TW202223562A - Control device, adjustment method, lithography device, and method for manufacturing article - Google Patents

Control device, adjustment method, lithography device, and method for manufacturing article Download PDF

Info

Publication number
TW202223562A
TW202223562A TW110146060A TW110146060A TW202223562A TW 202223562 A TW202223562 A TW 202223562A TW 110146060 A TW110146060 A TW 110146060A TW 110146060 A TW110146060 A TW 110146060A TW 202223562 A TW202223562 A TW 202223562A
Authority
TW
Taiwan
Prior art keywords
control
signal
adjustment
control device
deviation
Prior art date
Application number
TW110146060A
Other languages
Chinese (zh)
Inventor
猪股裕也
畑智康
森川寛
伊藤正裕
草柳博一
朝倉康伸
石井祐二
橋本拓海
Original Assignee
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商佳能股份有限公司 filed Critical 日商佳能股份有限公司
Publication of TW202223562A publication Critical patent/TW202223562A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Feedback Control In General (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention is a control device that generates a control signal for controlling a control object, said control device comprising: a first compensator that generates a first signal on the basis of the control deviation of the control object; a corrector that corrects the control deviation using one adjustment unit among a plurality of adjustment units that generate a correction signal by correcting the control deviation according to a calculation formula with which a coefficient can be adjusted; a second compensator that generates a second signal using a neural network, on the basis of the correction signal; and a calculation unit that generates the control signal on the basis of the first signal and the second signal.

Description

控制裝置、調整方法、光刻裝置及物品之製造方法Control device, adjustment method, lithography device, and manufacturing method of articles

本發明涉及控制裝置、調整方法、光刻裝置及物品之製造方法。The present invention relates to a control device, an adjustment method, a lithography device, and a method for manufacturing an article.

在製造半導體裝置、平板顯示器(FPD)等的裝置之際的光刻程序中,使用將遮罩的圖案轉印於基板的曝光裝置。於曝光裝置,例如為了遮罩與基板的位置對準,需要高精度地進行保持遮罩的遮罩台、保持基板的基板台的位置控制、同步控制。In a photolithography process in the manufacture of devices such as semiconductor devices and flat panel displays (FPDs), an exposure device that transcribes a mask pattern to a substrate is used. In an exposure apparatus, for example, in order to align the mask and the substrate, position control and synchronization control of the mask stage holding the mask and the substrate stage holding the substrate need to be performed with high precision.

對於在如上述的載台等的位置控制、同步控制中需要的精度之要求隨裝置的高精細化進展而越趨嚴格,僅以歷來的回授控制有時無法達成要求精度。於是,除歷來的控制器外,已致力於並列地構成神經網路控制器(專利文獻1)。此外,已想出依控制對象的狀態而切換神經網路控制器並進行配合了控制對象的補償的手法(專利文獻2)。 [先前技術文獻] [專利文獻] The requirements for the accuracy required for the above-described position control and synchronization control of the stage and the like have become stricter with the progress of high-definition devices, and the required accuracy may not be achieved with conventional feedback control alone. Therefore, in addition to the conventional controllers, efforts have been made to construct neural network controllers in parallel (Patent Document 1). In addition, a method of switching the neural network controller according to the state of the control object and performing compensation according to the control object has been proposed (Patent Document 2). [Prior Art Literature] [Patent Literature]

[專利文獻1]特表平7-503563號公報 [專利文獻2]日本特開平7-277286號公報 [Patent Document 1] Japanese Patent Publication No. Hei 7-503563 [Patent Document 2] Japanese Patent Application Laid-Open No. 7-277286

[發明所欲解決之課題][The problem to be solved by the invention]

然而,構成複數個神經網路控制器雖從而可預期精度改善,惟控制演算時間會增大。此外,神經網路控制器方面,參數被透過機器學習而調整,要予以學習複數個神經網路的參數,需要大量的時間。再者,發生控制對象的狀態變化、外擾環境的變化的情況下,預先決定的神經網路的參數變非最佳,故在參數的再調整方面需要大量的時間。However, if a plurality of neural network controllers are formed, an improvement in accuracy can be expected, but the control calculation time increases. In addition, in the neural network controller, the parameters are adjusted by machine learning, and it takes a lot of time to learn the parameters of a plurality of neural networks. Furthermore, when a change in the state of the control object or a change in the external disturbance environment occurs, the parameters of the neural network determined in advance become non-optimal, and a large amount of time is required to readjust the parameters.

於是,本發明目的在於提供一種使用了神經網路的控制裝置,其在為了以短時間調整恰當的控制特性方面有利。Therefore, an object of the present invention is to provide a control device using a neural network, which is advantageous in adjusting an appropriate control characteristic in a short time.

為了達成前述目的,作為本發明的一方案的控制裝置為一種控制裝置,其產生用於對控制對象進行控制的控制訊號,前述控制裝置具備:第1補償器,其基於前述控制對象的控制偏差而予以產生第1訊號;校正器,其在依可調整係數的演算式校正前述控制偏差從而予以產生校正訊號的複數個調整部之中使用1個調整部而校正前述控制偏差;第2補償器,其基於前述校正訊號透過神經網路從而產生第2訊號;以及演算器,其基於前述第1訊號與前述第2訊號而產生前述控制訊號。In order to achieve the above object, a control device as an aspect of the present invention is a control device that generates a control signal for controlling a control object, and the control device includes: a first compensator based on a control deviation of the control object to generate a first signal; a calibrator for correcting the control deviation by using one adjustment part among a plurality of adjustment parts for generating a correction signal by correcting the control deviation according to an arithmetic formula of an adjustable coefficient; a second compensator , which generates a second signal through a neural network based on the calibration signal; and a calculator, which generates the control signal based on the first signal and the second signal.

依本發明時,可提供一種使用了神經網路的控制裝置,其在為了以短時間調整恰當的控制特性方面有利。According to the present invention, it is possible to provide a control device using a neural network, which is advantageous in adjusting appropriate control characteristics in a short time.

於以下,基於圖式而詳細說明本發明的優選實施方式。另外,各圖中,就相同的構件標注相同的參考符號,重複的說明省略。Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings. In addition, in each figure, the same reference numerals are attached to the same members, and overlapping descriptions are omitted.

<第1實施方式> 於圖1,示出本實施方式中的系統SS的構成。系統SS可應用於例如用於製造物品的製造裝置。製造裝置例如包含對物品或構成物品的一部分的構件進行處理的處理裝置。處理裝置例如可為以下中的任一者:將圖案轉印於材料或構件的光刻裝置;將膜形成於材料或構件的膜形成裝置;將材料或構件進行蝕刻的裝置;及將材料或構件進行加熱的加熱裝置。 <First Embodiment> In FIG. 1, the structure of the system SS in this embodiment is shown. The system SS can be applied, for example, to a manufacturing apparatus for manufacturing articles. The manufacturing apparatus includes, for example, a processing apparatus that processes an article or a member constituting a part of the article. The processing apparatus can be, for example, any of the following: a lithography apparatus that transfers a pattern to a material or member; a film forming apparatus that forms a film on a material or member; an apparatus that etches a material or member; A heating device for heating components.

系統SS例如具備序列部101、控制裝置100及控制對象103。控制裝置100包含控制器102。控制裝置100或控制器102產生用於對控制對象103進行控制的控制訊號MV。系統SS被應用於生產系統的情況下,於序列部101被提供生產序列。生產序列界定用於生產的順序。序列部101基於生產序列產生用於對控制對象103進行控制的目標值R,並將目標值R提供至控制裝置100或控制器102。The system SS includes, for example, a sequence unit 101 , a control device 100 , and a control object 103 . The control device 100 includes a controller 102 . The control device 100 or the controller 102 generates a control signal MV for controlling the control object 103 . When the system SS is applied to a production system, a production sequence is provided to the sequence unit 101 . The production sequence defines the sequence used for production. The sequence part 101 generates a target value R for controlling the control object 103 based on the production sequence, and supplies the target value R to the control device 100 or the controller 102 .

控制裝置100或控制器102對控制對象103進行回授控制。具體而言,控制裝置100基於控制偏差,以控制對象103的控制量CV追隨目標值R的方式對控制對象103進行控制,該控制偏差為從序列部101提供的目標值R與從控制對象103提供的控制量CV的差分。控制對象103可具有檢測控制量CV的感測器,透過該感測器檢測出的控制量CV可被提供至控制器102。目標值R、控制訊號MV及控制量CV可為值隨時間的經過而變化的時序列資料。The control device 100 or the controller 102 performs feedback control on the control object 103 . Specifically, the control device 100 controls the controlled object 103 so that the control amount CV of the controlled object 103 follows the target value R based on the control deviation, which is the target value R supplied from the sequence unit 101 and the controlled object 103 Provides the difference of the control quantity CV. The control object 103 may have a sensor for detecting the control amount CV, and the control amount CV detected by the sensor may be provided to the controller 102 . The target value R, the control signal MV, and the control amount CV may be time-series data whose values vary over time.

如例示於圖2,於系統SS亦可併入有學習部201。學習部201可被構成為控制裝置100的一部分,亦可被構成為控制裝置100的外部裝置。在學習部201被構成為控制裝置100的外部裝置的情況下,可在學習的結束後學習部201被從控制裝置100斷開。學習部201被構成為將預先準備的學習序列送至序列部101。序列部101依學習序列生成目標值R並提供至控制器102。As exemplified in FIG. 2 , a learning unit 201 may also be incorporated in the system SS. The learning unit 201 may be configured as a part of the control device 100 or may be configured as an external device of the control device 100 . When the learning unit 201 is configured as an external device of the control device 100 , the learning unit 201 may be disconnected from the control device 100 after the learning is completed. The learning unit 201 is configured to send a learning sequence prepared in advance to the sequence unit 101 . The sequence unit 101 generates the target value R according to the learning sequence and supplies it to the controller 102 .

控制器102基於控制偏差而生成控制訊號MV,該控制偏差為從序列部101依學習序列而生成並提供的目標值R與從控制對象103提供的控制量CV的差分。此處,控制器102具有神經網路,並使用該神經網路而產生控制訊號MV。透過控制器102生成的控制訊號MV被提供至控制對象103,控制對象103依此控制訊號MV動作。作為此動作的結果的控制量CV被提供至控制器102。控制器102將基於目標值R之控制器102的動作的歷史的動作歷史提供至學習部201。學習部201基於該動作歷史而決定控制器102的神經網路的參數值,並將該參數值設定於該神經網路。該參數值例如被透過強化學習等的機器學習而決定。The controller 102 generates the control signal MV based on the control deviation which is the difference between the target value R generated and supplied from the sequence unit 101 according to the learning sequence and the control amount CV supplied from the controlled object 103 . Here, the controller 102 has a neural network, and uses the neural network to generate the control signal MV. The control signal MV generated by the controller 102 is provided to the control object 103, and the control object 103 acts according to the control signal MV. The control amount CV as a result of this action is supplied to the controller 102 . The controller 102 supplies the operation history of the operation history of the controller 102 based on the target value R to the learning unit 201 . The learning unit 201 determines the parameter value of the neural network of the controller 102 based on the motion history, and sets the parameter value in the neural network. This parameter value is determined by machine learning such as reinforcement learning, for example.

