TW202221375A - 光學成像鏡頭 - Google Patents

光學成像鏡頭 Download PDF

Info

Publication number
TW202221375A
TW202221375A TW109144717A TW109144717A TW202221375A TW 202221375 A TW202221375 A TW 202221375A TW 109144717 A TW109144717 A TW 109144717A TW 109144717 A TW109144717 A TW 109144717A TW 202221375 A TW202221375 A TW 202221375A
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical
object side
image side
Prior art date
Application number
TW109144717A
Other languages
English (en)
Other versions
TWI779426B (zh
Inventor
胡潤
王召
Original Assignee
大陸商玉晶光電(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商玉晶光電(廈門)有限公司 filed Critical 大陸商玉晶光電(廈門)有限公司
Publication of TW202221375A publication Critical patent/TW202221375A/zh
Application granted granted Critical
Publication of TWI779426B publication Critical patent/TWI779426B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Abstract

本發明提供一種光學成像鏡頭,其從物側至像側依序包括第一、第二、第三、第四、第五、第六及第七透鏡。本發明透過控制透鏡的凹凸曲面排列,而在維持良好光學性能之條件下,縮短系統長度並減少光圈值、增加像高。

Description

光學成像鏡頭
本發明乃是與一種光學成像鏡頭相關,且尤其是與應用在可攜式電子產品之光學成像鏡頭相關。
近年來,光學成像鏡頭不斷演進,除了要求鏡頭輕薄短小,改善鏡頭的像差及色差等成像品質也越來越重要。然而因應需求,增加光學透鏡的片數會使得第一透鏡物側面至成像面在光軸上的距離增大,不利手機及數位相機的薄型化。因此,提供一個輕薄短小且成像品質良好的光學成像鏡頭一直都是設計的發展目標。除此之外,小光圈值(Fno)有利於增大通光量,大像高可以使整體光學成像鏡頭的像素尺寸(pixel size)適當增加,影像感測器將可接收到較多的光線,有利於夜間拍攝,因此也漸漸成為設計趨勢。如何在追求鏡頭輕薄短小以外能設計出小的光圈值以及具有大像高的光學成像鏡頭也是研發的一個重點。
本發明之一目的係在提供一種光學成像鏡頭,而在維持良好光學性能之條件下,兼具輕薄短小及具有小光圈值與大像高的特性。
依據本發明一實施例,提供一種光學成像鏡頭,其從一物側至一像側沿一光軸包括七片透鏡,依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡,第一透鏡至第七透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面。
為了便於表示本發明所指的參數,在本說明書及圖式定義: T1代表第一透鏡在光軸上的厚度、G12代表第一透鏡之像側面至第二透鏡之物側面在光軸上的距離,即第一透鏡與第二透鏡之間在光軸上的空氣間隙、T2代表第二透鏡在光軸上的厚度、G23代表第二透鏡之像側面至第三透鏡之物側面在光軸上的距離,即第二透鏡與第三透鏡之間在光軸上的空氣間隙、T3代表第三透鏡在光軸上的厚度、G34代表第三透鏡之像側面至第四透鏡之物側面在光軸上的距離,即第三透鏡與第四透鏡之間在光軸上的空氣間隙、T4代表第四透鏡在光軸上的厚度、G45代表第四透鏡之像側面至第五透鏡之物側面在光軸上的距離,即第四透鏡與第五透鏡之間在光軸上的空氣間隙、T5代表第五透鏡在光軸上的厚度、G56代表第五透鏡之像側面至第六透鏡之物側面在光軸上的距離,即第五透鏡與第六透鏡之間在光軸上的空氣間隙、T6代表第六透鏡在光軸上的厚度、G67代表第六透鏡之像側面至第七透鏡之物側面在光軸上的距離,即第六透鏡與第七透鏡之間在光軸上的空氣間隙、T7代表第七透鏡在光軸上的厚度、G7F代表第七透鏡的像側面至濾光片的物側面在光軸上的距離,即第七透鏡與濾光片之間在光軸上的空氣間隙、TTF代表濾光片在光軸上的厚度、GFP代表濾光片的像側面至成像面在光軸上的距離,即濾光片與成像面之間在光軸上的空氣間隙、f1代表第一透鏡的焦距、f2代表第二透鏡的焦距、f3代表第三透鏡的焦距、f4代表第四透鏡的焦距、f5代表第五透鏡的焦距、f6代表第六透鏡的焦距、f7代表第七透鏡的焦距、n1代表第一透鏡的折射率、n2代表第二透鏡的折射率、n3代表第三透鏡的折射率、n4代表第四透鏡的折射率、n5代表第五透鏡的折射率、n6代表第六透鏡的折射率、n7代表第七透鏡的折射率、V1代表第一透鏡的阿貝數、V2代表第二透鏡的阿貝數、V3代表第三透鏡的阿貝數、V4代表第四透鏡的阿貝數、V5代表第五透鏡的阿貝數、V6代表第六透鏡的阿貝數、V7代表第七透鏡的阿貝數、EFL代表光學成像鏡頭的有效焦距、TL代表第一透鏡之物側面至第七透鏡之像側面在光軸上的距離、TTL代表光學成像鏡頭的系統長度,即第一透鏡之物側面至成像面在光軸上的距離、ALT代表第一透鏡至第七透鏡在光軸上的七個透鏡厚度總和,即T1、T2、T3、T4、T5、T6與T7之總和、AAG代表第一透鏡到第七透鏡在光軸上的六個空氣間隙總和,即G12、G23、G34、G45、G56與G67之總和、BFL代表第七透鏡之像側面至成像面在光軸上的距離,即G7F、TTF與GFP之總和、HFOV代表光學成像鏡頭的半視角、ImgH代表光學成像鏡頭的像高、Fno代表光學成像鏡頭的光圈值,DT14代表第一透鏡的物側面到第四透鏡物側面在光軸上的距離、DT67代表第六透鏡的物側面到第七透鏡像側面在光軸上的距離、DT46代表第四透鏡的物側面到第六透鏡物側面在光軸上的距離。
依據本發明的一面向所提供的一光學成像鏡頭,第二透鏡具有負屈光率,第三透鏡的物側面的一圓周區域為凹面,第三透鏡的像側面的一光軸區域為凸面,第五透鏡具有正屈光率,及第六透鏡的像側面的一光軸區域為凸面。此光學成像鏡頭的透鏡只有上述七片透鏡,且滿足以下條件式: V3+V4+V5≦105.000                            條件式(1); V2+V5≧60.000                                    條件式(2)。
依據本發明的另一面向所提供的一光學成像鏡頭,第二透鏡具有負屈光率,第三透鏡的物側面的一圓周區域為凹面,第三透鏡的像側面的一光軸區域為凸面,第五透鏡具有正屈光率,第七透鏡的物側面的一光軸區域為凹面。此光學成像鏡頭的透鏡只有上述七片透鏡,且滿足條件式(1)、(2)。
依據本發明的再一面向所提供的一光學成像鏡頭,第三透鏡的物側面的一圓周區域為凹面,第三透鏡的像側面的一光軸區域為凸面,第五透鏡具有正屈光率,第七透鏡的物側面的一光軸區域為凹面,第七透鏡的像側面的一光軸區域為凹面。此光學成像鏡頭的透鏡只有上述七片透鏡,且滿足條件式(1)、(2)。
其次,本發明可選擇性地控制前述參數,使光學成像鏡頭更滿足下列至少一條件式: (T1+T6)/T4≧4.900                              條件式(3); AAG/(G34+G45+G56)≦3.500                    條件式(4); (T1+G34)/T2≧3.500                              條件式(5); (T4+G45+T5)/G34≦3.700                    條件式(6); ALT/(G45+G67)≦6.100                        條件式(7); TL/(T1+G23+G34)≦4.200                    條件式(8); ImgH/(T5+T6+T7)≧1.800                    條件式(9); EFL/(G45+G56+G67)≧4.800                條件式(10); (G56+BFL)/G23≦3.900                        條件式(11); AAG/(G12+T3)≦4.000                        條件式(12); TTL/(G56+T6+G67)≦4.800                  條件式(13); (T4+AAG)/(G56+G67)≦3.400              條件式(14); T1/(T4+G45)≧1.900                             條件式(15); ALT/(T1+G34)≦3.500                         條件式(16); ImgH/Fno≧2.500毫米                         條件式(17); (T5+T6)/T2≧3.800                                條件式(18);及/或 BFL/(G12+G67)≦2.000                       條件式(19)。
