TW202210883A - 光學元件的製造方法、光學元件、和用於製造光學元件的設備 - Google Patents

光學元件的製造方法、光學元件、和用於製造光學元件的設備 Download PDF

Info

Publication number
TW202210883A
TW202210883A TW110122137A TW110122137A TW202210883A TW 202210883 A TW202210883 A TW 202210883A TW 110122137 A TW110122137 A TW 110122137A TW 110122137 A TW110122137 A TW 110122137A TW 202210883 A TW202210883 A TW 202210883A
Authority
TW
Taiwan
Prior art keywords
waveguide
plate
perforations
diffraction grating
layer
Prior art date
Application number
TW110122137A
Other languages
English (en)
Other versions
TWI801904B (zh
Inventor
米可海奧 爾德曼尼斯
Original Assignee
芬蘭商迪斯派利克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芬蘭商迪斯派利克斯公司 filed Critical 芬蘭商迪斯派利克斯公司
Publication of TW202210883A publication Critical patent/TW202210883A/zh
Application granted granted Critical
Publication of TWI801904B publication Critical patent/TWI801904B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

強化實境眼鏡的光學元件之製造方法。經過板件在距波導器的非零距離處之穿孔,將至少一層材料沉積於波導器上。使至少一層的高度回應於穿孔之橫截面積而變動,穿孔基於此等穿孔在板件中的位置而變動,用於由至少一層在波導器上形成至少一繞射光柵,此至少一繞射光柵於波導器及環境之間施行可見光的輸入耦合及/或輸出耦合。