圖3為就控制器102的構成例之一進行繪示的圖。控制器102包含基於控制偏差E而產生第1訊號S1的第1補償器301及依可調整係數的演算式演算控制偏差E從而產生校正訊號CS的校正器303。此外,控制器102包含基於校正訊號CS透過神經網路產生第2訊號S2的第2補償器302及基於第1訊號S1與第2訊號S2產生控制訊號MV的演算器306。FIG. 3 is a diagram illustrating an example of the configuration of the controller 102 . The controller 102 includes a first compensator 301 that generates a first signal S1 based on the control deviation E, and a corrector 303 that calculates the control deviation E according to an arithmetic formula of an adjustable coefficient to generate a correction signal CS. In addition, the controller 102 includes a second compensator 302 for generating the second signal S2 through the neural network based on the correction signal CS, and an calculator 306 for generating the control signal MV based on the first signal S1 and the second signal S2.

校正器303具有包含第1調整部303a、第2調整部303b的複數個校正器,並可選擇依控制狀態而使用的調整部(被連接的調整部)。控制訊號MV為第1訊號S1與第2訊號S2的和,演算器306可被以加法器構成。此外,控制訊號MV為基於第2訊號S2而校正了第1訊號S1的訊號。控制器102包含產生是目標值R與控制量CV的差分之控制偏差E的減法器305。控制量CV被透過控制對象103具備的未圖示的感測器等進行計測從而取得。此外,比起是基於第1訊號S1而控制了控制對象103的結果之控制量與目標值R的差,是基於控制訊號MV而控制了控制對象103的結果之控制量與目標值R的差較小。The corrector 303 includes a plurality of correctors including a first adjusting unit 303a and a second adjusting unit 303b, and the adjusting unit (connected adjusting unit) to be used according to the control state can be selected. The control signal MV is the sum of the first signal S1 and the second signal S2, and the calculator 306 can be configured as an adder. In addition, the control signal MV is a signal obtained by correcting the first signal S1 based on the second signal S2. The controller 102 includes a subtractor 305 that generates a control deviation E which is the difference between the target value R and the control variable CV. The control amount CV is acquired by measuring through a sensor or the like, which is not shown, provided in the control object 103 . In addition, compared with the difference between the control amount and the target value R as a result of controlling the control object 103 based on the first signal S1, the difference between the control amount and the target value R as a result of controlling the control object 103 based on the control signal MV smaller.

控制器102進一步包含動作歷史記錄部304。圖2中的學習部201被構成為進行一學習,該學習用於決定圖3中的第2補償器302的神經網路的參數值。為了透過了學習部201之學習,動作歷史記錄部304記錄透過了學習部201之學習所需的動作歷史,並將已記錄的動作歷史提供至學習部201。動作歷史例如為是對於第2補償器302之輸入資料的校正訊號CS與是第2補償器302的輸出資料之第2訊號S2,亦可為控制偏差與是第2補償器302的輸出資料之第2訊號S2,亦可為其他資料。第1調整部303a、第2調整部303b能以任意的參數作為初始值而進行學習。The controller 102 further includes an action history recording unit 304 . The learning unit 201 in FIG. 2 is configured to perform learning for determining parameter values of the neural network of the second compensator 302 in FIG. 3 . In order to pass the learning of the learning part 201 , the motion history recording part 304 records the motion histories necessary for the learning of the learning part 201 , and supplies the recorded motion histories to the learning part 201 . The action history is, for example, the correction signal CS for the input data of the second compensator 302 and the second signal S2 for the output data of the second compensator 302 , or the control deviation and the output data of the second compensator 302 . The second signal S2 may also be other data. The first adjustment unit 303a and the second adjustment unit 303b can perform learning using arbitrary parameters as initial values.

於以下的實施例1~5,說明校正器303的構成例。在實施例1~5,示出校正器303為了基於控制偏差E生成校正訊號CS而使用的演算式之例。演算式例如可為單項式或多項式。In the following Embodiments 1 to 5, a configuration example of the corrector 303 will be described. In Embodiments 1 to 5, examples of the calculation formula used by the corrector 303 to generate the correction signal CS based on the control deviation E are shown. The arithmetic expression may be, for example, a monomial or a polynomial.

(實施例1) 於實施例1,第1調整部303a、第2調整部303b具有由以下的式(1)表示的控制特性。此處,使對於校正器303的輸入(E)為x,使校正器303的輸出(CS)為y,使任意的係數(常數)為Kp。 (Example 1) In Example 1, the first adjustment unit 303a and the second adjustment unit 303b have control characteristics represented by the following equation (1). Here, let the input (E) to the corrector 303 be x, the output (CS) of the corrector 303 be y, and let an arbitrary coefficient (constant) be Kp.

Figure 02_image001
Figure 02_image001

(實施例2) 於實施例2,第1調整部303a、第2調整部303b具有由以下的式(2)表示的控制特性。此處,使對於校正器303的輸入(E)為x,使校正器303的輸出(CS)為y,使時刻為t,使任意的係數(常數)為K i。另外,積分可進行複數次。積分可為一時間區間的定積分,亦可為不定積分。 (Example 2) In Example 2, the first adjustment part 303a and the second adjustment part 303b have control characteristics represented by the following formula (2). Here, the input (E) to the corrector 303 is x, the output (CS) of the corrector 303 is y, the time is t, and an arbitrary coefficient (constant) is K i . In addition, integration can be performed multiple times. The integral can be a definite integral over a time interval or an indefinite integral.

Figure 02_image003
Figure 02_image003

(實施例3) 於實施例3,第1調整部303a、第2調整部303b具有由以下的式(3)表示的控制特性。此處,使對於校正器303的輸入(E)為x,使校正器303的輸出(CS)為y,使時刻為t,使任意的係數(常數)為K d。另外,微分可進行複數次。 (Example 3) In Example 3, the 1st adjustment part 303a and the 2nd adjustment part 303b have the control characteristic represented by the following formula (3). Here, the input (E) to the corrector 303 is x, the output (CS) of the corrector 303 is y, the time is t, and an arbitrary coefficient (constant) is K d . In addition, differentiation can be performed a complex number of times.

Figure 02_image005
Figure 02_image005

(實施例4) 於實施例4,第1調整部303a、第2調整部303b具有由以下的式(4)表示的控制特性。此處,使對於校正器303的輸入(E)為x,使校正器303的輸出(CS)為y,使任意的係數(常數)為K p、K i、K d。另外,積分及微分可進行複數次。 (Example 4) In Example 4, the first adjustment part 303a and the second adjustment part 303b have control characteristics represented by the following formula (4). Here, the input (E) to the corrector 303 is x, the output (CS) of the corrector 303 is y, and arbitrary coefficients (constants) are K p , K i , and K d . In addition, integration and differentiation can be performed multiple times.

Figure 02_image007
Figure 02_image007

(實施例5) 於實施例5,第1調整部303a、第2調整部303b具有由以下的式(5)的演算式表示的控制特性。此處,使對於校正器303之輸入(E)為x,使校正器303的輸出(CS)為y,使多重積分的積分階數為n,使微分階數為m,使任意的係數(常數)為K p,使n重積分時的任意的係數(常數)為K i _ n,使m階微分時的任意的常數為K d _ m(Example 5) In Example 5, the 1st adjustment part 303a and the 2nd adjustment part 303b have the control characteristic represented by the following formula (5). Here, let the input (E) to the corrector 303 be x, the output (CS) of the corrector 303 be y, the integration order of the multi-integration is n, the differentiation order is m, and an arbitrary coefficient ( A constant) is K p , an arbitrary coefficient (constant) at the time of n multiple integration is K i n , and an arbitrary constant at the time of m-order differentiation is K d m .

Figure 02_image009
Figure 02_image009

實施例1~5可理解為校正器303為了生成校正訊號CS而使用的演算式包含與控制偏差E成比例之項、進行積分之項及進行微分之項中的至少1個之例。Embodiments 1 to 5 can be understood as examples in which the arithmetic expression used by the corrector 303 to generate the correction signal CS includes at least one of a term proportional to the control deviation E, an integral term, and a differential term.

在實施例1~5舉出的演算式的係數(常數)K p、K i、K d、K i _ n、K d _ m為校正器303的可調整的參數之例。第1調整部303a、第2調整部303b依預先設想的控制狀態的變化而預先決定使用了實施例1~5中的任一者的最佳的參數。控制狀態例如為同步控制的切換、控制器的切換、動作模式的切換、溫度、擾音、地板振動等的環境、外擾的變化等。透過選擇因應了控制狀態的第1調整部303a、第2調整部303b,從而可獲得最佳的控制特性。構成複數個校正器導致的調整時間比構成複數個神經網路導致的調整時間短,故在時間縮短的觀點方面有利。 The coefficients (constants) K p , K i , K d , K i n , and K d m of the arithmetic expressions described in Embodiments 1 to 5 are examples of parameters that can be adjusted by the corrector 303 . The first adjustment unit 303a and the second adjustment unit 303b determine in advance the optimum parameters using any one of the first to fifth embodiments in accordance with a change in the control state assumed in advance. The control state is, for example, switching of synchronous control, switching of controllers, switching of operation modes, changes in the environment such as temperature, noise, and floor vibration, and changes in external disturbances. By selecting the first adjustment unit 303a and the second adjustment unit 303b in accordance with the control state, optimum control characteristics can be obtained. Since the adjustment time by forming a plurality of correctors is shorter than the adjustment time by forming a plurality of neural networks, it is advantageous from the viewpoint of shortening the time.

此外,系統SS的動作中控制對象103的狀態、外擾環境發生變化的情況下,可透過調整以實施例1~5而例示的演算式(的係數)的值(參數值)從而應對於該變化。校正器303的演算式(的係數)的值的調整所需的時間比神經網路的再學習所需的時間短。因此,可在不降低系統SS的生產率之下維持控制精度。亦即,可透過導入校正器303從而使對於控制對象103的狀態變化、外擾環境的變化之寛容性提升。In addition, when the state of the control object 103 and the external disturbance environment change during the operation of the system SS, the values (parameter values) of the (coefficients) of the arithmetic expressions exemplified in Embodiments 1 to 5 can be adjusted so as to respond to the change. Variety. The time required for adjustment of the value of the calculation formula (coefficient of) of the corrector 303 is shorter than the time required for relearning of the neural network. Therefore, the control accuracy can be maintained without reducing the productivity of the system SS. That is, by introducing the corrector 303, the tolerance to the state change of the control object 103 and the change of the external disturbance environment can be improved.

(實施例6) 實施例6~8就控制狀態的變化與在校正器303使用的調整部的切換的關係性進行說明。 (Example 6) In Examples 6 to 8, the relationship between the change of the control state and the switching of the adjustment unit used in the corrector 303 will be described.

圖4為就實施例6中的控制器102的構成例進行繪示的圖。在實施例6,如示於圖4,可切換:對包含控制對象103a、控制對象103b的複數個控制對象分別個別地進行控制;或予以同步而進行控制。實施例6中的控制狀態為依將複數個控制對象個別地控制或予以同步而控制而定的狀態,依是否對複數個控制對象進行同步控制而執行適切的調整部的切換。此外,實施例6中,呈依同步控制切換部402的狀態而進行校正器303的切換的構成,可選擇使用第1調整部303a或使用第2調整部303b。此外,實施例6中,就在使進行控制對象103a的控制的軸為主軸且進行控制對象103b的控制的軸為從軸之下從軸追隨主軸的被稱為主從方式的同步控制進行說明。FIG. 4 is a diagram illustrating a configuration example of the controller 102 in the sixth embodiment. In the sixth embodiment, as shown in FIG. 4 , it is possible to switch between: individually controlling a plurality of control objects including the control object 103 a and the control object 103 b , or synchronizing the control. The control state in the sixth embodiment is a state that is determined by individually controlling or synchronizing a plurality of control objects, and switching of an appropriate adjustment unit is performed according to whether the synchronization control is performed on a plurality of control objects. In addition, in the sixth embodiment, the corrector 303 is switched according to the state of the synchronous control switching unit 402, and the first adjustment unit 303a or the second adjustment unit 303b can be selectively used. In the sixth embodiment, a description will be given of a synchronous control called a master-slave method in which the axis that controls the control object 103a is the master axis and the axis that controls the control object 103b is the slave axis. .

控制器102取得以控制對象103具備的未圖示的感測器進行了計測的控制對象103a、103b個別的控制量CVa、CVb,分別計算與個別的目標值Ra、Rb的差分為控制偏差Ea、Eb。The controller 102 acquires the individual control variables CVa and CVb of the control objects 103a and 103b measured by the sensor (not shown) included in the control object 103, and calculates the difference from the individual target values Ra and Rb as the control deviation Ea, respectively. , Eb.

控制偏差Ea被輸入至控制器301a。往控制器301b的輸入與往設於被和控制器301b並列地構成的神經網路302的前級的校正器303的輸入方面,可依是否對控制對象103a與控制對象103b進行同步控制而切換。往校正器303的輸入方面,可選擇被透過對控制對象103a與控制對象103b的同步控制進行切換的同步控制切換部402而切換的控制偏差Eb或是控制偏差Eb與控制偏差Ea的差分的同步偏差Ec。校正器303的輸出可依同步控制切換部402的狀態而選擇使用第1調整部303a或使用第2調整部303b。The control deviation Ea is input to the controller 301a. The input to the controller 301b and the input to the corrector 303 provided in the preceding stage of the neural network 302 formed in parallel with the controller 301b can be switched depending on whether the control object 103a and the control object 103b are controlled synchronously . As the input to the corrector 303, the control deviation Eb or the synchronization of the difference between the control deviation Eb and the control deviation Ea can be selected by the synchronous control switching unit 402 which switches the synchronous control of the control object 103a and the control object 103b. Deviation Ec. The output of the corrector 303 can be selected to use the first adjustment part 303a or the second adjustment part 303b according to the state of the synchronization control switching part 402 .

實施例6的具體例方面,例如應用於曝光裝置的情況下,在使平板台與遮罩台同步時與進行其以外的動作時可選擇不同的調整部。此時,第1調整部303a與第2調整部303b在平板台與遮罩台同步時與進行其以外的動作時參數分別被最佳化。依同步控制切換部402的狀態而選擇的第1調整部303a、第2調整部303b的輸出被輸入至神經網路302(第2補償器)。使補償器301a的輸出為控制訊號MVa。將補償器301b的輸出與神經網路302的輸出進行加算而當作控制訊號MVb。控制器102將控制訊號MVa、MVb分別輸出至控制對象103a、103b。In the specific example of the sixth embodiment, when applied to an exposure apparatus, for example, different adjustment parts can be selected when synchronizing the platen stage and the mask stage and when performing other operations. At this time, the parameters of the first adjustment unit 303a and the second adjustment unit 303b are optimized respectively when the platen stage and the mask stage are synchronized, and when other operations are performed. The outputs of the first adjustment unit 303a and the second adjustment unit 303b selected according to the state of the synchronization control switching unit 402 are input to the neural network 302 (second compensator). The output of the compensator 301a is the control signal MVa. The output of the compensator 301b and the output of the neural network 302 are added to serve as the control signal MVb. The controller 102 outputs the control signals MVa and MVb to the control objects 103a and 103b, respectively.

第1調整部303a、第2調整部303b依同步控制切換部402的狀態而預先決定使用了實施例1~5中的任一者的最佳的參數。透過選擇因應了同步控制切換部402的狀態的第1調整部303a、第2調整部303b,從而可獲得最佳的控制特性。The first adjustment unit 303a and the second adjustment unit 303b predetermine optimal parameters using any one of the first to fifth embodiments in accordance with the state of the synchronization control switching unit 402 . By selecting the first adjustment unit 303a and the second adjustment unit 303b according to the state of the synchronous control switching unit 402, optimum control characteristics can be obtained.

校正器303從複數個調整部選擇最佳的調整部的構成導致的調整時間的增加比構成複數個神經網路導致的調整時間的增加短。此外,在使用實施例1~5中的任一者的運用中控制對象103的狀態、外擾環境發生了變化的情況下,可透過調整實施例1~5的參數從而應對於該變化。第1調整部303a、第2調整部303b的調整所需的時間比神經網路的再學習所需的時間短。實施例6中,即使在進行配合了控制對象的狀態、外擾環境的複數個補償之情況下,仍可抑制演算時間、學習時間的增加,即使控制對象的狀態變化、外擾環境方面發生變化,仍能以短時間調整恰當的控制特性。The corrector 303 selects an optimum adjustment unit from the plurality of adjustment units, and the increase in adjustment time due to the configuration of the adjustment unit is shorter than the increase in adjustment time due to the configuration of the plurality of neural networks. In addition, when the state of the control object 103 and the external disturbance environment change during operation using any of the first to fifth embodiments, the parameters of the first to fifth embodiments can be adjusted to cope with the change. The time required for the adjustment by the first adjustment unit 303a and the second adjustment unit 303b is shorter than the time required for the relearning of the neural network. In Embodiment 6, even when a plurality of compensations are performed in accordance with the state of the control object and the external disturbance environment, the increase in the calculation time and the learning time can be suppressed, even if the state of the control object and the external disturbance environment change. , the appropriate control characteristics can still be adjusted in a short time.

(實施例7) 圖5為就實施例7中的控制器102的構成例進行繪示的圖。實施例7中,呈依控制對象103的狀態、動作而進行補償器301的切換的構成,可選擇使用補償器301a或使用補償器301b。實施例7中的控制狀態為依複數個補償器之中使用何補償器而定的狀態,依使用補償器301a或使用補償器301b而執行調整部的切換。此外,實施例7中,呈依補償器301的狀態而進行校正器303的切換的構成,可選擇使用第1調整部303a或使用第2調整部303b。 (Example 7) FIG. 5 is a diagram showing a configuration example of the controller 102 in the seventh embodiment. In the seventh embodiment, the compensator 301 is switched according to the state and operation of the control object 103, and the compensator 301a or the compensator 301b can be selected. The control state in Embodiment 7 is a state determined according to which compensator is used among the plurality of compensators, and the switching of the adjustment part is performed according to whether the compensator 301a or the compensator 301b is used. In addition, in the seventh embodiment, the corrector 303 is switched according to the state of the compensator 301, and the first adjustment part 303a or the second adjustment part 303b can be selected to be used.

實施例7的具體例方面,例如應用於曝光裝置的的情況下,亦可應用於在平板台的曝光動作時使用補償器301a並在平板搬送動作使用補償器301b如此的發生增益的切換之時。亦即,基於是否發生控制對象103的增益的切換而從複數個調整部選擇使用於控制偏差E的校正的調整部即可。此時,第1調整部303a與第2調整部303b對補償器301a、補償器301b預先決定使用了實施例1~5中的任一者的最佳的參數。透過選擇因應了補償器301的狀態的第1調整部303a、第2調整部303b,從而可獲得最佳的控制特性。The specific example of Embodiment 7, for example, when applied to an exposure apparatus, can also be applied to the switching of the gain such that the compensator 301a is used in the exposure operation of the platen and the compensator 301b is used in the plate conveyance operation. . That is, based on whether or not the gain of the control object 103 is switched, the adjustment unit used for the correction of the control deviation E may be selected from a plurality of adjustment units. At this time, the first adjustment unit 303a and the second adjustment unit 303b predetermine the optimal parameters using any of the first to fifth embodiments for the compensator 301a and the compensator 301b. By selecting the first adjustment part 303a and the second adjustment part 303b according to the state of the compensator 301, optimum control characteristics can be obtained.

校正器303從複數個調整部選擇最佳的調整部的構成導致的調整時間的增加比構成複數個神經網路導致的調整時間的增加短。此外,在使用實施例1~5中的任一者的運用中控制對象103的狀態、外擾環境發生了變化的情況下,可透過調整實施例1~5的參數從而應對於該變化。第1調整部303a、第2調整部303b的調整所需的時間比神經網路的再學習所需的時間短。實施例7中,即使在進行配合了控制對象的狀態、外擾環境的複數個補償之情況下,仍可抑制演算時間、學習時間的增加,即使控制對象的狀態變化、外擾環境方面發生變化,仍能以短時間調整恰當的控制特性。The corrector 303 selects an optimum adjustment unit from the plurality of adjustment units, and the increase in adjustment time due to the configuration of the adjustment unit is shorter than the increase in adjustment time due to the configuration of the plurality of neural networks. In addition, when the state of the control object 103 and the external disturbance environment change during operation using any of the first to fifth embodiments, the parameters of the first to fifth embodiments can be adjusted to cope with the change. The time required for the adjustment by the first adjustment unit 303a and the second adjustment unit 303b is shorter than the time required for the relearning of the neural network. In Embodiment 7, even when a plurality of compensations are performed in accordance with the state of the control object and the external disturbance environment, the increase in the calculation time and the learning time can be suppressed, even if the state of the control object changes and the external disturbance environment changes. , the appropriate control characteristics can still be adjusted in a short time.

(實施例8) 圖6為就實施例8中的控制器102的構成例進行繪示的圖。實施例8中的控制狀態為依控制對象的動作模式403是否變化而定的狀態。動作模式403的具體例方面,後述之。實施例8中,呈依動作模式403的狀態而進行調整部的切換的構成,可選擇使用第1調整部303a或使用第2調整部303b。 (Example 8) FIG. 6 is a diagram showing a configuration example of the controller 102 in the eighth embodiment. The control state in the eighth embodiment is a state that depends on whether the action mode 403 of the control object changes. A specific example of the operation mode 403 will be described later. In the eighth embodiment, the switching of the adjustment part is performed according to the state of the operation mode 403, and the first adjustment part 303a or the second adjustment part 303b can be selected to be used.

實施例7的具體例方面,例如應用於在曝光裝置等中使用的載台裝置的情況下,可在載台的驅動時的加速區間與其以外的動作模式之間進行切換而應用。此時,第1調整部303a與第2調整部303b依控制對象103的動作模式403的狀態而預先決定使用了實施例1~5中的任一者的最佳的參數。透過選擇因應了動作模式403的狀態的第1調整部303a、第2調整部303b,從而可獲得最佳的控制特性。The specific example of Embodiment 7 can be applied, for example, by switching between an acceleration section during driving of the stage and an operation mode other than that when applied to a stage apparatus used in an exposure apparatus or the like. At this time, the first adjustment unit 303a and the second adjustment unit 303b determine in advance the optimum parameters using any one of the first to fifth embodiments in accordance with the state of the operation mode 403 of the control object 103 . By selecting the first adjustment unit 303a and the second adjustment unit 303b in accordance with the state of the operation mode 403, optimum control characteristics can be obtained.

校正器303從複數個調整部選擇最佳的調整部的構成導致的調整時間的增加比構成複數個神經網路導致的調整時間的增加短。此外,在使用實施例1~5中的任一者的運用中控制對象103的狀態、外擾環境發生了變化的情況下,可透過調整實施例1~5的參數從而應對於該變化。第1調整部303a、第2調整部303b的調整所需的時間比神經網路的再學習所需的時間短。實施例8中,即使在進行配合了控制對象的狀態、外擾環境的複數個補償之情況下,仍可抑制演算時間、學習時間的增加,即使控制對象的狀態變化、外擾環境方面發生變化,仍能以短時間調整恰當的控制特性。The corrector 303 selects an optimum adjustment unit from the plurality of adjustment units, and the increase in adjustment time due to the configuration of the adjustment unit is shorter than the increase in adjustment time due to the configuration of the plurality of neural networks. In addition, when the state of the control object 103 and the external disturbance environment change during operation using any of the first to fifth embodiments, the parameters of the first to fifth embodiments can be adjusted to cope with the change. The time required for the adjustment by the first adjustment unit 303a and the second adjustment unit 303b is shorter than the time required for the relearning of the neural network. In the eighth embodiment, even when a plurality of compensations are performed in accordance with the state of the control object and the external disturbance environment, the increase in the calculation time and the learning time can be suppressed, even if the state of the control object changes and the external disturbance environment changes. , the appropriate control characteristics can still be adjusted in a short time.

如例示於圖7,控制裝置100亦可具備選擇使用第1調整部303a或使用第2調整部的設定部202。此外,設定部202亦可具有設定校正器303的參數值的作用。As shown in FIG. 7 as an example, the control device 100 may include a setting unit 202 that selects to use the first adjustment unit 303a or to use the second adjustment unit. In addition, the setting unit 202 may also have a role of setting parameter values of the corrector 303 .

設定部202執行用於調整部的切換、調整參數值的調整處理,可透過此調整處理決定並設定調整部的切換、參數值,亦可基於來自使用者的指令而設定調整部的切換、參數值。前者方面,設定部202可將用於確認控制器102的動作的確認序列送至序列部101,並基於此確認序列使序列部101生成目標值R。並且,設定部202可從基於該目標值R而動作的控制器102取得動作歷史(例如,控制偏差),並基於該動作歷史決定校正器303的切換的必要性的有無、參數值。具有如此的功能的設定部202可理解為對校正器303的切換、參數值進行調整的調整部。The setting unit 202 executes adjustment processing for switching the adjustment unit and adjusting the parameter value. Through the adjustment processing, the switching of the adjustment unit and the parameter value can be determined and set, and the switching of the adjustment unit and the parameter value can also be set based on an instruction from the user. value. In the former aspect, the setting unit 202 may send a confirmation sequence for confirming the operation of the controller 102 to the sequence unit 101 and cause the sequence unit 101 to generate the target value R based on the confirmation sequence. Then, the setting unit 202 may acquire an operation history (eg, control deviation) from the controller 102 that operates based on the target value R, and determine the necessity of switching the corrector 303 and parameter values based on the operation history. The setting unit 202 having such a function can be understood as an adjustment unit that switches the corrector 303 and adjusts parameter values.

設定部202亦可在序列部101基於生產序列而生成目標值R的生產時從控制器102取得動作歷史(例如,控制偏差),並基於該動作歷史決定是否執行校正器303的參數值的調整。或者,亦可與設定部202個別地設置在序列部101基於生產序列而生成目標值R的生產時判斷是否執行透過設定部202之校正器303的參數值的調整的判斷部。The setting unit 202 may acquire an operation history (for example, control deviation) from the controller 102 when the sequence unit 101 generates production of the target value R based on the production sequence, and determine whether or not to adjust the parameter value of the corrector 303 based on the operation history. . Alternatively, a determination unit may be provided separately from the setting unit 202 for determining whether to perform adjustment of the parameter values by the corrector 303 of the setting unit 202 when the sequence unit 101 generates production of the target value R based on the production sequence.

接著說明有關透過本實施方式中的系統而進行生產之例。圖8為將本實施方式的系統SS應用於生產裝置的情況下的系統SS的動作例。Next, an example of production by the system in this embodiment will be described. FIG. 8 is an operation example of the system SS when the system SS of the present embodiment is applied to a production apparatus.

在程序S501,序列部101基於被提供的生產序列而生成目標值R,並提供至控制裝置100或控制器102。控制裝置100或控制器102基於該目標值R對控制對象103進行控制。In program S501 , the sequence unit 101 generates the target value R based on the supplied production sequence, and supplies it to the control device 100 or the controller 102 . The control device 100 or the controller 102 controls the control object 103 based on the target value R.

在程序S502,設定部202取得在程序S501之控制器102的動作歷史(例如,控制偏差)。In routine S502, the setting unit 202 acquires the operation history (eg, control deviation) of the controller 102 in routine S501.

在程序S503,設定部202可基於在程序S502取得的動作歷史而判斷是否執行調整部的切換、參數值的調整(或再調整)等的校正器303的調整。設定部202例如可在動作歷史符合既定條件的情況下判斷為執行調整部的切換參數值的調整(或再調整)。既定條件為應使生產停止的條件,例如可在作為動作歷史而取得的控制偏差超過規定值的情況下判斷為需要校正器303的調整。並且,在執行透過了設定部202之校正器303的調整的情況下進至程序S504,否的情況下進至程序S505。In routine S503, the setting unit 202 can determine whether to perform adjustment of the corrector 303 such as switching of the adjustment unit and adjustment (or readjustment) of parameter values, based on the operation history acquired in the routine S502. For example, the setting unit 202 may determine that the adjustment (or readjustment) of the switching parameter value of the adjustment unit is executed when the operation history meets a predetermined condition. The predetermined condition is a condition in which production should be stopped. For example, when the control deviation acquired as the operation history exceeds a predetermined value, it can be determined that the adjustment of the corrector 303 is necessary. Then, when the adjustment through the corrector 303 of the setting unit 202 is performed, the process proceeds to a process S504, and when not, the process proceeds to a process S505.

在程序S504,設定部202執行校正器303的調整。此調整在第2補償器302的參數值被維持於之前的狀態的狀態下進行,並透過此調整從而例如使校正器303的參數值(係數)被再設定。In routine S504, the setting unit 202 performs adjustment of the corrector 303. This adjustment is performed while the parameter value of the second compensator 302 is maintained in the previous state, and through this adjustment, for example, the parameter value (coefficient) of the corrector 303 is reset.

在程序S505,序列部101判斷是否結束依照了生產序列之生產,不結束的情況下返回程序S501,結束的情況下使生產結束。依以上的處理時,即使在成為應使生產停止的狀態的情況下,仍可迅速調整校正器303的參數值,可在將生產之中斷抑制為最小限度的情況下使生產再開始。In program S505, the sequence unit 101 determines whether or not the production in accordance with the production sequence is terminated, and if not terminated, the process returns to program S501, and if terminated, the production is terminated. According to the above process, even when the production should be stopped, the parameter value of the corrector 303 can be adjusted quickly, and the production can be restarted with the production interruption kept to a minimum.

在程序S504,設定部202可將確認序列送至序列部101,使序列部101執行確認序列,從控制器102取得確認序列的動作歷史(例如,控制偏差)。並且,設定部202可進行該動作歷史的頻率解析,基於該結果而決定應改善的頻率,並以在該頻率的控制偏差成為規定值以內的方式決定校正器303的參數值。程序S504的更具體之例方面,在第2實施方式進行說明。In program S504 , the setting unit 202 may send the confirmation sequence to the sequence unit 101 , so that the sequence unit 101 executes the confirmation sequence, and obtains the operation history (eg, control deviation) of the confirmation sequence from the controller 102 . Then, the setting unit 202 can perform frequency analysis of the operation history, determine the frequency to be improved based on the result, and determine the parameter value of the corrector 303 so that the control deviation of the frequency is within a predetermined value. A more specific example of the procedure S504 will be described in the second embodiment.

於圖9,為例示外擾壓制特性的計測結果的圖。將對輸出作為圖2中的控制訊號MV而輸入正弦波時的控制偏差時的頻率響應進行了計測的結果稱為外擾壓制特性。圖9中,橫軸表示頻率,縱軸表示外擾壓制特性的增益。外擾壓制特性顯示在外擾被加算於控制訊號MV的情況下的控制偏差E的頻率響應,故增益大表示壓制外擾的效果低。另一方面,增益小表示壓制外擾的效果高。圖9中,虛線表示調整前的外擾壓制特性,實線表示調整後的外擾壓制特性。In FIG. 9, it is a figure which shows the measurement result of the external disturbance suppression characteristic. The result of measuring the frequency response when the control deviation when a sine wave is input as the control signal MV in FIG. 2 is called external disturbance suppression characteristic. In FIG. 9 , the horizontal axis represents the frequency, and the vertical axis represents the gain of the external disturbance suppression characteristic. The external disturbance suppression characteristic shows the frequency response of the control deviation E when the external disturbance is added to the control signal MV, so a large gain means a low effect of suppressing the external disturbance. On the other hand, a small gain means that the effect of suppressing external disturbance is high. In FIG. 9 , the broken line represents the external disturbance suppression characteristic before adjustment, and the solid line represents the external disturbance suppression characteristic after adjustment.

將在圖9中以點劃線表示的頻率定為應改善的外擾壓制特性的頻率而執行程序S504時,可獲得例如以實線表示的外擾壓制特性。在應改善的頻率方面,可得知外擾壓制特性的增益變小,外擾壓制特性提升。在實施例1~8,在進行設於神經網路的前級的校正器303的參數調整的情況下,亦能以示於圖9的外擾壓制特性為指標而進行參數調整。When the routine S504 is executed with the frequency indicated by the dashed-dotted line in FIG. 9 as the frequency of the external disturbance suppression characteristic to be improved, the external disturbance suppression characteristic indicated by the solid line, for example, can be obtained. In terms of the frequency to be improved, it can be seen that the gain of the external disturbance suppression characteristic is reduced, and the external disturbance suppression characteristic is improved. In Embodiments 1 to 8, when the parameter adjustment of the corrector 303 provided in the preceding stage of the neural network is performed, the parameter adjustment can be performed using the external disturbance suppression characteristic shown in FIG. 9 as an index.

<第2實施方式> 在本實施方式,就將在第1實施方式說明的控制系統SS應用於載台控制裝置800之例進行說明。本實施方式方面未言及的事項遵照第1實施方式。圖10為就將以圖1示出的控制系統SS應用於載台控制裝置800時的硬體構成進行繪示的圖。 <Second Embodiment> In this embodiment, an example in which the control system SS described in the first embodiment is applied to the stage control device 800 will be described. Matters not mentioned in this embodiment conform to the first embodiment. FIG. 10 is a diagram showing a hardware configuration when the control system SS shown in FIG. 1 is applied to the stage control apparatus 800 .

載台控制裝置800被構成為在將前述物體保持於載台804上的狀態下對載台804進行控制從而控制基板等的物體的位置。載台控制裝置800具備控制基板801、電流驅動器802、馬達803、載台804及感測器805。控制基板801對應於第1實施方式的系統SS中的控制裝置100或控制器102。電流驅動器802、馬達803、載台804及感測器805對應於第1實施方式的系統SS中的控制對象103。其中,電流驅動器802可被併入於控制基板801。雖未圖示於圖10,惟載台控制裝置800可具備序列部101、學習部201、設定部202。The stage control apparatus 800 is configured to control the position of the object such as the substrate by controlling the stage 804 in a state in which the object is held on the stage 804 . The stage control device 800 includes a control board 801 , a current driver 802 , a motor 803 , a stage 804 , and a sensor 805 . The control board 801 corresponds to the control device 100 or the controller 102 in the system SS of the first embodiment. The current driver 802, the motor 803, the stage 804, and the sensor 805 correspond to the control object 103 in the system SS of the first embodiment. Among them, the current driver 802 may be incorporated into the control substrate 801 . Although not shown in FIG. 10 , the stage control device 800 may include a sequence unit 101 , a learning unit 201 , and a setting unit 202 .

於控制基板801,被從序列部101供應作為目標值的位置目標值。控制基板801可基於從序列部101供應的位置目標值與從感測器805供應的位置資訊而產生作為控制訊號的電流指令,並供應至電流驅動器802。此外,控制基板801可將動作歷史供應至序列部101。The control board 801 is supplied with a position target value as a target value from the sequence unit 101 . The control substrate 801 can generate a current command as a control signal based on the position target value supplied from the sequencer 101 and the position information supplied from the sensor 805 , and supply the current command to the current driver 802 . In addition, the control board 801 can supply the action history to the sequence unit 101 .

電流驅動器802可將依照了電流指令之電流供應至馬達803。馬達803可為將從電流驅動器802供應的電流變換為推力並以該推力驅動載台804的致動器。載台804例如可保持平板或遮罩等的物體。感測器805可檢測載台804的位置,並將藉此獲得的位置資訊供應至控制基板801。The current driver 802 can supply the current according to the current command to the motor 803 . The motor 803 may be an actuator that converts the current supplied from the current driver 802 into thrust and drives the stage 804 with the thrust. The stage 804 can hold objects such as a flat plate or a mask, for example. The sensor 805 can detect the position of the stage 804 and supply the position information obtained thereby to the control substrate 801 .

圖11中,以方塊線圖示出控制基板801的構成例。控制基板801可包含基於作為控制對象的載台804的位置控制偏差E而產生第1訊號S1的第1補償器301及依可調整係數的演算式校正控制偏差E從而產生校正訊號CS的校正器303。此外,控制基板801可包含基於校正訊號CS透過神經網路產生第2訊號S2的第2補償器302及基於第1訊號S1與第2訊號S2產生電流指令作為控制訊號的演算器306。此外,控制基板801可包含產生是位置目標值PR與位置資訊的差分之控制偏差E的減法器305。In FIG. 11 , a configuration example of the control board 801 is shown by a block line diagram. The control board 801 may include a first compensator 301 for generating a first signal S1 based on a position control deviation E of the stage 804 to be controlled, and a calibrator for generating a calibration signal CS by correcting the control deviation E according to an arithmetic formula of an adjustable coefficient 303. In addition, the control substrate 801 may include a second compensator 302 for generating a second signal S2 through a neural network based on the calibration signal CS, and an calculator 306 for generating a current command as a control signal based on the first signal S1 and the second signal S2. In addition, the control substrate 801 may include a subtractor 305 that generates a control deviation E that is the difference between the position target value PR and the position information.

於第2實施方式的載台控制裝置100,亦可如同在圖7說明的第1實施方式般具備學習部201。學習部201可被構成為進行用於決定第2補償器302的神經網路的參數值的學習。為了透過了學習部201之學習,動作歷史記錄部304可記錄透過了學習部201之學習所需的動作歷史,並將記錄的動作歷史提供至學習部201。動作歷史例如可為是對於第2補償器302之輸入資料的校正訊號CS及是第2補償器302的輸出資料的第2訊號S2,亦可為其他資料。The stage control apparatus 100 of the second embodiment may include the learning unit 201 as in the first embodiment described with reference to FIG. 7 . The learning unit 201 may be configured to perform learning for determining the parameter values of the neural network of the second compensator 302 . In order to pass the learning of the learning part 201 , the motion history recording part 304 may record the motion history required for the learning passed through the learning part 201 , and provide the recorded motion history to the learning part 201 . The operation history may be, for example, the correction signal CS for the input data of the second compensator 302 and the second signal S2 for the output data of the second compensator 302, or other data.

第2實施方式的載台控制裝置100可具備設定部202。設定部202執行用於調整校正器303的參數值的調整處理,可透過此調整處理而決定並設定校正器303的參數值,亦可基於來自使用者的指令而設定校正器303的參數值。The stage control apparatus 100 of the second embodiment may include a setting unit 202 . The setting unit 202 executes an adjustment process for adjusting the parameter value of the corrector 303 , and can determine and set the parameter value of the corrector 303 through the adjustment process, or set the parameter value of the corrector 303 based on an instruction from the user.

援用圖8而例示性地說明將第2實施方式的載台控制裝置800應用於生產裝置的情況下的載台裝置800的動作。在程序S501,序列部101可基於被提供的生產序列而生成位置目標值PR,並提供至載台控制裝置800。載台控制裝置800基於該位置目標值PR而控制載台804的位置。The operation of the stage apparatus 800 in the case where the stage control apparatus 800 of the second embodiment is applied to a production apparatus will be exemplarily described with reference to FIG. 8 . In procedure S501 , the sequencer 101 may generate the position target value PR based on the supplied production sequence, and supply it to the stage control device 800 . Stage control device 800 controls the position of stage 804 based on this position target value PR.

在程序S502,設定部202取得在程序S501之控制基板801的動作歷史(例如,控制偏差)。In the procedure S502, the setting unit 202 acquires the operation history (eg, control deviation) of the control board 801 in the procedure S501.

在程序S503,設定部202可基於在程序S502取得的動作歷史而判斷是否執行調整部的切換、參數值的調整(或再調整)等的校正器303的調整。設定部202例如可在動作歷史符合既定條件的情況下判斷為執行校正器303的調整。既定條件為應使生產停止的條件,例如在載台804的等速驅動中的位置控制偏差的最大值超過預先決定的規定值的情況下判斷為需要校正器303的調整。並且,在執行透過了設定部202之校正器303的調整的情況下進至程序S504,否的情況下進至程序S505。In routine S503, the setting unit 202 can determine whether to perform adjustment of the corrector 303 such as switching of the adjustment unit and adjustment (or readjustment) of parameter values, based on the operation history acquired in the routine S502. For example, the setting unit 202 can determine that the adjustment of the corrector 303 is to be executed when the operation history meets a predetermined condition. The predetermined condition is a condition to stop production. For example, when the maximum value of the position control deviation during constant speed driving of the stage 804 exceeds a predetermined value, it is determined that the adjustment of the corrector 303 is necessary. Then, when the adjustment through the corrector 303 of the setting unit 202 is performed, the process proceeds to a process S504, and when not, the process proceeds to a process S505.

在程序S504,設定部202執行校正器303的調整。在程序S505,序列部101判斷是否結束依照了生產序列之生產,不結束的情況下返回程序S501,結束的情況下使生產結束。In routine S504, the setting unit 202 performs adjustment of the corrector 303. In program S505, the sequence unit 101 determines whether or not the production in accordance with the production sequence is terminated, and if not terminated, the process returns to program S501, and if terminated, the production is terminated.

於圖12,示出在程序S504中的校正器303的調整之中在參數值的調整(或參數值的再調整)中的處理的具體例。在程序S601,設定部202可將用於確認載台控制裝置800的動作的確認序列送至序列部101,並基於此確認序列使序列部101生成位置目標值PR。在程序S602,設定部202從基於該位置目標值PR而動作的控制器102取得作為動作歷史的位置控制偏差E。FIG. 12 shows a specific example of processing in the adjustment of the parameter value (or the readjustment of the parameter value) in the adjustment of the corrector 303 in the routine S504. In procedure S601, the setting unit 202 may send a confirmation sequence for confirming the operation of the stage control device 800 to the sequence unit 101, and may cause the sequence unit 101 to generate the position target value PR based on the confirmation sequence. In routine S602, the setting unit 202 acquires the position control deviation E as an operation history from the controller 102 operating based on the position target value PR.

此處,參照圖13而就參數調整前與後的位置控制偏差E的變化進行說明。圖13為就參數調整的前後之位置控制偏差進行例示的圖。圖13中,橫軸表示時間,縱軸表示位置控制偏差E。此處,以點線表示的曲線為調整校正器303的參數值前的位置控制偏差E,並表示位置控制精度不良化。透過調整參數值從而可縮小位置控制偏差E的變動。Here, the change of the position control deviation E before and after the parameter adjustment will be described with reference to FIG. 13 . FIG. 13 is a diagram illustrating the position control deviation before and after parameter adjustment. In FIG. 13 , the horizontal axis represents time, and the vertical axis represents the position control deviation E. As shown in FIG. Here, the curve indicated by the dotted line is the position control deviation E before the parameter value of the corrector 303 is adjusted, and indicates that the position control accuracy is deteriorated. By adjusting the parameter value, the fluctuation of the position control deviation E can be reduced.

在程序S603,設定部202可進行在程序S602取得的位置控制偏差E的頻率解析。此處,參照圖14,就在參數調整前與後之頻率解析的結果進行說明。圖14為就在參數調整的前後之頻率解析的結果進行例示的圖。圖14中,橫軸為頻率,縱軸為功率譜。點線表示在調整前顯示最大頻譜的頻率。在程序S604,設定部202例如可將在功率譜顯示最大頻譜的頻率決定為應改善的頻率。In routine S603, the setting unit 202 can perform frequency analysis of the position control deviation E acquired in routine S602. Here, the results of frequency analysis before and after parameter adjustment will be described with reference to FIG. 14 . FIG. 14 is a diagram illustrating the results of frequency analysis before and after parameter adjustment. In FIG. 14 , the horizontal axis is the frequency, and the vertical axis is the power spectrum. The dotted line indicates the frequency at which the maximum spectrum is displayed before adjustment. In step S604, the setting unit 202 may determine, for example, the frequency at which the maximum spectrum is displayed in the power spectrum as the frequency to be improved.

程序S605~S610為調整校正器303的參數值的調整處理的具體例。此處,雖說明採用最陡下降法作為參數值的調整方法之例,惟亦可使用其他方法。在程序S605,設定部202使n初始化為1。例如,校正器303的演算式被以一次積分項、比例項及一次微分項的3項而構成的情況下,應調整參數值的參數為K i、K p、K d的3個。將在第n次的調整之參數值p n用以下的數6表示。 Routines S605 to S610 are specific examples of the adjustment processing of the parameter value of the adjustment corrector 303 . Here, an example of using the steepest descent method as the adjustment method of the parameter value will be described, but other methods may be used. In routine S605, the setting unit 202 initializes n to 1. For example, when the calculation formula of the corrector 303 is composed of three terms of a first-order integral term, a proportional term, and a first-order differential term, the parameters whose parameter values should be adjusted are three of K i , K p , and K d . The parameter value pn of the n -th adjustment is represented by the following numeral 6.

Figure 02_image011
Figure 02_image011

在程序S606,設定部202可就在參數值p n的第1次的調整之參數值p 1設定任意的初始值。在第n次的調整,可設定以後述的式(8)表示的參數值p nIn program S606, the setting unit 202 may set an arbitrary initial value for the parameter value p1 in the first adjustment of the parameter value pn . In the n-th adjustment, the parameter value pn represented by the equation (8) to be described later can be set.

用於調整參數值p n的目標函數J(p n)可定為例如在程序S604決定的頻率之外擾壓制特性的增益。在程序S607,設定部202可測定目標函數J(p n)的梯度向量grad J(p n)。梯度向量grad J(p n)可被用以下的式(7)給出。梯度向量grad J(p n)可透過使構成參數值p n的各要素K i-n、K p-n、K d-n變化微小量從而進行計測。 The objective function J( pn ) for adjusting the parameter value pn can be determined as, for example, the gain of the disturbance suppression characteristic outside the frequency determined in the procedure S604. In step S607, the setting unit 202 may measure the gradient vector grad J( pn ) of the objective function J( pn ). The gradient vector grad J( pn ) can be given by the following equation (7). The gradient vector grad J( pn ) can be measured by changing each element K in , K pn , and K dn constituting the parameter value pn by a small amount.

Figure 02_image013
Figure 02_image013

在程序S608,設定部202可作為最陡下降法的收斂判定判斷梯度向量grad J(p n)的各要素的值是否為規定值以下。梯度向量grad J(p n)的各要素的值為規定值以下時,設定部202可結束校正器303的參數值的調整。另一方面,梯度向量grad J(p n)的各要素的值超過規定值時,程序S609中,設定部202可計算參數值p n 1。此處,參數值p n 1可被使用例如比0大的任意的常數α而依以下的式(8)進行計算。在程序S610,設定部202對n的值加算1,返回程序S606。 In step S608 , the setting unit 202 may determine whether or not the value of each element of the gradient vector grad J( pn ) is equal to or less than a predetermined value as a convergence determination of the steepest descent method. When the value of each element of the gradient vector grad J( pn ) is equal to or less than the predetermined value, the setting unit 202 may end the adjustment of the parameter value of the corrector 303 . On the other hand, when the value of each element of the gradient vector grad J( pn ) exceeds the predetermined value, the setting unit 202 may calculate the parameter value pn + 1 in the procedure S609. Here, the parameter value pn + 1 can be calculated according to the following formula (8) using, for example, an arbitrary constant α larger than 0. In routine S610, the setting unit 202 adds 1 to the value of n, and returns to routine S606.

Figure 02_image015
Figure 02_image015

在程序S611,設定部202可將用於確認載台控制裝置800的動作的確認序列送至序列部101,基於此確認序列使序列部101生成位置目標值PR。在程序S612,設定部202從基於該位置目標值PR而動作的控制器102取得作為動作歷史的位置控制偏差E。In program S611, the setting unit 202 may send a confirmation sequence for confirming the operation of the stage control device 800 to the sequence unit 101, and the sequence unit 101 may generate the position target value PR based on the confirmation sequence. In routine S612, the setting unit 202 acquires the position control deviation E as an operation history from the controller 102 operating based on the position target value PR.

在程序S613,設定部202判斷在程序S612取得的位置控制偏差E是否為規定值以下,位置控制偏差E超過規定值時返回程序S601而再執行調整,位置控制偏差E為規定值以下時,可使調整結束。In routine S613, the setting unit 202 determines whether the position control deviation E acquired in the routine S612 is equal to or less than a predetermined value. If the position control deviation E exceeds the predetermined value, the process returns to the routine S601 to perform adjustment again. When the position control deviation E is equal to or less than the predetermined value, the End the adjustment.

依本實施方式時,如在包含載台804的控制對象的狀態、外擾發生變化的情況下,可透過調整校正器303的參數值從而應對於該變化。例如,在圖13之例,以點線表示的位置控制偏差被減低直到以實線表示的位置控制偏差,控制精度提升。According to the present embodiment, when the state of the control object including the stage 804 and external disturbance change, the parameter value of the corrector 303 can be adjusted to cope with the change. For example, in the example of FIG. 13 , the position control deviation indicated by the dotted line is reduced to the position control deviation indicated by the solid line, and the control accuracy is improved.

在式(6)之例,校正器303的參數數僅為3個,遠比一般的神經網路的參數數少。例如,使用深度神經網路的情況下,使輸入層的維數為5、使隱藏層的維數為32的2階、使輸出層的維數為8時,參數數為1545個。比起透過再學習而決定此等1545個的參數的值,調整校正器303的參數值較能以短時間使調整結束。因此,可在不降低載台控制裝置800的生產率之下維持控制精度。In the example of formula (6), the number of parameters of the corrector 303 is only three, which is far less than the number of parameters of a general neural network. For example, when using a deep neural network, when the dimension of the input layer is 5, the dimension of the hidden layer is 32, and the dimension of the output layer is 8, the number of parameters is 1545. Compared with determining the values of these 1545 parameters through relearning, adjusting the parameter values of the corrector 303 can complete the adjustment in a shorter time. Therefore, the control accuracy can be maintained without reducing the productivity of the stage control apparatus 800 .

<第3實施方式> 在本實施方式,就將在第1實施方式說明的控制系統SS應用於曝光裝置EXP之例進行說明。本實施方式方面未言及的事項遵照第1實施方式。圖15中,示意性示出本實施方式的曝光裝置EXP的構成例。曝光裝置EXP可被構成為掃描曝光裝置。 <Third Embodiment> In the present embodiment, an example in which the control system SS described in the first embodiment is applied to the exposure apparatus EXP will be described. Matters not mentioned in this embodiment conform to the first embodiment. In FIG. 15, the structural example of the exposure apparatus EXP of this embodiment is shown typically. The exposure apparatus EXP may be configured as a scanning exposure apparatus.

曝光裝置EXP例如可具備照明光源1000、照明光學系統1001、遮罩台1003、投影光學系統1004、平板載台1006。照明光源1000可包含水銀燈、準分子雷射光源或EUV光源,惟不限定於此等。來自照明光源1000的曝光光1010透過照明光學系統1001以均勻的照度成形為投影光學系統1004的照射區域的形狀。一例中,曝光光1010可被成形為在是與基於Y軸及Z軸的平面垂直的軸的X方向上長的矩形。依投影光學系統1004的種類,曝光光1010可被成形為圓弧狀。成形的曝光光1010被照射於遮罩(原版)1002的圖案,通過遮罩1002的圖案的曝光光1010經由投影光學系統1004在平板1005(基板)的面形成遮罩1002的圖案的像。The exposure apparatus EXP may include, for example, an illumination light source 1000 , an illumination optical system 1001 , a mask stage 1003 , a projection optical system 1004 , and a flat plate stage 1006 . The illumination light source 1000 may include a mercury lamp, an excimer laser light source or an EUV light source, but is not limited thereto. The exposure light 1010 from the illumination light source 1000 passes through the illumination optical system 1001 and is shaped into the shape of the irradiation area of the projection optical system 1004 with uniform illuminance. In one example, the exposure light 1010 may be shaped into a rectangle that is long in the X direction, which is an axis perpendicular to a plane based on the Y axis and the Z axis. Depending on the type of the projection optical system 1004, the exposure light 1010 may be shaped into an arc shape. The shaped exposure light 1010 is irradiated on the pattern of the mask (original) 1002, and the exposure light 1010 passing through the pattern of the mask 1002 forms an image of the pattern of the mask 1002 on the surface of the flat plate 1005 (substrate) via the projection optical system 1004.

遮罩1002被透過遮罩台1003藉真空吸引等而保持。平板1005被透過平板載台1006的夾具1007藉真空吸引等而保持。遮罩台1003及平板載台1006的位置可被透過具備雷射干涉儀或雷射標尺等的位置感測器1030、線性馬達等的驅動系統1031、控制器1032的多軸位置控制裝置而控制。從位置感測器1030輸出的位置計測值可被提供至控制器1032。控制器1032基於是位置目標值與位置計測值的差分之位置控制偏差而產生控制訊號,並將其提供至驅動系統1031從而驅動遮罩台1003及平板載台1006。一面將遮罩台1003與平板載台1006同步驅動於Y方向一面將平板1005進行掃描曝光從而使遮罩1002的圖案被轉印於平板1005(上的感光材)。The mask 1002 is held by vacuum suction or the like through the mask stage 1003 . The flat plate 1005 is held by a jig 1007 passing through the flat plate stage 1006 by vacuum suction or the like. The positions of the mask stage 1003 and the flat stage 1006 can be controlled by a position sensor 1030 including a laser interferometer, a laser scale, etc., a driving system 1031 such as a linear motor, and a multi-axis position control device of the controller 1032 . The position measurements output from the position sensor 1030 may be provided to the controller 1032 . The controller 1032 generates a control signal based on the position control deviation, which is the difference between the position target value and the position measurement value, and supplies the control signal to the drive system 1031 to drive the mask stage 1003 and the plate stage 1006 . The pattern of the mask 1002 is transferred to the flat plate 1005 (photosensitive material thereon) by scanning and exposing the flat plate 1005 while driving the mask stage 1003 and the flat plate stage 1006 in synchronization with the Y direction.

就將第2實施方式應用於平板載台1006的控制的情況進行說明。圖11中的控制基板801該當於控制器1032,電流驅動器802與馬達803該當於驅動系統1031,載台804該當於平板載台1006,感測器805該當於位置感測器1030。將具有神經網路的控制器適用於平板載台1006的控制從而可減低平板載台1006的位置控制偏差。據此,可使重疊精度等提升。神經網路的參數值可被透過預先決定的學習序列而決定。然而,從學習時的控制對象的狀態變化、外擾環境發生變化之際,平板載台1006的控制精度會降低。如此的情況下,透過調整校正器的參數值,使得比起進行神經網路的再學習,能以較短時間結束調整。結果,可在不降低曝光裝置的生產率之下維持控制精度。A case where the second embodiment is applied to the control of the plate stage 1006 will be described. The control board 801 in FIG. 11 corresponds to the controller 1032 , the current driver 802 and the motor 803 corresponds to the driving system 1031 , the stage 804 corresponds to the flat stage 1006 , and the sensor 805 corresponds to the position sensor 1030 . Applying a controller with a neural network to the control of the tablet stage 1006 can reduce the position control deviation of the tablet stage 1006 . Thereby, the superposition accuracy and the like can be improved. The parameter values of the neural network can be determined through a predetermined learning sequence. However, the control accuracy of the tablet stage 1006 is degraded when the state of the control object during learning changes or the external disturbance environment changes. In such a case, by adjusting the parameter values of the corrector, the adjustment can be completed in a shorter time than the re-learning of the neural network. As a result, the control accuracy can be maintained without lowering the productivity of the exposure apparatus.

就將第2實施方式應用於遮罩載台1003的控制的情況進行說明。圖11中的控制基板801該當於控制器1032,電流驅動器802與馬達803該當於驅動系統1031,載台804該當於遮罩台1003,感測器805該當於位置感測器1030。A case where the second embodiment is applied to the control of the mask stage 1003 will be described. The control board 801 in FIG. 11 corresponds to the controller 1032 , the current driver 802 and the motor 803 corresponds to the driving system 1031 , the stage 804 corresponds to the mask stage 1003 , and the sensor 805 corresponds to the position sensor 1030 .

將第2實施方式適用於遮罩台1003的控制的情況下亦可減低遮罩台1003的位置控制偏差。據此,可使重疊精度等提升。神經網路的參數值可被透過預先決定的學習序列而決定。然而,從學習時的控制對象的狀態變化、外擾環境發生變化之際,遮罩台1003的控制精度會降低。如此的情況下,透過調整校正器的參數值,使得比起進行神經網路的再學習,能以較短時間結束調整。結果,可在不降低曝光裝置的生產率之下維持控制精度。When the second embodiment is applied to the control of the mask stage 1003, the position control deviation of the mask stage 1003 can also be reduced. Thereby, the superposition accuracy and the like can be improved. The parameter values of the neural network can be determined through a predetermined learning sequence. However, the control accuracy of the mask stage 1003 decreases when the state of the control object during learning changes or the external disturbance environment changes. In such a case, by adjusting the parameter values of the corrector, the adjustment can be completed in a shorter time than the re-learning of the neural network. As a result, the control accuracy can be maintained without lowering the productivity of the exposure apparatus.

第2實施方式不僅可應用於在曝光裝置中的載台的控制,亦可應用於在如壓印裝置及電子束描繪裝置的其他光刻裝置中的載台的控制。此外,第1實施方式或第2實施方式例如可應用於在搬送物品的搬送機構中之可動部如保持物品的手部的控制。The second embodiment can be applied not only to the control of a stage in an exposure apparatus, but also to the control of a stage in other lithography apparatuses such as an imprint apparatus and an electron beam drawing apparatus. In addition, the first embodiment or the second embodiment can be applied to, for example, control of a movable portion in a conveying mechanism for conveying an article, such as a hand holding an article.

<物品之製造方法的實施方式> 涉及本發明的實施方式的物品之製造方法,適合於製造例如平板顯示器(FPD)。本實施方式的物品之製造方法包含:使用上述的曝光裝置對塗佈於基板上的感光劑形成潛像圖案的程序(對基板進行曝光的程序);以及對以該程序形成了潛像圖案的基板進行顯影的程序。再者,該製造方法包含其他周知的程序(氧化、成膜、蒸鍍、摻雜、平坦化、蝕刻、抗蝕層剝離、切割、接合、封裝等)。本實施方式的物品之製造方法比起歷來的方法,在物品的性能、品質、生產性、生產成本中的至少一者方面有利。 <Embodiment of the manufacturing method of the article> The manufacturing method of the article which concerns on embodiment of this invention is suitable for manufacturing, for example, a flat panel display (FPD). The manufacturing method of the article of the present embodiment includes: a process of forming a latent image pattern on a photosensitive agent applied on a substrate using the above-mentioned exposure apparatus (a process of exposing the substrate); The process of developing the substrate. Furthermore, the manufacturing method includes other well-known procedures (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The manufacturing method of the article of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article compared to the conventional method.

以上,雖說明有關本發明之優選實施方式,惟本發明當然不限定於此等實施方式,在其要旨之範圍內,可進行各種的變形及變更。Although preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

本發明不限制於上述實施方式,在不從本發明的精神及範圍脫離之下,可進行各種的變更及變形。因此,撰寫申請專利範圍以公開本發明的範圍。The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the scope of the patent application has been prepared to disclose the scope of this invention.

本案為以2020年12月11日提出的日本特願2020-205546作為基礎而主張優先權者,於此援用其記載內容的全部。In this case, the priority is claimed on the basis of Japanese Patent Application No. 2020-205546 filed on December 11, 2020, and the entire contents of its description are used here.

100:控制裝置 101:序列部 102:控制器 103:控制對象 103a:控制對象 103b:控制對象 201:學習部 202:設定部 301:第1補償器 301a:控制器 301b:控制器 302:神經網路 303:校正器 303a:第1調整部 303b:第2調整部 304:動作歷史記錄部 305:減法器 306:演算器 402:同步控制切換部 403:動作模式 800:載台控制裝置 801:控制基板 802:電流驅動器 802a:電流驅動器 802b:電流驅動器 803:馬達 803a:馬達 803b:馬達 804:載台 804a:載台 804b:載台 805:感測器 805a:感測器 805b:感測器 1000:照明光源 1001:照明光學系統 1002:遮罩 1003:遮罩台 1004:投影光學系統 1005:平板 1006:平板台 1007:夾具 1030:位置感測器 1031:驅動系統 1032:控制器 CS:校正訊號 CV:控制量 CVa:控制量 CVb:控制量 E:控制偏差 Ea:控制偏差 Eb:控制偏差 EXP:曝光裝置 MV:控制訊號 MVa:控制訊號 MVb:控制訊號 PR:位置目標值 R:目標值 Ra:目標值 Rb:目標值 S1:第1訊號 S2:第2訊號 SS:控制系統 100: Controls 101: Sequence Department 102: Controller 103: Control Object 103a: Control objects 103b: Control Objects 201: Learning Department 202: Setting Department 301: 1st compensator 301a: Controller 301b: Controller 302: Neural Networks 303: Corrector 303a: Adjustment Section 1 303b: Adjustment Section 2 304: Action History Department 305: Subtractor 306: Calculator 402: Synchronous control switching section 403: Action Mode 800: Stage Controls 801: Control board 802: Current Driver 802a: Current Driver 802b: Current Driver 803: Motor 803a: Motor 803b: Motor 804: Stage 804a: Stage 804b: Stage 805: Sensor 805a: Sensors 805b: Sensor 1000: Lighting source 1001: Illumination Optical Systems 1002: Mask 1003: Masking Table 1004: Projection Optical Systems 1005: Tablet 1006: Flat Table 1007: Fixtures 1030: Position Sensor 1031: Drive System 1032: Controller CS: Calibration signal CV: control volume CVa: control amount CVb: control amount E: Control deviation Ea: control deviation Eb: Control deviation EXP: Exposure Device MV: control signal MVa: control signal MVb: control signal PR: Position target value R: target value Ra: target value Rb: target value S1: Signal 1 S2: 2nd signal SS: Control System

[圖1]就第1實施方式中的系統的構成例進行繪示的圖。 [圖2]就第1實施方式中的系統的構成例進行繪示的圖。 [圖3]就在第1實施方式的系統中的控制器的構成例進行繪示的圖。 [圖4]就實施例6中的控制器的構成例進行繪示的圖。 [圖5]就實施例7中的控制器的構成例進行繪示的圖。 [圖6]就實施例8中的控制器的構成例進行繪示的圖。 [圖7]就第1實施方式中的系統的構成例進行繪示的圖。 [圖8]就將第1實施方式的系統應用於生產裝置的情況下的動作例進行繪示的流程圖。 [圖9]就外擾壓制特性的計測結果之例進行繪示的圖。 [圖10]就第2實施方式中的載台控制裝置的構成例進行繪示的圖。 [圖11]就在第2實施方式的系統中的控制基板的構成例進行繪示的圖。 [圖12]就校正器的調整進行繪示的流程圖。 [圖13]就位置控制偏差進行例示的圖。 [圖14]就頻率解析的結果之例進行繪示的圖。 [圖15]就曝光裝置的構成例進行繪示的圖。 [ Fig. 1] Fig. 1 is a diagram illustrating a configuration example of the system in the first embodiment. [ Fig. 2] Fig. 2 is a diagram illustrating a configuration example of the system in the first embodiment. [ Fig. 3] Fig. 3 is a diagram showing a configuration example of a controller in the system of the first embodiment. [ Fig. 4] Fig. 4 is a diagram illustrating a configuration example of a controller in the sixth embodiment. [ Fig. 5] Fig. 5 is a diagram illustrating a configuration example of a controller in the seventh embodiment. [ Fig. 6] Fig. 6 is a diagram illustrating a configuration example of a controller in the eighth embodiment. [ Fig. 7] Fig. 7 is a diagram illustrating a configuration example of the system in the first embodiment. 8 is a flowchart showing an example of operation when the system of the first embodiment is applied to a production apparatus. [ Fig. 9] Fig. 9 is a graph showing an example of measurement results of external disturbance suppression characteristics. [ Fig. 10] Fig. 10 is a diagram showing a configuration example of the stage control device in the second embodiment. [ Fig. 11] Fig. 11 is a diagram showing a configuration example of a control board in the system of the second embodiment. [ FIG. 12 ] A flowchart illustrating adjustment of the corrector. [ Fig. 13 ] A diagram illustrating the position control deviation. [ Fig. 14 ] A diagram illustrating an example of the result of frequency analysis. [ Fig. 15] Fig. 15 is a diagram illustrating a configuration example of an exposure apparatus.