前述所列之示例性限定條件式,亦可任意選擇性地合併不等數量施用於本發明之實施態樣中,並不限於此。在實施本發明時,除了前述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列、屈光率變化、選用各種材質或其他細部結構,以加強對系統性能及/或解析度的控制。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
由上述中可以得知,本發明之光學成像鏡頭可在維持良好光學性能之條件下,縮短系統長度並減少光圈值、增加像高。
為進一步說明各實施例,本發明乃提供有圖式。此些圖式乃為本發明揭露內容之一部分,其主要係用以說明實施例,並可配合說明書之相關描述來解釋實施例的運作原理。配合參考這些內容,本領域具有通常知識者應能理解其他可能的實施方式以及本發明之優點。圖中的元件並未按比例繪製,而類似的元件符號通常用來表示類似的元件。
本說明書和申請專利範圍中使用的用語「光軸區域」、「圓周區域」、「凹面」和「凸面」應基於本說明書中列出的定義來解釋。
本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一個或多個中繼區域,該些區域的說明將於下方詳細闡述。
圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,透鏡100表面可能不具有轉換點或具有至少一轉換點,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。
當透鏡表面具有至少一轉換點,定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的轉換點(第N轉換點)徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。當透鏡表面不具有轉換點,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。
當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。
除此之外,參見圖1,透鏡100還可包含一由光學邊界OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。
參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。
另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。
圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。
圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。
一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。
圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。
定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。
圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。
本發明之光學成像鏡頭,其從物側至像側沿一光軸設置七片的透鏡,依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡。第一透鏡至第七透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。本發明之光學成像鏡頭透過設計各透鏡之細部特徵,而可縮短系統長度、縮小光圈值及增加像高。
在此設計的前述各鏡片之特性主要是考量光學成像鏡頭的光學特性與系統長度。當光學成像鏡頭滿足第三透鏡物側面圓周區域為凹面、第三透鏡像側面光軸區域為凸面及第五透鏡具有正屈光率之面形及屈光率的設計,同時搭配以下組合之一時,皆可有效達到修正光學系統像差、降低畸變、縮小光圈值及擴大像高的目的:(a) 第二透鏡具有負屈光率及第六透鏡像側面光軸區域為凸面;(b) 第二透鏡具有負屈光率及第七透鏡物側面光軸區域為凹面;(c) 第七透鏡物側面光軸區域為凹面及第七透鏡像側面光軸區域為凹面。並且,當上述組合再藉由材料的搭配滿足V3+V4+V5≦105.000及V2+V5≧60.000使光線順利的收斂與轉折時,除了可以有效改善色差以外,還能同時控制光學成像鏡頭系統長度不過長並兼顧良好的成像品質,較佳的範圍為75.000≦V3+V4+V5≦105.000及60.000≦V2+V5≦80.000。
當光學成像鏡頭滿足上述第三透鏡物側面圓周區域為凹面、第三透鏡像側面光軸區域為凸面及第五透鏡具有正屈光率之面形及屈光率的設計,同時搭配組合(a)或第七透鏡物側面光軸區域為凹面並滿足V3+V4+V5≦105.000及(T6+G67+T7)/(T4+G45+G56)≧2.500時,也可有效達到修正光學系統像差、降低畸變、縮小光圈值、擴大像高、改善色差及縮短光學成像鏡頭系統長度並兼顧良好的成像品質的目的,較佳的範圍為75.000≦V3+V4+V5≦105.000及2.500≦(T6+G67+T7)/(T4+G45+G56)≦6.000。
當光學成像鏡頭滿足第二透鏡具有負屈光率、第五透鏡具有正屈光率及第五透鏡物側面圓周區域為凹面的設計,結合(d)第三透鏡像側面光軸區域為凸面或第七透鏡物側面圓周區域為凸面及(e)第四透鏡具有負屈光率或第六透鏡具有正屈光率兩組合時,可以修正像差,並且當滿足V3+V4≦68.000及(DT14+DT67)/DT46≧2.600時,可改善色差及縮短光學成像鏡頭系統長度並兼顧良好的成像品質,較佳的範圍為40.000≦V3+V4≦68.000及2.600≦(DT14+DT67)/DT46≦4.500。
當光學成像鏡頭滿足ImgH/Fno≧2.500毫米時,能在擴大像高及縮小光圈值的同時維持良好的成像品質,較佳的範圍為2.500毫米≦ImgH/Fno≦3.200毫米。
為使各透鏡的厚度與間隔維持一適當值,避免任一參數過大而不利於該光學成像鏡頭整體之薄型化,或是避免任一參數過小而影響組裝或是提高製造上之困難度,可使得本發明一實施例所提供的光學成像鏡頭進一步滿足以下至少一條件式: (T1+T6)/T4≧4.900,較佳的限制範圍為4.900≦(T1+T6)/T4≦15.000; AAG/(G34+G45+G56)≦3.500,較佳的限制範圍為1.800≦AAG/(G34+G45+G56)≦3.500; (T1+G34)/T2≧3.500,較佳的限制範圍為3.500≦(T1+G34)/T2≦6.800; (T4+G45+T5)/G34≦3.700,較佳的限制範圍為2.000≦(T4+G45+T5)/G34≦3.700; ALT/(G45+G67)≦6.100,較佳的限制範圍為4.300≦ALT/(G45+G67)≦6.100; TL/(T1+G23+G34)≦4.200,較佳的限制範圍為3.000≦TL/(T1+G23+G34)≦4.200; ImgH/(T5+T6+T7)≧1.800,較佳的限制範圍為1.800≦ImgH/(T5+T6+T7)≦2.500; EFL/(G45+G56+G67)≧4.800,較佳的限制範圍為4.800≦EFL/(G45+G56+G67)≦6.200; (G56+BFL)/G23≦3.900,較佳的限制範圍為2.000≦(G56+BFL)/G23≦3.900; AAG/(G12+T3)≦4.000,較佳的限制範圍為3.000≦AAG/(G12+T3)≦4.000; TTL/(G56+T6+G67)≦4.800,較佳的限制範圍為2.400≦TTL/(G56+T6+G67)≦4.800; (T4+AAG)/(G56+G67)≦3.400,較佳的限制範圍為2.000≦(T4+AAG)/(G56+G67)≦3.400; T1/(T4+G45)≧1.900,較佳的限制範圍為1.900≦T1/(T4+G45)≦3.700; ALT/(T1+G34)≦3.500,較佳的限制範圍為2.500≦ALT/(T1+G34)≦3.500; (T5+T6)/T2≧3.800,較佳的限制範圍為3.800≦(T5+T6)/T2≦12.000; BFL/(G12+G67)≦2.000,較佳的限制範圍為0.700≦BFL/(G12+G67)≦2.000。