Description

光學元件的製造方法、光學元件、和用於製造光學元件的設備
本發明有關光學元件的製造方法、光學元件及用於製造光學元件之設備。
基於繞射光柵的強化實境(AR)眼鏡之光學組合器通常用高折射率薄膜製成,此等薄膜沉積在用作光導器的透明基板之頂部上,並圖案化以形成繞射光學元件(DOE)。
眼鏡的操作意味著可見光範圍之光係經過繞射光柵耦合進入波導器,且於光分佈在波導器內側之後,它經過另一繞射光柵輸出耦合,使得使用者看到除了可經過波導器看到的周圍環境以外之數位影像。為了達成更好的影像品質,繞射光柵配置之散射強度通常應該以可控方式於低值與高值之間調制,而橫越繞射光柵配置的散射強度中具有大差異、例如2至10倍以上。
有多種標準方式來調制橫越繞射光柵配置之散射強度,包括光柵圖案本身中的變動或光柵特徵之高度中的變化(亦即光柵突脊高度或光柵溝槽深度)。光柵圖案之變動本質上受到所利用的製造製程所限制,且通常它們不能橫越繞射光柵配置在散射強度中提供足夠強的調制(例如,10倍以上)。因此,於許多案例中,有用於光柵特徵高度中之可控變動的需要。然而,此類型之調制使繞射光柵配置的製造更加複雜,且要求使用額外之製程步驟,如同:沉積額外層、引導多數蝕刻步驟、使用灰階微影等。在此等複雜的製造順序中,製程良率亦遭受影響,且製造成本增加。因此,對於改進有基本之需要性。
本發明尋求提供強化實境眼鏡的可製造性之改進。
本發明藉由獨立請求項所界定。實施例在附屬請求項中界定。
以下實施例僅為範例。儘管本說明書可在數個位置中提及“一”實施例,但這並不一定意味著每一個此參考都是針對相同之實施例,或此特徵僅適用於單一實施例。不同實施例的單一特徵亦可結合以提供其它實施例。再者,「包含」及「包括」等詞應理解為不將所敘述之實施例限制於僅由已提及的那些特徵所組成,且此等實施例亦可含有尚未明確地提及之特徵/結構。如果這些實施例的組合未導致結構或邏輯矛盾,則認為這些實施例之所有組合都是可能的。
應當注意,雖然圖面說明諸多實施例,但它們是僅顯示一些結構及/或功能實體之簡化圖解。圖面中所顯示的連接可意指邏輯或物理連接。對熟諳本技術領域之人員來說顯而易見的是,所敘述之設備亦可包含除了圖面及文字中所敘述的那些者以外之其他功能及結構。應當理解,一些功能、結構、及使用於操作的發信號之細節係與實際發明無關。因此,在此不需要更詳細地討論它們。
下面,呈現一種控制由具有高折射率的固體材料所製成之繞射光柵特徵的局部厚度之技術。週期性的特徵可包括繞射光柵的突脊及溝槽,例如,定位於任何二直接相鄰的突脊之間的溝槽,且反之亦然。厚度可在一維度或二維度中控制。此方式的基本益處是具有高折射率之固體材料特徵的厚度分佈可定製塑形。接著將所形成之輪廓使用於製造DOE,並順著沉積薄膜厚度輪廓進行散射效率調制。接著可僅用一個蝕刻步驟形成DOE,例如,不像在具有多個蝕刻步驟的方式。
圖1A及1B說明AR(強化實境)眼鏡之範例。例如,眼鏡可看起來像雙筒望遠鏡、眼罩或護目鏡。於實施例中,眼鏡可為與像無檐帽、有檐帽或頭盔的頭飾相連。在圖1A中,眼鏡包含光學元件10及影像生成單元12,此影像生成單元12又可具有影像來源14及光學部件配置16。影像生成單元12生成影像(靜止或視頻)之可見光,此可見光經過光學部件配置16及位於波導器106的表面上之繞射光柵102耦合至可見光的波導器106。於圖1B中,眼鏡包含二個零件A及B,每一個零件用於一個眼睛150、152。影像生成單元12可將影像之可見光引導至光學部件配置16,此光學部件配置16可將光分流至二個零件A及B。代替光學分光,眼鏡可具有二個影像生成單元12,每一個影像生成單元用於一個零件A及B。
波導器106允許可見光經由來自輸入耦合區域的全內反射傳播至一個以上之所期望區域,在此可見光係藉由繞射光柵102輸入耦合進入波導器106,此區域具有第一輸出耦合繞射元件100及第二輸出耦合繞射光柵104。波導器106可為由像例如玻璃、藍寶石及/或聚合物的透明材料所製成。例如,玻璃可包含高折射率燧石玻璃系列。波導器106亦可稱為光導器。波導器106之折射率可為由約1.7至2或更高。
可見光因此於波導器106內橫側地導引,且第一及第二輸出耦合繞射光柵100、104的一或兩者將可見光輸出耦合至波導器106,以便將可見光引導進入使用者之一或兩個眼睛150、152,用於顯示影像。輸出耦合繞射光柵100、104使用作AR眼鏡中的光學組合器。亦即,使用者可經過光學部件10看到環境及由第一與第二繞射光柵100、104所散射之影像。
