory errors and redundancy
US9158619B2 (en) * 2012-03-30 2015-10-13 Intel Corporation On chip redundancy repair for memory devices
US9135100B2 (en) * 2013-03-14 2015-09-15 Micron Technology, Inc. Cooperative memory error detection and repair
US9223665B2 (en) * 2013-03-15 2015-12-29 Micron Technology, Inc. Apparatuses and methods for memory testing and repair
JP2015046569A (ja) * 2013-07-31 2015-03-12 マイクロン テクノロジー, インク. 半導体装置の製造方法

Also Published As

Publication number Publication date
US20220208295A1 (en) 2022-06-30
CN114694715A (zh) 2022-07-01
TWI789917B (zh) 2023-01-11

Similar Documents

Publication Publication Date Title
US7694196B2 (en) Self-diagnostic scheme for detecting errors
US9824946B2 (en) Test architecture of semiconductor device, test system, and method of testing semicondurctor devices at wafer level
CN106548807B (zh) 修复电路、使用它的半导体装置和半导体系统
US10878933B2 (en) Apparatuses and methods for memory testing and repair
US7835207B2 (en) Stacked device remapping and repair
TW564526B (en) Laminated type semiconductor device
TWI789917B (zh) 記憶體裝置、記憶體系統及控制其記憶體裝置的方法
CN108182962B (zh) 包括虚拟故障产生器的存储器装置及其存储单元修复方法
US11867751B2 (en) Wafer level methods of testing semiconductor devices using internally-generated test enable signals
TW201101464A (en) Stacked semiconductor devices including a master device
KR20040027450A (ko) Dram 자체 수리를 수행하는 방법, 집적 회로 및 온 칩시스템
JP2008299997A (ja) 半導体記憶装置
TW202345156A (zh) 包括修復儲存器的半導體裝置
CN112908396A (zh) 具有修复匹配机制的存储器装置及其操作方法
EP4133488A1 (en) Apparatuses and methods for die replacement in stacked memory
US20240126692A1 (en) Memory with post-packaging master die selection
US20190066738A1 (en) Semiconductor dies supporting multiple packaging configurations and associated methods
US7936057B2 (en) High bandwidth package
CN109119122B (zh) 地址控制电路及半导体装置