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述的條件式時,能較佳地使本發明光學成像鏡頭的成像品質提升、系統長度縮短、像高增加、光圈值縮小及/或組裝良率提升。
在實施本發明時,除了上述條件式之外,亦可如以下實施例針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列、屈光率變化或其他細部或額外結構,以加強對系統體積、性能、解析度的控制及/或製造上良率的提升。除此之外,材質設計方面,本發明的實施例的光學成像鏡頭的所有透鏡中採用塑膠材質,以減輕鏡頭重量及節省成本,但亦可使用玻璃、樹脂等各種透明材質製作之透鏡。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中,並不限於此。
為了說明本發明確實可在提供良好的光學性能的同時,增加像高及降低光圈值,以下提供多個實施例以及其詳細的光學數據。首先請一併參考圖6至圖9,其中圖6顯示依據本發明之第一實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖7顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖,圖8顯示依據本發明之第一實施例之光學成像鏡頭之詳細光學數據,圖9顯示依據本發明之第一實施例光學成像鏡頭之各透鏡之非球面數據。
如圖6所示,本實施例之光學成像鏡頭1從物側A1至像側A2依序包括一光圈(aperture stop)STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。一濾光片TF及一影像感測器的一成像面IMA皆設置於光學成像鏡頭1的像側A2。在本實施例中,濾光片TF為紅外線濾光片(IR cut filter)且設於第七透鏡L7與成像面IMA之間,濾光片TF將經過光學成像鏡頭1的光過濾掉特定波段的波長,例如過濾掉紅外光波段,可使得紅外光波段的波長不會成像於成像面IMA上。
光學成像鏡頭1之第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4、第五透鏡L5、第六透鏡L6及第七透鏡L7在此示例性地以塑膠材質所構成,然不限於此,亦可為其他透明材質製作,如:玻璃、樹脂。
第一透鏡L1、第二透鏡L2、第三透鏡L3、第四透鏡L4、第五透鏡L5、第六透鏡L6及第七透鏡L7形成細部結構如下:第一透鏡L1具有正屈光率,並具有一朝向物側A1的物側面L1A1及一朝向像側A2的像側面L1A2。物側面L1A1的光軸區域L1A1C為凸面及其圓周區域L1A1P為凸面。像側面L1A2的光軸區域L1A2C為凹面及其圓周區域L1A2P為凹面。
第二透鏡L2具有負屈光率,並具有一朝向物側A1的物側面L2A1及一朝向像側A2的像側面L2A2。物側面L2A1的光軸區域L2A1C為凸面及其圓周區域L2A1P為凸面。像側面L2A2的光軸區域L2A2C為凹面及其圓周區域L2A2P為凹面。
第三透鏡L3具有正屈光率,並具有一朝向物側A1的物側面L3A1及一朝向像側A2的像側面L3A2。物側面L3A1的光軸區域L3A1C為凸面以及其圓周區域L3A1P為凹面。像側面L3A2的光軸區域L3A2C為凸面及其圓周區域L3A2P為凸面。
第四透鏡L4具有負屈光率,並具有一朝向物側A1的物側面L4A1及具有一朝向像側A2的像側面L4A2。物側面L4A1的光軸區域L4A1C為凸面以及其圓周區域L4A1P為凹面。像側面L4A2的光軸區域L4A2C為凹面及其圓周區域L4A2P為凸面。
第五透鏡L5具有正屈光率,並具有一朝向物側A1的物側面L5A1及一朝向像側A2的像側面L5A2。物側面的光軸區域L5A1C為凸面以及其圓周區域L5A1P為凹面。像側面L5A2的光軸區域L5A2C為凹面及其圓周區域L5A2P為凸面。
第六透鏡L6具有正屈光率,並具有一朝向物側A1的物側面L6A1及一朝向像側A2的像側面L6A2。物側面的光軸區域L6A1C為凸面以及其圓周區域L6A1P為凹面。像側面L6A2的光軸區域L6A2C為凸面及其圓周區域L6A2P為凹面。
第七透鏡L7具有負屈光率,並具有一朝向物側A1的物側面L7A1及一朝向像側A2的像側面L7A2。物側面的光軸區域L7A1C為凹面以及其圓周區域L7A1P為凹面。像側面L7A2的光軸區域L7A2C為凹面及其圓周區域L7A2P為凸面。
在本實施例中,係設計各透鏡L1、L2、L3、L4、L5、L6、L7、濾光片TF及影像感測器的成像面IMA之間皆存在空氣間隙,然而並不限於此,在其他實施例中亦可使任兩相對的透鏡表面輪廓設計為彼此相應,而可彼此貼合,以消除其間之空氣間隙。
關於本實施例之光學成像鏡頭1中的各透鏡之各光學特性及各距離之數值,請參考圖8。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值請參考圖38A、38B。
第一透鏡L1的物側面L1A1及像側面L1A2、第二透鏡L2的物側面L2A1及像側面L2A2、第三透鏡L3的物側面L3A1及像側面L3A2、第四透鏡L4的物側面L4A1及像側面L4A2、第五透鏡L5的物側面L5A1及像側面L5A2、第六透鏡L6的物側面L6A1及像側面L6A2及第七透鏡L7的物側面L7A1及像側面L7A2,共十四個非球面皆是依下列非球面曲線公式定義:
Figure 02_image001
Y表示非球面曲面上的點與光軸的垂直距離;Z表示非球面之深度(非球面上距離光軸為Y的點,其與相切於非球面光軸上頂點之切面,兩者間的垂直距離);R表示透鏡表面近光軸處之曲率半徑;K為錐面係數(Conic Constant);a 2i為第2i階非球面係數。各個非球面之參數詳細數據請一併參考圖9。
圖7(a)繪示本實施例的縱向球差的示意圖,橫軸為縱向球差,縱軸為視場。圖7(b)繪示本實施例的弧矢方向的場曲像差的示意圖,圖7(c)繪示本實施例的子午方向的場曲像差的示意圖,橫軸為場曲像差,縱軸為像高。圖7(d)繪示本實施例的畸變像差的示意圖,橫軸為百分比,縱軸為像高。三種代表波長(470nm, 555nm, 650nm)在不同高度的離軸光線皆集中於成像點附近,每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.016~0.016 mm,明顯改善不同波長的球差,弧矢方向的場曲像差落在-0.02~0.02 mm內,子午方向的場曲像差落在-0.02~0.03 mm內,而畸變像差維持於0~6 %內。
從上述數據中可以看出光學成像鏡頭1的各種光學特性已符合光學系統的成像品質要求。據此說明本第一較佳實施例之光學成像鏡頭1相較於現有光學鏡頭,在提供系統長度7.171 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖10至圖13,圖10顯示依據本發明之第二實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖11顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖12顯示依據本發明之第二實施例之光學成像鏡頭之詳細光學數據,圖13顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之非球面數據。如圖10中所示,本實施例之光學成像鏡頭2從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第二實施例之朝向物側A1的物側面L1A1, L2A1, L4A1, L6A1, L7A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, L7A2之表面凹凸配置及除第三透鏡L3之外的各透鏡的正負屈光率配置大致上與第一實施例類似,唯第二實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數、物側面L3A1, L5A1之表面凹凸配置及第三透鏡L3具有負屈光率與第一實施例不同。在此為了更清楚顯示圖面,僅標示表面凹凸配置與第一實施例不同之光軸區域與圓周區域之處,而省略相同凹凸配置之光軸區域與圓周區域的標號,且以下每個實施例亦僅標示透鏡表面凹凸配置與第一實施例不同之光軸區域與圓周區域之處,省略相同處的標號,並不再贅述。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的物側面L3A1的光軸區域L3A1C為凹面,第五透鏡L5的物側面L5A1的圓周區域L5A1P為凸面。關於本實施例之光學成像鏡頭2的各透鏡之各光學特性及各距離之數值,請參考圖12。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38A、38B。
