TW202219458A - Rotation axis center position measuring method of machine tool - Google Patents

Rotation axis center position measuring method of machine tool Download PDF

Info

Publication number
TW202219458A
TW202219458A TW110122872A TW110122872A TW202219458A TW 202219458 A TW202219458 A TW 202219458A TW 110122872 A TW110122872 A TW 110122872A TW 110122872 A TW110122872 A TW 110122872A TW 202219458 A TW202219458 A TW 202219458A
Authority
TW
Taiwan
Prior art keywords
tool
axis
detection
detection unit
center
Prior art date
Application number
TW110122872A
Other languages
Chinese (zh)
Other versions
TWI769869B (en
Inventor
土屋康二
Original Assignee
日商芝浦機械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021085332A external-priority patent/JP7472079B2/en
Application filed by 日商芝浦機械股份有限公司 filed Critical 日商芝浦機械股份有限公司
Publication of TW202219458A publication Critical patent/TW202219458A/en
Application granted granted Critical
Publication of TWI769869B publication Critical patent/TWI769869B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2220/00Machine tool components
    • B23Q2220/004Rotary tables

Abstract

To provide a rotation axis center position measuring method of a machine tool capable of accurately measuring a center position of a rotation axis by simple calculation without using a touch probe. A tool 3 is installed to a main shaft 18, and a detection unit 20 that can detect a position of the tool 3 without contacting is provided on a rotary table 13. About a C-axis that is a rotation axis of a measured object, the tool 3 and the rotary table 13 are indexed to a predetermined position. Detection action for detecting a position of the tool 3 with respect to the rotary table 13 is repeated by using the detection unit 20 at each angle position, and a center position of the C-axis is calculated from the position of the tool 3 at each angle position detected by the multiple detection actions.

Description

工具機的轉動軸中心位置量測方法Method for measuring the center position of the rotating shaft of a machine tool

本發明關於工具機的轉動軸中心位置量測方法。The present invention relates to a method for measuring the center position of a rotating shaft of a machine tool.

在工具機中,藉由已安裝於主軸的工具,對已載置於工作台的工件加工。在加工時,藉由使工具與工件朝向X軸、Y軸、Z軸的各方向形成三維(three dimensional)的移動,可對工件加工任意的立體形狀。 工具機中的一部分,為了提高加工自由度,除了XYZ方向的平移軸,還具備使工具繞著平移軸轉動的轉動軸。作為所追加的轉動軸,譬如有著:繞著X軸轉動的A軸、繞著Y軸轉動的B軸、繞著Z軸轉動的C軸等。作為這種多軸控制工具機,譬如使用:對X軸、Y軸、Z軸的3個軸,追加A軸、C軸之2個軸的5軸控制工具機。 在前述的多軸控制工具機中,為了提高加工精度,有必要使平移軸的位置誤差形成最小限度,同時使轉動軸的角度誤差及轉動中心的位置精度形成最小限度。其中,為了抑制因轉動軸中心位置的誤差所導致之加工精度的低落,而形成:預先量測轉動軸的中心位置,於加工時作為參數而執行修正控制(參考文獻1:日本特開2019-152574號公報)。 在文獻1中,作為量測轉動軸之中心位置的方法,是將「取代工件而成為基準母材」的靶球(Target ball)固定於工作台上,並預先將觸控探針(touch probe)安裝於主軸以取代工具,將欲量測的轉動軸分度(indexing)為複數個角度,在各角度位置使觸控探針接觸靶球而量測靶球的中心位置,根據複數個角度位置的量測值算出該轉動軸的中心位置。 特別的是,在文獻1中,即使在「平移軸的動作範圍受限於結構」之工具機的場合中,為了能高精度地量測轉動軸的中心位置,只能在平移軸可動作的範圍內,執行「在轉動軸的複數個角度位置處,觸控探針與靶球之間的接觸動作」,在移動受到限制的範圍內不執行接觸動作,藉由計算而量測轉動軸中心位置。 另外,開發了一種切刃前端位置偵測方法(文獻2:日本特開2020-28922號公報),即使在「測量對象的工具與測量裝置形成干涉,而使旋轉軸(第4軸、第5軸)的分度範圍大受限制」的場合,也能僅以1個測量裝置來測量X、Y、Z方向之所有誤差量。 在文獻2中,測量「位於旋轉工作台的轉動軸上之工具的最低點」、位於「與旋轉工作台的轉動軸正交的面內」之工具外周的2個以上的位置所求出之工具中心點的2個方向的誤差量,藉此求出X、Y、Z方向的切刃前端位置定位誤差量。 藉由前述文獻1的量測方法,即使在平移軸的動作範圍受到限制之工具機的場合,也能高精度地量測轉動軸的中心位置。 但是,在文獻1的量測方法中,為了偵測靶球的位置,將觸控探針安裝於主軸來取代刀具。 因此,量測時的工具機,並非工具已安裝於主軸之實際加工時的狀態,所量測之轉動軸的中心位置與加工時的中心位置不同,而存在所謂「量測精度具有極限」的問題。 除此之外,在無法將觸控探針安裝於主軸的工具機中,原本就存在無法利用文獻1之量測方法的問題。 另外,在文獻2中,為了求出工具中心點之2個方向的誤差量,雖然提示了若干個方法,但工具種類限定為球形端銑刀,並且以工具前端形成「真圓」而使用作為前提,對於前端形狀不同的工具並不適用,中心位置的高精度量測存在困難。因此,期待:即使面對各種前端形狀的工具,也能以單純的計算而高精度地量測轉動軸的中心位置。 In the machine tool, the workpiece already placed on the table is processed by the tool already attached to the main shaft. During machining, by moving the tool and the workpiece in three-dimensional (three-dimensional) directions in each direction of the X-axis, the Y-axis, and the Z-axis, the workpiece can be processed into an arbitrary three-dimensional shape. Some of the machine tools include, in addition to the translation axes in the XYZ directions, a rotation axis for rotating the tool around the translation axis in order to increase the degree of freedom of machining. As the added rotation axis, there are, for example, an A axis that rotates around the X axis, a B axis that rotates around the Y axis, and a C axis that rotates around the Z axis. As such a multi-axis control machine tool, for example, a 5-axis control machine tool in which two A-axis and C-axis are added to three axes of X-axis, Y-axis, and Z-axis is used. In the multi-axis control machine tool described above, in order to improve the machining accuracy, it is necessary to minimize the positional error of the translation axis, and to minimize the angular error of the rotation axis and the positional accuracy of the rotation center. Among them, in order to suppress the drop in machining accuracy caused by the error in the center position of the rotating shaft, the center position of the rotating shaft is measured in advance, and correction control is performed as a parameter during processing (Reference 1: Japanese Patent Laid-Open No. 2019- Bulletin No. 152574). In Document 1, as a method of measuring the center position of the rotating shaft, a target ball "to be a reference base material in place of a workpiece" is fixed on a table, and a touch probe is preliminarily ) is installed on the main shaft to replace the tool, indexing the rotation axis to be measured into a plurality of angles, at each angle position, the touch probe touches the target ball to measure the center position of the target ball, according to the plurality of angles The measured value of the position calculates the center position of the axis of rotation. In particular, in Document 1, even in the case of a machine tool in which "the movement range of the translation axis is limited by the structure", in order to measure the center position of the rotation axis with high accuracy, only the movement range of the translation axis can be made Within the range, perform "contact action between the touch probe and the target ball at multiple angular positions of the rotation axis", and do not perform the contact action within the range where the movement is restricted, and measure the center of the rotation axis by calculation Location. In addition, a method for detecting the position of the cutting edge tip has been developed (Document 2: Japanese Patent Application Laid-Open No. 2020-28922), even when "the tool to be measured interferes with the measuring device, and the rotation axis (the fourth axis, the fifth axis When the indexing range of the axis) is greatly limited”, it is also possible to measure all the error amounts in the X, Y, and Z directions with only one measuring device. In Document 2, it is obtained by measuring two or more positions on the outer circumference of the tool, which are "the lowest point of the tool located on the rotation axis of the rotary table" and "in the plane orthogonal to the rotation axis of the rotary table". The error amount of the tool center point in two directions is used to obtain the positional error amount of the cutting edge tip position in the X, Y, and Z directions. According to the measurement method of the aforementioned document 1, even in the case of a machine tool in which the movement range of the translation axis is limited, the center position of the rotation axis can be measured with high accuracy. However, in the measurement method of Document 1, in order to detect the position of the target ball, a touch probe is attached to the spindle instead of the tool. Therefore, the machine tool during measurement is not in the actual machining state when the tool is installed on the main shaft. The center position of the rotating shaft measured is different from the center position during machining, and there is a so-called "measurement accuracy has a limit". question. In addition, in the machine tool in which the touch probe cannot be attached to the spindle, there is a problem that the measurement method of Document 1 cannot be used. In addition, in Document 2, although several methods are proposed to obtain the error amount of the tool center point in two directions, the tool type is limited to a spherical end mill, and the tool tip forms a "true circle", which is used as a The premise is that it is not suitable for tools with different front end shapes, and it is difficult to measure the center position with high precision. Therefore, it is expected that the center position of the rotating shaft can be measured with high accuracy by simple calculation even for tools with various tip shapes.