在實施例中,第一輸出耦合繞射光柵100與第二輸出耦合繞射光柵104之間的距離DD可為至少大約與人類眼睛150、152之間的距離DE相同,其係稱為瞳孔間距離(IPD)。此距離DD例如可為約63 mm。然而,第一輸出耦合繞射光柵100、輸入耦合繞射光柵102、及第二輸出耦合繞射光柵104可於另一實施例中之波導器106上形成連續的繞射元件結構。
作為進一步之細節,例如,距離DD可為與IPD的平均值或估計值相同。例如,IPD、亦即距離DE對於插入式配件可為大約64 mm,且對於凹人式配件可為62 mm。因此,距離DD可判定為第一輸出耦合繞射光柵100之中心與第二輸出耦合繞射光柵104的中心之間的間距。
在圖1A所說明之實施例中,眼鏡具有一光學部件10及一用於雙眼150、152的影像生成單元12。
在實施例中,為每一隻眼睛150、152,眼鏡可具有一光學部件10及一影像生成單元12。
於實施例中,繞射光柵100至104可為在波導器106之任一側面上。於實施例中,繞射光柵100至104的至少一個可為在波導器106之與它們的至少一個相對之側面上。
圖2說明沉積製程的範例。使用於形成至少一個繞射光柵100、102、104之材料200係經過板件202的穿孔204沉積至波導器106或波導器106之預製件上。在製造製程期間,“波導器”一詞亦被認為包括波導器106的預製件。板件202距波導器106係於非零距離D處。例如,可使用間隔件結構206來設定距離D。板件202可為藉由間隔件結構206所支撐。如果波導器106之形狀是圓形,則間隔件結構206可為繞著波導器106的外輪廓之環件。包括間隔件結構206的結構之總厚度可具有大於距離D的厚度。間隔件結構206可具有一形狀,此形狀帶有圓形之外圓周及帶有圓形開口、矩形開口及/或其他支撐板件在波導器106上的定位之定製形狀的開口之內側面,並篩選其他區域,以免於其上沉積材料200。因此,間隔件結構206可具有等於距離D的厚度。間隔件結構206之材料可包含例如金屬、玻璃、陶瓷等。在實施例中,間隔件結構206可包含例如陽極化鋁。
於實施例中,間隔件結構206可包含至少一個調整配置210。調整配置210可為例如機械式、機電式、液壓式及/或氣動式。例如,機械式調整配置可包含螺桿桿。例如,機電調整配置可包含電動馬達及藉由電動馬達所旋轉的螺桿。
距離D係重要之參數,其可取決於以下者考量;a)沉積製程的反應器類型、本質及參數;b)板件202之厚度;c)特徵尺寸,包括板件202中的穿孔204之高度及/或寬度和穿孔204的結構;d)特定之DOE佈局;e)晶圓上的DOE之配置。在此DOE佈局意指不同的光柵形狀是可能的,並取決於特定之形狀(例如,矩形、領結、三角形等),板件202中的穿孔204將具有不同之配置。DOE的配置隱含有不同之選項,取決於例如具有不同高度的數個DOE如何相對於彼此定位,以便調整或控制此層300之高度縱向分佈。
板件202與波導器106之間的距離D可設定至特定之最佳值。在實施例中,距離D例如可為約5 mm。如果距離D太小,則穿孔204的特徵可為未充分均勻,且層300之結構可不夠保形。如果距離D過長,則局部薄膜厚度控制的精度可降低。於實施例中,板件202可為相對於波導器106傾斜。
在實施例中,間隔件結構206亦可包括為特定案例且未於附圖中顯示之附加元件。這些元件可為:a)支撐陰影遮罩的附加特徵,b)使用於屏蔽所製造之DOE區域(或環繞DOE)的附加特徵,在此不應沉積高折射材料,亦即應與沉積高折射率層保持清潔之區域。
例如,板件202的材料可包含金屬、玻璃、陶瓷等。於實施例中,金屬可為例如能具有高純度之不鏽鋼。在實施例中,例如,板件202的厚度可於約0.001 mm至約1 mm之間。在實施例中,典型的厚度可為例如約0.01 mm至約0.1 mm。於範例中,厚度可為約0.05 mm。
在實施例中,例如,波導器106及板件202之直徑可由幾十毫米變動至450 mm。大波導器106可切成適合用於眼鏡的配件。在實施例中,例如,波導器106及板件202的直徑可為約100 mm。沉積系統208可針對較小/較大直徑之波導器106進行縮放/修改或能縮放的。
如圖3A之範例中所顯示,其顯示圖2的截面E,穿孔204之橫截面積取決於板件202中的位置以已決定之方式變動(僅只少數穿孔在圖3A中具有參考數字,因為所有穿孔都不能用數字標記)。於圖3A的範例中,穿孔204之橫截面積在X軸的方向中變動,但於Y軸之方向中保持恆定。