從圖11(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.016~0.016 mm以內。從圖11(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.02~0.02 mm內。從圖11(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.04~0.05 mm內。圖11(d)顯示光學成像鏡頭2的畸變像差維持在0~6 %的範圍內。
從上述數據中可以看出光學成像鏡頭2的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭2相較於現有光學鏡頭,在提供系統長度為7.410 mm、Fno為1.600、像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖14至圖17,圖14顯示依據本發明之第三實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖15顯示依據本發明之第三實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖16顯示依據本發明之第三實施例之光學成像鏡頭之詳細光學數據,圖17顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之非球面數據。如圖14中所示,本實施例之光學成像鏡頭3從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第三實施例之朝向物側A1的物側面L1A1, L2A1, L4A1, L5A1, L6A1, L7A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, L7A2之表面凹凸配置及除第三透鏡L3、第四透鏡L4之外的各透鏡的正負屈光率配置大致上與第一實施例類似,唯第三實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數、物側面L3A1之表面凹凸配置、第三透鏡L3具有負屈光率及第四透鏡L4具有正屈光率與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第三透鏡L3的物側面L3A1的光軸區域L3A1C為凹面。關於本實施例之光學成像鏡頭3的各透鏡之各光學特性及各距離之數值,請參考圖16。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38A、38B。
從圖15(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.03~0.03mm以內。從圖15(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.02mm內。從圖15(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.04mm內。圖15(d)顯示畸變像差維持在0~6%的範圍內。
從上述數據中可以看出光學成像鏡頭3的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭3相較於現有光學鏡頭,在提供系統長度為7.340 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖18至圖21,圖18顯示依據本發明之第四實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖19顯示依據本發明之第四實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖20顯示依據本發明之第四實施例之光學成像鏡頭之詳細光學數據,圖21顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之非球面數據。如圖18中所示,本實施例之光學成像鏡頭4從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第四實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L7A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第四實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L5A1, L7A1和像側面L6A2之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第五透鏡L5的物側面L5A1的圓周區域L5A1P為凸面,第六透鏡L6的像側面L6A2的圓周區域L6A2P為凸面,第七透鏡L7的物側面L7A1的圓周區域L7A1P為凸面。關於本實施例之光學成像鏡頭4的各透鏡之各光學特性及各距離之數值,請參考圖20。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38A、38B。
從圖19(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.02~0.02mm以內。從圖19(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.02mm內。從圖19(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.03mm內。圖19(d)顯示畸變像差維持在0~6%的範圍內。
從上述數據中可以看出光學成像鏡頭4的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭4相較於現有光學鏡頭,在提供系統長度為7.329 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖22至圖25,圖22顯示依據本發明之第五實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖23顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖24顯示依據本發明之第五實施例之光學成像鏡頭之詳細光學數據,圖25顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之非球面數據。如圖22中所示,本實施例之光學成像鏡頭5從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第五實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L6A1, L7A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L6A2, L7A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第五實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L4A1, L5A1及像側面L5A2之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第四透鏡L4的物側面L4A1的光軸區域L4A1C為凹面,第五透鏡L5的物側面L5A1的光軸區域L5A1C為凹面,第五透鏡L5的像側面L5A2的光軸區域L5A2C為凸面。關於本實施例之光學成像鏡頭5的各透鏡之各光學特性及各距離之數值,請參考圖24。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38C、38D。
從圖23(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.012~0.016 mm以內。從圖23(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.02~0.02 mm內。從圖23(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.03 mm內。圖23(d)顯示畸變像差維持在0~6%的範圍內。與第一實施例相較,本實施例顯示縱向球差較小。