102:控制器 102: Controller

103:控制對象 103: Control Object

301:第1補償器 301: 1st compensator

302:神經網路 302: Neural Networks

303:校正器 303: Corrector

303a:第1調整部 303a: Adjustment Section 1

303b:第2調整部 303b: Adjustment Section 2

304:動作歷史記錄部 304: Action History Department

305:減法器 305: Subtractor

306:演算器 306: Calculator

CS:校正訊號 CS: Calibration signal

CV:控制量 CV: control volume

E:控制偏差 E: Control deviation

MV:控制訊號 MV: control signal

R:目標值 R: target value

S1:第1訊號 S1: Signal 1

S2:第2訊號 S2: 2nd signal

Claims (23)

一種控制裝置,其產生用於對控制對象進行控制的控制訊號, 前述控制裝置具備: 第1補償器,其基於前述控制對象的控制偏差而予以產生第1訊號; 校正器,其在依可調整係數的演算式校正前述控制偏差從而予以產生校正訊號的複數個調整部之中使用1個調整部而校正前述控制偏差; 第2補償器,其基於前述校正訊號透過神經網路從而產生第2訊號;以及 演算器,其基於前述第1訊號與前述第2訊號而產生前述控制訊號。 A control device that generates a control signal for controlling a control object, The aforementioned control device includes: a first compensator, which generates a first signal based on the control deviation of the control object; a calibrator, which corrects the control deviation by using one adjustment part among the plurality of adjustment parts for generating the correction signal by correcting the control deviation according to the calculation formula of the adjustable coefficient; a second compensator, which generates a second signal through a neural network based on the aforementioned correction signal; and The calculator generates the control signal based on the first signal and the second signal. 如請求項1的控制裝置,其中,於前述校正器,基於前述控制對象的控制狀態而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 1, wherein, in the corrector, an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on the control state of the control object. 如請求項1的控制裝置,其中,基於是否將前述控制對象與和前述控制對象為別的控制對象予以同步而控制而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 1, wherein an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on whether or not the control object is controlled in synchronization with the control object that is another control object. 如請求項1的控制裝置,其中,基於是否發生前述控制對象的增益的切換而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 1, wherein an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on whether or not the gain of the control object is switched. 如請求項1的控制裝置,其中,基於前述第1補償器的狀態而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 1, wherein an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on the state of the first compensator. 如請求項1的控制裝置,其中,基於前述控制對象的動作模式是否變化而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 1, wherein an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on whether or not the operation mode of the control object is changed. 如請求項1的控制裝置,其中,前述演算式包含與前述控制偏差成比例之項。The control apparatus according to claim 1, wherein the arithmetic expression includes a term proportional to the control deviation. 如請求項1的控制裝置,其中,前述演算式包含對前述控制偏差進行積分之項。The control device according to claim 1, wherein the calculation formula includes a term for integrating the control deviation. 如請求項1的控制裝置,其中,前述演算式包含對前述控制偏差進行微分之項。The control device according to claim 1, wherein the calculation formula includes a term for differentiating the control deviation. 如請求項1的控制裝置,其中,前述演算式包含與前述控制偏差成比例之項、進行積分之項及進行微分之項中至少一者。The control device according to claim 1, wherein the arithmetic expression includes at least one of a term proportional to the control deviation, an integral term, and a derivative term. 如請求項1的控制裝置,其進一步具備調整前述校正器的設定部, 前述設定部從前述複數個調整部選擇用於前述控制偏差的校正之調整部。 The control device according to claim 1, further comprising a setting unit for adjusting the corrector, The setting unit selects an adjustment unit for correcting the control deviation from the plurality of adjustment units. 如請求項11的控制裝置,其中,前述設定部設定前述演算式。The control device according to claim 11, wherein the setting unit sets the calculation formula. 如請求項11的控制裝置,其中,前述設定部在前述控制偏差符合既定條件的情況下,再設定前述演算式的前述係數。The control device according to claim 11, wherein the setting unit re-sets the coefficient of the calculation formula when the control deviation satisfies a predetermined condition. 如請求項13的控制裝置,其中,前述既定條件包含前述控制偏差超過規定值。The control device according to claim 13, wherein the predetermined condition includes that the control deviation exceeds a predetermined value. 如請求項1的控制裝置,其進一步具備透過機器學習決定前述神經網路的參數值的學習部。The control device according to claim 1, further comprising a learning unit that determines parameter values of the neural network through machine learning. 如請求項1的控制裝置,其中, 前述控制訊號為將前述第1訊號基於前述第2訊號進行了校正的訊號, 比起是基於前述第1訊號而控制了前述控制對象的結果的控制量與用於控制控制對象的目標值的差,是基於前述控制訊號而控制了前述控制對象的結果的控制量與用於控制控制對象的目標值的差較小。 The control device of claim 1, wherein, The control signal is a signal obtained by correcting the first signal based on the second signal, Compared with the difference between the control amount as a result of controlling the control object based on the first signal and the target value for controlling the control object, the control amount as a result of controlling the control object based on the control signal is the difference between the control amount and the target value for controlling the control object based on the control signal. The difference in the target value of the control object is small. 一種控制裝置,其產生用於對控制對象進行控制的控制訊號, 前述控制裝置具備: 第1補償器,其基於前述控制對象的控制偏差而予以產生第1訊號; 校正器,其在依演算式校正前述控制偏差從而予以產生校正訊號的複數個調整部之中使用1個調整部而校正前述控制偏差; 第2補償器,其基於前述校正訊號透過神經網路從而產生第2訊號;以及 演算器,其基於前述第1訊號與前述第2訊號而產生前述控制訊號。 A control device that generates a control signal for controlling a control object, The aforementioned control device includes: a first compensator, which generates a first signal based on the control deviation of the control object; a calibrator, which corrects the control deviation by using one adjustment part among the plurality of adjustment parts for generating the correction signal by correcting the control deviation according to an algorithm; a second compensator, which generates a second signal through a neural network based on the aforementioned correction signal; and The calculator generates the control signal based on the first signal and the second signal. 如請求項17的控制裝置,其中,於前述校正器,基於前述控制對象的控制狀態而從前述複數個調整部選擇用於前述控制偏差的校正的調整部。The control device according to claim 17, wherein, in the corrector, an adjustment unit for correcting the control deviation is selected from the plurality of adjustment units based on the control state of the control object. 如請求項17的控制裝置,其中,前述演算式包含與前述控制偏差成比例之項、進行積分之項及進行微分之項中至少一者。The control device of claim 17, wherein the calculation formula includes at least one of a term proportional to the control deviation, an integral term, and a derivative term. 一種載台控制裝置,其為了控制物體的位置而控制保持前述物體的載台, 前述載台控制裝置具備如請求項1的控制裝置。 A stage control device that controls a stage holding the object in order to control the position of the object, The aforementioned stage control device includes the control device according to claim 1. 一種光刻裝置,其將原版的圖案轉印於基板, 前述光刻裝置具備被構成為控制前述基板或前述原版的位置的如請求項1至19中任一項的控制裝置。 A lithography device, which transfers the pattern of the original plate to a substrate, The aforementioned lithography apparatus includes the control device according to any one of claims 1 to 19 configured to control the position of the aforementioned substrate or the aforementioned master plate. 一種物品之製造方法,其包含: 使用如請求項21的光刻裝置將原版的圖案轉印於基板的轉印程序;以及 處理經過前述轉印程序的前述基板的處理程序; 從經過前述處理程序的前述基板獲得物品。 A method of manufacturing an article, comprising: A transfer procedure for transferring the pattern of the master plate to a substrate using the lithography apparatus as claimed in claim 21; and a processing procedure for processing the aforementioned substrate subjected to the aforementioned transfer procedure; Articles are obtained from the aforementioned substrates subjected to the aforementioned processing procedures. 一種調整方法,其調整控制裝置,前述控制裝置具備:第1補償器,其基於控制對象的控制偏差而予以產生第1訊號;校正器,其在校正前述控制偏差從而予以產生校正訊號的複數個調整部之中使用1個調整部而校正前述控制偏差;第2補償器,其基於前述校正訊號透過神經網路從而產生第2訊號;以及演算器,其基於前述第1訊號與前述第2訊號而產生控制訊號; 前述調整方法包含於前述校正器方面基於前述控制對象的控制狀態而從前述複數個調整部選擇用於前述控制偏差的校正的調整部的調整程序。 An adjustment method, which adjusts a control device, wherein the control device includes: a first compensator that generates a first signal based on a control deviation of a control object; a corrector that corrects the control deviation to generate a plurality of correction signals One of the adjustment parts is used to correct the control deviation; a second compensator generates a second signal through a neural network based on the calibration signal; and an algorithm is based on the first signal and the second signal to generate a control signal; The adjustment method includes, in the aspect of the corrector, an adjustment program for selecting an adjustment unit for correcting the control deviation from the plurality of adjustment units based on the control state of the control object.
TW110146060A 2020-12-11 2021-12-09 Control device, adjustment method, lithography device, and method for manufacturing article TW202223562A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020205546A JP2022092690A (en) 2020-12-11 2020-12-11 Controller, adjustment method, lithography apparatus, and manufacturing method of article
JP2020-205546 2020-12-11

Publications (1)

Publication Number Publication Date
TW202223562A true TW202223562A (en) 2022-06-16

Family

ID=81974410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110146060A TW202223562A (en) 2020-12-11 2021-12-09 Control device, adjustment method, lithography device, and method for manufacturing article

Country Status (5)

Country Link
JP (1) JP2022092690A (en)
KR (1) KR20230118130A (en)
CN (1) CN116648773A (en)
TW (1) TW202223562A (en)
WO (1) WO2022124281A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024062786A (en) * 2022-10-25 2024-05-10 キヤノン株式会社 CONTROL METHOD, CONTROL DEVICE, LITHOGRAPHIC APPARATUS, AND METHOD FOR MANUFACTURING ARTICLE - Patent application

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862308B2 (en) * 1990-02-09 1999-03-03 株式会社日立製作所 Controller adjustment method and adjustment system
JPH06187006A (en) * 1991-12-05 1994-07-08 Yokogawa Electric Corp Disturbance compensating device
US5396415A (en) 1992-01-31 1995-03-07 Honeywell Inc. Neruo-pid controller
JP3040901B2 (en) * 1993-10-20 2000-05-15 株式会社日立製作所 Control method by neural network and built-in control device
JPH07277286A (en) 1994-04-11 1995-10-24 Mitsubishi Heavy Ind Ltd Learning flight control device for aircraft
JP6774637B2 (en) * 2017-02-20 2020-10-28 株式会社安川電機 Control device and control method
JP7103238B2 (en) * 2019-01-09 2022-07-20 株式会社明電舎 Plant control controller

Also Published As

Publication number Publication date
KR20230118130A (en) 2023-08-10
WO2022124281A1 (en) 2022-06-16
JP2022092690A (en) 2022-06-23
CN116648773A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
TWI418947B (en) Position control apparatus including iterative learning circuit, exposure apparatus, method for manufacturing device, and iterative learning method for use in position control apparatus having iterative learning circuit including learning filter
JP5235707B2 (en) Control device
JP2006128685A (en) Self-adaptation feed-forward control adjustment for motion system, and lithography equipment having such motion system
JP4617191B2 (en) Lithographic apparatus, control system, and device manufacturing method
TW202223562A (en) Control device, adjustment method, lithography device, and method for manufacturing article
JP7371190B2 (en) Control device, exposure device, and article manufacturing method
KR20190039873A (en) Exposure apparatus and method of manufacturing article
WO2022054724A1 (en) Control device, method for adjusting control device, lithography device, and article manufacturing method
JP2019121656A (en) Control method, control device, lithography device, and manufacturing method of article
TWI711879B (en) Control device, lithography apparatus, and method of manufacturing article
US8493551B2 (en) Scanning exposure apparatus, control apparatus and method of manufacturing device
JP6760975B2 (en) Control system, positioning system, lithography equipment and device manufacturing method
JP5764881B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2024090126A1 (en) Control method, control device, lithography device, and article manufacturing method
KR20220046483A (en) Positioning apparatus, lithography apparatus and article manufacturing method
JP2005322720A (en) Stage controlling apparatus and method therefor, exposure apparatus and method therefor, and device manufacturing method
WO2023247139A1 (en) Control method and control system for controlling a position of an object with an electromagnetic actuator
JP2022059871A (en) Feedback control device, lithographic device, measuring device, processing device, flattening device, article manufacturing method, computer program, and feedback control method
JP2022175842A (en) Mark detecting apparatus, mark learning apparatus, substrate processing apparatus, mark detecting method, and learning model generation method
JP2010245331A (en) Optical element driving device with controller
JP2016224308A (en) Alignment method, exposure apparatus and producing method of products