在實施例中,穿孔204的橫截面積之變動於板件202的表面上可為一維度的,而穿孔204之橫截面積可在另一維度中保留恆定(穿孔可僅於空間上分佈在二維度中)。此等維度可為笛卡爾坐標系或極坐標系的那些維度,其每一維度可被認為是正交於另一維度及/或獨立於另一維度之空間範圍。在實施例中,穿孔204的橫截面積可作為二維度之值的函數而變動。
圖3A顯示六邊形穿孔作為範例,及於X方向中之遮罩開口區域的調制。穿孔204之形狀可為:例如六邊形、圓形、矩形、線性、星形、這些形狀的任意組合。穿孔204之形狀亦可為定製的。
具有穿孔204之板件202可製成在x方向、x及y方向、或橫跨板件202的定製圖案中實踐期望之開口對固體面積比例或光柵填充因數。
於實施例中,固體材料200可轉變為可流動狀態,其可為氣態或蒸氣狀態,以便允許其通過板件202的穿孔204。然後可流動狀態中之材料200在波導器106上固化。
於實施例中,用於沉積至波導器上的材料轉移可為例如在汽化狀態中施行。然後,例如,固體材料200可轉變為蒸氣狀態,且蒸氣於例如氣相沉積製程中冷凝為波導器106上之層狀或薄膜結構。氣相沉積可使用例如濺射、化學氣相沉積、或物理氣相沉積來實現,但不限於這些。
本領域技術人員熟悉可使用作沉積系統208的諸多沉積系統及製程。例如,固體材料200在可見光範圍中可具有等於或高於波導器106之折射率。在一些案例中,材料200的折射率亦可為低於波導器106之折射率。例如,固體材料200的折射率可為在約1.8至約2.7或甚至高達3.5之範圍中。然而,它亦可為低於約1.8。高折射率導致光的有效散射,及於輸入耦合及輸出耦合角度之寬廣範圍內的典型更好之DOE性能,其依次為使用者導致更好的影像品質。
圖3B顯示板件202之穿孔圖案如何可轉變為波導器106上的材料200之層300的特定高度縱向分佈之範例。材料200的分佈可如於此範例中那樣為線性的,或它可順著任何形狀、如同非線性函數之形狀。
板件202中的特徵之單位單元應該足夠小,以提供此層300的局部厚度及良好均勻性之高度控制。除其他因素以外,由於最小特徵尺寸受板件202的厚度及穿孔技術所限制,如同0.1 mm及以下之薄遮罩可為普遍有利的。板件202之特徵的所需分辨率及板件202之厚度取決於所製造的DOE之特定佈局。
在實施例中,板件202與波導器106之間的距離D可取決於板件202之穿孔204的橫截面之面積。在實施例中,板件202與波導器106之間的距離D可取決於板件202之穿孔204的橫截面之最小面積。
在實施例中,板件202的穿孔204之橫截面的面積越小,則距離D可為越短。對應地,板件202之穿孔204的橫截面之面積越大,則距離D可為越長。以此方式,材料200亦可散佈至未直接重疊或面向穿孔204的波導器106之面積。此散佈又導致波導器106上的材料200之平坦或至少完全/相當平坦的層300。
圖3C說明材料200之層300上的圖案化抗蝕劑或蝕刻遮罩層302之範例。然後可蝕刻材料200的層300,以便形成包括光柵之突脊304及溝槽306的特徵(看圖4)。於實施例中,蝕刻可包括乾式蝕刻。代替蝕刻,例如可藉由任何其他合適之先前技術圖案化方法來形成繞射光柵(100至104)的特徵。
如圖4之範例中所示,至少一個繞射光柵100至104因此由固體材料200的層300所製成,固體材料200係轉移至沉積系統208中之波導器106。材料移除裝置可由至少一個繞射光柵100至104的溝槽306之位置移除層300的固體材料200,並將層300之固體材料200保持在至少一個繞射光柵100至104的突脊304之位置處,其如上所述可包括蝕刻裝置或任何其他合適的先前技術之材料移除裝置。水平軸線X標示於一方向中的位置,且垂直軸線標示高度H。兩軸線係於任意比例。
波導器106上之光柵100至104的每一突脊304之固體材料200的量回應於穿孔204之橫截面積而變動。正因為如此,由波導器106上的固體材料200所製成之每一突脊304的高度回應於穿孔204之橫截面積而變動。由於穿孔204的橫截面積取決於位置而變動,突脊304之高度亦作為板件202中的位置之函數而變動。穿孔之橫截面積越大,則固體材料200的突脊304在波導器106上之對應位置處的厚度越高。不同之固體材料200可經過相同的穿孔橫截面面積沉積至不同高度,但是本領域技術人員可輕易地找到適合用於所期望之固體材料的橫截面面積。
例如,繞射光柵100至104之光柵週期、亦即突脊304及/或溝槽306之間的距離可為由約200 nm至約500 nm。例如,繞射光柵100至104之突脊304的高度可為在約10 nm至約300 nm之間變動,且於一些案例中在約10 nm至大約1000 nm之間變動。
板件202與波導器106之間的非零距離D使得固體材料200之可流動狀態分佈於比波導器106上的穿孔204之橫截面積較大的區域上(看圖3B)。固體材料200亦即也在穿孔204側邊沉積於板件202之下。此洩漏典型考量為非期望的,但是對於DOE,洩漏是有利的,因為它允許形成固體材料200之層300及繞射光柵100、102、104的期望厚度縱向分佈。由於洩漏,面向穿孔204之層300的高度及面向就在該穿孔204旁邊之板件202的固體表面之層300的高度具有可忽略之差異或沒有差異。亦即,可將層300製造成如此光滑,以致其不會暴露板件202的穿孔204之位置。例如,可定製層300的縱向分佈,以具有多數更高及更低厚度的區域。
厚度縱向分佈之形狀亦可藉由改變波導器106與板件202之間的距離D來改變。於實施例中,距離D在板件202/波導器106之相對端可為不同。然後此高度縱向分佈將於距離較小的側面更多遵循穿孔特徵,且在距離較大之側面處,此高度縱向分佈將更加均勻。
圖5A說明層300及波導器106上的繞射光柵之對應突脊304的高度之分佈400、及板件202中的穿孔204之橫截面的面積在基於圖3A至4之範例的X軸之方向中的分佈402之範例。分佈400及402在此範例中為線性的。於左邊之Z軸代表高度H,且在右邊的區域A,X軸代表位置(=距原點之距離)。所有軸線均採用任意標度。
圖5B說明層300及例如波導器106上的突脊304之高度的分佈400、及板件202中之穿孔204的橫截面之面積於X軸的方向中之分佈402。儘管此等分佈亦可為類似的,但此範例中之分佈並不類似。圖5B中的結果可為基於穿孔204在中間較大但它們之密度較低的特徵。於此範例中,此等分佈400、402類似於鐘形曲線之形式。在左邊的Z軸代表高度H,且於右邊區域A,X軸代表位置(=距原點之距離)。所有軸線均採用任意標度。
在圖6所說的實施例及範例中,例如,板件202可為彎曲的,亦即板件202之縱向分佈可為彎曲的。例如,彎曲之縱向分佈可為波浪形。於實施例中,板件202可僅在一維度中為彎曲的。於實施例中,板件202可在二維度中為彎曲的。於實施例中,板件202之彎曲度可在二維度中為類似的。於實施例中,板件202之彎曲度可在二維度中為不同的。以這些方式,於板件202/波導器106之不同位置中,在板件202之下於穿孔204側邊的洩漏能以可控及期望之方式進行。彎曲度可為與板件202的穿孔204之橫截面的面積之變動相結合,使得能以期望的方式控制層300之高度的變動。
在實施例中,可將抗反射塗層施加於繞射光柵100至104上。
如可於圖4及圖5中看出,在實施例中,製成同時滿足以下三個定義之繞射光柵100、102、104係可能的: 1)有複數對滿足以下特徵之直接連續的突脊304; 2)任何所述對於其間沒有固體材料200,且任何所述對之突脊304在其間沒有固體材料200;及 3)任何所述對的突脊304於沿著其增加或減少突脊304之高度的方向中具有不同之高度。
例如,於圖5B中的分佈400之鐘形曲線的頂部,可有一對彼此直接相鄰之具有相同高度的突脊304。然而,在分佈400之上升部分上不存在彼此直接相鄰的一對突脊304之實施例中作成分佈可為可能的,使得該對突脊具有相同之高度。於實施例中,對於此分佈400的下降部分也同樣如此。
一DOE之橫側尺寸可為例如約10 mm至約20 mm,且繞射光柵的周期可為例如約400 nm,而線性地增加/減少橫越繞射光柵之光柵高度、例如由約0 nm至約50 nm。
固體材料200可為至少二元素的化合物。在實施例中,固體材料可例如為氧化鈦(TiO2 )。氧化鈦可為非晶質的。氧化鈦之折射率於可見光範圍內的波長可為約2.4。取決於DOE之特定類型及應用,對於經過層300的厚度之可見光,材料200應該足夠光學透明。
圖7說明一範例,在此輸入耦合繞射光柵102可具有不同高度的突脊304,而輸出耦合繞射光柵100可具有恆定高度之突脊304。
於替代實施例中,其亦可能的是輸出耦合繞射光柵100可具有不同高度之突脊304,且輸入耦合繞射光柵102可具有恆定高度的突脊304。再者,於實施例中,輸出耦合繞射光柵100及輸入耦合繞射光柵102兩者可具有不同高度之突脊304。
在實施例中,輸出耦合繞射光柵100及輸入耦合繞射光柵102可具有不同的突脊304之高度變動。
於實施例中,輸出耦合繞射光柵100的突脊304之高度變動及輸入耦合繞射光柵102的突脊304之高度變動可具有鏡像對稱性。
在實施例中,輸出耦合繞射光柵100及輸入耦合繞射光柵102可具有類似的突脊304之高度變動。
不同繞射光柵100、102、104之間的類似或不同之高度分佈的合適組合可改進由影像生成單元12傳送至使用者之眼睛150、152的影像品質,藉此允許更好之影像均勻性、更好的顏色分佈、及/或更深之對比度,於此組合可取決於應用。以這些方式,可改進整體使用者的體驗。具有增加亮度之可能性允許眼鏡使用在不同環境中,如同於明亮的戶外照明條件之下。此外,當眼鏡裝置具有高光學效率時,它消耗更少的電能,藉此節省電池及/或允許更長之操作時間。
如上所解釋,沉積方法包含具有穿孔204的板件202,且在板件202與波導器106之間使用非零距離。可用間隔件結構206實現非零距離。在取決於可作為穿孔204在每一位置處的橫截面積測量之尺寸的速率,材料200以氣態狀態穿透穿孔204。板件202將與波導器106保持於特定距離,以便橫越波導器106達成所期望之厚度調制,並類似地保持層300及突脊304的共形。
與常用方法相比,以上面教導者直接解決DOE中之散射效率調制的問題,而具有至少二個顯著之益處。首先,可改進具有不同高度的光柵特徵之DOE的性能。這是由於光柵高度中之可控變化,其導致未能僅藉由光柵圖案的面內變動獲得之DOE散射強度的增強調制。其次,此DOE組件之可製造性可實質上勝過廣泛使用的替代方法之其中一者。尤其是,所提出的解決方案允許在製造具有不同高度之周期性特徵的DOE中避免額外之沉積步驟、額外的蝕刻步驟、額外之微影步驟、灰階微影的使用等。
圖8是強化實境眼鏡之光學元件10的製造方法之流程圖,光學元件10包含用於可見光的波導器106及至少一個繞射光柵100、102、104之組合,繞射光柵100、102、104建構為將可見光耦合在波導器106與環境之間。於步驟800中,在距波導器106的非零距離D處,經過板件202之穿孔204將固體材料200的至少一層300沉積於波導器106上。在步驟802中,至少一層300之高度係製成回應於穿孔204的橫截面積而變動,穿孔204之橫截面積基於板件202中的穿孔204之位置而變動,用於由至少一層300在波導器106上形成至少一個繞射光柵100、102、104,至少一個繞射光柵100、102、104建構為於波導器106與環境之間施行可見光的輸入耦合及/或輸出耦合。
在或許可選地施行之步驟804中,藉由在突脊304之間於周期性溝槽306的位置處由波導器106移除固體材料200來形成至少一個繞射光柵100、102、104之突脊304。
對於本領域技術人員來說將顯而易見的是,隨著技術進步,能以諸多方式實施本發明之構思。本發明及其實施例不限於上述的示範實施例,而是可在請求項之範圍內變動。
10:光學元件 12:影像生成單元 14:影像來源 16:光學部件配置 100:輸出耦合繞射元件 102:繞射光柵 104:輸出耦合繞射光柵 106:波導器 150:眼睛 152:眼睛 200:材料 202:板件 204:穿孔 206:間隔件結構 208:沉積系統 210:調整配置 300:層 302:蝕刻遮罩層 304:突脊 306:溝槽 400:分佈 402:分佈
下面僅通過範例並參考附圖敘述本發明的示範實施例,其中 [圖1A及1B]說明AR眼鏡之範例; [圖2]說明沉積製程的範例; [圖3A]說明帶有穿孔之板件的範例; [圖3B]說明經過具有穿孔之板件沉積至波導器上的固體材料層之範例; [圖3C]說明於此層上的圖案化抗蝕劑或蝕刻遮罩之範例; [圖4]說明繞射光柵的突脊之高度分佈的範例,突脊係由波導器上之固體材料所製成; [圖5A]說明固體材料所製成的突脊之高度分佈及板件的穿孔之橫截面積的範例; [圖5B]說明突脊之高度分佈及板件的穿孔之橫截面積的另一範例; [圖6]說明彎曲板件之範例; [圖7]說明包含帶有繞射光柵的波導器之DOE的範例;及 [圖8]說明製造方法之流程圖的範例。
100:輸出耦合繞射元件
102:繞射光柵
104:輸出耦合繞射光柵
106:波導器
200:材料
202:板件
204:穿孔
206:間隔件結構
208:沉積系統
210:調整配置

Claims (15)

  1. 一種強化實境眼鏡之光學元件的製造方法,該方法包含 在與波導器相距非零距離處經過板件之穿孔於該波導器上沉積至少一層材料;及 使該至少一層的高度回應於該等穿孔之橫截面積而變動,該等穿孔建構為基於該等穿孔在該板件中的位置而變動,用於在該波導器上由該至少一層形成至少一繞射光柵,該至少一繞射光柵建構為於該波導器及該環境之間施行可見光的輸入耦合及/或輸出耦合。
  2. 如請求項1的製造方法,該方法包含變動該板件與該波導器之間的非零距離。
  3. 如請求項1的製造方法,其中該材料具有等於或高於在可見光範圍內之波導器的折射率之折射率。
  4. 如請求項1的製造方法,該方法包含藉由以下之至少一者施行沉積:濺射、化學氣相沉積、及物理氣相沉積。
  5. 如請求項1的製造方法,該方法包含藉由在突脊之間的溝槽位置處由該波導器移除該固體材料來形成該至少一繞射光柵之突脊。
  6. 如請求項1的製造方法,該方法包含相對於該波導器傾斜該板件。
  7. 如請求項1的製造方法,該方法包含該固體材料之折射率高於1.8。
  8. 如請求項1的製造方法,其中該等穿孔之橫截面積建構為在二維度中變動,用於使該等沉積物的高度在該二維度中變動。
  9. 如請求項1的製造方法,該方法包含使用彎曲之板件。
  10. 一種光學部件,其中該光學部件包含如請求項1的製造方法所製造之至少一繞射光柵。
  11. 一種用於製造光學部件的設備,其中 該設備包含具有穿孔之板件,每一穿孔具有取決於其在該板件中的位置之橫截面積,該板件及該光學部件的波導器建構為於它們之間具有非零距離;及 該設備建構為經過該板件的穿孔在該波導器上沉積至少一層固體材料,用於在該波導器上造成該層之高度,以回應於該等穿孔的橫截面積而變動。
  12. 如請求項11的設備,其中該設備建構為允許該板件與該波導器之間的距離變動。
  13. 如請求項11的設備,其中該板件係相對於該波導器傾斜及/或彎曲。
  14. 如請求項11的設備,其中該設備具有調整手段,該調整手段建構為基於該等穿孔的橫截面積來調整該板件與該波導器之間的距離。
  15. 如請求項11的設備,其中該設備建構為由該至少一繞射光柵的突脊之間的間隙之位置移除該固體材料,並將該固體材料保持在該至少一繞射光柵的突脊之位置處。
TW110122137A 2020-06-17 2021-06-17 光學元件的製造方法、光學元件、和用於製造光學元件的設備 TWI801904B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20205642 2020-06-17
FI20205642A FI20205642A1 (en) 2020-06-17 2020-06-17 A method of manufacturing an optical element, an optical element, and an apparatus for manufacturing an optical element