從上述數據中可以看出光學成像鏡頭5的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭5相較於現有光學鏡頭,在提供系統長度為7.532 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖26至圖29,圖26顯示依據本發明之第六實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖27顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖28顯示依據本發明之第六實施例之光學成像鏡頭之詳細光學數據,圖29顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之非球面數據。如圖26中所示,本實施例之光學成像鏡頭6從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第六實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L6A1, L7A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, L7A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第六實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L4A1, L5A1之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第四透鏡L4的物側面L4A1的光軸區域L4A1C為凹面,第五透鏡L5的物側面L5A1的圓周區域L5A1P為凸面。關於本實施例之光學成像鏡頭6的各透鏡之各光學特性及各距離之數值,請參考圖28。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38C、38D。
從圖27(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.008~0.012 mm以內。從圖27(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-12~12 µm內。從圖27(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-20~20 µm內。圖27(d)顯示畸變像差維持在0~6 %的範圍內。與第一實施例相較,本實施例顯示縱向球差及弧矢與子午方向的場曲像差較小。
從上述數據中可以看出光學成像鏡頭6的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭6相較於現有光學鏡頭,在提供系統長度為7.389 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖30至圖33,圖30顯示依據本發明之第七實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖31顯示依據本發明之第七實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖32顯示依據本發明之第七實施例之光學成像鏡頭之詳細光學數據,圖33顯示依據本發明之第七實施例之光學成像鏡頭之各透鏡之非球面數據。如圖30中所示,本實施例之光學成像鏡頭7從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第七實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L5A1, L6A1, L7A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L7A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第七實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L4A1及像側面L5A2, L6A2之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第四透鏡L4的物側面L4A1的光軸區域L4A1C為凹面,第五透鏡L5的像側面L5A2的光軸區域L5A2C為凸面,第六透鏡L6的像側面L6A2的圓周區域L6A2P為凸面。關於本實施例之光學成像鏡頭7的各透鏡之各光學特性及各距離之數值,請參考圖32。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38C、38D。
從圖31(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.002~0.01 mm以內。從圖31(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-8~12 µm內。從圖31(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-8~12 µm內。圖31(d)顯示畸變像差維持在0~6 %的範圍內。與第一實施例相較,本實施例顯示縱向球差、弧矢和子午方向的場曲像差及畸變像差較小。
從上述數據中可以看出光學成像鏡頭7的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭7相較於現有光學鏡頭,在提供系統長度為7.583 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
參考圖34至圖37,圖34顯示依據本發明之第八實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖,圖35顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,圖36顯示依據本發明之第八實施例之光學成像鏡頭之詳細光學數據,圖37顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之非球面數據。如圖34中所示,本實施例之光學成像鏡頭8從物側A1至像側A2依序包括一光圈STO、一第一透鏡L1、一第二透鏡L2、一第三透鏡L3、一第四透鏡L4、一第五透鏡L5、一第六透鏡L6及一第七透鏡L7。
第八實施例之朝向物側A1的物側面L1A1, L2A1, L3A1, L4A1, L5A1, L6A1及朝向像側A2的像側面L1A2, L2A2, L3A2, L4A2, L5A2, L7A2之表面凹凸配置及各透鏡的正負屈光率配置大致上與第一實施例類似,唯第八實施例的各曲率半徑、透鏡厚度、非球面係數、後焦距等相關光學參數及物側面L7A1和像側面L6A2之表面凹凸配置與第一實施例不同。詳細地說,表面凹凸配置差異之處在於,第六透鏡L6的像側面L6A2的圓周區域L6A2P為凸面,第七透鏡L7的物側面L7A1的圓周區域L7A1P為凸面。關於本實施例之光學成像鏡頭8的各透鏡之各光學特性及各距離之數值,請參考圖36。關於V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,請參考圖38C、38D。
從圖35(a)的縱向球差中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在-0.012~0.012 mm以內。從圖35(b)的弧矢方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.02 mm內。從圖35(c)的子午方向的場曲像差中,三種代表波長在整個視場範圍內的焦距變化量落在-0.03~0.03 mm內。圖35(d)顯示畸變像差維持在0~6%的範圍內。與第一實施例相較,本實施例顯示縱向球差較小。
從上述數據中可以看出光學成像鏡頭8的各種光學特性已符合光學系統的成像品質要求。據此說明本實施例之光學成像鏡頭8相較於現有光學鏡頭,在提供系統長度為7.345 mm、Fno為1.600及像高為5.000 mm的同時,仍能有效提供較佳的成像品質。
圖38A、38B、38C、38D統列出以上八個實施例的各參數及V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4之值,以及各實施例的詳細光學數據與表格中,可看出本發明之光學成像鏡頭確實可滿足前述條件式(1)、(2)及/或(3)~(19)之任一。
本發明光學成像鏡頭各實施例的縱向球差、場曲像差、畸變像差皆符合使用規範。另外,三種代表波長在不同高度的離軸光線皆集中在成像點附近,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差皆獲得控制而具有良好的球差、像差、畸變抑制能力。進一步參閱成像品質數據,三種代表波長彼此間的距離亦相當接近,顯示本發明在各種狀態下對不同波長光線的集中性佳而具有優良的色散抑制能力。綜上所述,本發明藉由透鏡的設計與相互搭配,能產生優異的成像品質。