本發明的目的,是提供一種:不使用觸控探針,能以單純的計算,高精度地量測轉動軸的中心位置之工具機的轉動軸中心位置量測方法。 本發明的其它目的,是提供一種:即使面對各種前端形狀的工具,也能以單純的計算,高精度地量測轉動軸的中心位置之工具機的轉動軸中心位置量測方法。 本發明之工具機的轉動軸中心位置量測方法,其特徵為:將工具安裝於主軸,並預先將「能非接觸地偵測前述工具之位置」的偵測單元設置於工作台,對於量測對象的轉動軸,將前述工具與前述工作台分度(indexing)成特定的角度位置,並重複「在各角度位置採用前述偵測單元偵測前述工具對前述工作台的位置」的偵測動作,根據以複數次的前述偵測動作所偵測之各角度位置的前述工具的位置,計算前述轉動軸的中心位置。 在這樣的本發明中,重複「使用了非接觸式之偵測單元的偵測動作」複數次,根據各角度位置之工具的位置執行幾何學的計算,藉此能高精度地量測轉動軸的中心位置。 當量測時,可將加工用的工具安裝於工具機的主軸,在量測之前使主軸轉動而升溫,能在與加工時相同的狀態下量測。此外,即使是無法將觸控探針安裝於主軸的工具機,也能廣泛地適用。 因此,根據本發明,能提供一種:不使用觸控探針,能以單純的計算,高精度地量測轉動軸的中心位置之工具機的轉動軸中心位置量測方法。 在本發明中,雖然只要能高精度地掌握偵測單元相對於工作台的位置及方向,便能以更少的次數來計算轉動軸的轉動中心,但即使無法高精度地掌握偵測單元相對於工作台的位置及方向,也能利用複數次的偵測動作來偵測各角度位置之工具的位置,藉此能藉利用幾何學的演算而縮小並高精度地確定工具的前端位置。 在本發明之工具機的轉動軸中心位置量測方法,最好是前述偵測單元,能非接觸地偵測「前述工具的前端位於前述偵測單元之特定位置」的狀態,在前述偵測動作中,使前述主軸與前述工作台相對移動並將前述工具與前述工作台分度成特定的角度位置,為了在前述各角度位置使前述工具來到前述偵測單元的前述特定位置,而調節前述主軸與前述工作台的相對位置,並在該狀態下從前述主軸與前述工作台之間的相對位置,偵測前述工具在前述各角度位置處相對於前述工作台的位置。 在本發明中,作為偵測動作,當採用偵測單元偵測工具相對於工作台的位置時,可在偵測單元偵測工具的位置,亦可將偵測單元作為工具的定位治具使用,從工具機的控制裝置取得控制用的位置資料。亦即,在控制裝置的控制下促使工具機動作,促使主軸移動而將工具配置於偵測單元的特定位置,並在該狀態下藉由參考工具機之控制裝置中主軸的位置資料,可取得工具的位置。可利用偵測單元中工具偵測領域的中心位置等,作為特定位置。 在本發明之工具機的轉動軸中心位置量測方法中,亦可採用能偵測「前述工具於前述工作台之徑向的位置」的前述偵測單元,將前述工具與前述工作台,分度成隔著前述轉動軸面向第1方向的2個角度位置、及隔著前述轉動軸面向「與前述第1方向交叉的第2方向」之2個角度位置的合計4個角度位置,在各角度位置執行前述偵測動作而偵測前述工具於前述工作台之徑向的位置,並計算「通過將在面向前述第1方向的2個角度位置所偵測之前述工具的位置予以連結之線段的中點,並且交叉於前述第1方向」的第1直線、「通過將在面向前述第2方向的2個角度位置所偵測之前述工具的位置予以連結之線段的中點,並且交叉於前述第2方向」的第2直線,將前述第1直線與前述第2直線之間的交點作為前述轉動軸的中心位置量測。 在本發明中,可利用將「偵測來自工具之側面的影像,而偵測影像上的工具之位置的影像感測器」朝向工作台的周方向設置的裝置,作為可偵測工作台的徑向之工具位置的偵測單元。 隔著轉動軸相對向的4個角度位置,譬如可以是:在工作台的0度位置與180度位置面向第1方向的2個角度位置,且在90度位置與270度位置面向第2方向的2個角度位置。 根據這樣的本發明,在0度與180度之角度位置的偵測動作所無法確定之中心位置的推定範圍,可藉由在90度與270度之角度位置的偵測動作的工具的位置而限縮,而確定正確之轉動軸的中心,能藉由合計在4個角度位置的偵測動作,高精度地量測轉動軸的中心位置。 在本發明之工具機的轉動軸中心位置量測方法中,亦可採用能偵測「前述工具沿著前述工作台之表面的位置」的前述偵測單元,將前述工具與前述工作台,分度成隔著前述轉動軸的2個角度位置,在各角度位置執行前述偵測動作而偵測前述工具沿著前述工作台之表面的位置,並計算「將2次的前述偵測動作中前述工具的位置予以連結之線段的中點」,將前述中點作為前述轉動軸的中心位置量測。 在本發明中,作為可偵測沿著工作台表面之工具位置的偵測單元,可利用能偵測「工具於工作台之徑向的位置及周方向的位置」的偵測單元,更具體地說,使具有自動對焦功能的影像感測器系統朝向工作台的周方向並設置於工作台,將來自工具側面之影像上的工具位置作為徑向的位置,並將由自動對焦功能所偵測之影像的深度方向的工具位置,作為周方向的位置而進行偵測。 隔著轉動軸相對向的2個角度位置,譬如可以是工作台的0度位置與180度位置等。 根據上述的本發明,利用所謂「在2個角度位置之偵測動作」的簡單操作,能高精度地量測轉動軸的中心位置。 在本發明之工具機的轉動軸中心位置量測方法中,亦可採用能偵測「前述工具於前述工作台之徑向的位置」的前述偵測單元,將前述工具與前述工作台,分度成「以前述轉動軸作為中心之特定角度範圍內」的複數個角度位置,在各角度位置執行前述偵測動作而偵測前述工具於前述工作台之徑向的位置,描繪「由複數次的前述偵測動作所獲得之前述工具的位置」,藉由近似計算(approximate calculation)來計算前述轉動軸的中心位置。 根據這樣的本發明,即使是「因工具機的結構性限制,使得繞著轉動軸之局部角度範圍內的偵測動作無法進行」的場合,藉由在除了該角度範圍以外的限定角度範圍反覆地執行複數次偵測動作,可將轉動軸中心位置處的候補位置描繪成譬如圓弧狀,並可藉由最小平方法等的近似計算而確定中心位置。 在本發明之工具機的轉動軸中心位置量測方法中,前述偵測單元,最好具有對前述工作台的固定手段。 在本發明中,設置於工作台的偵測單元,在各角度位置的偵測動作期間,對工作台的設置位置必須不會變動。在工作台朝向上方(向上)的場合,只要單純地載置,亦即相對於工作台表面,受到摩擦力限制移動即可。在工作台形成向上以外的場合,為了不使偵測單元從工作台落下,最好對工作台採用其它的固定手段。 作為固定手段,最好是容易裝卸,舉例來說,可以是利用磁鐵的吸附、利用黏接薄片或接著劑等的黏接、夾具之類的機械性固定。由於偵測單元為非接觸式,基本上不會因為與工具的接觸而產生移動,不必將偵測單元穩固地固定於工作台。 在本發明之工具機的轉動軸中心位置量測方法中,前述偵測單元,最好具有「用來照射平行光束的照明部」、「用來偵測前述平行光束的拍攝部」,並根據在對前述拍攝部所偵測的影像,偵測配置於前述平行光束中之前述工具的前端位置。 在本發明中,作為照射部,可以適當地利用:使用點光源與遠心透鏡(telecentric lens)形成平行光束;藉由配列成直線狀的光源形成平行光束;平行地晃動光束而虛擬地形成平行光束等。 在本發明中,作為拍攝部,最好是採用譬如:CCD(Charge Coupled Device)式的攝影機等,可將所拍攝的影像數位輸出並影像處理的影像偵測器。 在本發明中,當根據拍攝部所偵測的影像來偵測「配置於平行光束中之工具的前端位置」時,相對於拍攝部所偵測的影像而執行既存的影像處理,藉此偵測配置於平行光束中之工具的影子,並可採用:藉由邊緣偵測而根據工具前端的輪廓演算其中心位置,藉此計算工具之前端位置的軟體。 在這樣的本發明中,藉由執行光學式的偵測,能以非接觸而高精度地偵測工具的前端位置。 此外,當位置偵測時,亦可僅將工具的前端配置於照明部與拍攝部之間的平行光束中,偵測操作容易。 在本發明之工具機的轉動軸中心位置量測方法中,最好在前述工具已相對前述拍攝部轉動的狀態下,由前述拍攝部偵測前述影像,並根據前述影像偵測前述工具的輪廓,根據前述輪廓的對稱性而偵測前述工具的中心軸線,並將前述中心軸線與前述輪廓之間的交點作為前述工具的前端位置進行偵測。 在這樣的本發明中,利用「轉動的工具的輪廓形成線對稱」的這一點,可偵測工具的中心軸線,並可藉由取得「所偵測的中心軸線」與工具輪廓之間的交點,而確定工具的前端位置。此時,對於工具的前端形狀並無限制,可對各種前端形狀的工具確定前端位置。除此之外,前端位置的確定,可僅對工具的影像進行幾何學的演算處理,能以單純地計算而高精度地量測「從工具的前端位置至轉動軸的中心位置」。 在本發明之工具機的轉動軸中心位置量測方法中,當將前述中心軸線與前述輪廓之間的交點作為前述工具的前端位置偵測時,最好在前述中心軸線的兩側保持特定距離地設定一對平行線,並設定「通過前述一對平行線與前述輪廓間的交點,且與前述中心軸線正交」的輔助輪廓線,而將前述中心軸線與前述輔助輪廓線之間的交點作為前述工具的前端位置偵測。 在這樣的本發明中,舉例來說,即使是「在前端具有複數個突起的工具、或具有偏斜前端的工具等,於轉動狀態下前端部的輪廓形狀不明確的工具」,也能藉由設定輔助輪廓線,而確定從中心到工具的前端位置。如此一來,即使面對各種前端形狀的工具,也能以單純的計算而高精度地量測工具的前端位置至轉動軸的中心位置。 在本發明之工具機的轉動軸中心位置量測方法中,設定「在前述工具的延伸方向上,橫越前述輪廓」的複數條橫越線,對各個前述橫越線偵測「與前述輪廓的2個交點」及「2個前述交點的中點」,可將通過各個前述橫越線之前述中點的直線,作為前述工具的中心軸線。 在這樣的本發明中,可利用工具的延伸方向(工具的方向、概略的軸線方向),偵測工具之正確的中心軸線(轉動對稱軸)。此時,可藉由採用複數條橫越線之幾何學的演算處理,簡單且高精度地量測「從工具的前端位置至轉動軸的中心位置」。 在本發明之工具機的轉動軸中心位置量測方法中,將「相對於前述工具的延伸方向,前述輪廓之單側的形狀」作為參考圖型(reference pattern)偵測,根據前述輪廓偵測「符合將前述參考圖型反轉之形狀」的對稱圖型,可將通過前述參考圖型與前述對稱圖型之中間的直線,作為前述工具的中心軸線。 在這樣的本發明中,可利用工具的延伸方向(工具的方向、概略的軸線方向),偵測工具之正確的中心軸線(轉動對稱軸)。此時,可藉由影像上的圖型辨識,簡單且高精度地量測「從工具的前端位置至轉動軸的中心位置」。 根據本發明,能提供一種:不使用觸控探針,能以單純的計算,高精度地量測轉動軸的中心位置之工具機的轉動軸中心位置量測方法。此外,提供一種:即使面對各種前端形狀的工具,也能以單純的計算,高精度地量測轉動軸的中心位置之工具機的轉動軸中心位置量測方法。 The purpose of the present invention is to provide a method for measuring the center position of the rotating shaft of a machine tool, which can measure the center position of the rotating shaft with high accuracy by simple calculation without using a touch probe. Another object of the present invention is to provide a method for measuring the center position of the rotating shaft of a machine tool, which can measure the center position of the rotating shaft with high accuracy by simple calculation even for tools with various tip shapes. The method for measuring the center position of the rotating shaft of a machine tool of the present invention is characterized in that: the tool is installed on the main shaft, and a detection unit that "can detect the position of the tool in a non-contact manner" is set on the worktable in advance. Measure the rotation axis of the object, index the tool and the table into a specific angular position, and repeat the detection of "using the detection unit to detect the position of the tool on the table at each angular position" In the action, the center position of the rotating shaft is calculated according to the position of the tool at each angular position detected by the plurality of detection actions. In the present invention, "the detection operation using the non-contact detection unit" is repeated several times, and the geometrical calculation is performed according to the position of the tool at each angular position, whereby the rotation axis can be measured with high accuracy the center position. When measuring, a machining tool can be attached to the main shaft of the machine tool, and the main shaft can be rotated to heat up before measurement, and measurement can be performed in the same state as when machining. In addition, it is widely applicable even for machine tools in which the touch probe cannot be attached to the spindle. Therefore, according to the present invention, it is possible to provide a method for measuring the center position of a rotating shaft of a machine tool, which can measure the center position of the rotating shaft with high accuracy by simple calculation without using a touch probe. In the present invention, as long as the position and direction of the detection unit relative to the table can be grasped with high accuracy, the rotation center of the rotating shaft can be calculated in fewer times, but even if the relative position of the detection unit cannot be grasped with high accuracy Regarding the position and direction of the table, the position of the tool at each angular position can be detected by a plurality of detection actions, whereby the position of the front end of the tool can be narrowed and accurately determined by using the geometric calculation. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, preferably the detection unit is capable of non-contact detection of the state that "the front end of the tool is located at a specific position of the detection unit". During the operation, the spindle and the worktable are moved relative to each other, and the tool and the worktable are indexed into specific angular positions, and the adjustment is performed in order to bring the tool to the specific position of the detection unit at each of the angular positions. The relative position of the main shaft and the worktable, and in this state, the position of the tool relative to the worktable at each of the angular positions is detected from the relative position between the main shaft and the worktable. In the present invention, as the detection action, when the detection unit is used to detect the position of the tool relative to the worktable, the position of the tool can be detected in the detection unit, and the detection unit can also be used as a positioning fixture of the tool , and obtains the position data for control from the control device of the machine tool. That is, under the control of the control device, the machine tool is actuated, the spindle is moved, and the tool is arranged at a specific position of the detection unit, and in this state, the position data of the spindle in the control device of the machine tool can be obtained by referring to the position data of the spindle. location of the tool. The center position of the detection field, etc., can be used as the specific position by using the tool in the detection unit. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, the detection unit capable of detecting "the position of the tool in the radial direction of the table" can also be used, and the tool and the table are separated into There are 4 angular positions in total of 2 angular positions facing the first direction across the rotation axis, and 2 angular positions facing the "second direction intersecting the first direction" across the rotation axis. Angular position performs the aforementioned detection action to detect the radial position of the aforementioned tool on the aforementioned table, and calculates “a line segment connecting the positions of the aforementioned tool detected at the two angular positions facing the aforementioned first direction. the midpoint of the first line and intersects the first straight line in the first direction, and the midpoint of the line segment connecting the positions of the tool detected at 2 angular positions facing the second direction, and intersects at the The second straight line in the second direction" is measured by taking the intersection between the first straight line and the second straight line as the center position of the rotational axis. In the present invention, a device that "detects the image from the side of the tool and detects the position of the tool on the image" is disposed toward the circumferential direction of the worktable as a device capable of detecting the worktable. Detection unit of tool position in radial direction. The 4 angular positions facing each other across the rotation axis may be, for example, 2 angular positions facing the 1st direction at the 0° position and 180° position of the table, and 90° position and 270° position facing the second direction 2 angular positions. According to the present invention, the estimated range of the center position, which cannot be determined by the detection operation at the angular positions of 0 degrees and 180 degrees, can be determined by the position of the tool for detecting the movement at the angular positions of 90 degrees and 270 degrees. The center of the rotation axis can be measured with high precision by the detection action at 4 angular positions in total, and the correct center of the rotation axis can be determined by limiting the shrinkage. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, the detection unit that can detect "the position of the tool along the surface of the worktable" can also be used, and the tool and the worktable are separated into The degree is divided into 2 angular positions separated by the aforementioned rotation axis, and the aforementioned detection action is performed at each angular position to detect the position of the aforementioned tool along the surface of the aforementioned table, and the calculation of “the aforementioned detection action of the two aforementioned detection actions” is calculated. The position of the tool is the midpoint of the line segment connecting the tool", and the aforementioned midpoint is measured as the center position of the aforementioned rotational axis. In the present invention, as the detection unit capable of detecting the position of the tool along the table surface, a detection unit capable of detecting "the position of the tool in the radial direction and the circumferential direction of the table" can be used, more specifically In other words, make the image sensor system with auto-focus function facing the circumferential direction of the worktable and set it on the worktable, take the tool position on the image from the side of the tool as the radial position, and will be detected by the auto-focus function The tool position in the depth direction of the image is detected as the position in the circumferential direction. The two angular positions facing each other across the rotation axis may be, for example, the 0-degree position and the 180-degree position of the table. According to the present invention described above, the center position of the rotating shaft can be measured with high accuracy by the simple operation of the so-called "detection operation at two angular positions". In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, the detection unit capable of detecting "the position of the tool in the radial direction of the table" can also be used, and the tool and the table are separated into The degree is a plurality of angular positions "within a specific angle range with the aforementioned rotation axis as the center", and the aforementioned detection action is performed at each angular position to detect the position of the aforementioned tool in the radial direction of the aforementioned table, depicting "by multiple times" The position of the aforementioned tool obtained by the aforementioned detection action of ", the center position of the aforementioned rotational axis is calculated by approximate calculation. According to the present invention, even in the case where "the detection operation cannot be performed within a local angular range around the rotation axis due to structural limitations of the machine tool", by repeating the operation in a limited angular range other than the angular range By performing a plurality of detection operations, the candidate position at the center position of the rotating shaft can be drawn in the shape of an arc, for example, and the center position can be determined by approximate calculation such as the least squares method. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, the detection unit preferably has a fixing means for the worktable. In the present invention, the detection unit installed on the worktable must not change the installation position of the worktable during the detection operation of each angular position. When the table faces upward (upward), it is only necessary to simply place the table, that is, to restrict movement by frictional force relative to the table surface. When the table is not formed upward, it is better to use other fixing means for the table in order to prevent the detection unit from falling off the table. As the fixing means, it is desirable to be easy to attach and detach, for example, adsorption by a magnet, adhesion by an adhesive sheet or an adhesive, or mechanical fixation such as a jig can be used. Since the detection unit is non-contact, it basically does not move due to the contact with the tool, and it is not necessary to firmly fix the detection unit on the workbench. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, the detection unit preferably has an "illumination part for irradiating the parallel beam", "a photographing part for detecting the parallel beam", and according to The front end position of the tool disposed in the parallel light beam is detected in the image detected by the photographing unit. In the present invention, as the irradiating part, it is possible to appropriately utilize: a point light source and a telecentric lens are used to form a parallel beam; a light source arranged in a straight line is used to form a parallel beam; Wait. In the present invention, as the imaging unit, it is preferable to use, for example, a CCD (Charge Coupled Device) type camera or the like, and an image detector capable of digitally outputting a captured image and processing the image. In the present invention, when "the position of the front end of the tool disposed in the parallel beam" is detected according to the image detected by the photographing unit, the existing image processing is performed with respect to the image detected by the photographing unit, thereby detecting Measure the shadow of the tool arranged in the parallel beam, and can use the software that calculates the center position of the tool according to the contour of the front end of the tool by edge detection, thereby calculating the position of the front end of the tool. In the present invention, the position of the tip of the tool can be detected with high precision without contact by performing optical detection. In addition, when the position is detected, only the front end of the tool can be arranged in the parallel light beam between the illuminating part and the photographing part, and the detection operation is easy. In the method for measuring the center position of the rotating shaft of a machine tool of the present invention, preferably, in a state where the tool has been rotated relative to the photographing unit, the photographing unit detects the image, and detects the contour of the tool according to the image. , detect the central axis of the tool according to the symmetry of the profile, and use the intersection between the central axis and the profile as the front end position of the tool for detection. In such an invention, by utilizing the point that "the contour of the rotating tool forms line symmetry", the central axis of the tool can be detected, and the intersection point between the "detected central axis" and the contour of the tool can be obtained by obtaining , while determining the position of the front end of the tool. At this time, the shape of the tip of the tool is not limited, and the tip position can be determined for tools with various tip shapes. In addition, for the determination of the tip position, only the image of the tool can be geometrically calculated, and "from the tip position of the tool to the center position of the rotation axis" can be measured with high accuracy by simple calculation. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, when the intersection between the center axis and the contour is used as the detection of the front end position of the tool, it is preferable to keep a specific distance on both sides of the center axis Set a pair of parallel lines, and set an auxiliary contour line that "passes through the intersection between the pair of parallel lines and the contour, and is orthogonal to the central axis", and sets the intersection between the central axis and the auxiliary contour line. As the front end position detection of the aforementioned tools. In the present invention, for example, even a "tool having a plurality of protrusions at the tip, a tool having a skewed tip, etc., the contour shape of the tip portion in the rotating state is not clear", the By setting the auxiliary contour line, the position from the center to the tip of the tool is determined. In this way, even for tools with various tip shapes, it is possible to accurately measure the tip position of the tool to the center position of the rotating shaft by simple calculation. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, a plurality of traverse lines "traversing the contour in the extending direction of the tool" are set, and each of the traverse lines is detected "and the contour". The two intersecting points of " and the midpoint of the two aforementioned intersecting points", a straight line passing through the aforementioned midpoint of each of the aforementioned traversing lines can be taken as the central axis of the aforementioned tool. In the present invention, the correct central axis (axis of rotational symmetry) of the tool can be detected using the extending direction of the tool (direction of the tool, rough axis direction). At this time, it is possible to easily and accurately measure "from the tip position of the tool to the center position of the rotation axis" by geometrical calculation processing using a plurality of traversing lines. In the method for measuring the center position of the rotating shaft of the machine tool of the present invention, "with respect to the extending direction of the tool, the shape of one side of the contour" is used as a reference pattern to detect, and the contour is detected according to the For the symmetrical pattern "conforming to the shape of the inversion of the aforementioned reference pattern", a straight line passing through the middle of the aforementioned reference pattern and the aforementioned symmetrical pattern can be used as the central axis of the aforementioned tool. In the present invention, the correct central axis (axis of rotational symmetry) of the tool can be detected using the extending direction of the tool (direction of the tool, rough axis direction). At this time, it is possible to easily and accurately measure "from the tip position of the tool to the center position of the rotating shaft" by means of pattern recognition on the image. According to the present invention, it is possible to provide a method for measuring the center position of a rotating shaft of a machine tool, which can measure the center position of the rotating shaft with high accuracy by simple calculation without using a touch probe. In addition, there is provided a method for measuring the center position of the rotating shaft of a machine tool, which can measure the center position of the rotating shaft with high accuracy by simple calculation even for tools with various tip shapes.