Publications (2)

Publication Number Publication Date
TW202210883A true TW202210883A (zh) 2022-03-16
TWI801904B TWI801904B (zh) 2023-05-11

Family

ID=79268876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122137A TWI801904B (zh) 2020-06-17 2021-06-17 光學元件的製造方法、光學元件、和用於製造光學元件的設備

Country Status (9)

Country Link
US (1) US20230266519A1 (zh)
EP (1) EP4168834A1 (zh)
JP (1) JP2023531376A (zh)
KR (1) KR20230024291A (zh)
CN (1) CN115698779A (zh)
CA (1) CA3182746A1 (zh)
FI (1) FI20205642A1 (zh)
TW (1) TWI801904B (zh)
WO (1) WO2021255332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI130103B (fi) * 2020-12-22 2023-03-01 Dispelix Oy Diffraktiivisen optisen elementin hilan leimasimen ja master-mallin valmistusmenetelmä, master-malli ja leimasin
WO2024024678A1 (en) * 2022-07-26 2024-02-01 Sony Group Corporation Light guide plate unit and image display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784507A (en) * 1991-04-05 1998-07-21 Holm-Kennedy; James W. Integrated optical wavelength discrimination devices and methods for fabricating same
CA2197706A1 (en) * 1997-02-14 1998-08-14 Peter Ehbets Method of fabricating apodized phase mask
JP5333261B2 (ja) * 2009-03-11 2013-11-06 Jsr株式会社 偏光性回折素子
US9354392B2 (en) * 2014-09-03 2016-05-31 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing the same
US10573843B2 (en) * 2015-08-05 2020-02-25 Apple Inc. Light-emitting device having an electrode with varying sheet resistance
US10444419B2 (en) * 2016-08-22 2019-10-15 Magic Leap, Inc. Dithering methods and apparatus for wearable display device
US20190056591A1 (en) * 2017-08-18 2019-02-21 Microsoft Technology Licensing, Llc Optical waveguide with multiple antireflective coatings
US10929667B2 (en) * 2017-10-13 2021-02-23 Corning Incorporated Waveguide-based optical systems and methods for augmented reality systems
CN111566544B (zh) * 2017-11-06 2021-11-19 奇跃公司 利用阴影掩模实现可调梯度图案化的方法和系统
KR102648201B1 (ko) * 2018-07-19 2024-03-18 어플라이드 머티어리얼스, 인코포레이티드 가변 높이의 경사진 격자 방법
CN109839746A (zh) * 2019-03-05 2019-06-04 京东方科技集团股份有限公司 一种近眼显示设备及其制作方法
CN110806645A (zh) * 2019-11-20 2020-02-18 深圳惠牛科技有限公司 一种用于增强现实的光栅波导

Also Published As

Publication number Publication date
WO2021255332A1 (en) 2021-12-23
FI20205642A1 (en) 2021-12-18
CA3182746A1 (en) 2021-12-23
JP2023531376A (ja) 2023-07-24
CN115698779A (zh) 2023-02-03
EP4168834A1 (en) 2023-04-26
TWI801904B (zh) 2023-05-11
US20230266519A1 (en) 2023-08-24
KR20230024291A (ko) 2023-02-20

Similar Documents

Publication Publication Date Title
CN113167943B (zh) 各向异性地形成的衍射光栅设备
JP7378392B2 (ja) シャドウマスクを使用した調整可能勾配パターン化のための方法およびシステム
TWI747004B (zh) 用於波導件之結構
JP7277581B2 (ja) グレートーンリソグラフィと傾斜エッチングを使用した、深さ調節された傾斜格子
TWI801904B (zh) 光學元件的製造方法、光學元件、和用於製造光學元件的設備
EP3899645A1 (en) A method of forming gratings
WO2021233075A1 (zh) 透镜光栅的制作方法
JP2005115175A (ja) 2次元レンズアレイおよびその製造方法