本發明各實施例揭露之內容包含但不限於焦距、透鏡厚度、阿貝數等光學參數,舉例而言,本發明於各實施例揭露一光學參數A及一光學參數B,其中該些光學參數所涵蓋的範圍、光學參數互相之比較關係及多個實施例涵蓋的條件式範圍的具體解釋如下。 (1)光學參數所涵蓋的範圍,例如:α 2≦A≦α 1或β 2≦B≦β 1,α 1為光學參數A在多個實施例中的最大值,α 2為光學參數A在多個實施例中的最小值,β 1為光學參數B在多個實施例中的最大值,β 2為光學參數B在多個實施例中的最小值。 (2)光學參數互相之比較關係,例如:A大於B或A小於B。 (3)多個實施例涵蓋的條件式範圍,具體來說,由同一實施例的複數個光學參數經過可能的運算所獲得之組合關係或比例關係,該些關係定義為E。E可為例如:A+B或A-B或A/B或A*B或(A*B) 1/2,而E又滿足條件式E≦γ 1或E≧γ 2或γ 2≦E≦γ 1,γ 1及γ 2為同一實施例的光學參數A與光學參數B經過運算所得到的值,且γ 1為本發明多個實施例中的最大值,γ 2為本發明多個實施例中的最小值。 上述光學參數所涵蓋的範圍、光學參數互相之比較關係及該些條件式的最大值、最小值及最大值最小值以內的數值範圍皆為本發明可據以實施之特徵,且皆屬於本發明所揭露的範圍。上述僅為舉例說明,不應以此為限。
本發明之實施例皆可實施,且可於同一實施例中擷取部分特徵組合,該特徵組合相較於先前技術而言亦能達成無法預期之本案功效,該特徵組合包括但不限於面形、屈光率及條件式等特徵之搭配。本發明實施方式之揭露為闡明本發明原則之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,實施例及其附圖僅為本發明示範之用,並不受其限囿。
1, 2, 3, 4, 5, 6, 7, 8:光學成像鏡頭 100, 200, 300, 400, 500:透鏡 130:組裝部 211, 212:平行光線 STO:光圈 L1:第一透鏡 L2:第二透鏡 L3:第三透鏡 L4:第四透鏡 L5:第五透鏡 L6:第六透鏡 L7:第七透鏡 TF:濾光片 IMA:成像面 110, 410, 510, L1A1, L2A1, L3A1, L4A1, L5A1, L6A1, L7A1, TFA1:物側面 120, 320, L1A2, L2A2, L3A2, L4A2, L5A2, L6A2, L7A2, TFA2:像側面 Z1, L1A1C, L1A2C, L2A1C, L2A2C, L3A1C, L3A2C, L4A1C, L4A2C, L5A1C, L5A2C, L6A1C, L6A2C, L7A1C, L7A2C:光軸區域 Z2, L1A1P, L1A2P, L2A1P, L2A2P, L3A1P, L3A2P, L4A1P, L4A2P, L5A1P, L5A2P, L6A1P, L6A2P, L7A1P, L7A2P:圓周區域 A1:物側 A2:像側 CP:中心點 CP1:第一中心點 CP2:第二中心點 TP1:第一轉換點 TP2:第二轉換點 OB:光學邊界 I:光軸 Lc:主光線 Lm:邊緣光線 EL:延伸線 Z3:中繼區域 M, R:相交點
本發明所附圖式說明如下: 圖1顯示本發明之一實施例之透鏡剖面結構示意圖; 圖2繪示透鏡面形與光線焦點的關係示意圖; 圖3繪示範例一的透鏡區域的面形及區域分界的關係圖; 圖4繪示範例二的透鏡區域的面形及區域分界的關係圖; 圖5繪示範例三的透鏡區域的面形及區域分界的關係圖; 圖6顯示依據本發明之第一實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖7顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖8顯示依據本發明之第一實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖9顯示依據本發明之第一實施例之光學成像鏡頭之非球面數據; 圖10顯示依據本發明之第二實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖11顯示依據本發明之第二實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖12顯示依據本發明之第二實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖13顯示依據本發明之第二實施例之光學成像鏡頭之非球面數據; 圖14顯示依據本發明之第三實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖15顯示依據本發明之第三實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖16顯示依據本發明之第三實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖17顯示依據本發明之第三實施例之光學成像鏡頭之非球面數據; 圖18顯示依據本發明之第四實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖19顯示依據本發明之第四實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖20顯示依據本發明之第四實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖21顯示依據本發明之第四實施例之光學成像鏡頭之非球面數據; 圖22顯示依據本發明之第五實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖23顯示依據本發明之第五實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖24顯示依據本發明之第五實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖25顯示依據本發明之第五實施例之光學成像鏡頭之非球面數據; 圖26顯示依據本發明之第六實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖27顯示依據本發明之第六實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖28顯示依據本發明之第六實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖29顯示依據本發明之第六實施例之光學成像鏡頭之非球面數據; 圖30顯示依據本發明之第七實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖31顯示依據本發明之第七實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖32顯示依據本發明之第七實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖33顯示依據本發明之第七實施例之光學成像鏡頭之非球面數據; 圖34顯示依據本發明之第八實施例之光學成像鏡頭之七片式透鏡之剖面結構示意圖; 圖35顯示依據本發明之第八實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖; 圖36顯示依據本發明之第八實施例之光學成像鏡頭之各透鏡之詳細光學數據; 圖37顯示依據本發明之第八實施例之光學成像鏡頭之非球面數據; 圖38A、38B、38C、38D統列出以上八個實施例的各參數及V3+V4+V5、V2+V5、(T1+T6)/T4、AAG/(G34+G45+G56)、(T1+G34)/T2、(T4+G45+T5)/G34、ALT/(G45+G67)、TL/(T1+G23+G34)、ImgH/(T5+T6+T7)、EFL/(G45+G56+G67)、(G56+BFL)/G23、AAG/(G12+T3)、TTL/(G56+T6+G67)、(T4+AAG)/(G56+G67)、T1/(T4+G45)、ALT/(T1+G34)、ImgH/Fno、(T5+T6)/T2、BFL/(G12+G67)、(T6+G67+T7)/(T4+G45+G56)、(DT14+DT67)/DT46及V3+V4值的比較表。
1:光學成像鏡頭
STO:光圈
L1:第一透鏡
L2:第二透鏡
L3:第三透鏡
L4:第四透鏡
L5:第五透鏡
L6:第六透鏡
L7:第七透鏡
TF:濾光片
IMA:成像面
L1A1,L2A1,L3A1,L4A1,L5A1,L6A1,L7A1,TFA1:物側面
L1A2,L2A2,L3A2,L4A2,L5A2,L6A2,L7A2,TFA2:像側面
L1A1C,L1A2C,L2A1C,L2A2C,L3A1C,L3A2C,L4A1C,L4A2C,L5A1C,L5A2C,L6A1C,L6A2C,L7A1C,L7A2C:光軸區域
L1A1P,L1A2P,L2A1P,L2A2P,L3A1P,L3A2P,L4A1P,L4A2P,L5A1P,L5A2P,L6A1P,L6A2P,L7A1P,L7A2P:圓周區域
A1:物側
A2:像側