[第1實施形態] 在圖1中,工具機1在底座11的上表面具有移動工作台12及轉動工作台13。 移動工作台12,被支承成可沿著底座11的上表面自由移動,可藉由形成於底座11的X軸移動機構(圖示省略)而移動,並可定位於X軸方向的特定位置。 轉動工作台13,被設置於移動工作台12的上表面,可藉由形成於移動工作台12的C軸轉動機構(圖示省略)而轉動,並可定位於繞著C軸的特定角度位置。 在轉動工作台13的上表面,固定有作為加工對象的工件2。 工具機1,在底座11的上表面具有門型的塔柱14。 塔柱14形成門型,以跨越移動工作台12之X軸方向的移動路徑。在塔柱14,隔著鞍座15及滑件16而支承著主軸頭17。 鞍座15,被支承成可沿著塔柱14的水平桿自由移動,可藉由設置於塔柱14的Y軸移動機構(圖示省略)而移動,並可定位於Y軸方向的特定位置。 滑件16,被支承成可沿著鞍座15的垂直表面自由升降,可藉由設置於鞍座15的Z軸移動機構(圖示省略)而移動,並可定位於Z軸方向的特定位置。 主軸頭17,可自由轉動地支承於滑件16的下部表面,可藉由形成於滑件16的A軸轉動機構(圖示省略)而轉動,並可定位於繞著A軸的特定角度位置。 在主軸頭17,可自由轉動地支承著主軸18,在主軸18的前端安裝有工具3。 主軸18,可藉由設置於主軸頭17的馬達而轉動,能以工件2的切削加工所需之特定的轉數及扭力使工具3轉動。 工具機1,藉由「對前述移動工作台12的X軸移動、鞍座15的Y軸移動、滑件16的Z軸移動的3軸控制,追加了轉動工作台13的C軸轉動、主軸頭17的A軸轉動的2軸控制」的5軸控制,可對工件2執行多樣的切削加工。為了執行這些動作控制,在工具機1連接有CNC(電腦數值控制)式的控制裝置9。 在這樣的工具機1中,利用以下的步驟,量測轉動工作台13之C軸的轉動軸中心位置。 在圖2中,本實施形態為了執行工具機1之C軸中心位置的量測,將偵測單元20設置於轉動工作台13。 在圖3中,偵測單元20具有殼體21,並以殼體21兩端的腳部22,對轉動工作台13的表面形成可裝卸。腳部22,具有黏接或者磁鐵和吸盤等的固定手段,不會位移地固定於轉動工作台13的表面。 殼體21,具有朝中間部上表面側開口的開口部23。在殼體21的內部,於隔著開口部23的其中一側設置有照明部24,在相反側設置有遠心透鏡25、作為拍攝部的CCD攝影機26、及演算部27。 照明部24,可通過開口部23朝向遠心透鏡25照射平行光束28。 平行光束28,由遠心透鏡25所集束,並以CCD攝影機26拍攝。 作為拍攝部的CCD攝影機26,根據所射入的集束光而偵測平行光束28的橫斷影像。在此,倘若將檢測對象物29配置於開口部23,平行光束28的局部將被遮斷,而形成影子281。 演算部27,處理CCD攝影機26的偵測影像,並藉由測量偵測影像所顯示之影子281的寬度及高度,能以非接觸而對檢測對象物29的寬度及高度進行偵測。 在圖4中,藉由將工具3的前端導入前述偵測單元20的開口部23,將工具3的前端作為檢測對象物29配置於平行光束28中,能偵測工具3的前端位置。 偵測單元20,為了使平行光束28成為轉動工作台13的周方向(與轉動工作台13的半徑方向正交的方向),亦即預先形成:使照明部24與CCD攝影機26沿著轉動工作台13的周方向形成彼此對向的姿勢。 偵測單元20的位置,只要是從轉動工作台13的中心分離的位置即可,無須預先量測正確的位置。此外,偵測單元20的方向,不必是「平行光束28正確地沿著轉動工作台13之周方向」的方向。這是由於即使有不正確的成分,當在後述的對向位置(角度位置A0與角度位置A180、角度位置A90與角度位置A270)的演算時,不正確的成分將彼此抵銷的緣故。 當將工具3導入偵測單元20時,調整位置使工具3的前端位置來到CCD攝影機26之偵測影像(圖5的偵測影像261)的中央。 在圖5中,工具3之前端的影子281顯示於CCD攝影機26的偵測影像261。 在偵測影像261中,可根據影子281的輪廓282,正確地分度(indexing)工具3之前端位置283的座標(Tv、Th)。 在偵測影像261所偵測的座標(Tv、Th)之中,垂直方向的座標Tv相當於工具機1的Z軸座標。另外,水平方向的座標Th,是相對於轉動工作台13的中心之工具3的徑向位置Rc(半徑方向的距離),對應於轉動工作台13的角度位置,投影至工具機1的X軸座標及Y軸座標。舉例來說,當轉動工作台13位於圖7A的角度位置A0時,偵測影像261對工具機1的X軸形成交叉,座標Th成為工具機1之Y軸的座標Ty。當轉動工作台13位於圖8A的角度位置A90時,偵測影像261對工具機1的Y軸形成交叉,座標Th成為工具機1之X軸的座標Tx。 當工具3之前端位置283的座標(Tv、Th)分度時,亦可在演算部27執行「利用偵測影像261的影像處理之工具3的前端位置偵測」,亦可將偵測單元20作為工具3的定位治具使用,取得工具機1的位置資料作為工具3的前端位置。此時之工具3的前端位置的偵測處理,除了可利用設置於偵測單元20的演算部27執行之外,在偵測單元20也執行CCD攝影機26的影像偵測,偵測影像261的處理或者工具3之前端位置的偵測,亦可以工具機1的控制裝置9執行。 在圖6中,工具機1的控制裝置9,具有用來控制前述的各軸移動等的動作控制部91,並具有:對從偵測單元20取得的偵測影像261執行影像處理,而偵測工具3之前端位置的工具位置偵測部92。 在偵測動作中,在動作控制部91的控制下使工具機1動作,使主軸18移動而將工具3導入偵測單元20的開口部23內,為了使工具3的前端來到偵測單元20的特定位置,調節主軸18與轉動工作台13之間的相對位置。在該狀態下,工具位置偵測部92從動作控制部91取得主軸18的位置資料(工具機1的Z軸座標、X軸座標及Y軸座標),計算偵測影像261的座標Tv、Th,可將其作為工具3的前端位置。 可利用偵測單元20中作為工具偵測領域的開口部23的中心位置等,作為特定位置。為了將工具3的前端配置於特定位置,可在CCD攝影機26的偵測影像261,顯示將用來表示特定位置的標誌。另外,亦可將CCD攝影機26之偵測影像261的中央位置作為特定位置,並僅以目視確認來判斷特定位置。這是由於即使特定位置不正確,當在後述的對向位置(角度位置A0與角度位置A180、角度位置A90與角度位置A270)的演算時,不正確的成分將彼此抵銷的緣故。 在本實施形態中,採用上述的偵測單元20,並利用以下的步驟量測工具機1的C軸中心位置。 在圖7A中,首先將轉動工作台13設為角度位置A0,並將偵測單元20放置於從轉動工作台13的中心分離的位置。 轉動工作台13的角度位置A0,形成CCD攝影機26的光軸沿著工具機1之X軸的狀態。但是,角度位置A0可以是任意的角度。 一旦設置偵測單元20,便從轉動工作台13的上方使主軸18(請參考圖1)下降,將工具3導入偵測單元20的開口部23。然後,由偵測單元20預先記錄工具3在角度位置A0的位置P0(Tx0、Ty0)。 接著,使工具3上升而從偵測單元20抽出,並使載置著偵測單元20的轉動工作台13,從角度位置A0轉動180度,而形成:隔著C軸,於第1方向D1上,面向角度位置A0的角度位置A180。 在圖7B中,在轉動工作台13位於角度位置A180的狀態下,再度將工具3導入偵測單元20。然後,由偵測單元20預先記錄工具3在角度位置A180的前端位置P180 (Tx180、Ty180)。 在圖7C中,獲得在角度位置A0位置及角度位置A180之工具3的位置P0、P180後,藉由演算部27,計算通過C軸中心位置且與第1方向D1交叉的第1直線L1。具體地說,利用線段L01連結「在角度位置A0之工具3的位置P0」與「在角度位置A180之工具3的前端位置P180」,並將通過其中點且與第1方向D1交叉的直線,作為第1直線L1。 根據圖7A~圖7C的偵測動作獲得第1直線L1後,利用相同的步驟計算第2直線L2。 在圖8A中,將偵測單元20及轉動工作台13設為角度位置A90(從角度位置A0轉動了90度的角度位置),將工具3導入偵測單元20的開口部23。然後,由偵測單元20預先記錄工具3在角度位置A90的前端位置P90(Tx90、Ty90)。 在圖8B中,藉由相同的操作,將偵測單元20及轉動工作台13設為「隔著C軸,在第2方向D2(與第1方向D1交叉)上,面向角度位置A90」的角度位置A270,並由偵測單元20預先記錄工具3在角度位置A270的前端位置P270(Tx270、Ty270)。 在圖8C中,獲得在角度位置A90及角度位置A270之工具3的前端位置P90、P270後,由演算部27計算通過C軸中心位置且與第2方向D2交叉的第2直線L2。具體地說,利用線段L02連結「在角度位置A90之工具3的前端位置P90」與「在角度位置A270之工具3的前端位置P270」,並將通過其中點且與第2方向D2交叉的直線,作為第2直線L2。 在圖9中,當獲得第1直線L1及第2直線L2後,由演算部27計算第1直線L1與第2直線L2之間的交點Pc。藉此,將C軸中心位置的可能存在範圍,限定於交點Pc的1點,可量測工具機1之正確的C軸中心位置。 根據這樣的本實施形態,具有以下的效果。 在本實施形態中,將工具3安裝於主軸18,並預先將「能非接觸地偵測工具3之位置」的偵測單元20設置於轉動工作台13,對於量測對象的C軸,將工具3與轉動工作台13分度(indexing)成特定的角度位置(A0、A90、A180、A270),並重複「在各角度位置由偵測單元20偵測工具3對轉動工作台13的位置(P0、P90、P180、P270)」的偵測動作,根據以4次的偵測動作所偵測之在各角度位置的工具3的位置,計算C軸的中心位置(Pc)。 在這樣的本實施形態中,重複4次「使用了非接觸式之偵測單元20的偵測動作」,根據在各角度位置之工具3的位置執行幾何學的計算,藉此能高精度地量測C軸的中心位置(Pc)。 當量測時,可將加工用的工具3安裝於工具機1的主軸18,在量測之前使主軸18轉動而升溫,能在與加工時相同的狀態下量測。此外,即使是無法將觸控探針安裝於主軸18的工具機1,也能廣泛地適用。 因此,根據本實施形態,可不使用觸控探針,以單純的計算,高精度地量測C軸的中心位置。 在本實施形態中,特別採用「可偵測工具3於轉動工作台13的徑向之位置」的偵測單元20,將工具3與轉動工作台13,分度成「隔著C軸,在第1方向D1上對向的2個角度位置A0、A180」、與「隔著C軸,在與第1方向D1交叉的第2方向D2上,對向的2個角度位置A90、A270」的4個角度位置,在各角度位置執行偵測動作而偵測工具3於轉動工作台13之徑向的位置(P0、P90、P180、P270),並計算「通過線段L01的中點,並且交叉於第1方向D1」的第1直線L1、與「通過線段L02的中點,並且交叉於第2方向D2」的第2直線L2,並將第1直線L1與第2直線L2之間的交點Pc作為C軸的中心位置量測,前述的線段L01,連結「在第1方向D1上對向的2個角度位置A0、A180所偵測之工具3的位置P0、P180」,而前述的線段L02,連結「在第2方向D2上,對向的2個角度位置A90、A270所偵測之工具3的位置P90、P270」。 因此,作為本實施形態的偵測單元20,只要能偵測轉動工作台13徑向之工具3的位置即可,可以利用以下的構造:將「偵測來自工具3側面的偵測影像261(請參考圖5)而偵測影像上之工具3的位置」的影像感測器(照明部24或者CCD攝影機26,請參考圖3),朝向轉動工作台13的周方向設置。 根據這樣的本實施形態,在0度與180度之角度位置A0、A180的偵測動作所無法確定之C軸中心位置的推定範圍(直線L1),可藉由在90度與270度之角度位置A90、A270的偵測動作所獲得之工具3的位置(直線L2)而限縮,而確定正確的C軸中心,能藉由合計在4個角度位置(A0、A90、A180、A270)的偵測動作,高精度地量測C軸的中心位置。 在本實施形態中,偵測單元20具有:照明部24,用來照射平行光束28;拍攝部(遠心透鏡25及CCD攝影機26),用來偵測平行光束28;演算部27,根據偵測影像261,偵測已配置於平行光束28中之工具3的前端位置;藉由對偵測影像261執行既存的影像處理,偵測已配置於平行光束28中之工具3的影子281,藉由邊緣偵測,根據工具3的前端輪廓282演算其中心位置,藉此能計算工具3的前端位置283。 其結果,藉由利用偵測單元20執行光學式的偵測,能以非接觸而高精度地偵測工具3的前端位置。 此外,當位置偵測時,亦可僅將工具3的前端配置於「照明部24與拍攝部(遠心透鏡25及CCD攝影機26)之間的平行光束28」中,偵測操作容易。 在本實施形態中,由於偵測單元20具有對轉動工作台13的固定手段,因此偵測單元20對轉動工作台13的設置位置,在各角度位置的偵測動作期間不會變動。 [第2實施形態] 在圖10A~圖10C中,顯示本發明的第2實施形態。 在前述的第1實施形態中,為了執行工具機1(請參考圖1)之C軸中心位置的量測,將偵測單元20設置於轉動工作台13(請參考圖2及圖3),藉由在角度位置A0、A180對工具3之徑向位置的偵測動作,偵測第1直線L1,藉由在角度位置A90、A270的相同偵測動作,偵測第2直線L2,並將第1直線L1與第2直線L2的交點Pc作為工具機1之正確的C軸中心位置量測。 相對於此,在本實施形態中,在角度位置A0、A180的偵測動作中偵測工具3的徑向位置,並偵測周方向位置亦即「沿著轉動工作台13表面的平面位置」,藉此量測工具機1之正確的C軸中心位置。 在圖10A中,在位於角度位置A0的轉動工作台13,放置有偵測單元20A。 偵測單元20A,其基本構造與第1實施形態的偵測單元20相同,可利用自動對焦功能而進一步偵測影像之深度方向的座標。採用了自動對焦功能的座標偵測,舉例來說,在圖5的偵測影像261中,對工具3之影子281的輪廓282執行邊緣偵測,而偵測成為最大對比的焦點位置,藉此能正確地偵測影像之深度方向的座標。 因此,藉由將工具3導入「被放置於轉動工作台13的偵測單元20A」,可偵測工具3相對於轉動工作台13的徑向位置Rc及周方向位置Cc。藉由這種在角度位置A0的偵測動作,可量測工具3對轉動工作台13的平面位置PA0。 在圖10B中,完成在角度位置A0的偵測動作之後,使轉動工作台13朝角度位置A180移動,藉由在角度位置A180執行相同的偵測動作,量測工具3對轉動工作台13的平面位置PA180。 在圖10C中,取得平面位置PA0及平面位置PA180後,藉由演算部27計算「連結平面位置PA0與平面位置PA180之線段LA」的中點PAc。可藉由該中點PAc,量測工具機1之正確的C軸中心位置。 根據這樣的本實施形態,可獲得與前述第1實施形態相同的效果,並且工具3之前端的偵測動作,能在角度位置A0、A180的2個部位完成,可提高作業效率。 除此之外,在本實施形態中,不需要「第1實施形態中,在角度位置A90、A270等其它角度位置的偵測動作」,因此,舉例來說,即使是「角度位置A90、A270,受到平移軸(XYZ軸)的結構性限制,而成為偵測動作之範圍外」的工具機1,也能藉由在角度位置A0、A180的偵測動作,量測正確的C軸中心位置。 [第3實施形態] 在圖11A~圖12C中,顯示本發明的第3實施形態。 在前述的第1實施形態中,在角度位置A0、A180及角度位置A90、A270執行偵測動作,在第2實施形態中,在角度位置A0、A180執行偵測動作,有必要分別在「隔著轉動工作台13的中心而對向的角度位置A0、A180」執行偵測動作。 相對於此,在本實施形態中,在從角度位置A0起未滿180度的複數個角度位置An,分別與第1實施形態相同,執行工具3之前端位置的偵測動作,並根據偵測結果的演算,量測工具機1之正確的C軸中心位置。 在本實施形態中,工具機1、轉動工作台13及偵測單元20,與前述的第1實施形態相同,關於這些構造的重複說明便省略。 在圖11A中,首先,將設置有偵測單元20的轉動工作台13配置於角度位置A0,將工具3的前端導入偵測單元20的開口部23並以偵測單元20偵測其位置,而作為工具3的位置P0。 在圖11B中,接著,使轉動工作台13轉動30度而轉動至下一個角度位置A30,藉由與角度位置A0相同的操作,偵測工具3的位置P30。 在圖11C中,更進一步使轉動工作台13轉動30度而轉動至下一個角度位置A60,藉由與角度位置A0相同的操作,偵測工具3的位置P60。 在圖12A中,使轉動工作台13轉動至下一個角度位置A120,藉由與角度位置A0相同的操作,偵測工具3的位置P120。 在圖12B中,使轉動工作台13轉動至下一個角度位置A150,藉由與角度位置A0相同的操作,偵測工具3的位置P150。 在圖12C中,在前述的角度位置A0~A150所偵測之工具3的位置P0~P150,當在畫面上描繪時,排列成圓弧狀。對於排列成圓弧狀的位置P0~P150的點列,譬如可藉由最小平方法等,高精度地計算圓弧狀之中心點PBc的位置,並可將這裡所獲得的中心點PBc作為工具機1之正確的C軸中心位置進行量測。 藉由這樣的本實施形態,也能獲得與前述第1實施形態相同的效果,並且,即使是「受到工具機1之平移軸(XYZ軸)的結構性限制,偵測動作的可能範圍未滿180度」,也能藉由在複數個位置的偵測動作,量測正確的C軸中心位置。 [第1~第3實施形態的變形例] 在前述的第1~第3實施形態中,當在角度位置An的偵測動作時,雖然以偵測單元20拍攝了工具3之前端的影像,但即使工具3於偵測影像上的位置在每個角度位置An形成偏移亦無妨。 在圖13中,有時於偵測單元20的偵測影像261中,工具3之影子281的輪廓282於偵測影像261上的位置,在角度位置A0與其它的角度位置An通常不會形成相同的位置。但是,只要能藉由偵測影像261的影像處理,算出從角度位置A0(2點鏈線)的位置起的偏移量dc0,便能藉由該偏移量的修正而確定工具3的座標,工具3於偵測影像261上的位置即使在每個角度位置An形成偏移亦無妨。 [第4實施形態] 在圖14~圖16中,顯示本發明的第4實施形態。 本實施形態,是量測「工具機1中,從A軸中心位置到工具3前端為止的偏移距離(偏移量)」的實施形態。 在本實施形態的工具機1、及用於量測的偵測單元20,由於與前述的第1實施形態相同,因此省略重複的說明。 在本實施形態中,將偵測單元20設置於轉動工作台13。 偵測單元20配置成:開口部23來到轉動工作台13的中央(C軸轉動中心位置)。然後,預先調整偵測單元20的方向,使平行光束28的方向成為工具機1的X軸方向。偵測單元20的方向,藉由轉動工作台13的C軸轉動調整即可。 偵測單元20設置完成後,藉由工具機1的各軸動作使主軸頭17接近偵測單元20,將安裝於主軸18之工具3的前端導入開口部23,並執行偵測動作。 在圖15A中,首先,藉由工具機1的A軸轉動,工具3形成朝向Y軸「+」方向的狀態(繞著A軸的角度位置A0),在該狀態下藉由工具機1的各軸移動,將工具3的前端導入開口部23。除此之外,藉由工具機1之Y軸及Z軸的移動進行調整,在以偵測單元20所取得的偵測影像262中,使工具3的影子281的前端位置283來到偵測影像262的中央,預先記錄此時之工具機1的Y軸位置及Z軸位置(圖16中的Y1、Z1)。 在圖15B中,接著,藉由工具機1的A軸轉動,工具3形成朝向Y軸「-」方向的狀態(隔著A軸與角度位置A0對向的角度位置A180),在該狀態下藉由工具機1的各軸移動,將工具3的前端導入開口部23。除此之外,藉由工具機1之Y軸及Z軸的移動進行調整,在以偵測單元20所取得的偵測影像262中,使工具3的影子281的前端位置283來到偵測影像262的中央,預先記錄此時之工具機1的Y軸位置及Z軸位置(圖16中的Y2、Z2)。 在圖16中,分別將工具3的前端配置於相同位置的結果,「在角度位置A0之工具機1的Y軸位置Y1及Z軸位置Z1」、與「在角度位置A180之工具機1的Y軸位置Y2及Z軸位置Z2」之間的差,是基於A軸(主軸頭17的轉動軸171)之轉動中心的擺動(run out)。 因此,根據在角度位置A0及角度位置A180之各軸位置的差異值的1/2,可是量測從工具機1的A軸中心位置到工具3前端為止的偏移距離(偏移量)(Y=(Y1-Y2)/2、Z=(Z1-Z2)/2)。 即使根據這樣的本實施形態,當量測「從A軸中心位置到工具3前端為止的偏移距離(偏移量)」時,也能獲得與前述第1實施形態相同的效果。 [第5實施形態] 在圖17~圖20中,顯示本發明的第5實施形態。 本實施形態,是量測「所謂的搖架式(cradle type)工具機1A中,A軸中心位置與工具3前端形成一致的座標」的實施形態。 在圖17中,轉動工作台13透過搖架131由移動工作台12(請參考圖1)所支承,相對於搖架131可繞著C軸轉動。搖架131可藉由一對耳軸(trunnion)132,相對於移動工作台12繞著A軸轉動。 在工具機1A中,主軸頭17固定於滑件16(請參考圖1),A軸不進行轉動,始終保持Z軸向下。 在本實施形態中,將偵測單元20設置於轉動工作台13。對於偵測單元20,由於與前述的第1實施形態相同,因此省略重複的說明。 偵測單元20配置成:開口部23來到轉動工作台13的中央(C軸轉動中心位置)。然後,預先調整偵測單元20的方向,使平行光束28的方向成為工具機1A的X軸方向。偵測單元20的方向,藉由轉動工作台13的C軸轉動調整即可。 偵測單元20設置完成後,藉由工具機1A的各軸動作使主軸頭17接近偵測單元20,將安裝於主軸18之工具3的前端導入開口部23,並執行偵測動作。 在圖18A中,首先,藉由搖架131的A軸轉動,轉動工作台13形成朝向Y軸「+」方向的狀態(繞著A軸的角度位置A0),在該狀態下藉由工具機1A的各軸移動,將工具3的前端導入開口部23。 在圖19A中,在搖架131已形成角度位置A0的狀態下,藉由工具機1A之Y軸及Z軸的移動進行調整,在以偵測單元20所取得的偵測影像263中,使工具3的影子281的前端位置283來到偵測影像263的中央,預先記錄此時之工具機1A的Y軸位置及Z軸位置(圖20中的Y1、Z1)。 在圖18B中,接著,藉由搖架131的A軸轉動,轉動工作台13形成朝向Y軸「-」方向的狀態(隔著A軸與角度位置A0對向的角度位置A180),在該狀態下藉由工具機1A的各軸移動,將工具3的前端導入開口部23。 在圖19B中,在搖架131已形成角度位置A180的狀態下,藉由工具機1A之Y軸及Z軸的移動進行調整,在以偵測單元20所取得的偵測影像263中,使工具3的影子281的前端位置283來到偵測影像263的中央,預先記錄此時之工具機1A的Y軸位置及Z軸位置(圖20中的Y2、Z2)。 在圖20中,分別將工具3的前端配置於相同位置的結果,「在角度位置A0之工具機1A的Y軸位置Y1及Z軸位置Z1」、與「在角度位置A180之工具機1A的Y軸位置Y2及Z軸位置Z2」之間的差,是基於搖架131之A軸轉動中心的擺動(run out)。 因此,根據在角度位置A0及角度位置A180之各軸位置,可藉由算式(Y=(Y1+Y2)/2、Z=(Z1+Z2)/2),量測「工具機1A的A軸中心位置與工具3的前端形成一致」的座標。 即使根據這樣的本實施形態,當量測「A軸中心位置與工具3前端形成一致」的座標時,也能獲得與前述第1實施形態相同的效果。 [第6實施形態] 在圖21A~圖23C中,顯示本發明的第6實施形態。 本實施形態,是採用與前述的第4實施形態相同的構造,量測「工具機1中,從A軸中心位置到工具3前端為止之偏移距離(偏移量)」的實施形態。 但是,第4實施形態,是在「角度位置A0」與「隔著A軸與角度位置A0對向(亦即,形成180度間隔)的角度位置A180」的2處,偵測工具機1的Y軸位置Y1、Y2及Z軸位置Z1、Z2,相對於此,本實施形態則是在從角度位置A0起180度之範圍內的複數個角度位置An,執行Y軸位置及Z軸位置的偵測動作。 在圖21A中,首先,藉由工具機1的A軸轉動(主軸頭17之轉動軸171的轉動),工具3形成朝向Y軸「+」方向的狀態(繞著A軸的角度位置A0),在該狀態下藉由工具機1的各軸移動,將工具3的前端導入開口部23。 在圖21B中,將工具3配置於角度位置A0之後,藉由工具機1的Y軸及Z軸的移動進行調整,在以偵測單元20所取得的偵測影像264中,使工具3的影子281的前端位置283來到偵測影像264的中央,預先記錄此時之工具機1的Y軸位置及Z軸位置。所記錄的Y軸位置及Z軸位置,成為各角度位置An的A軸中心位置Q0。 接著,藉由工具機1的A軸轉動,使工具3成為角度位置A30(從角度位置A0起轉動了30度的狀態),在該狀態下,與角度位置A0相同,藉由工具機1的各軸移動來進行調整,將工具3的前端導入開口部23,在以偵測單元20所取得的偵測影像264中,使工具3的影子281的前端位置283來到偵測影像264的中央,記錄此時之工具機1的Y軸位置及Z軸位置(A軸中心位置Q30)。 不僅如此,藉由工具機1的A軸轉動,使工具3成為角度位置A60(從角度位置A0起轉動了60度的狀態),利用與角度位置A0、A30相同的步驟,記錄工具機1的Y軸位置及Z軸位置(A軸中心位置Q60)。 同樣地,記錄角度位置A90、A120、A150、A180之工具機1的Y軸位置及Z軸位置(A軸中心位置Q90、Q120、Q150、Q180)。 在圖21C中,倘若將「重複上述偵測動作所獲得之角度位置An(A0~A180)的A軸中心位置Qn(Q0~Q180)」描繪於畫面上,將成為排列成圓弧狀的點列QC。對於這些點列QC,譬如可藉由最小平方法等,高精度地計算圓弧狀之點列QC的中心點QCc的位置(在各角度位置An,共通之工具3的前端位置)。藉由以上所獲得的中心點QCc,可正確地量測「從工具機1之A軸中心位置Qn到工具3前端為止的偏移距離(偏移量)」。 藉由這樣的本實施形態,也能獲得與前述第1實施形態及第4實施形態相同的效果,並且,即使是「受到工具機1之平移軸(XYZ軸)的結構性限制,偵測動作的可能範圍未滿180度」,也能藉由在複數個角度位置An的偵測動作,正確地量測從A軸中心位置Qn到工具3之前端為止的偏移距離(偏移量)。 [第6實施形態的變形例] 在圖22中,將在前述第6實施形態所量測的「從A軸中心位置Qn到工具3之前端為止的偏移距離(偏移量)」,登錄於工具機1的NC裝置,作為工具機1動作時的修正值參考。 當登錄於工具機1的NC裝置時,需要「從工具3的前端位置亦即中心點QCc,實際的A軸中心位置Qn為止的距離D(偏移量)」。藉由「基於A軸中心位置Qn的圓弧狀之點列QC」的最小平方法演算,可獲得中心點QCc的位置、及表示「從中心點QCc到A軸中心位置Qn為止的距離D(近似值)」的近似圓弧半徑,故能將該半徑作為「中心點QCc與A軸中心位置Qn之間的實際距離D」。 在登錄於工具機1之NC裝置的場合中,必須將距離D分離成:平行於工具3的Z軸方向的成分Dz、與工具3正交之Y軸方向的成分Dy。因此,連結「A軸中心位置Qn」與「工具3的前端(中心點QCc)」之線段的角度θ變得必要。但是,用於中心點QCc計算的最小平方法,並無法獲得:可實施近似圓弧半徑(距離D)之線段的角度θ。 在圖23A中,除了無法獲得前述的角度θ之外,在前述的複數個角度位置An(A0~A180)作為圓弧狀的點列QC所偵測的A軸中心位置Qn(取樣點(sampling point)),有時相對於點列QC的近似圓弧呈現分散(徑向的位移)。此外,倘若在「作為用來偵測A軸中心位置Qn的角度位置An」之角度(0度~180度),導出從中心點QCc延伸的基準線Ln,於各角度處的A軸中心位置Qn,對這些基準線Ln呈現分散(周方向的位移)。 在這樣的誤差分布下,為了決定上述之角度θ的最佳值,可採用以下的操作。 在圖23B中,作為第1操作,是採用「工具3在沿著Z軸的方向(角度位置A90)處的A軸中心位置Q90」。具體地說,求出從中心點QCc延伸至A軸中心位置Q90的線段,將該線段與Z軸所形成的角度設為θ。 根據這樣的操作,雖然無法成為整體最佳化,但作為基準卻最均衡。 在圖23C中,亦可在工具3對Z軸成為特定角度(譬如40度)的方向(角度位置A0起,130度的角度位置A130)中,求出從中心點QCc延伸至A軸中心位置Q130的線段,將該線段與「從Z軸起,形成40度的基準線L130」所形成的角度設為θ,而作為第2操作。 除此之外,亦可在位於複數個角度位置An的A軸中心位置Qn,求出與基準線Ln之間的角度θn,並求出其平均值。 根據這樣的操作,雖然操作很繁瑣,卻能獲得整體最佳化的角度θ。 雖然可在前述位於複數個角度位置An的A軸中心位置Qn,對整體範圍進行均等地分度而求出角度θ,但亦可提高或者降地局部角度範圍的取樣密度。 藉由以上的操作,獲得角度θ之後,前述的「Z軸方向的成分Dz」及「與工具3正交之Y軸方向的成分Dy」(請參考圖22),可分別作為Dz=Dcosθ、Dy=Dsinθ計算。 [第1~第6實施形態的變形例] 在前述的第1~第6的各實施形態中,分別藉由偵測單元20、20A偵測工具3的前端位置。 舉例來說,在第1實施形態中,如圖5所示,在CCD攝影機26之偵測影像261的中央捕捉工具3的前端位置,根據「顯示於偵測影像261的工具3前端之影子281的輪廓282」,分度工具3之前端位置283的座標(Tv、Th)。 此時,工具3前端的凹凸形狀複雜,根據工具3的前端形狀,有時無法正確地偵測座標。 相對於此,為了簡單且正確地偵測工具3的前端位置(Tv、Th),可利用以下所示的步驟。 [第7實施形態] 如圖24A所示,在CCD攝影機26(請參考圖3)的偵測影像261中,出現(顯示)工具3前端的影子281(與圖5相同)。在影子281之輪廓282的局部,出現(顯示)工具3的前端位置283,需要其座標(Tv、Th)的量測。 在本實施形態中,在相對於CCD攝影機26使工具3轉動的狀態下,以CCD攝影機26偵測「偵測影像265」(與第1~第6實施形態中的偵測影像261~264相同),從偵測影像265偵測工具3的輪廓282。 在本實施形態中,藉由工具3形成轉動,出現於偵測影像265的輪廓282,相對於轉動中心成為對稱,根據該輪廓282的對稱性,正確地偵測工具3的中心軸線284,可將中心軸線284與輪廓282之間的交點作為工具3的前端位置283偵測。 在本實施形態中,當根據輪廓282偵測工具3的中心軸線284時,執行以下的演算處理。 如圖24B所示,在偵測影像265中,將工具3配置於特定的角度位置(譬如,圖21B所示的角度位置A90),作為此時工具3的延伸方向D90。接著,沿著延伸方向D90,以特定間隔平行地設定「正交於延伸方向D90,並且橫越輪廓282」的複數條橫越線30。 如圖24C所示,對所設定的複數條橫越線30,偵測每一條橫越線與輪廓282之間的2個交點31、32,並更進一步偵測2個交點31、32的中點33。然後,藉由偵測通過各橫越線30之中點33的直線,可將該直線作為工具3的中心軸線284。 在這樣的本實施形態中,可利用工具3的延伸方向Dn(各角度位置An、工具3的方向、概略的軸線方向),藉由偵測轉動對稱的軸,可偵測工具3之正確的中心軸線284,根據正確的中心軸線284與輪廓282的交點,能高精度地偵測工具3之前端位置283的座標(Th、Tv)。 此時,藉由在中心軸線284的偵測中,執行複數條橫越線30的中點偵測,並在前端位置283的偵測中,執行與輪廓282之間的交點偵測,分別能以幾何學的演算處理來實施,藉此能簡單且高精度地量測:從工具3的前端位置283至轉動軸(A軸或者C軸)的中心位置。 在本實施形態中,工具3的方向(延伸方向Dn),可設為任意的角度(角度位置An)。 在圖25A中,將工具3設定為角度位置A150,並設定複數條正交於延伸方向D150的橫越線30。 如圖25B所示,在各橫越線30偵測2個交點31、32及中點33,能根據通過複數個中點33的中心軸線284、以及與輪廓282之間的交點,正確地偵測工具3之前端位置283的座標(Th、Tv)。 [第8實施形態] 在前述的第7實施形態中,當根據輪廓282偵測工具3的中心軸線284時,執行了複數條橫越線30的中點偵測。 相對於此,在本實施形態中,藉由逐一對「呈現轉動對稱圖型的輪廓282」之單側的圖型辨識,偵測工具3的中心軸線284。 如圖26A所示,在偵測影像265中,將工具3配置於特定的角度位置(譬如,圖21B所示的角度位置A90),作為此時工具3的延伸方向D90。接著,將「相對於延伸方向D90,輪廓282之單側(以沿著延伸方向D90的直線,將輪廓282一分為2(二等分)的局部)的形狀41,作為參考圖型40偵測。 如圖26B所示,偵測到參考圖型40之後,演算「符合將參考圖型40反轉後之形狀」的對稱圖型42,從輪廓282偵測與該對稱圖型42一致的形狀43。偵測到對稱圖型42之後,將通過「參考圖型40」與「對稱圖型42」之中間的直線(參考圖型40與對稱圖型42間之線對稱的軸),作為工具3的中心軸線284。 在這樣的本實施形態中,利用工具3的延伸方向Dn(各角度位置An、工具3的方向、概略的軸線方向),藉由輪廓282之單側的逐一圖型辨識,可偵測工具3之正確的中心軸線284,根據正確的中心軸線284與輪廓282的交點,能高精度地偵測工具3之前端位置283的座標(Th、Tv)。 此時,作為輪廓282之單側逐一的圖型辨識,參考圖型40及對稱圖型42的偵測,分別能以幾何學的演算處理來實施,藉此能簡單且高精度地量測:從工具3的前端位置283至轉動軸(A軸或者C軸)的中心位置。 [第9實施形態] 在前述的第7實施形態中,當從輪廓282偵測到工具3的中心軸線284之後,偵測中心軸線284與輪廓282之間的交點,作為工具3的前端位置283。 相對於此,在本實施形態中,藉由在工具3之前端部的輪廓282設定輔助輪廓線,即使是「在前端具有複數個突起的工具3、或具有從中心偏斜之前端的工具3等」於轉動狀態下前端部之輪廓282的形狀不明確的工具3,也能確定工具3的前端位置。 如圖27A及圖27B所示,在工具3的前端部形成有:隔著轉動中心形成對向的一對切刃3T。在圖27B中,以實線所表示的切刃3T,藉由工具3的轉動,朝向以2點鏈線所表示的位置移動。 在前述的各實施形態中,分別從工具3的側邊(與工具3的轉動軸線交叉的方向),利用CCD攝影機26拍攝工具3的前端部。 舉例來說,CCD攝影機26從圖27B的圖面下側拍攝工具3,可在一對切刃3T在「與CCD攝影機26的光軸形成正交的方向」上形成對向的狀態(圖27B中的實線狀態)下,將一對切刃3T都收入(放入)CCD攝影機26的對焦範圍Rf0。然而,隨著工具3轉動,且接近「一對切刃3T沿著CCD攝影機26之光軸」的狀態(在圖27B中2點鏈線的狀態),從CCD攝影機26到各切刃3T為止之距離的差將擴大,而形成「其中一個位於離CCD攝影機26遠的焦點深度範圍Rf1,另一個位於離CCD攝影機26近的焦點深度範圍Rf2」的狀態,CCD攝影機26無法對焦於一對切刃3T的雙方。 如此一來,藉由使工具3轉動,使一對切刃3T對CCD攝影機26的距離形成週期性的變化,在CCD攝影機26所拍攝的影像中,局部地產生模糊。 如圖27C所示,工具3之影子281的輪廓282,前端之外的部位清晰,對於前端,由於一對切刃3T在CCD攝影機26的光軸方向上位移,而成為產生了模糊的狀態。其結果,無法如同前述的第7~第8實施形態,藉由中心軸線284與輪廓282之間的交點,來確定工具3之前端位置283的座標。 相對於此,在本實施形態中,與前述的第7或第8實施形態相同對中心軸線284進行偵測,並在工具3之前端部的輪廓282設定輔助輪廓線,將該輪廓輔助線與中心軸線284之間的交點作為工具3的前端位置283偵測。具體地說,採用以下的步驟。 在圖28A中,對工具3的影子281偵測了中心軸線284後,設定:在中心軸線284的兩側,隔開(保持)特定距離Ofs,並與中心軸線284平行的一對平行線Ma、Mb。在此,特定距離Ofs設定成:一對平行線Ma、Mb與輪廓282之間的交點Ca、Cb,通過「輪廓282的模糊不會產生」的部分。特定距離Ofs,可觀察輪廓282的狀態來調整,亦可依據工具3之切刃3T的設計尺寸來設定。 在圖28B中,獲得「一對平行線Ma、Mb與輪廓282之間的交點Ca、Cb」之後,設定「通過一對交點Ca、Cb,並且與中心軸線284正交」的輔助輪廓285,將中心軸線284與輔助輪廓285之間的交點作為工具3的前端位置283偵測。 在本實施形態中,藉由設定輔助輪廓285,舉例來說,即使是一對切刃3T等、或「在前端具有複數個突起的工具3、或具有偏斜之前端的工具3」等,於轉動狀態下前端部之輪廓282的形狀不明確的工具3,也能藉由中心軸線284與輔助輪廓285之間的交點,確定工具3的前端位置283。如此一來,即使面對各種前端形狀的工具3,也能以單純的計算而高精度地量測工具3的前端位置283至轉動軸(A軸或者C軸)的中心位置。 [其他實施形態] 本發明並不侷限於前述的實施形態,在可達成本發明目的之範圍內的變形例等,也包含於本發明。 在前述各實施形態中,雖然是量測5軸控制之工具機1、1A的C軸或者A軸的轉動中心位置,但採用本發明的工具機及軸,可任意地選擇。 舉例來說,工具機,可以是具有A軸及B軸作為轉動軸的5軸控制,亦可量測該B軸的轉動中心位置。此外,工具機也可以是4軸控制或者6軸控制,至少是具有「轉動軸中心位置成為問題」之轉動軸的裝置。 雖然在前述實施形態中,為了偵測工具3的前端位置而採用了偵測單元20、20A,但偵測單元20、20A並不侷限於形成平行光束28的裝置,亦可採用:使雷射光束平行地擺動而掃描對象物的裝置(虛擬地成為平行光束)。除此之外,對工具3可以是非接觸,亦可是其它的偵測方式。 1ST EMBODIMENT In FIG. 1, the machine tool 1 has the movable table 12 and the rotation table 13 on the upper surface of the base 11. As shown in FIG. The movable table 12 is supported so as to be freely movable along the upper surface of the base 11, can be moved by an X-axis moving mechanism (not shown) formed on the base 11, and can be positioned at a specific position in the X-axis direction. The rotating table 13 is disposed on the upper surface of the moving table 12, can be rotated by a C-axis rotation mechanism (not shown) formed on the moving table 12, and can be positioned at a specific angular position around the C-axis . The workpiece 2 to be processed is fixed to the upper surface of the rotary table 13 . The machine tool 1 has a portal-shaped tower 14 on the upper surface of the base 11 . The tower column 14 is formed in a gate shape so as to span the movement path of the moving table 12 in the X-axis direction. On the tower column 14, the spindle head 17 is supported via the saddle 15 and the slider 16. The saddle 15 is supported so as to be freely movable along the horizontal rod of the tower 14, can be moved by a Y-axis moving mechanism (not shown) provided on the tower 14, and can be positioned at a specific position in the Y-axis direction . The slider 16 is supported so as to be able to move up and down freely along the vertical surface of the saddle 15, can be moved by a Z-axis moving mechanism (not shown) provided on the saddle 15, and can be positioned at a specific position in the Z-axis direction . The spindle head 17 is rotatably supported on the lower surface of the slider 16, can be rotated by an A-axis rotation mechanism (not shown) formed on the slider 16, and can be positioned at a specific angular position around the A-axis . A main shaft 18 is rotatably supported on the main shaft head 17 , and the tool 3 is attached to the front end of the main shaft 18 . The spindle 18 is rotatable by a motor provided in the spindle head 17 , and can rotate the tool 3 with a specific number of revolutions and torque required for cutting the workpiece 2 . The machine tool 1 has added the C-axis rotation of the rotary table 13, the main shaft, and the three-axis control of the X-axis movement of the movable table 12, the Y-axis movement of the saddle 15, and the Z-axis movement of the slider 16. The 5-axis control of the 2-axis control of the A-axis rotation of the head 17 enables various cutting operations to be performed on the workpiece 2. In order to execute these motion controls, a CNC (computer numerical control) type control device 9 is connected to the machine tool 1 . In such a machine tool 1, the center position of the rotation axis of the C axis of the rotation table 13 is measured by the following procedure. In FIG. 2 , in this embodiment, in order to perform the measurement of the center position of the C-axis of the machine tool 1 , the detection unit 20 is provided on the rotary table 13 . In FIG. 3 , the detection unit 20 has a casing 21 , and the feet 22 at both ends of the casing 21 are detachable from the surface of the rotating table 13 . The leg portion 22 is fixed to the surface of the rotating table 13 without being displaced by means of adhesion or fixing means such as magnets and suction cups. The case 21 has an opening portion 23 that opens toward the upper surface side of the intermediate portion. Inside the casing 21, an illumination unit 24 is provided on one side across the opening 23, and a telecentric lens 25, a CCD camera 26 as an imaging unit, and an arithmetic unit 27 are provided on the opposite side. The illumination part 24 can irradiate the parallel light beam 28 toward the telecentric lens 25 through the opening part 23 . The collimated light beam 28 is collected by the telecentric lens 25 and photographed by the CCD camera 26 . The CCD camera 26 serving as an imaging unit detects a cross-sectional image of the parallel light beam 28 based on the incident beam light. Here, when the detection target 29 is arranged in the opening portion 23, a part of the parallel light beam 28 is blocked, and a shadow 281 is formed. The arithmetic unit 27 processes the detected image of the CCD camera 26 and measures the width and height of the shadow 281 displayed on the detected image, thereby detecting the width and height of the detected object 29 without contact. In FIG. 4 , the tip position of the tool 3 can be detected by introducing the tip of the tool 3 into the opening 23 of the detection unit 20 , and disposing the tip of the tool 3 as the detection object 29 in the parallel beam 28 . The detection unit 20 is formed in advance so that the parallel light beam 28 is in the circumferential direction of the rotating table 13 (direction perpendicular to the radial direction of the rotating table 13 ), that is, the illumination part 24 and the CCD camera 26 are rotated along the rotating table 13 . The circumferential directions of the stage 13 are formed in a posture facing each other. The position of the detection unit 20 may be a position separated from the center of the rotary table 13, and it is not necessary to measure the correct position in advance. In addition, the direction of the detection unit 20 does not need to be the direction of "the parallel light beam 28 is exactly along the circumferential direction of the rotating table 13". This is because even if there are incorrect components, the incorrect components cancel each other out when calculating the opposite positions (angular position A0 and angular position A180, angular position A90 and angular position A270) described later. When the tool 3 is introduced into the detection unit 20 , the position is adjusted so that the front end of the tool 3 is positioned at the center of the detection image (detection image 261 in FIG. 5 ) of the CCD camera 26 . In FIG. 5 , the shadow 281 of the front end of the tool 3 is displayed on the detection image 261 of the CCD camera 26 . In the detection image 261 , the coordinates (Tv, Th) of the front end position 283 of the tool 3 can be correctly indexed according to the outline 282 of the shadow 281 . Among the coordinates (Tv, Th) detected by the detection image 261 , the coordinate Tv in the vertical direction corresponds to the Z-axis coordinate of the machine tool 1 . In addition, the coordinate Th in the horizontal direction is the radial position Rc (distance in the radial direction) of the tool 3 relative to the center of the rotary table 13, and corresponds to the angular position of the rotary table 13, and is projected on the X-axis of the machine tool 1 Coordinates and Y-axis coordinates. For example, when the rotating table 13 is at the angular position A0 in FIG. 7A , the detection image 261 crosses the X-axis of the machine tool 1 , and the coordinate Th becomes the coordinate Ty of the Y-axis of the machine tool 1 . When the rotary table 13 is located at the angular position A90 in FIG. 8A , the detection image 261 crosses the Y-axis of the machine tool 1 , and the coordinate Th becomes the coordinate Tx of the X-axis of the machine tool 1 . When the coordinates (Tv, Th) of the front end position 283 of the tool 3 are indexed, the calculation part 27 can also execute "detection of the front end position of the tool 3 by using the image processing of the detection image 261", or the detection unit 20 is used as a positioning jig of the tool 3, and the position data of the machine tool 1 is obtained as the position of the front end of the tool 3. At this time, the detection processing of the front end position of the tool 3 can be performed by the calculation unit 27 provided in the detection unit 20, and the detection unit 20 also performs the image detection of the CCD camera 26, and the detection of the image 261 The processing or the detection of the position of the front end of the tool 3 can also be carried out by the control device 9 of the machine tool 1 . In FIG. 6 , the control device 9 of the machine tool 1 includes an operation control unit 91 for controlling the movement of the respective axes described above, and includes: performing image processing on the detection image 261 acquired from the detection unit 20, A tool position detection unit 92 for detecting the position of the front end of the tool 3 . In the detection operation, the machine tool 1 is operated under the control of the operation control unit 91 to move the main shaft 18 to introduce the tool 3 into the opening 23 of the detection unit 20 so that the front end of the tool 3 reaches the detection unit. 20 to adjust the relative position between the main shaft 18 and the rotary table 13 . In this state, the tool position detection unit 92 acquires the position data of the spindle 18 (the Z-axis coordinate, the X-axis coordinate, and the Y-axis coordinate of the machine tool 1 ) from the motion control unit 91 , and calculates the coordinates Tv and Th of the detection image 261 . , which can be used as the front end position of tool 3. The center position of the opening 23 in the detection unit 20 serving as the tool detection area can be used as the specific position. In order to arrange the front end of the tool 3 at a specific position, the detection image 261 of the CCD camera 26 may display a mark to indicate the specific position. In addition, the center position of the detected image 261 of the CCD camera 26 may be used as the specific position, and the specific position may be determined only by visual confirmation. This is because even if the specific position is incorrect, the incorrect components cancel each other out when calculating the opposing positions (angular position A0 and angular position A180, angular position A90 and angular position A270) described later. In this embodiment, the detection unit 20 described above is used, and the following steps are used to measure the C-axis center position of the machine tool 1 . In FIG. 7A , first, the rotary table 13 is set to the angular position A0 , and the detection unit 20 is placed at a position separated from the center of the rotary table 13 . The angular position A0 of the table 13 is rotated, and the optical axis of the CCD camera 26 is brought into a state in which the X-axis of the machine tool 1 is aligned. However, the angle position A0 may be any angle. Once the detection unit 20 is installed, the main shaft 18 (refer to FIG. 1 ) is lowered from above the rotating table 13 , and the tool 3 is introduced into the opening 23 of the detection unit 20 . Then, the position P0 (Tx0, Ty0) of the tool 3 at the angular position A0 is pre-recorded by the detection unit 20 . Next, the tool 3 is lifted up and pulled out from the detection unit 20, and the rotary table 13 on which the detection unit 20 is placed is rotated 180 degrees from the angular position A0 to form the first direction D1 across the C-axis. On, facing angular position A180 of angular position A0. In FIG. 7B , the tool 3 is introduced into the detection unit 20 again in a state where the rotary table 13 is located at the angular position A180. Then, the detection unit 20 pre-records the front end position P180 (Tx180, Ty180) of the tool 3 at the angular position A180. In FIG. 7C , after the positions P0 and P180 of the tool 3 at the angular position A0 and the angular position A180 are obtained, the arithmetic unit 27 calculates the first straight line L1 passing through the C-axis center position and intersecting the first direction D1. Specifically, a line segment L01 is used to connect "the position P0 of the tool 3 at the angular position A0" and "the tip position P180 of the tool 3 at the angular position A180", and a straight line that passes through the midpoint and intersects the first direction D1, as the first straight line L1. After the first straight line L1 is obtained according to the detection operations in FIGS. 7A to 7C , the second straight line L2 is calculated using the same steps. In FIG. 8A , the detection unit 20 and the rotating table 13 are set to an angular position A90 (an angular position rotated 90 degrees from the angular position A0 ), and the tool 3 is introduced into the opening 23 of the detection unit 20 . Then, the front end position P90 (Tx90, Ty90) of the tool 3 at the angular position A90 is pre-recorded by the detection unit 20 . In FIG. 8B , by the same operation, the detection unit 20 and the rotary table 13 are set as “facing the angular position A90 in the second direction D2 (intersecting the first direction D1) across the C axis”. The angular position A270, and the front end position P270 (Tx270, Ty270) of the tool 3 at the angular position A270 is pre-recorded by the detection unit 20 . In FIG. 8C , after obtaining the tip positions P90 and P270 of the tool 3 at the angular position A90 and the angular position A270, the calculation unit 27 calculates a second straight line L2 passing through the C-axis center position and intersecting the second direction D2. Specifically, a line segment L02 is used to connect "the tip position P90 of the tool 3 at the angular position A90" and "the tip position P270 of the tool 3 at the angular position A270", and a straight line that passes through the midpoint and intersects the second direction D2 , as the second straight line L2. In FIG. 9 , after the first straight line L1 and the second straight line L2 are obtained, the computing unit 27 calculates the intersection Pc between the first straight line L1 and the second straight line L2. Thereby, the possible existence range of the C-axis center position is limited to one point of the intersection Pc, and the accurate C-axis center position of the machine tool 1 can be measured. According to the present embodiment as described above, the following effects are obtained. In the present embodiment, the tool 3 is mounted on the main shaft 18, and the detection unit 20 that "can detect the position of the tool 3 in a non-contact manner" is installed on the rotary table 13 in advance. The tool 3 and the rotating table 13 are indexed into a specific angular position (A0, A90, A180, A270), and repeating "the detection unit 20 detects the position of the tool 3 on the rotating table 13 at each angular position" (P0, P90, P180, P270)”, the center position (Pc) of the C-axis is calculated based on the position of the tool 3 at each angular position detected by the 4 detection operations. In the present embodiment as described above, "the detection operation using the non-contact detection unit 20" is repeated four times, and the geometrical calculation is performed based on the position of the tool 3 at each angular position, whereby it is possible to accurately Measure the center position (Pc) of the C-axis. During the measurement, the machining tool 3 can be attached to the main shaft 18 of the machine tool 1, and the main shaft 18 can be rotated to raise the temperature before the measurement, and the measurement can be performed in the same state as in the machining. In addition, it is widely applicable even to the machine tool 1 in which the touch probe cannot be attached to the spindle 18 . Therefore, according to the present embodiment, the center position of the C-axis can be measured with high accuracy by simple calculation without using a touch probe. In this embodiment, the detection unit 20 that "can detect the position of the tool 3 in the radial direction of the rotating table 13" is specially adopted, and the tool 3 and the rotating table 13 are indexed into "a distance between the C axis and the The two angular positions A0, A180 facing each other in the first direction D1, and the two angular positions A90, A270 facing each other in the second direction D2 intersecting the first direction D1 across the C-axis. 4 angular positions, perform the detection action at each angular position to detect the position (P0, P90, P180, P270) of the tool 3 in the radial direction of the rotating table 13, and calculate "through the midpoint of the line segment L01, and cross The first straight line L1 in the first direction D1" and the second straight line L2 "passing through the midpoint of the line segment L02 and intersecting the second direction D2", and the intersection between the first straight line L1 and the second straight line L2 Pc is measured as the center position of the C axis. The aforementioned line segment L01 is connected to "the positions P0 and P180 of the tool 3 detected by the two opposite angular positions A0 and A180 in the first direction D1", and the aforementioned line segment L02, link "the positions P90 and P270 of the tool 3 detected by the two opposite angular positions A90 and A270 in the second direction D2". Therefore, as the detection unit 20 of this embodiment, as long as it can detect the position of the tool 3 in the radial direction of the rotating table 13, the following structure can be used: Please refer to FIG. 5 ) to detect the position of the tool 3 on the image. The image sensor (illumination unit 24 or CCD camera 26 , please refer to FIG. 3 ) is disposed toward the circumferential direction of the rotating table 13 . According to the present embodiment, the estimated range (line L1) of the C-axis center position, which cannot be determined by the detection operation of the angular positions A0 and A180 of 0° and 180°, can be determined by the angle of 90° and 270°. The position of tool 3 (straight line L2) obtained by the detection action of positions A90 and A270 is limited and the correct C-axis center can be determined by summing up the 4 angular positions (A0, A90, A180, A270). Detect motion and measure the center position of C-axis with high precision. In the present embodiment, the detection unit 20 has: an illumination part 24 for illuminating the parallel light beam 28; a photographing part (telecentric lens 25 and a CCD camera 26) for detecting the parallel light beam 28; an arithmetic part 27 for detecting the parallel light beam 28 The image 261 detects the front end position of the tool 3 that has been arranged in the parallel beam 28; by performing the existing image processing on the detection image 261, the shadow 281 of the tool 3 that has been arranged in the parallel beam 28 is detected, by In edge detection, the center position of the tool 3 is calculated according to the front end contour 282 , thereby the front end position 283 of the tool 3 can be calculated. As a result, by performing optical detection using the detection unit 20, the position of the tip of the tool 3 can be detected with high precision without contact. In addition, when detecting the position, only the front end of the tool 3 can be placed in the "parallel beam 28 between the illumination part 24 and the imaging part (telecentric lens 25 and CCD camera 26)", and the detection operation is easy. In this embodiment, since the detection unit 20 has a fixing means for the rotating table 13, the installation position of the detection unit 20 on the rotating table 13 does not change during the detection operation of each angular position. [Second Embodiment] In FIGS. 10A to 10C, a second embodiment of the present invention is shown. In the aforementioned first embodiment, in order to perform the measurement of the C-axis center position of the machine tool 1 (please refer to FIG. 1 ), the detection unit 20 is arranged on the rotating table 13 (please refer to FIG. 2 and FIG. 3 ), Through the detection of the radial position of the tool 3 at the angular positions A0 and A180, the first straight line L1 is detected, and through the same detection action at the angular positions A90 and A270, the second straight line L2 is detected, and the The intersection Pc of the first straight line L1 and the second straight line L2 is measured as an accurate C-axis center position of the machine tool 1 . On the other hand, in the present embodiment, the radial position of the tool 3 is detected in the detection operation of the angular positions A0 and A180, and the circumferential position, that is, the “planar position along the surface of the rotating table 13” is detected. , to measure the correct C-axis center position of the machine tool 1. In FIG. 10A , the detection unit 20A is placed on the rotary table 13 at the angular position A0. The basic structure of the detection unit 20A is the same as that of the detection unit 20 of the first embodiment, and the auto-focus function can be used to further detect the coordinates of the depth direction of the image. Coordinate detection using the auto-focus function, for example, in the detection image 261 of FIG. 5, edge detection is performed on the outline 282 of the shadow 281 of the tool 3, and the detection becomes the focal position with the maximum contrast, thereby The coordinates of the depth direction of the image can be detected correctly. Therefore, by introducing the tool 3 into the "detection unit 20A placed on the rotary table 13", the radial position Rc and the circumferential position Cc of the tool 3 relative to the rotary table 13 can be detected. Through the detection action at the angular position A0, the plane position PA0 of the tool 3 with respect to the rotating table 13 can be measured. In FIG. 10B , after the detection action at the angular position A0 is completed, the rotating table 13 is moved toward the angular position A180. By performing the same detection action at the angular position A180, the measurement tool 3 has a Plane position PA180. In FIG. 10C , after acquiring the plane position PA0 and the plane position PA180, the calculation unit 27 calculates the midpoint PAc of the “line segment LA connecting the plane position PA0 and the plane position PA180”. The correct C-axis center position of the machine tool 1 can be measured by the midpoint PAc. According to this embodiment, the same effects as those of the first embodiment described above can be obtained, and the detection operation of the front end of the tool 3 can be performed at two positions at the angular positions A0 and A180, thereby improving work efficiency. In addition, in this embodiment, "the detection operation of other angular positions such as the angular positions A90 and A270 in the first embodiment" is not required. Therefore, for example, even the "angular positions A90 and A270 , due to the structural limitation of the translation axis (XYZ axis), the machine tool 1 that is outside the scope of the detection action can also measure the correct C-axis center position through the detection action at the angular positions A0 and A180 . [Third Embodiment] A third embodiment of the present invention is shown in FIGS. 11A to 12C. In the aforementioned first embodiment, the detection operation is performed at the angular positions A0 and A180 and the angular positions A90 and A270. In the second embodiment, the detection operation is performed at the angular positions A0 and A180. According to the angular position A0, A180″ facing the center of the rotating table 13, the detection operation is performed. On the other hand, in the present embodiment, at a plurality of angular positions An less than 180 degrees from the angular position A0, the detection operation of the front end position of the tool 3 is performed in the same manner as in the first embodiment, and the detection operation is performed according to the detection operation. The calculation of the result is to measure the correct C-axis center position of the machine tool 1. In the present embodiment, the machine tool 1, the rotary table 13, and the detection unit 20 are the same as those in the aforementioned first embodiment, and repeated descriptions of these structures are omitted. In FIG. 11A, first, the rotating table 13 provided with the detection unit 20 is arranged at the angular position A0, the front end of the tool 3 is introduced into the opening 23 of the detection unit 20, and its position is detected by the detection unit 20, And as the position P0 of the tool 3 . In FIG. 11B , the rotary table 13 is then rotated by 30 degrees to the next angular position A30, and the position P30 of the tool 3 is detected by the same operation as the angular position A0. In FIG. 11C , the rotary table 13 is further rotated by 30 degrees to rotate to the next angular position A60, and the position P60 of the tool 3 is detected by the same operation as the angular position A0. In FIG. 12A, the rotary table 13 is rotated to the next angular position A120, and the position P120 of the tool 3 is detected by the same operation as the angular position A0. In FIG. 12B, the rotary table 13 is rotated to the next angular position A150, and the position P150 of the tool 3 is detected by the same operation as the angular position A0. In FIG. 12C , the positions P0 to P150 of the tool 3 detected at the aforementioned angular positions A0 to A150 are arranged in an arc shape when drawn on the screen. For the point sequence at positions P0 to P150 arranged in an arc shape, for example, the position of the arc center point PBc can be calculated with high accuracy by, for example, the least squares method, and the center point PBc obtained here can be used as a tool Measure the correct C-axis center position of machine 1. In this embodiment, the same effects as those of the first embodiment can be obtained, and even if "the possible range of detection motion is not full due to the structural limitation of the translation axis (XYZ axis) of the machine tool 1 180 degrees”, can also measure the correct C-axis center position by detecting actions in multiple positions. [Modifications of the first to third embodiments] In the first to third embodiments described above, in the detection operation at the angular position An, the detection unit 20 captures an image of the front end of the tool 3, but Even if the position of the tool 3 on the detection image is offset at each angular position An, it does not matter. In FIG. 13, sometimes in the detection image 261 of the detection unit 20, the position of the outline 282 of the shadow 281 of the tool 3 on the detection image 261 is usually not formed at the angular position A0 and other angular positions An same location. However, as long as the offset amount dc0 from the position of the angular position A0 (two-dot chain line) can be calculated by the image processing of the detection image 261, the coordinates of the tool 3 can be determined by correcting the offset amount , even if the position of the tool 3 on the detection image 261 is offset at each angular position An, it does not matter. [Fourth Embodiment] In Figs. 14 to 16, a fourth embodiment of the present invention is shown. This embodiment is an embodiment of measuring "the offset distance (offset amount) from the center position of the A-axis to the front end of the tool 3 in the machine tool 1". Since the machine tool 1 and the detection unit 20 for measurement of the present embodiment are the same as those of the first embodiment described above, overlapping descriptions are omitted. In this embodiment, the detection unit 20 is installed on the rotating table 13 . The detection unit 20 is arranged so that the opening 23 comes to the center of the rotary table 13 (the C-axis rotation center position). Then, the direction of the detection unit 20 is adjusted in advance so that the direction of the parallel light beam 28 is the X-axis direction of the machine tool 1 . The direction of the detection unit 20 can be adjusted by rotating the C-axis of the rotating table 13 . After the detection unit 20 is installed, the spindle head 17 is brought close to the detection unit 20 by the motion of each axis of the machine tool 1, and the front end of the tool 3 mounted on the spindle 18 is introduced into the opening 23, and the detection operation is performed. In FIG. 15A , first, when the A-axis of the machine tool 1 is rotated, the tool 3 is brought into a state in the Y-axis “+” direction (angular position A0 around the A-axis), and in this state, the tool 3 is rotated by the Each axis moves, and the tip of the tool 3 is introduced into the opening 23 . In addition, by adjusting the movement of the Y-axis and the Z-axis of the machine tool 1, in the detection image 262 obtained by the detection unit 20, the front end position 283 of the shadow 281 of the tool 3 is detected In the center of the image 262, the Y-axis position and the Z-axis position (Y1, Z1 in FIG. 16 ) of the machine tool 1 at this time are recorded in advance. In FIG. 15B, next, when the A-axis of the machine tool 1 is rotated, the tool 3 is in a state in which the tool 3 faces the Y-axis "-" direction (angular position A180 opposite to the angular position A0 across the A-axis), and in this state The front end of the tool 3 is introduced into the opening 23 by moving the respective axes of the machine tool 1 . In addition, by adjusting the movement of the Y-axis and the Z-axis of the machine tool 1, in the detection image 262 obtained by the detection unit 20, the front end position 283 of the shadow 281 of the tool 3 is detected In the center of the image 262, the Y-axis position and the Z-axis position of the machine tool 1 at this time (Y2, Z2 in FIG. 16) are recorded in advance. In FIG. 16 , the results of arranging the front end of the tool 3 at the same position are “the Y-axis position Y1 and the Z-axis position Z1 of the machine tool 1 at the angular position A0” and “the machine tool 1 at the angular position A180”. The difference between the Y-axis position Y2 and the Z-axis position Z2″ is based on the run out of the rotation center of the A-axis (the rotation axis 171 of the spindle head 17 ). Therefore, the offset distance (offset amount) from the center position of the A-axis of the machine tool 1 to the front end of the tool 3 can be measured by 1/2 of the difference value of the respective axis positions at the angular position A0 and the angular position A180 ( Y=(Y1-Y2)/2, Z=(Z1-Z2)/2). Even according to the present embodiment as described above, when the "offset distance (offset amount) from the A-axis center position to the tip of the tool 3" is measured, the same effects as those of the first embodiment described above can be obtained. [Fifth Embodiment] In Figs. 17 to 20, a fifth embodiment of the present invention is shown. The present embodiment is an embodiment of measuring "in the so-called cradle type machine tool 1A, the A-axis center position and the front end of the tool 3 form the coordinates that match." In FIG. 17 , the rotating table 13 is supported by the moving table 12 (please refer to FIG. 1 ) through the cradle 131 , and can rotate around the C-axis relative to the cradle 131 . The cradle 131 can be rotated about the A axis relative to the moving table 12 by a pair of trunnions 132 . In the machine tool 1A, the spindle head 17 is fixed to the slider 16 (refer to FIG. 1 ), the A axis does not rotate, and the Z axis is always kept downward. In this embodiment, the detection unit 20 is installed on the rotating table 13 . Since the detection unit 20 is the same as that of the aforementioned first embodiment, the overlapping description is omitted. The detection unit 20 is arranged so that the opening 23 comes to the center of the rotary table 13 (the C-axis rotation center position). Then, the direction of the detection unit 20 is adjusted in advance so that the direction of the parallel light beam 28 is the X-axis direction of the machine tool 1A. The direction of the detection unit 20 can be adjusted by rotating the C-axis of the rotating table 13 . After the detection unit 20 is installed, the spindle head 17 is brought close to the detection unit 20 by the motion of each axis of the machine tool 1A, the front end of the tool 3 mounted on the spindle 18 is introduced into the opening 23, and the detection operation is performed. In FIG. 18A , firstly, by rotating the A-axis of the cradle 131, the rotary table 13 is in a state of facing the Y-axis “+” direction (angular position A0 around the A-axis), and in this state, the machine tool is used Each axis of 1A moves, and the leading end of the tool 3 is introduced into the opening 23 . In FIG. 19A , in the state where the cradle 131 has formed the angular position A0, the adjustment is performed by the movement of the Y-axis and the Z-axis of the machine tool 1A. In the detection image 263 obtained by the detection unit 20, the The front end position 283 of the shadow 281 of the tool 3 comes to the center of the detection image 263, and the Y-axis position and the Z-axis position (Y1, Z1 in FIG. 20 ) of the machine tool 1A at this time are recorded in advance. In FIG. 18B, then, by the rotation of the A-axis of the cradle 131, the rotation table 13 is in a state of facing the Y-axis "-" direction (angular position A180 opposite to the angular position A0 across the A-axis). The front end of the tool 3 is introduced into the opening 23 by moving each axis of the machine tool 1A in the state. In FIG. 19B , in the state that the cradle 131 has formed the angular position A180, the adjustment is performed by the movement of the Y-axis and the Z-axis of the machine tool 1A. In the detection image 263 obtained by the detection unit 20, the The front end position 283 of the shadow 281 of the tool 3 comes to the center of the detection image 263, and the Y-axis position and the Z-axis position of the machine tool 1A at this time (Y2, Z2 in FIG. 20 ) are recorded in advance. In FIG. 20, the results of arranging the front end of the tool 3 at the same position are "the Y-axis position Y1 and Z-axis position Z1 of the machine tool 1A at the angular position A0" and "the machine tool 1A at the angular position A180". The difference between the Y-axis position Y2 and the Z-axis position Z2″ is based on the run out of the A-axis rotation center of the cradle 131 . Therefore, according to the position of each axis at the angular position A0 and the angular position A180, it is possible to measure "A of the machine tool 1A by the formula (Y=(Y1+Y2)/2, Z=(Z1+Z2)/2)" The axis center position and the front end of the tool 3 are the same coordinates. Even according to this embodiment, when the coordinates of "the center position of the A-axis coincides with the tip of the tool 3" are measured, the same effects as those of the first embodiment described above can be obtained. [Sixth Embodiment] A sixth embodiment of the present invention is shown in FIGS. 21A to 23C. This embodiment adopts the same structure as the aforementioned fourth embodiment, and measures "the offset distance (offset amount) from the center position of the A-axis to the tip of the tool 3 in the machine tool 1". However, in the fourth embodiment, the angular position A0 of the machine tool 1 is detected at two places, namely "the angular position A0" and "the angular position A180 facing the angular position A0 across the A-axis (that is, forming an interval of 180 degrees)". In contrast to the Y-axis positions Y1, Y2 and Z-axis positions Z1, Z2, in this embodiment, the Y-axis position and the Z-axis position are executed at a plurality of angular positions An within a range of 180 degrees from the angular position A0. Detect motion. In FIG. 21A, first, by the rotation of the A-axis of the machine tool 1 (rotation of the rotation shaft 171 of the spindle head 17), the tool 3 is brought into the state of facing the Y-axis "+" direction (angular position A0 around the A-axis) , in this state, the front end of the tool 3 is introduced into the opening 23 by moving the respective axes of the machine tool 1 . In FIG. 21B , after the tool 3 is arranged at the angular position A0, it is adjusted by the movement of the Y-axis and the Z-axis of the machine tool 1. In the detection image 264 obtained by the detection unit 20, the The front end position 283 of the shadow 281 comes to the center of the detection image 264, and the Y-axis position and the Z-axis position of the machine tool 1 at this time are pre-recorded. The recorded Y-axis position and Z-axis position become the A-axis center position Q0 of each angular position An. Next, by rotating the A-axis of the machine tool 1, the tool 3 is brought to the angular position A30 (a state rotated by 30 degrees from the angular position A0). In this state, the same as the angular position A0, the Each axis is moved for adjustment, and the front end of the tool 3 is guided into the opening 23, and in the detection image 264 obtained by the detection unit 20, the front end position 283 of the shadow 281 of the tool 3 is brought to the center of the detection image 264. , and record the Y-axis position and Z-axis position (A-axis center position Q30) of the machine tool 1 at this time. Not only that, by rotating the A-axis of the machine tool 1, the tool 3 is brought to an angular position A60 (a state rotated by 60 degrees from the angular position A0), and the same procedure as the angular positions A0 and A30 is used to record the angular position of the machine tool 1. Y-axis position and Z-axis position (A-axis center position Q60). Similarly, the Y-axis position and Z-axis position (A-axis center positions Q90, Q120, Q150, Q180) of the machine tool 1 at the angular positions A90, A120, A150, and A180 are recorded. In FIG. 21C, if "the A-axis center position Qn (Q0-Q180) of the angular position An (A0-A180) obtained by repeating the above-mentioned detection operation" is drawn on the screen, the dots will be arranged in a circular arc. Column QC. For these point sequences QC, for example, the position of the center point QCc of the arc-shaped dot sequence QC (the tip position of the common tool 3 at each angular position An) can be calculated with high accuracy by, for example, the least squares method. From the center point QCc obtained above, the "offset distance (offset amount) from the A-axis center position Qn of the machine tool 1 to the tip of the tool 3" can be accurately measured. According to this embodiment, the same effects as those of the first and fourth embodiments described above can be obtained, and even if it is "subject to the structural limitation of the translation axis (XYZ axis) of the machine tool 1, the motion detection is performed. The possible range is less than 180 degrees”, and the offset distance (offset amount) from the center position Qn of the A axis to the front end of the tool 3 can be accurately measured by detecting operations at a plurality of angular positions An. [Modification of the sixth embodiment] In FIG. 22 , the “offset distance (offset amount) from the A-axis center position Qn to the front end of the tool 3” measured in the above-mentioned sixth embodiment is registered The NC device of the machine tool 1 is used as a reference for the correction value when the machine tool 1 operates. When registering in the NC device of the machine tool 1, "the distance D (offset) from the center point QCc, which is the front end position of the tool 3, to the actual A-axis center position Qn" is required. The position of the center point QCc and the distance D ( Approximate value)", so the radius can be used as "actual distance D between center point QCc and A-axis center position Qn". In the case of registering in the NC device of the machine tool 1 , the distance D must be separated into: a component Dz in the Z-axis direction parallel to the tool 3 , and a component Dy in the Y-axis direction orthogonal to the tool 3 . Therefore, the angle θ of the line segment connecting "the A-axis center position Qn" and "the tip of the tool 3 (center point QCc)" is necessary. However, the least square method used for the calculation of the center point QCc cannot obtain the angle θ of the line segment that can implement an approximate arc radius (distance D). In FIG. 23A , except that the aforementioned angle θ cannot be obtained, the aforementioned plurality of angular positions An (A0 to A180) are used as the A-axis center position Qn (sampling point (sampling point) detected by the arc-shaped point row QC point)), and sometimes the approximate circular arc with respect to the point sequence QC exhibits dispersion (displacement in the radial direction). In addition, if the angle (0° to 180°) as "the angle position An used to detect the A-axis center position Qn", the reference line Ln extending from the center point QCc is derived, and the A-axis center position at each angle is derived. Qn shows dispersion (displacement in the circumferential direction) with respect to these reference lines Ln. Under such an error distribution, in order to determine the optimum value of the above-mentioned angle θ, the following operations can be used. In FIG. 23B , as the first operation, "the A-axis center position Q90 of the tool 3 in the direction (angular position A90) along the Z-axis" is employed. Specifically, a line segment extending from the center point QCc to the A-axis center position Q90 is obtained, and the angle formed by the line segment and the Z-axis is defined as θ. According to this operation, although the overall optimization cannot be achieved, it is the most balanced as a benchmark. In FIG. 23C , it is also possible to obtain a position extending from the center point QCc to the center position of the A-axis in the direction (the angular position A130 of 130 degrees from the angular position A0) in which the tool 3 makes a specific angle (for example, 40 degrees) with respect to the Z-axis. For the line segment of Q130, the angle formed by the line segment and "the reference line L130 that forms 40 degrees from the Z axis" is set as θ, and this is the second operation. In addition to this, at the A-axis center position Qn located at a plurality of angular positions An, the angle θn with respect to the reference line Ln may be obtained, and the average value thereof may be obtained. According to such an operation, although the operation is complicated, the overall optimized angle θ can be obtained. Although the angle θ can be obtained by dividing the entire range equally at the A-axis center position Qn located at the plurality of angular positions An, the sampling density of the local angular range can be increased or decreased. After the angle θ is obtained by the above operation, the aforementioned "component Dz in the Z-axis direction" and "component Dy in the Y-axis direction orthogonal to the tool 3" (refer to FIG. 22 ) can be expressed as Dz=Dcosθ, Dy=Dsinθ calculation. [Modifications of the first to sixth embodiments] In each of the first to sixth embodiments described above, the position of the distal end of the tool 3 is detected by the detection units 20 and 20A, respectively. For example, in the first embodiment, as shown in FIG. 5 , the front end position of the tool 3 is captured at the center of the detection image 261 of the CCD camera 26 according to the “shadow 281 of the front end of the tool 3 displayed on the detection image 261 ” The contour 282 ″ of the indexing tool 3 is the coordinates (Tv, Th) of the front end position 283 of the indexing tool 3 . At this time, the concavo-convex shape of the tip of the tool 3 is complicated, and depending on the shape of the tip of the tool 3, the coordinates may not be accurately detected. On the other hand, in order to detect the tip position (Tv, Th) of the tool 3 simply and accurately, the procedure shown below can be utilized. [Seventh Embodiment] As shown in FIG. 24A, in the detection image 261 of the CCD camera 26 (refer to FIG. 3), a shadow 281 of the front end of the tool 3 appears (displayed) (same as in FIG. 5). In a part of the outline 282 of the shadow 281, the front end position 283 of the tool 3 appears (displayed), and the measurement of its coordinates (Tv, Th) is required. In this embodiment, in a state in which the tool 3 is rotated relative to the CCD camera 26, the CCD camera 26 detects the "detection image 265" (same as the detection images 261 to 264 in the first to sixth embodiments). ) to detect the contour 282 of the tool 3 from the detection image 265 . In this embodiment, when the tool 3 rotates, the contour 282 appearing in the detection image 265 is symmetrical with respect to the center of rotation. The intersection between the central axis 284 and the contour 282 is detected as the front end position 283 of the tool 3 . In the present embodiment, when the center axis 284 of the tool 3 is detected from the contour 282, the following arithmetic processing is performed. As shown in FIG. 24B , in the detection image 265 , the tool 3 is arranged at a specific angular position (eg, the angular position A90 shown in FIG. 21B ) as the extending direction D90 of the tool 3 at this time. Next, along the extending direction D90, a plurality of traversing lines 30 "perpendicular to the extending direction D90 and traversing the outline 282" are set in parallel at specific intervals. As shown in FIG. 24C , for the plurality of traverse lines 30 set, two intersection points 31 and 32 between each traverse line and the outline 282 are detected, and the middle of the two intersection points 31 and 32 is further detected. Point 33. Then, by detecting a straight line passing through the midpoint 33 of each traverse line 30 , the straight line can be taken as the central axis 284 of the tool 3 . In the present embodiment as described above, the extension direction Dn of the tool 3 (each angular position An, the direction of the tool 3, the rough axial direction) can be used to detect the axis of rotational symmetry, so that the correctness of the tool 3 can be detected. The central axis 284 can detect the coordinates (Th, Tv) of the front end position 283 of the tool 3 with high accuracy according to the correct intersection of the central axis 284 and the contour 282 . At this time, in the detection of the central axis 284, the detection of the midpoints of the plurality of traversing lines 30 is performed, and in the detection of the front end position 283, the detection of the intersection point with the contour 282 is performed, respectively. It is implemented by geometrical arithmetic processing, whereby it is possible to easily and accurately measure from the front end position 283 of the tool 3 to the center position of the rotation axis (A axis or C axis). In this embodiment, the direction (extending direction Dn) of the tool 3 can be set to an arbitrary angle (angular position An). In FIG. 25A , the tool 3 is set to the angular position A150, and a plurality of traverse lines 30 orthogonal to the extending direction D150 are set. As shown in FIG. 25B , by detecting two intersection points 31 , 32 and the midpoint 33 on each of the traverse lines 30 , the center axis 284 passing through the plurality of midpoints 33 and the intersection with the contour 282 can be accurately detected. The coordinates (Th, Tv) of the front end position 283 of the measuring tool 3 are measured. [Eighth Embodiment] In the aforementioned seventh embodiment, when the center axis 284 of the tool 3 is detected from the contour 282, the detection of the midpoints of the plurality of traversing lines 30 is performed. On the other hand, in the present embodiment, the central axis 284 of the tool 3 is detected by one-by-one pattern recognition of the "contour 282 showing a rotationally symmetric pattern". As shown in FIG. 26A , in the detection image 265 , the tool 3 is arranged at a specific angular position (eg, the angular position A90 shown in FIG. 21B ) as the extending direction D90 of the tool 3 at this time. Next, the shape 41 on one side of the contour 282 relative to the extending direction D90 (a part that divides the contour 282 into two (halving) by a straight line along the extending direction D90) is used as the reference pattern 40. As shown in FIG. 26B , after the reference pattern 40 is detected, the symmetrical pattern 42 “conforming to the shape of the inversion of the reference pattern 40 ” is calculated, and a pattern 42 that is consistent with the symmetrical pattern 42 is detected from the outline 282 Shape 43. After detecting the symmetrical pattern 42, the straight line between the "reference pattern 40" and the "symmetrical pattern 42" (the axis of line symmetry between the reference pattern 40 and the symmetrical pattern 42) will be used as the tool 3 Center axis 284 . In the present embodiment as described above, the tool 3 can be detected by using the extension direction Dn of the tool 3 (each angular position An, the direction of the tool 3, the rough axial direction) and the one-side pattern recognition of the contour 282. The correct central axis 284 can detect the coordinates (Th, Tv) of the front end position 283 of the tool 3 with high accuracy according to the intersection of the correct central axis 284 and the contour 282 . At this time, as the one-side pattern recognition of the contour 282, the detection of the reference pattern 40 and the symmetrical pattern 42 can be implemented by geometrical arithmetic processing, thereby enabling simple and high-precision measurement: From the front end position 283 of the tool 3 to the center position of the rotation axis (A axis or C axis). [Ninth Embodiment] In the aforementioned seventh embodiment, after the central axis 284 of the tool 3 is detected from the contour 282, the intersection between the central axis 284 and the contour 282 is detected as the front end position 283 of the tool 3 . On the other hand, in the present embodiment, the auxiliary contour is set by the contour 282 of the front end of the tool 3, even if the tool 3 has a plurality of protrusions at the front end, or the tool 3 has the front end deviated from the center, etc. "In the rotating state of the tool 3 in which the shape of the contour 282 of the front end portion is not clear, the position of the front end of the tool 3 can also be determined. As shown in FIGS. 27A and 27B , a pair of cutting edges 3T facing each other across the center of rotation is formed on the distal end portion of the tool 3 . In FIG. 27B , the cutting edge 3T indicated by the solid line moves toward the position indicated by the two-dot chain line by the rotation of the tool 3 . In each of the above-described embodiments, the front end portion of the tool 3 is imaged by the CCD camera 26 from the side of the tool 3 (in the direction intersecting the rotational axis of the tool 3 ). For example, when the CCD camera 26 captures the tool 3 from the lower side of the drawing in FIG. 27B , the pair of cutting edges 3T can be in a state of facing each other in the “direction perpendicular to the optical axis of the CCD camera 26” ( FIG. 27B ). In the state of the solid line in ), both the pair of cutting edges 3T are received (into) the focus range Rf0 of the CCD camera 26 . However, as the tool 3 rotates, and approaches the state of "a pair of cutting edges 3T along the optical axis of the CCD camera 26" (the state of the two-dot chain line in FIG. 27B ), from the CCD camera 26 to each cutting edge 3T The difference between the distances will expand, and a state will be formed in which "one is located in the focal depth range Rf1 far from the CCD camera 26, and the other is located in the focal depth range Rf2 close to the CCD camera 26", and the CCD camera 26 cannot focus on a pair of tangents. Both sides of the blade 3T. In this way, by rotating the tool 3, the distance between the pair of cutting edges 3T and the CCD camera 26 is periodically changed, and the image captured by the CCD camera 26 is partially blurred. As shown in FIG. 27C , the outline 282 of the shadow 281 of the tool 3 is clear except for the front end, and the front end is blurred due to the displacement of the pair of cutting edges 3T in the optical axis direction of the CCD camera 26 . As a result, the coordinates of the front end position 283 of the tool 3 cannot be determined by the intersection between the central axis 284 and the contour 282 as in the seventh to eighth embodiments described above. On the other hand, in the present embodiment, the detection of the central axis 284 is performed in the same manner as in the aforementioned seventh or eighth embodiment, and an auxiliary contour line is set on the contour 282 of the front end of the tool 3, and the contour auxiliary line is combined with the contour line 282. The intersection between the central axes 284 is detected as the front end position 283 of the tool 3 . Specifically, the following steps are employed. In FIG. 28A, after detecting the central axis 284 of the shadow 281 of the tool 3, set: on both sides of the central axis 284, a pair of parallel lines Ma that are separated (maintained) by a specific distance Ofs and parallel to the central axis 284 , Mb. Here, the specific distance Ofs is set so that the intersections Ca and Cb between the pair of parallel lines Ma and Mb and the contour 282 pass through the portion where "the blurring of the contour 282 does not occur". The specific distance Ofs can be adjusted by observing the state of the contour 282 , and can also be set according to the design size of the cutting edge 3T of the tool 3 . In FIG. 28B , after obtaining “the intersections Ca and Cb between the pair of parallel lines Ma and Mb and the contour 282”, an auxiliary contour 285 that “passes through the pair of intersections Ca and Cb and is orthogonal to the central axis 284” is set, The intersection between the central axis 284 and the auxiliary contour 285 is detected as the front end position 283 of the tool 3 . In the present embodiment, by setting the auxiliary contour 285, for example, even a pair of cutting edges 3T, etc., or "tool 3 having a plurality of protrusions at the tip, or tool 3 having a skewed tip", etc., Even if the shape of the contour 282 of the front end portion of the tool 3 in the rotating state is not clear, the front end position 283 of the tool 3 can also be determined by the intersection between the central axis 284 and the auxiliary contour 285 . In this way, even when facing the tool 3 with various tip shapes, the tip position 283 of the tool 3 to the center position of the rotation axis (A axis or C axis) can be accurately measured by simple calculation. [Other Embodiments] The present invention is not limited to the above-described embodiments, and modifications and the like within the scope of attaining the object of the present invention are also included in the present invention. In each of the above-described embodiments, the rotational center position of the C-axis or A-axis of the 5-axis-controlled machine tool 1, 1A is measured, but the machine tool and the axis according to the present invention can be arbitrarily selected. For example, a machine tool can be controlled by 5 axes with A axis and B axis as rotation axes, and the position of the rotation center of the B axis can also be measured. In addition, the machine tool may be 4-axis control or 6-axis control, and at least it is a device with a rotation axis that "the center position of the rotation axis is a problem". Although in the foregoing embodiment, the detection units 20 and 20A are used to detect the position of the front end of the tool 3, the detection units 20 and 20A are not limited to the device for forming the parallel beam 28, and can also be used: A device that scans an object by swinging a beam in parallel (virtually a parallel beam). Besides, the tool 3 may be non-contact or other detection methods.

A0~A270:角度位置 Ca,Cb:交點 Cc:周方向位置 D:距離 D1:第1方向 D2:第2方向 dc0:偏移量 Dy:Y軸方向的成分 Dz:Z軸方向的成分 L01:線段 L02:線段 L1:第1直線 L2:第2直線 L130:基準線 LA:線段 Ln:基準線 Ma,Mb:一對平行線 Ofs:特定距離 P0~P270:位置 PA0~PA180:平面位置 PAc:中點 PBc:中心點 Pc:交點 Q0~Q180:A軸中心位置 QC:點列 QCc:中心點 Qn:A軸中心位置 Rc:徑向位置 Rf0:對焦範圍 Rf1:遠的焦點深度範圍 Rf2:近的焦點深度範圍 Tv,Th:座標 Tx0~Tx270:座標 Ty0~Ty270:座標 Y1,Y2:Y軸位置 Z1,Z2:Z軸位置 θ,θn:角度 1,1A:工具機 2:工件 3:工具 3T:切刃 9:控制裝置 11:底座 12:移動工作台 13:轉動工作台 14:塔柱 15:鞍座 16:滑件 17:主軸頭 18:主軸 20,20A:偵測單元 21:殼體 22:腳部 23:開口部 24:照明部 25:遠心透鏡 26:CCD攝影機 27:演算部 28:平行光束 29:檢測對象物 30:橫越線 31,32:交點 33:中點 40:參考圖型 41:形狀 42:對稱圖型 43:形狀 91:動作控制部 92:工具位置偵測部 131:搖架 132:一對耳軸 171:轉動軸 261~265:偵測影像 281:影子 282:輪廓 283:前端位置 284:中心軸線 A0~A270: Angle position Ca, Cb: intersection Cc: Circumferential position D: distance D1: 1st direction D2: 2nd direction dc0: offset Dy: Components in the Y-axis direction Dz: Components in the Z-axis direction L01: Line segment L02: Line segment L1: 1st straight line L2: 2nd straight line L130: Baseline LA: line segment Ln: Baseline Ma, Mb: a pair of parallel lines Ofs: specific distance P0~P270: Position PA0~PA180: Plane position PAc: Midpoint PBc: center point Pc: intersection Q0~Q180: A-axis center position QC: point column QCc: center point Qn: A-axis center position Rc: radial position Rf0: focus range Rf1: far focal depth range Rf2: Near focal depth range Tv,Th: coordinates Tx0~Tx270: Coordinates Ty0~Ty270: Coordinates Y1, Y2: Y-axis position Z1, Z2: Z-axis position θ, θn: angle 1,1A: Machine tool 2: Workpiece 3: Tools 3T: Cutting edge 9: Control device 11: Base 12: Mobile workbench 13: Turn the table 14: Pylon 15: Saddle 16: Slider 17: Spindle head 18: Spindle 20,20A: detection unit 21: Shell 22: Feet 23: Opening 24: Lighting Department 25: Telecentric lens 26: CCD camera 27: Calculation Department 28: Parallel Beam 29: Detection object 30: Cross the line 31,32: Intersection 33: Midpoint 40: Reference pattern 41: Shape 42: Symmetrical pattern 43: Shape 91: Motion Control Department 92: Tool position detection section 131: Cradle 132: A pair of trunnions 171: Rotary shaft 261~265: Detect image 281: Shadow 282: Outline 283: Front position 284: central axis

[圖1]為顯示本發明第1實施形態之工具機的立體圖。 [圖2]為顯示前述第1實施形態之偵測單元的立體圖。 [圖3]為顯示前述第1實施形態之偵測單元的示意圖。 [圖4]為顯示前述第1實施形態之偵測動作的立體圖。 [圖5]為顯示前述第1實施形態的偵測動作中之工具前端的示意圖。 [圖6]為顯示前述第1實施形態之偵測動作的示意圖。 [圖7A]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖7B]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖7C]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖8A]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖8B]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖8C]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖9]為顯示前述第1實施形態之C軸位置量測動作的示意圖。 [圖10A]為顯示本發明第2實施形態之C軸位置量測動作的示意圖。 [圖10B]為顯示本發明第2實施形態之C軸位置量測動作的示意圖。 [圖10C]為顯示本發明第2實施形態之C軸位置量測動作的示意圖。 [圖11A]為顯示本發明第3實施形態之C軸位置量測動作的示意圖。 [圖11B]為顯示本發明第3實施形態之C軸位置量測動作的示意圖。 [圖11C]為顯示本發明第3實施形態之C軸位置量測動作的示意圖。 [圖12A]為顯示前述第3實施形態之C軸位置量測動作的示意圖。 [圖12B]為顯示前述第3實施形態之C軸位置量測動作的示意圖。 [圖12C]為顯示前述第3實施形態之C軸位置量測動作的示意圖。 [圖13]為顯示前述第1~第3實施形態之變形例的示意圖。 [圖14]為顯示本發明第4實施形態之A軸位置量測動作的示意圖。 [圖15A]為顯示前述第4實施形態之A軸位置量測動作的示意圖。 [圖15B]為顯示前述第4實施形態之A軸位置量測動作的示意圖。 [圖16]為顯示前述第4實施形態之A軸位置量測動作的示意圖。 [圖17]為顯示本發明第5實施形態之A軸位置量測動作的示意圖。 [圖18]為顯示前述第5實施形態之A軸位置量測動作的示意圖。 [圖19A]為顯示前述第5實施形態之A軸位置量測動作的示意圖。 [圖19B]為顯示前述第5實施形態之A軸位置量測動作的示意圖。 [圖20]為顯示前述第5實施形態之A軸位置量測動作的示意圖。 [圖21A]為顯示本發明第6實施形態之A軸位置量測動作的示意圖。 [圖21B]為顯示本發明第6實施形態之A軸位置量測動作的示意圖。 [圖21C]為顯示本發明第6實施形態之A軸位置量測動作的示意圖。 [圖22]為顯示前述第6實施形態的A軸位置量測動作之變形例的示意圖。 [圖23A]為顯示前述第6實施形態的A軸位置量測動作之變形例的示意圖。 [圖23B]為顯示前述第6實施形態的A軸位置量測動作之變形例的示意圖。 [圖23C]為顯示前述第6實施形態的A軸位置量測動作之變形例的示意圖。 [圖24A]為顯示本發明第7實施形態之工具前端位置偵測處理的示意圖。 [圖24B]為顯示前述第7實施形態之工具前端位置偵測處理的示意圖。 [圖24C]為顯示前述第7實施形態之工具前端位置偵測處理的示意圖。 [圖25A]為顯示前述第7實施形態的不同方向之工具前端位置偵測處理的示意圖。 [圖25B]為顯示前述第7實施形態的不同方向之工具前端位置偵測處理的示意圖。 [圖26A]為顯示本發明第8實施形態之工具前端位置偵測處理的示意圖。 [圖26B]為顯示前述第8實施形態之工具前端位置偵測處理的示意圖。 [圖27A]為顯示本發明第9實施形態的工具前端形狀及其影像的示意圖。 [圖27B]為顯示前述第9實施形態的工具前端形狀及其影像的示意圖。 [圖27C]為顯示前述第9實施形態的工具前端形狀及其影像的示意圖。 [圖28A]為顯示前述第9實施形態之工具前端位置偵測處理的示意圖。 [圖28B]為顯示前述第9實施形態之工具前端位置偵測處理的示意圖。 1 is a perspective view showing a machine tool according to a first embodiment of the present invention. 2 is a perspective view showing the detection unit of the first embodiment. FIG. 3 is a schematic diagram showing the detection unit of the first embodiment. FIG. 4 is a perspective view showing the detection operation of the first embodiment. FIG. 5 is a schematic diagram showing the tool tip in the detection operation of the first embodiment. FIG. 6 is a schematic diagram showing the detection operation of the first embodiment. 7A is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 7B is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 7C is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 8A is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 8B is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 8C is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 9 is a schematic diagram showing the C-axis position measurement operation of the first embodiment. 10A is a schematic diagram showing the C-axis position measurement operation of the second embodiment of the present invention. 10B is a schematic diagram showing the C-axis position measurement operation of the second embodiment of the present invention. 10C is a schematic diagram showing the C-axis position measurement operation of the second embodiment of the present invention. 11A is a schematic diagram showing the C-axis position measurement operation of the third embodiment of the present invention. 11B is a schematic diagram showing the C-axis position measurement operation of the third embodiment of the present invention. 11C is a schematic diagram showing the C-axis position measurement operation of the third embodiment of the present invention. 12A is a schematic diagram showing the C-axis position measurement operation of the third embodiment. 12B is a schematic diagram showing the C-axis position measurement operation of the third embodiment. 12C is a schematic diagram showing the C-axis position measurement operation of the third embodiment. 13 is a schematic diagram showing a modification of the first to third embodiments described above. 14 is a schematic diagram showing the A-axis position measurement operation of the fourth embodiment of the present invention. 15A is a schematic diagram showing the A-axis position measurement operation of the fourth embodiment. 15B is a schematic diagram showing the A-axis position measurement operation of the fourth embodiment. 16 is a schematic diagram showing the A-axis position measurement operation of the fourth embodiment. FIG. 17 is a schematic diagram showing an A-axis position measurement operation according to the fifth embodiment of the present invention. FIG. 18 is a schematic diagram showing the A-axis position measurement operation of the fifth embodiment. 19A is a schematic diagram showing the A-axis position measurement operation of the fifth embodiment. FIG. 19B is a schematic diagram showing the A-axis position measurement operation of the fifth embodiment. FIG. 20 is a schematic diagram showing the A-axis position measurement operation of the fifth embodiment. [ Fig. 21A ] A schematic diagram showing an A-axis position measurement operation according to the sixth embodiment of the present invention. 21B is a schematic diagram showing the A-axis position measurement operation of the sixth embodiment of the present invention. FIG. 21C is a schematic diagram showing an A-axis position measurement operation according to the sixth embodiment of the present invention. 22 is a schematic diagram showing a modification of the A-axis position measurement operation of the sixth embodiment. 23A is a schematic diagram showing a modification of the A-axis position measurement operation of the sixth embodiment. 23B is a schematic diagram showing a modification of the A-axis position measurement operation of the sixth embodiment. 23C is a schematic diagram showing a modification of the A-axis position measurement operation of the sixth embodiment. FIG. 24A is a schematic diagram showing the tool tip position detection process according to the seventh embodiment of the present invention. FIG. 24B is a schematic diagram showing the tool tip position detection process according to the seventh embodiment. 24C is a schematic diagram showing the tool tip position detection process in the seventh embodiment. FIG. 25A is a schematic diagram showing the position detection processing of the tool tip in different directions according to the seventh embodiment. FIG. 25B is a schematic diagram showing the position detection processing of the tool tip in different directions according to the seventh embodiment. FIG. 26A is a schematic diagram showing the tool tip position detection process according to the eighth embodiment of the present invention. FIG. 26B is a schematic diagram showing the tool tip position detection process in the eighth embodiment. [ Fig. 27A ] A schematic diagram showing the shape of the tool tip and the image thereof according to the ninth embodiment of the present invention. FIG. 27B is a schematic diagram showing the shape of the tool tip and its image in the ninth embodiment. FIG. 27C is a schematic diagram showing the shape of the tool tip and its image in the ninth embodiment. FIG. 28A is a schematic diagram showing the tool tip position detection process in the ninth embodiment. FIG. 28B is a schematic diagram showing the tool tip position detection process in the ninth embodiment.

3:工具 3: Tools

13:轉動工作台 13: Turn the table

18:主軸 18: Spindle

20:偵測單元 20: Detection unit

21:殼體 21: Shell

23:開口部 23: Opening

Claims (11)

一種工具機的轉動軸中心位置量測方法,其特徵為: 預先將工具安裝於主軸,並且將偵測單元設置於工作台,該偵測單元能非接觸地偵測前述工具的位置, 對於量測對象的轉動軸,將前述工具與前述工作台分度成特定的角度位置,並在各角度位置採用前述偵測單元,重複地執行:偵測前述工具對前述工作台的位置的偵測動作, 根據以複數次的前述偵測動作所偵測之各角度位置的前述工具的位置,計算前述轉動軸的中心位置。 A method for measuring the center position of a rotating shaft of a machine tool, which is characterized by: The tool is installed on the main shaft in advance, and the detection unit is set on the worktable, and the detection unit can detect the position of the tool in a non-contact manner, For the rotation axis of the object to be measured, the tool and the table are indexed into specific angular positions, and the detection unit is used at each angular position, and the detection of the position of the table by the tool is performed repeatedly. measure action, The center position of the rotating shaft is calculated according to the position of the tool at each angular position detected by the plurality of detection actions. 如請求項1所記載的工具機的轉動軸中心位置量測方法,其中前述偵測單元,能以非接觸的方式偵測以下的狀態:前述工具的前端,位於前述偵測單元中的特定位置, 在前述偵測動作中,使前述主軸與前述工作台相對移動並將前述工具與前述工作台分度成特定的角度位置,為了在前述各角度位置使前述工具來到前述偵測單元的前述特定位置,而調節前述主軸與前述工作台的相對位置,並在該狀態下從前述主軸與前述工作台之間的相對位置,偵測前述工具在前述各角度位置處相對於前述工作台的位置。 The method for measuring the center position of a rotating shaft of a machine tool as claimed in claim 1, wherein the detection unit can detect the following states in a non-contact manner: the front end of the tool is located at a specific position in the detection unit , In the detection operation, the spindle and the worktable are moved relative to each other, and the tool and the worktable are indexed into specific angular positions, in order to make the tool come to the specific angle of the detection unit at each of the above-mentioned angular positions. position, and adjust the relative position of the spindle and the worktable, and in this state, detect the position of the tool relative to the worktable at each angular position from the relative position between the spindle and the worktable. 如請求項1或請求項2所記載的工具機的轉動軸中心位置量測方法,其中採用可偵測前述工具在前述工作台的徑向之位置的前述偵測單元, 將前述工具與前述工作台分度成4個角度位置,在各角度位置執行前述偵測動作並偵測前述工具在前述工作台之徑向的位置,前述4個角度位置為:隔著前述轉動軸,在第1方向上對向的2個角度位置;及隔著前述轉動軸,在與前述第1方向交叉的第2方向上,對向的2個角度位置, 計算第1直線與第2直線,將前述第1直線與前述第2直線之間的交點作為前述轉動軸的中心位置量測,前述第1直線,通過將在前述第1方向上對向的2個角度位置所偵測之前述工具的位置予以連結的線段的中點,並且與前述第1方向交叉;前述第2直線,通過將在前述第2方向上對向的2個角度位置所偵測之前述工具的位置予以連結的線段的中點,並且與前述第2方向交叉。 The method for measuring the center position of the rotating shaft of a machine tool according to claim 1 or claim 2, wherein the detection unit capable of detecting the position of the tool in the radial direction of the worktable is used, Divide the aforementioned tool and the aforementioned worktable into 4 angular positions, perform the aforementioned detection action at each angular position and detect the position of the aforementioned tool in the radial direction of the aforementioned worktable, the aforementioned four angular positions are: across the aforementioned rotation axis, two angular positions facing each other in the first direction; and two angular positions facing each other in a second direction intersecting with the first direction across the rotation axis, Calculate the first straight line and the second straight line, and measure the intersection between the first straight line and the second straight line as the center position of the rotation axis. The midpoint of the line segment that connects the positions of the tools detected at the angular positions and intersects the first direction; the second straight line is detected by the two angular positions facing each other in the second direction. The midpoint of the line segment connecting the position of the tool and intersecting the second direction. 如請求項1或請求項2所記載的工具機的轉動軸中心位置量測方法,其中採用可偵測前述工具沿著前述工作台之表面的位置的前述偵測單元, 將前述工具與前述工作台,分度成隔著前述轉動軸對向的2個角度位置,在各角度位置執行前述偵測動作,並偵測前述工具沿著前述工作台之表面的位置, 計算將在2次的前述偵測動作中前述工具的位置予以連結之線段的中點,並將前述中點作為前述轉動軸的中心位置量測。 The method for measuring the center position of a rotating shaft of a machine tool according to claim 1 or claim 2, wherein the detection unit capable of detecting the position of the tool along the surface of the worktable is employed, The tool and the worktable are indexed into two angular positions opposite to each other across the rotation axis, the detection action is performed at each angular position, and the position of the tool along the surface of the worktable is detected, Calculate the midpoint of the line segment connecting the positions of the tool in the two detection operations, and measure the midpoint as the center position of the rotation axis. 如請求項1或請求項2所記載的工具機的轉動軸中心位置量測方法,其中採用可偵測前述工具在前述工作台的徑向之位置的前述偵測單元, 將前述工具與前述工作台,分度成在以前述轉動軸作為中心的特定角度範圍內之複數個角度位置,在各角度位置執行前述偵測動作,並偵測前述工具在前述工作台之徑向的位置, 描繪在複數次的前述偵測動作所獲得之前述工具的位置,藉由近似計算來計算前述轉動軸的中心位置。 The method for measuring the center position of the rotating shaft of a machine tool according to claim 1 or claim 2, wherein the detection unit capable of detecting the position of the tool in the radial direction of the worktable is used, Index the tool and the worktable into a plurality of angular positions within a specific angle range with the rotation axis as the center, perform the detection action at each angular position, and detect the diameter of the tool on the worktable to the position, The position of the tool obtained by the plurality of detection operations is plotted, and the center position of the rotation axis is calculated by approximate calculation. 如請求項1或請求項2所記載的工具機的轉動軸中心位置量測方法,其中前述偵測單元,具有對前述工作台的固定手段。The method for measuring the center position of a rotating shaft of a machine tool according to claim 1 or claim 2, wherein the detection unit has means for fixing the worktable. 如請求項1或請求項2所記載的工具機的轉動軸中心位置量測方法,其中前述偵測單元具有:照明部,用來照射平行光束;拍攝部,用來偵測前述平行光束, 根據在前述拍攝部所偵測的影像,偵測配置於前述平行光束中之前述工具的前端位置。 As claimed in claim 1 or claim 2, the method for measuring the center position of a rotating shaft of a machine tool, wherein the detection unit has: an illumination part for illuminating a parallel beam; a photographing part for detecting the parallel beam, The front end position of the tool disposed in the parallel light beam is detected according to the image detected by the imaging unit. 如請求項7所記載的工具機的轉動軸中心位置量測方法,其中在前述工具相對於前述拍攝部形成轉動的狀態下,以前述拍攝部偵測前述影像, 根據前述影像偵測前述工具的輪廓,並根據前述輪廓的對稱性偵測前述工具的中心軸線, 將前述中心軸線與前述輪廓之間的交點作為前述工具的前端位置偵測。 The method for measuring the center position of a rotating shaft of a machine tool according to claim 7, wherein the image is detected by the imaging unit in a state where the tool is rotated relative to the imaging unit, Detect the contour of the tool according to the image, and detect the center axis of the tool according to the symmetry of the contour, The intersection between the central axis and the contour is used as the detection of the front end position of the tool. 如請求項8所記載的工具機的轉動軸中心位置量測方法,其中當將前述中心軸線與前述輪廓之間的交點作為前述工具的前端位置偵測時, 在前述中心軸線的兩側保持特定距離地設定一對平行線,並設定:通過前述一對平行線與前述輪廓間的交點,且與前述中心軸線正交的輔助輪廓線, 將前述中心軸線與前述輔助輪廓線之間的交點作為前述工具的前端位置偵測。 The method for measuring the center position of a rotating shaft of a machine tool according to claim 8, wherein when the intersection between the center axis and the contour is used as the detection of the front end position of the tool, A pair of parallel lines are set at a specific distance on both sides of the central axis, and an auxiliary contour line passing through the intersection between the pair of parallel lines and the contour and orthogonal to the central axis is set, The intersection between the central axis and the auxiliary contour line is used as the detection of the front end position of the tool. 如請求項8所記載的工具機的轉動軸中心位置量測方法,其中設定:在前述工具的延伸方向上,橫越前述輪廓的複數條橫越線,對各個前述橫越線,偵測與前述輪廓間的2個交點、及2個前述交點的中點,將通過各個前述橫越線之前述中點的直線,作為前述工具的中心軸線。The method for measuring the center position of the rotation axis of a machine tool as claimed in claim 8, wherein: in the extending direction of the tool, a plurality of traverse lines traversing the contour are set, and for each of the traverse lines, detection and The two intersection points between the contours and the midpoint of the two intersection points are a straight line passing through the midpoint of each of the traversing lines as the central axis of the tool. 如請求項8所記載的工具機的轉動軸中心位置量測方法,其中相對於前述工具的延伸方向,將前述輪廓之單側的形狀作為參考圖型偵測,根據前述輪廓偵測符合將前述參考圖型反轉之形狀的對稱圖型,將通過前述參考圖型與前述對稱圖型之中間的直線,作為前述工具的中心軸線。The method for measuring the center position of a rotating shaft of a machine tool as claimed in claim 8, wherein, with respect to the extending direction of the tool, the shape of one side of the contour is detected as a reference pattern, and the contour detection is consistent with the For the symmetrical pattern of the inverted shape of the reference pattern, a straight line passing through the middle of the aforementioned reference pattern and the aforementioned symmetrical pattern is taken as the central axis of the aforementioned tool.
TW110122872A 2020-06-26 2021-06-23 Method for measuring the center position of the rotating shaft of a machine tool TWI769869B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-110638 2020-06-26
JP2020110638 2020-06-26
JP2021-085332 2021-05-20
JP2021085332A JP7472079B2 (en) 2020-06-26 2021-05-20 Method for measuring the center position of the rotating shaft of a machine tool

Publications (2)

Publication Number Publication Date
TW202219458A true TW202219458A (en) 2022-05-16
TWI769869B TWI769869B (en) 2022-07-01

Family

ID=79281131

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122872A TWI769869B (en) 2020-06-26 2021-06-23 Method for measuring the center position of the rotating shaft of a machine tool

Country Status (5)

Country Link
KR (1) KR20230020535A (en)
CN (1) CN115735094A (en)
DE (1) DE112021003435T5 (en)
TW (1) TWI769869B (en)
WO (1) WO2021261328A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116878365A (en) * 2023-09-06 2023-10-13 通用技术集团机床工程研究院有限公司 AB axis turntable detection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259966A (en) * 2000-03-15 2001-09-25 Toyoda Mach Works Ltd Method and device for correction of tool position
JP4846432B2 (en) * 2006-04-28 2011-12-28 コマツNtc株式会社 Displacement and run-out measuring device for spindle device in machine tool
US8116902B2 (en) * 2010-02-26 2012-02-14 National Formosa University Method of detecting a dynamic path of a five-axis machine tool and dectecting assembly for the same
JP5725796B2 (en) * 2010-10-27 2015-05-27 株式会社牧野フライス製作所 Tool measuring method and measuring device, and machine tool
JP2016206120A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 On-machine measurement method for tool
TWI592252B (en) * 2015-09-25 2017-07-21 國立虎尾科技大學 Angular error correction device and method for machine tools
JP6985182B2 (en) 2018-03-05 2021-12-22 オークマ株式会社 How to measure the center position of the rotating shaft in a machine tool
JP6994444B2 (en) 2018-08-20 2022-01-14 オークマ株式会社 Cutting edge position detection method

Also Published As

Publication number Publication date
TWI769869B (en) 2022-07-01
KR20230020535A (en) 2023-02-10
WO2021261328A1 (en) 2021-12-30
CN115735094A (en) 2023-03-03
DE112021003435T5 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP7075145B2 (en) Calibration block and hand eye calibration method for line laser sensors
JP4163545B2 (en) Reference jig for roundness measuring machine
JP4896373B2 (en) Three-dimensional three-dimensional measurement system and method
TW201715638A (en) Pre-alignment device and method for wafer
CN109732401B (en) Detection method for position-independent errors of double rotating shafts of five-axis numerical control machine tool
TW201831858A (en) Camera and specimen alignment to facilitate large area imaging in microscopy
JP2005514606A5 (en)
TWI592252B (en) Angular error correction device and method for machine tools
TWM516714U (en) Angular error correction device for machine tools
CN110645911A (en) Device and method for obtaining complete outer surface 3D contour through rotary scanning
JP7353757B2 (en) Methods for measuring artifacts
TWI769869B (en) Method for measuring the center position of the rotating shaft of a machine tool
JP2014081279A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2006258612A (en) Inter-shaft angle correction method
TWI754563B (en) Spatial accuracy error measurement method
JP3880030B2 (en) V-groove shape measuring method and apparatus
TWI504475B (en) Compensation controlling method for a multi-axes machine
JP7472079B2 (en) Method for measuring the center position of the rotating shaft of a machine tool
CN113639633B (en) Clamp angular zero alignment method in multi-axis vision measurement device
CN105841636B (en) Optical axis and object plane measuring for verticality method based on parts moving linearly error compensation
JP7321067B2 (en) Reversing error measurement method for machine tools
JP6757391B2 (en) Measuring method
JPH0283183A (en) Setting method for position of articulated robot
JP2913370B2 (en) Optical position measurement method
JP6946584B1 (en) Image processing equipment and machine tools