Claims (20)

  1. 一種光學成像鏡頭,其從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡,且該第一透鏡至該第七透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第二透鏡具有負屈光率; 該第三透鏡的該物側面的一圓周區域為凹面,且該第三透鏡的該像側面的一光軸區域為凸面; 該第五透鏡具有正屈光率;及 該第六透鏡的該像側面的一光軸區域為凸面; 其中,該光學成像鏡頭的透鏡只有上述七片透鏡,且滿足以下條件式: V3+V4+V5≦105.000;及 V2+V5≧60.000; V3代表該第三透鏡的阿貝數,V4代表該第四透鏡的阿貝數,V5代表該第五透鏡的阿貝數,V2代表該第二透鏡的阿貝數。
  2. 一種光學成像鏡頭,其從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡,且該第一透鏡至該第七透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第二透鏡具有負屈光率; 該第三透鏡的該物側面的一圓周區域為凹面,且該第三透鏡的該像側面的一光軸區域為凸面; 該第五透鏡具有正屈光率; 該第七透鏡的該物側面的一光軸區域為凹面; 其中,該光學成像鏡頭的透鏡只有上述七片透鏡,且滿足以下條件式: V3+V4+V5≦105.000;及 V2+V5≧60.000; V3代表該第三透鏡的阿貝數,V4代表該第四透鏡的阿貝數,V5代表該第五透鏡的阿貝數,V2代表該第二透鏡的阿貝數。
  3. 一種光學成像鏡頭,其從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡及一第七透鏡,且該第一透鏡至該第七透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面; 該第三透鏡的該物側面的一圓周區域為凹面,且該第三透鏡的該像側面的一光軸區域為凸面; 該第五透鏡具有正屈光率; 該第七透鏡的該物側面的一光軸區域為凹面,且該第七透鏡的該像側面的一光軸區域為凹面; 其中,該光學成像鏡頭的透鏡只有上述七個透鏡,且滿足以下條件式: V3+V4+V5≦105.000;及 V2+V5≧60.000; V3代表該第三透鏡的阿貝數,V4代表該第四透鏡的阿貝數,V5代表該第五透鏡的阿貝數,V2代表該第二透鏡的阿貝數。
  4. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T1+T6)/T4≧4.900,T1代表該第一透鏡在該光軸上的厚度,T6代表該第六透鏡在該光軸上的厚度,T4代表該第四透鏡在該光軸上的厚度。
  5. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足AAG/(G34+G45+G56)≦3.500,AAG代表該第一透鏡到該第七透鏡在該光軸上的六個空氣間隙總和,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的距離,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的距離。
  6. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T1+G34)/T2≧3.500,T1代表該第一透鏡在該光軸上的厚度,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的距離,T2代表該第二透鏡在該光軸上的厚度。
  7. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T4+G45+T5)/G34≦3.700,T4代表該第四透鏡在該光軸上的厚度,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的距離,T5代表該第五透鏡在該光軸上的厚度,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的距離。
  8. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ALT/(G45+G67)≦6.100,ALT代表該第一透鏡至該第七透鏡在該光軸上的七個透鏡厚度總和,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的距離,G67代表該第六透鏡之該像側面至該第七透鏡之該物側面在該光軸上的距離。
  9. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足TL/(T1+G23+G34)≦4.200,TL代表該第一透鏡之該物側面至該第七透鏡之該像側面在該光軸上的距離,T1代表該第一透鏡在該光軸上的厚度,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的距離,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的距離。
  10. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ImgH/(T5+T6+T7)≧1.800,ImgH代表該光學成像鏡頭的像高,T5代表該第五透鏡在該光軸上的厚度,T6代表該第六透鏡在該光軸上的厚度,T7代表該第七透鏡在該光軸上的厚度。
  11. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足EFL/(G45+G56+G67)≧4.800,EFL代表該光學成像鏡頭的有效焦距,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的距離,G67代表該第六透鏡之該像側面至該第七透鏡之該物側面在該光軸上的距離。
  12. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(G56+BFL)/G23≦3.900,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的距離,BFL代表該第七透鏡之該像側面至一成像面在該光軸上的距離,G23代表該第二透鏡之該像側面至該第三透鏡之該物側面在該光軸上的距離。
  13. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足AAG/(G12+T3)≦4.000,AAG代表該第一透鏡到該第七透鏡在該光軸上的六個空氣間隙總和,G12代表該第一透鏡之該像側面至該第二透鏡之該物側面在該光軸上的距離,T3代表該第三透鏡在該光軸上的厚度。
  14. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足TTL/(G56+T6+G67)≦4.800,TTL代表該第一透鏡之該物側面至一成像面在該光軸上的距離,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的距離,T6代表該第六透鏡在該光軸上的厚度,G67代表該第六透鏡之該像側面至該第七透鏡之該物側面在該光軸上的距離。
  15. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T4+AAG)/(G56+G67)≦3.400,T4代表該第四透鏡在該光軸上的厚度,AAG代表該第一透鏡到該第七透鏡在該光軸上的六個空氣間隙總和,G56代表該第五透鏡之該像側面至該第六透鏡之該物側面在該光軸上的距離,G67代表該第六透鏡之該像側面至該第七透鏡之該物側面在該光軸上的距離。
  16. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足T1/(T4+G45)≧1.900,T1代表該第一透鏡在該光軸上的厚度,T4代表該第四透鏡在該光軸上的厚度,G45代表該第四透鏡之該像側面至該第五透鏡之該物側面在該光軸上的距離。
  17. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ALT/(T1+G34)≦3.500,ALT代表該第一透鏡至該第七透鏡在該光軸上的七個透鏡厚度總和,T1代表該第一透鏡在該光軸上的厚度,G34代表該第三透鏡之該像側面至該第四透鏡之該物側面在該光軸上的距離。
  18. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足ImgH/Fno≧2.500毫米,ImgH代表該光學成像鏡頭的像高,Fno代表該光學成像鏡頭的光圈值。
  19. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足(T5+T6)/T2≧3.800,T5代表該第五透鏡在該光軸上的厚度,T6代表該第六透鏡在該光軸上的厚度,T2代表該第二透鏡在該光軸上的厚度。
  20. 如申請專利範圍第1、2或3項之任一者所述的光學成像鏡頭,其中該光學成像鏡頭更滿足BFL/(G12+G67)≦2.000,BFL代表該第七透鏡之該像側面至一成像面在該光軸上的距離,G12代表該第一透鏡之該像側面至該第二透鏡之該物側面在該光軸上的距離,G67代表該第六透鏡之該像側面至該第七透鏡之該物側面在該光軸上的距離。
TW109144717A 2020-11-26 2020-12-17 光學成像鏡頭 TWI779426B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011353677.5A CN112485891A (zh) 2020-11-26 2020-11-26 光学成像镜头
CN202011353677.5 2020-11-26

Publications (2)

Publication Number Publication Date
TW202221375A true TW202221375A (zh) 2022-06-01
TWI779426B TWI779426B (zh) 2022-10-01

Family

ID=74935638

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144717A TWI779426B (zh) 2020-11-26 2020-12-17 光學成像鏡頭

Country Status (3)

Country Link
US (1) US20220163771A1 (zh)
CN (1) CN112485891A (zh)
TW (1) TWI779426B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764230B (zh) * 2019-11-14 2024-04-05 玉晶光电(厦门)有限公司 光学成像镜头
CN114706188A (zh) * 2021-12-08 2022-07-05 玉晶光电(厦门)有限公司 光学成像镜头

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963360B2 (ja) * 2012-11-21 2016-08-03 カンタツ株式会社 撮像レンズ
JP6133068B2 (ja) * 2013-01-30 2017-05-24 カンタツ株式会社 撮像レンズ
US10018805B2 (en) * 2013-10-14 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Lens module
TWI510804B (zh) * 2014-08-01 2015-12-01 Largan Precision Co Ltd 取像用光學鏡組、取像裝置及電子裝置
CN113900228A (zh) * 2016-12-30 2022-01-07 玉晶光电(厦门)有限公司 光学成像镜头
TWI647508B (zh) * 2018-01-15 2019-01-11 玉晶光電股份有限公司 光學成像鏡頭
JP7020938B2 (ja) * 2018-01-31 2022-02-16 株式会社タムロン 撮像レンズ及び撮像装置
CN111077635A (zh) * 2018-10-18 2020-04-28 南昌欧菲精密光学制品有限公司 光学摄像镜头、取像模组和电子装置
CN111638584A (zh) * 2019-03-01 2020-09-08 南昌欧菲精密光学制品有限公司 光学组件、摄像模组及移动终端
CN110174748A (zh) * 2019-03-08 2019-08-27 玉晶光电(厦门)有限公司 光学成像镜头
TWI790416B (zh) * 2020-01-17 2023-01-21 先進光電科技股份有限公司 光學成像系統
CN111781705A (zh) * 2020-07-22 2020-10-16 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备

Also Published As

Publication number Publication date
TWI779426B (zh) 2022-10-01
US20220163771A1 (en) 2022-05-26
CN112485891A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
TWI660213B (zh) 光學成像鏡頭
TWI773340B (zh) 光學成像鏡頭
TWI760780B (zh) 光學成像鏡頭
TWI774378B (zh) 光學成像鏡頭
TWI782494B (zh) 光學成像鏡頭
TWI757782B (zh) 光學成像鏡頭
TW202336480A (zh) 光學成像鏡頭
TW202125028A (zh) 光學成像鏡頭
TWI806886B (zh) 光學成像鏡頭
TWI750945B (zh) 光學成像鏡頭
TWI742814B (zh) 光學成像鏡頭
TW202223479A (zh) 光學成像鏡頭
TWI757028B (zh) 一種光學成像鏡頭
TW202223478A (zh) 光學成像鏡頭
TW202201066A (zh) 光學成像鏡頭
TWI734356B (zh) 光學成像鏡頭
TWI734355B (zh) 光學成像鏡頭
TWI699575B (zh) 光學成像鏡頭
TWI757863B (zh) 光學成像鏡頭
TW202221375A (zh) 光學成像鏡頭
TWI745067B (zh) 光學成像鏡頭
TWI796620B (zh) 光學成像鏡頭
TWI766813B (zh) 光學成像鏡頭
TWI834362B (zh) 光學成像鏡頭
TWI771001B (zh) 光學成像鏡頭

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent