TW202209170A - Sensing device - Google Patents

Sensing device Download PDF

Info

Publication number
TW202209170A
TW202209170A TW110105004A TW110105004A TW202209170A TW 202209170 A TW202209170 A TW 202209170A TW 110105004 A TW110105004 A TW 110105004A TW 110105004 A TW110105004 A TW 110105004A TW 202209170 A TW202209170 A TW 202209170A
Authority
TW
Taiwan
Prior art keywords
sensing
light
sensing pixel
waveform
pixel structure
Prior art date
Application number
TW110105004A
Other languages
Chinese (zh)
Other versions
TWI769700B (en
Inventor
高逸群
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to US17/361,218 priority Critical patent/US20220052090A1/en
Priority to CN202110771647.4A priority patent/CN113569661B/en
Publication of TW202209170A publication Critical patent/TW202209170A/en
Application granted granted Critical
Publication of TWI769700B publication Critical patent/TWI769700B/en

Links

Images

Abstract

A sensing device includes a light emitting panel and a sensing pixel array structure. The light emitting panel is adapted to emit an initial light with a first waveform. The sensing pixel array structure includes a plurality of first sensing pixel structures and at least one second sensing pixel structure. The first sensing pixel structures allow the first sensing elements thereof to sense the initial light with the first waveform as the first sensing light provided by the first sensing pixel structures. The first sensing pixel structures occupy more than 90% but less than 100% of a configuration area of the overall sensing pixel array structure. The second sensing pixel structure includes a second sensing element and a light conversion layer. The second sensing pixel structure is adapted to adjust the initial light with the first waveform to a second sensing light with a second waveform, and allows the second sensing element to sense the second sensing light.

Description

感測裝置sensing device

本發明是有關於一種感測裝置,且特別是有關於一種具有至少兩種感測畫素結構的感測裝置。The present invention relates to a sensing device, and more particularly, to a sensing device having at least two sensing pixel structures.

指紋辨識功能可支援多種應用,提昇使用者體驗並增加附加價值,為目前業界的重點開發項目之一。在現有的指紋感測裝置中,除了指紋辨識用的感測結構外,還設置有指紋防偽用的感測結構,以用於辨別指紋的真偽。指紋防偽用感測結構多搭配色阻等彩色濾光層來實現防偽辨識。被指紋反射的光經過彩色濾光層後的光量會減少約2/3,因此指紋防偽用感測結構中的感測元件僅可接收約1/3的光量,使得感測元件所接收到的訊號強度降低。因此,如何提升感測元件的靈敏度、及感測元件所接收到的訊號強度等,已成為目前研發人員所關注的議題。The fingerprint recognition function can support a variety of applications, enhance user experience and increase added value, and is currently one of the key development projects in the industry. In the existing fingerprint sensing device, in addition to the sensing structure for fingerprint identification, a sensing structure for fingerprint anti-counterfeiting is also provided to distinguish the authenticity of the fingerprint. The sensing structure for fingerprint anti-counterfeiting is often equipped with color filter layers such as color resist to realize anti-counterfeiting identification. After the light reflected by the fingerprint passes through the color filter layer, the light quantity will be reduced by about 2/3, so the sensing element in the fingerprint anti-counterfeiting sensing structure can only receive about 1/3 of the light quantity, so that the amount of light received by the sensing element Signal strength decreases. Therefore, how to improve the sensitivity of the sensing element and the strength of the signal received by the sensing element, etc., have become issues of concern to researchers at present.

本發明提供一種感測裝置,其設計可有助於提升感測元件接收到的光量,進而改善感測裝置的品質。The present invention provides a sensing device whose design can help increase the amount of light received by the sensing element, thereby improving the quality of the sensing device.

本發明的至少一實施例提供一種感測裝置,包括發光面板以及感測畫素陣列結構。發光面板適於發出第一波形的初始光。感測畫素陣列結構位於發光面板的背側,其中感測畫素陣列結構包含多個第一感測畫素結構以及至少一第二感測畫素結構。各第一感測畫素結構包括第一感測元件,且各第一感測畫素結構以第一波形的初始光作為第一感測光提供給第一感測元件感測,其中多個第一感測畫素結構佔整體感測畫素陣列結構的配置面積比例為90%以上但未達100%。至少一第二感測畫素結構包括第二感測元件以及光轉換層。光轉換層位於第二感測元件與發光面板之間。至少一第二感測畫素結構適於將第一波形的初始光調整成第二感測光以提供給第二感測元件感測,且第二感測光具有的第二波形不同於第一波形。光轉換層具有激發峰值波長,且激發峰值波長在400 nm至750 nm的範圍內。At least one embodiment of the present invention provides a sensing device including a light emitting panel and a sensing pixel array structure. The light emitting panel is adapted to emit the initial light of the first waveform. The sensing pixel array structure is located on the back side of the light emitting panel, wherein the sensing pixel array structure includes a plurality of first sensing pixel structures and at least one second sensing pixel structure. Each first sensing pixel structure includes a first sensing element, and each first sensing pixel structure uses the initial light of the first waveform as the first sensing light to provide the first sensing element for sensing, wherein a plurality of The proportion of the configuration area of a sensing pixel structure to the overall sensing pixel array structure is more than 90% but less than 100%. At least one second sensing pixel structure includes a second sensing element and a light conversion layer. The light conversion layer is located between the second sensing element and the light emitting panel. The at least one second sensing pixel structure is adapted to adjust the initial light of the first waveform into a second sensing light to provide the second sensing element for sensing, and the second sensing light has a second waveform different from the first waveform . The light conversion layer has an excitation peak wavelength, and the excitation peak wavelength is in the range of 400 nm to 750 nm.

在本發明的一實施例中,上述光轉換層包含量子點。In an embodiment of the present invention, the light conversion layer includes quantum dots.

在本發明的一實施例中,上述第二感測光包括經由光轉換層轉換初始光的一部分而獲得的轉換光以及通過光轉換層但未經光轉換層轉換過的初始光的另一部分。In an embodiment of the present invention, the second sensing light includes converted light obtained by converting a part of the original light through the light conversion layer and another part of the original light that has passed through the light conversion layer but is not converted by the light conversion layer.

在本發明的一實施例中,上述至少一第二感測畫素結構更包括依序疊置於第二感測元件上的光準直結構與透鏡。In an embodiment of the present invention, the at least one second sensing pixel structure further includes a light collimation structure and a lens sequentially stacked on the second sensing element.

在本發明的一實施例中,上述至少一第二感測畫素結構的光轉換層位於透鏡及感測元件之間。In an embodiment of the present invention, the light conversion layer of the at least one second sensing pixel structure is located between the lens and the sensing element.

在本發明的一實施例中,上述至少一第二感測畫素結構的光轉換層位於發光面板及透鏡之間。In an embodiment of the present invention, the light conversion layer of the at least one second sensing pixel structure is located between the light emitting panel and the lens.

在本發明的一實施例中,上述感測裝置還包含至少一第三感測畫素結構。至少一第三感測畫素結構包括第三感測元件以及彩色濾光層。彩色濾光層位於第三感測元件與發光面板之間。至少一第三感測畫素結構適於將第一波形的初始光調整成第三感測光以提供給第三感測元件感測,且第三感測光具有的第三波形不同於第一波形。In an embodiment of the present invention, the above-mentioned sensing device further includes at least one third sensing pixel structure. At least one third sensing pixel structure includes a third sensing element and a color filter layer. The color filter layer is located between the third sensing element and the light emitting panel. The at least one third sensing pixel structure is adapted to adjust the initial light of the first waveform into a third sensing light to provide the third sensing element for sensing, and the third sensing light has a third waveform different from the first waveform .

在本發明的一實施例中,上述至少一第二感測畫素結構與至少一第三感測畫素結構佔整體感測畫素陣列結構的配置面積比例為少於10%,但超過0%。In an embodiment of the present invention, the proportion of the at least one second sensing pixel structure and the at least one third sensing pixel structure in the overall sensing pixel array structure is less than 10%, but more than 0% %.

在本發明的一實施例中,上述第一波形在400 nm至700 nm的波長範圍內。In an embodiment of the present invention, the above-mentioned first waveform is in a wavelength range of 400 nm to 700 nm.

本發明的至少另一實施例提供一種感測裝置,其包括感測畫素陣列結構。感測畫素陣列結構包含成陣列排列的多個第一感測畫素結構以及至少一第二感測畫素結構。多個第一感測畫素結構佔整體感測畫素陣列結構的配置面積比例為90%以上但未達100%。各第一感測畫素結構包括第一感測元件,且各第一感測畫素結構以第一波形的初始光作為第一感測光提供給第一感測元件感測。至少一第二感測畫素結構包括第二感測元件,且至少一第二感測畫素結構適於將第一波形的初始光調整成第二感測光以提供給第二感測元件感測,且第二感測光具有的第二波形不同於第一波形。At least another embodiment of the present invention provides a sensing device including a sensing pixel array structure. The sensing pixel array structure includes a plurality of first sensing pixel structures and at least one second sensing pixel structure arranged in an array. The ratio of the configuration area of the plurality of first sensing pixel structures to the overall sensing pixel array structure is more than 90% but less than 100%. Each first sensing pixel structure includes a first sensing element, and each first sensing pixel structure provides the first sensing element with an initial light of a first waveform as the first sensing light for sensing. The at least one second sensing pixel structure includes a second sensing element, and the at least one second sensing pixel structure is adapted to adjust the initial light of the first waveform into the second sensing light to provide the second sensing element for sensing and the second sensing light has a second waveform different from the first waveform.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的附圖標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在「另一元件上」、或「連接到另一元件」、「重疊於另一元件」時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」或「耦合」係可為二元件間存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. The same reference numerals refer to the same elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on," "connected to," "overlying" another element, it can be directly on the other element on or connected to another element, or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to a physical and/or electrical connection. Furthermore, "electrically connected" or "coupled" may refer to the existence of other elements between the two elements.

應當理解,儘管術語「第一」、「第二」、「第三」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的「第一元件」、「部件」、「區域」、「層」、或「部分」可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, and/or or parts shall not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, "a first element," "component," "region," "layer," or "section" discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.

這裡使用的術語僅僅是為了描述特定實施例的目的,而不是限制性的。如本文所使用的,除非內容清楚地指示,否則單數形式「一」、「一個」和「該」旨在包括複數形式,包括「至少一個」。「或」表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包括」及/或「包括」指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域整體、步驟、操作、元件、部件及/或其組合的存在或添加。The terminology used herein is for the purpose of describing particular embodiments only and is not limiting. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms including "at least one" unless the content clearly dictates otherwise. "Or" means "and/or". As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. It will also be understood that, when used in this specification, the terms "comprising" and/or "comprising" designate the stated feature, region, integer, step, operation, presence of an element and/or part, but do not exclude one or more The presence or addition of other features, entireties of regions, steps, operations, elements, components, and/or combinations thereof.

此外,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和「上」的取向,取決於附圖的特定取向。類似地,如果一個附圖中的裝置翻轉,則被描述為在其它元件「下方」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下面」或「上面」可以包括上方和下方的取向。Furthermore, relative terms such as "lower" or "bottom" and "upper" or "top" may be used herein to describe one element's relationship to another element, as shown in the figures. It should be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation shown in the figures. For example, if the device in one of the figures is turned over, elements described as being on the "lower" side of other elements would then be oriented on "upper" sides of the other elements. Thus, the exemplary term "lower" may include an orientation of "lower" and "upper", depending on the particular orientation of the figures. Similarly, if the device in one of the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below" or "above" can encompass both an orientation of above and below.

本文使用的「約」、「實質上」、或「近似」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「實質上」、或「近似」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "substantially", or "approximately" includes the stated value and the average within an acceptable deviation of the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the A specific amount of measurement-related error (ie, the limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, as used herein, "about", "substantially", or "approximately" may be used to select a more acceptable range of deviation or standard deviation depending on optical properties, etching properties, or other properties, and not one standard deviation may apply to all. nature.

除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be construed as having meanings consistent with their meanings in the context of the related art and the present invention, and are not to be construed as idealized or excessive Formal meaning, unless expressly defined as such herein.

本文參考作為理想化實施例的示意圖的截面圖來描述示例性實施例。因此,可以預期到作為例如製造技術及/或公差的結果的圖示的形狀變化。因此,本文所述的實施例不應被解釋為限於如本文所示的區域的特定形狀,而是包括例如由製造導致的形狀偏差。例如,示出或描述為平坦的區域通常可以具有粗糙及/或非線性特徵。此外,所示的銳角可以是圓的。因此,圖中所示的區域本質上是示意性的,並且它們的形狀不是旨在示出區域的精確形狀,並且不是旨在限制權利要求的範圍。Exemplary embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments. Thus, variations in the shapes of the illustrations as a result of, for example, manufacturing techniques and/or tolerances, are to be expected. Accordingly, the embodiments described herein should not be construed as limited to the particular shapes of regions as shown herein, but rather include deviations in shapes resulting from, for example, manufacturing. For example, regions illustrated or described as flat may typically have rough and/or nonlinear features. Additionally, the acute angles shown may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the claims.

圖1是依照本發明的一實施例的一種感測裝置的俯視示意圖。請參照圖1,感測裝置10包括感測畫素陣列結構SS。在本實施例中,感測畫素陣列結構SS包含成陣列排列的多個第一感測畫素結構110以及至少一第二感測畫素結構120。FIG. 1 is a schematic top view of a sensing device according to an embodiment of the present invention. Referring to FIG. 1 , the sensing device 10 includes a sensing pixel array structure SS. In this embodiment, the sensing pixel array structure SS includes a plurality of first sensing pixel structures 110 and at least one second sensing pixel structure 120 arranged in an array.

多個第一感測畫素結構110與多個第二感測畫素結構120可分別沿著第一方向D1及第二方向D2排列成陣列。在本實施例中,第一方向D1與第二方向D2相交,但本發明不以此為限。在一實施例中,第一感測畫素結構110例如作為指紋辨識用感測畫素結構,而第二感測畫素結構120則用於防偽辨識之用。也就是說,第一感測畫素結構110與第二感測畫素結構120雖同樣可提供感測作用,但兩者可用於判別不同訊息。如圖1所示,第一感測畫素結構110的數量可多於第二感測畫素結構120的數量。The plurality of first sensing pixel structures 110 and the plurality of second sensing pixel structures 120 may be arranged in an array along the first direction D1 and the second direction D2, respectively. In this embodiment, the first direction D1 and the second direction D2 intersect, but the present invention is not limited to this. In one embodiment, the first sensing pixel structure 110 is used for fingerprint identification, for example, and the second sensing pixel structure 120 is used for anti-counterfeiting identification. That is to say, although the first sensing pixel structure 110 and the second sensing pixel structure 120 can also provide sensing functions, they can be used to discriminate different information. As shown in FIG. 1 , the number of the first sensing pixel structures 110 may be greater than the number of the second sensing pixel structures 120 .

在本實施例中,第二感測畫素結構120雖以多個為例來說明,但不以此為限。在一些實施例中,排成陣列以構成感測畫素陣列結構SS的感測畫素結構中可以僅包括單一個第二感測畫素結構。換言之,感測畫素陣列結構SS可僅具有單個防偽辨識用的第二感測畫素結構120,而其餘的感測畫素結構都是用於指紋辨識用的第一感測畫素結構110。In this embodiment, although a plurality of second sensing pixel structures 120 are used as an example for description, it is not limited thereto. In some embodiments, the sensing pixel structures arranged in an array to form the sensing pixel array structure SS may include only a single second sensing pixel structure. In other words, the sensing pixel array structure SS may only have a single second sensing pixel structure 120 for anti-counterfeiting identification, and the rest of the sensing pixel structures are the first sensing pixel structures 110 for fingerprint identification. .

在本實施例中,第一感測畫素結構110佔整體感測畫素陣列結構SS的配置面積比例大於第二感測畫素結構120佔整體感測畫素陣列結構SS的配置面積比例。舉例來說,第一感測畫素結構110佔整體感測畫素陣列結構SS的配置面積比例較佳為90%以上但未達100%。換句話說,第二感測畫素結構120佔整體感測畫素陣列結構SS的配置面積比例的較佳為10%以下。另外,第二感測畫素結構120佔整體感測畫素陣列結構SS的配置面積比例的下限並無特別限定,只要大於0%即可。In this embodiment, the ratio of the configuration area of the first sensing pixel structure 110 to the overall sensing pixel array structure SS is greater than the configuration area ratio of the second sensing pixel structure 120 to the entire sensing pixel array structure SS. For example, the ratio of the configuration area of the first sensing pixel structure 110 to the entire sensing pixel array structure SS is preferably more than 90% but less than 100%. In other words, the proportion of the second sensing pixel structure 120 to the configuration area of the entire sensing pixel array structure SS is preferably less than 10%. In addition, the lower limit of the ratio of the second sensing pixel structure 120 to the configuration area of the overall sensing pixel array structure SS is not particularly limited, as long as it is greater than 0%.

第二感測畫素結構120在感測畫素陣列結構SS中的排列布局方式可依不同需求而調整。舉例而言,如圖1所示,第二感測畫素結構120在感測畫素陣列結構SS中以三個一組,且每組的三個第二感測畫素結構120沿著第二方向D2交錯排列的方式布局。在此,沿著第二方向D2交錯排列的三個第二感測畫素結構120例如構成開口朝向圖1左側的V字形。在第一方向D1上,相鄰兩個第二感測畫素結構120之間例如間隔三個第一感測畫素結構110。另外,在第二方向D2上,相鄰兩組第二感測畫素結構120之間例如間隔分別沿著第一方向D1排列成四列的第一感測畫素結構110。在其他實施例中,上述三個第二感測畫素結構120也可沿著第二方向D2排列成一直線或是一斜線或是散佈的排列,所屬技術領域中具有通常知識者可依據設計需求調整第二感測畫素結構120的數量以及排列方式,本發明並不以此為限。The arrangement and layout of the second sensing pixel structure 120 in the sensing pixel array structure SS can be adjusted according to different requirements. For example, as shown in FIG. 1 , the second sensing pixel structures 120 are arranged in groups of three in the sensing pixel array structure SS, and the three second sensing pixel structures 120 in each group are along the first The layout is arranged in a staggered manner in the two directions D2. Here, the three second sensing pixel structures 120 staggered along the second direction D2 form, for example, a V-shape with an opening facing the left side of FIG. 1 . In the first direction D1 , for example, three first sensing pixel structures 110 are spaced between two adjacent second sensing pixel structures 120 . In addition, in the second direction D2, adjacent two groups of the second sensing pixel structures 120 are, for example, spaced apart from each other along the first direction D1 to form four columns of the first sensing pixel structures 110. In other embodiments, the above-mentioned three second sensing pixel structures 120 can also be arranged in a straight line, an oblique line, or a scattered arrangement along the second direction D2, and those with ordinary knowledge in the art can follow the design requirements. The number and arrangement of the second sensing pixel structures 120 are adjusted, but the invention is not limited to this.

在本實施例中,第一感測畫素結構110及第二感測畫素結構120可具有不同的結構設計而提供不同的感測功能。以相同的初始光入射第一感測畫素結構110及第二感測畫素結構120時,第一感測畫素結構110可直接以第一波形的初始光作為第一感測光來進行感測,而第二感測畫素結構120可將第一波形的初始光調整成具有第二波形的第二感測光,來感測第二感測光。藉由第一感測畫素結構110及第二感測畫素結構120分別感測不同波形的感測光,可產生不同的辨識訊號。感測裝置10可經由演算法分析不同感測畫素結構所感測到的訊號以判斷感測畫素陣列結構SS所感測到的指紋訊號是否異常,從而辨識所獲得的指紋訊號的真偽。In this embodiment, the first sensing pixel structure 110 and the second sensing pixel structure 120 may have different structural designs to provide different sensing functions. When the first sensing pixel structure 110 and the second sensing pixel structure 120 are incident with the same initial light, the first sensing pixel structure 110 can directly use the initial light of the first waveform as the first sensing light for sensing. and the second sensing pixel structure 120 can adjust the initial light of the first waveform to the second sensing light having the second waveform to sense the second sensing light. The first sensing pixel structure 110 and the second sensing pixel structure 120 sense the sensing light of different waveforms, respectively, so as to generate different identification signals. The sensing device 10 can analyze the signals sensed by different sensing pixel structures through an algorithm to determine whether the fingerprint signals sensed by the sensing pixel array structure SS are abnormal, so as to identify the authenticity of the obtained fingerprint signals.

以下,將例示說明可應用於上述實施例中第一感測畫素結構及第二感測畫素結構的實施形態,但本發明並不限定於以下的實施形態。Hereinafter, embodiments applicable to the first sensing pixel structure and the second sensing pixel structure in the above-mentioned embodiments will be illustrated and described, but the present invention is not limited to the following embodiments.

圖2A是圖1的感測裝置中沿剖線I-I’的剖面的第一種實施方式的示意圖。在此必須說明的是,圖2A沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 2A is a schematic diagram of a first embodiment of a cross section along line I-I' in the sensing device of FIG. 1 . It must be noted here that FIG. 2A uses the element numbers and part of the content of the embodiment in FIG. 1 , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

請參照圖2A,感測裝置10A包括基板100、發光面板200以及感測畫素陣列結構SS。在一實施例中,基板100可以是透明基板或非透明基板,其材質可以是石英基板、玻璃基板、高分子基板或其他適當材質,但本發明不以此為限。基板100上可設置用以形成例如訊號線、驅動元件、測試元件、開關元件、儲存電容等的各種膜層。Referring to FIG. 2A , the sensing device 10A includes a substrate 100 , a light emitting panel 200 and a sensing pixel array structure SS. In one embodiment, the substrate 100 may be a transparent substrate or a non-transparent substrate, and the material thereof may be a quartz substrate, a glass substrate, a polymer substrate or other suitable materials, but the invention is not limited thereto. Various film layers such as signal lines, driving elements, test elements, switching elements, storage capacitors, etc. can be formed on the substrate 100 .

在本實施例中,發光面板200具有前側200a與背側200b。以下說明中,可將發光面板200的靠近或是面向手指F的一側稱為發光面板200的前側200a,則相對於發光面板200的前側200a的另一側可稱為發光面板200的背側200b。另外,發光面板200的背側200b也可理解成面向感測畫素陣列結構SS的一側。也就是說,發光面板200的背側200b位於感測畫素陣列結構SS與發光面板200的前側200a之間。發光面板200適於由前側200a發出光線,因此前側200a可理解為發光面板200的出光側。In this embodiment, the light emitting panel 200 has a front side 200a and a back side 200b. In the following description, the side of the light emitting panel 200 close to or facing the finger F may be referred to as the front side 200a of the light emitting panel 200, and the other side relative to the front side 200a of the light emitting panel 200 may be referred to as the back side of the light emitting panel 200 200b. In addition, the back side 200b of the light emitting panel 200 can also be understood as the side facing the sensing pixel array structure SS. That is, the back side 200b of the light emitting panel 200 is located between the sensing pixel array structure SS and the front side 200a of the light emitting panel 200 . The light-emitting panel 200 is suitable for emitting light from the front side 200 a , so the front side 200 a can be understood as the light-emitting side of the light-emitting panel 200 .

在本實施例中,發光面板200適於發出第一波形的初始光210。在一實施例中,第一波形所涵蓋的波長範圍可依據發光面板200的發光件的設計而決定。第一波形的初始光210例如是由可見光組合而成。舉例來說,第一波形的初始光210可由不同顏色的可見光組合而成,使得第一波形落在400 nm至700 nm的範圍內。為了方便說明,在此可依據波長範圍將第一波形的初始光210劃分成第一短波長部分212、第一長波長部分214及第一中波長部分216。In this embodiment, the light emitting panel 200 is adapted to emit the initial light 210 of the first waveform. In one embodiment, the wavelength range covered by the first waveform may be determined according to the design of the light-emitting elements of the light-emitting panel 200 . The initial light 210 of the first waveform is composed of visible light, for example. For example, the initial light 210 of the first waveform may be composed of visible light of different colors, such that the first waveform falls within the range of 400 nm to 700 nm. For the convenience of description, the initial light 210 of the first waveform can be divided into a first short wavelength part 212 , a first long wavelength part 214 and a first medium wavelength part 216 according to the wavelength range.

在本實施例中,感測畫素陣列結構SS位於發光面板200的背側200b,且感測畫素陣列結構SS位於基板100及發光面板200之間。在本實施例中,感測畫素陣列結構SS的第一感測畫素結構110包括第一感測元件112。第一感測畫素結構110以第一波形的初始光210作為第一感測光,並提供給第一感測元件112感測。也就是說,第一感測畫素結構110可以不改變初始光210的波形使得第一感測元件112感測到的第一感測光具有相同於初始光210的第一波形。換言之,第一感測元件112感測到的第一感測光例如由初始光210的第一短波長部分212、第一長波長部分214及第一中波長部分216所組成。在一實施例中,第一感測元件112可以包括讀取電路結構、電極層、感測層等各種膜層及/或構件(未繪示)。In this embodiment, the sensing pixel array structure SS is located on the back side 200 b of the light emitting panel 200 , and the sensing pixel array structure SS is located between the substrate 100 and the light emitting panel 200 . In this embodiment, the first sensing pixel structure 110 of the sensing pixel array structure SS includes a first sensing element 112 . The first sensing pixel structure 110 uses the initial light 210 of the first waveform as the first sensing light, and provides the first sensing element 112 for sensing. That is, the first sensing pixel structure 110 may not change the waveform of the initial light 210 so that the first sensing light sensed by the first sensing element 112 has the same first waveform as the initial light 210 . In other words, the first sensing light sensed by the first sensing element 112 is composed of, for example, the first short wavelength portion 212 , the first long wavelength portion 214 and the first medium wavelength portion 216 of the initial light 210 . In one embodiment, the first sensing element 112 may include various film layers and/or components (not shown) such as reading circuit structures, electrode layers, and sensing layers.

在本實施例中,感測畫素陣列結構SS的第二感測畫素結測畫素結構120的每一者可包括第二感測元件122以及光轉換層124。光轉換層124具有波長轉換特性,其吸收峰值波長小於激發峰值波長。光轉換層124的吸收峰值波長可落在第一波形的波長範圍內且光轉換層124的激發峰值波長例如在400 nm至750 nm的範圍內,但不以此為限。也就是說,光轉換層124可吸收第一波形的初始光210中的一部分並將被吸收的部分轉換為具有較長波長範圍的光。在一實施例中,光轉換層124可包含量子點或螢光粉等。因此,第二感測畫素結構120適於將第一波形的初始光210調整成第二感測光220,以提供給第二感測元件122感測,其中第二感測光220所具有的第二波形不同於初始光210所具有的第一波形。In this embodiment, each of the second sensing pixel and pixel structures 120 of the sensing pixel array structure SS may include a second sensing element 122 and a light conversion layer 124 . The light conversion layer 124 has wavelength conversion properties, and its absorption peak wavelength is smaller than the excitation peak wavelength. The absorption peak wavelength of the light conversion layer 124 may fall within the wavelength range of the first waveform and the excitation peak wavelength of the light conversion layer 124 may be, for example, in the range of 400 nm to 750 nm, but not limited thereto. That is, the light conversion layer 124 may absorb a portion of the initial light 210 of the first waveform and convert the absorbed portion into light having a longer wavelength range. In one embodiment, the light conversion layer 124 may include quantum dots, phosphors, or the like. Therefore, the second sensing pixel structure 120 is suitable for adjusting the initial light 210 of the first waveform into the second sensing light 220 to provide the second sensing element 122 for sensing, wherein the second sensing light 220 has the first The second waveform is different from the first waveform that the initial light 210 has.

在本實施例中,第一感測畫素結構110及第二感測畫素結構120各自還包括依序疊置於第一感測元件112、第二感測元件122上的光準直結構LS與透鏡ML。In this embodiment, each of the first sensing pixel structure 110 and the second sensing pixel structure 120 further includes a light collimation structure stacked on the first sensing element 112 and the second sensing element 122 in sequence LS and lens ML.

如圖2A所示,光準直結構LS可包括依序疊置於基板100上的第一絕緣層130、第一遮光層BM1、第二絕緣層132、第二遮光層BM2及第三絕緣層134。在一實施例中,第一絕緣層130例如包覆第一感測元件112的頂面與側面以及各第二感測元件122的頂面與側面。第一遮光層BM1例如具有多個第一開口V1,且第一開口V1可暴露出部分的第一絕緣層130。在本實施例中,多個第一開口V1可分別對應於第一感測元件112與各第二感測元件122。第二絕緣層132例如填滿第一遮光層BM1的第一開口V1,且覆蓋第一遮光層BM1的頂面。第二遮光層BM2例如具有多個第二開口V2,且第二開口V2可暴露出部分的第二絕緣層132。在本實施例中,第二開口V2可對應於第一開口V1。如此一來,第一感測元件112與各第二感測元件122便可接收通過第一開口V1及第二開口V2調控的光線而進行感測。As shown in FIG. 2A , the light collimation structure LS may include a first insulating layer 130 , a first light shielding layer BM1 , a second insulating layer 132 , a second light shielding layer BM2 and a third insulating layer stacked on the substrate 100 in sequence 134. In one embodiment, the first insulating layer 130 covers, for example, the top surface and the side surface of the first sensing element 112 and the top surface and the side surface of each second sensing element 122 . The first light shielding layer BM1 has, for example, a plurality of first openings V1 , and the first openings V1 can expose part of the first insulating layer 130 . In this embodiment, the plurality of first openings V1 may correspond to the first sensing elements 112 and the second sensing elements 122 respectively. The second insulating layer 132, for example, fills the first opening V1 of the first light shielding layer BM1 and covers the top surface of the first light shielding layer BM1. For example, the second light shielding layer BM2 has a plurality of second openings V2 , and the second openings V2 may expose part of the second insulating layer 132 . In this embodiment, the second opening V2 may correspond to the first opening V1. In this way, the first sensing element 112 and each of the second sensing elements 122 can receive the light controlled by the first opening V1 and the second opening V2 for sensing.

第三絕緣層134例如填滿第二遮光層BM2的第二開口V2,且覆蓋第二遮光層BM2的頂面。在一實施例中,第一絕緣層130及第二絕緣層132的材質可以包括有機材料,例如壓克力材料、矽氧烷材料、聚醯亞胺材料、環氧樹脂材料或上述材料的疊層,但本發明不限於此。第一遮光層BM1及第二遮光層BM2的材質可以包括金屬、黑色樹脂或石墨等遮光材料、或上述遮光材料的疊層,但本發明不限於此。第三絕緣層134的材質可以包括無機材料或有機材料,其中無機材料例如為氧化矽、氮化矽、氮氧化矽或上述材料的疊層等,有機材料例如為壓克力材料、矽氧烷材料、聚醯亞胺材料、環氧樹脂材料或上述材料的疊層等。需說明的是,雖然圖2A中第三絕緣層134僅繪示為單層結構,但在其他實施例中,第三絕緣層134也可為多層結構。舉例來說,第三絕緣層134也可為兩層、三層或四層結構,可依據設計需求調整第三絕緣層134的層數及其材料,本發明並不以此為限。The third insulating layer 134, for example, fills the second opening V2 of the second light shielding layer BM2, and covers the top surface of the second light shielding layer BM2. In one embodiment, the materials of the first insulating layer 130 and the second insulating layer 132 may include organic materials, such as acrylic materials, siloxane materials, polyimide materials, epoxy resin materials, or a stack of the above materials. layer, but the present invention is not limited thereto. The material of the first light-shielding layer BM1 and the second light-shielding layer BM2 may include light-shielding materials such as metal, black resin, or graphite, or a stack of the above-mentioned light-shielding materials, but the present invention is not limited thereto. The material of the third insulating layer 134 may include inorganic materials or organic materials, wherein the inorganic materials are, for example, silicon oxide, silicon nitride, silicon oxynitride, or a stack of the above materials, and the organic materials are, for example, acrylic materials, siloxanes, etc. material, polyimide material, epoxy resin material, or a laminate of the above materials, etc. It should be noted that although the third insulating layer 134 in FIG. 2A is only shown as a single-layer structure, in other embodiments, the third insulating layer 134 may also be a multi-layer structure. For example, the third insulating layer 134 can also be a two-layer, three-layer or four-layer structure. The number of layers and the material of the third insulating layer 134 can be adjusted according to design requirements, but the invention is not limited thereto.

多個透鏡ML位於光準直結構LS及發光面板200之間。在本實施例中,光準直結構LS上還設置有第三遮光層BM3。第三遮光層BM3例如具有多個第三開口V3,且第三開口V3可暴露出部分的第三絕緣層134。在本實施例中,第三開口V3可對應於第二開口V2。在一實施例中,第三遮光層BM3的材質可以包括金屬、黑色樹脂或石墨等遮光材料、或上述遮光材料的疊層,但本發明不限於此。透鏡ML例如設置於第三開口V3中。透鏡ML可以是中心厚度較邊緣厚度大的透鏡結構,例如對稱雙凸透鏡、非對稱雙凸透鏡、平凸透鏡或凹凸透鏡。透鏡ML可以提升光準直,使散射光或折射光所導致之漏光及混光的問題能夠降低,進而減少光損耗。A plurality of lenses ML are located between the light collimation structure LS and the light emitting panel 200 . In this embodiment, a third light shielding layer BM3 is further provided on the light collimation structure LS. For example, the third light shielding layer BM3 has a plurality of third openings V3 , and the third openings V3 may expose part of the third insulating layer 134 . In this embodiment, the third opening V3 may correspond to the second opening V2. In one embodiment, the material of the third light-shielding layer BM3 may include light-shielding materials such as metal, black resin or graphite, or a stack of the above-mentioned light-shielding materials, but the present invention is not limited thereto. The lens ML is disposed in the third opening V3, for example. The lens ML may be a lens structure with a larger central thickness than an edge thickness, such as a symmetric lenticular lens, an asymmetric lenticular lens, a plano-convex lens, or a meniscus lens. The lens ML can improve light collimation, so that the problems of light leakage and light mixing caused by scattered light or refracted light can be reduced, thereby reducing light loss.

另一方面,發光面板200的出光方向例如遠離感測畫素陣列結構SS。如此一來,當手指F靠近發光面板200的前側200a時,發光面板200所發出的第一波形的初始光210可被手指F反射,被手指F反射的第一波形的初始光210可以先通過透鏡ML、第二開口V2以及第一開口V1提升準直度,再進入第一感測元件112以及各第二感測元件122,以使第一感測元件112及各第二感測元件122可以取得品質良好的指紋訊號,從而使感測裝置10A具有良好的指紋辨識度。On the other hand, the light emitting direction of the light emitting panel 200 is, for example, away from the sensing pixel array structure SS. In this way, when the finger F approaches the front side 200a of the light emitting panel 200, the initial light 210 of the first waveform emitted by the light emitting panel 200 can be reflected by the finger F, and the initial light 210 of the first waveform reflected by the finger F can pass through first. The lens ML, the second opening V2 and the first opening V1 improve the collimation, and then enter the first sensing element 112 and each second sensing element 122, so that the first sensing element 112 and each second sensing element 122 A fingerprint signal with good quality can be obtained, so that the sensing device 10A has a good fingerprint recognition degree.

第二感測畫素結構120的光轉換層124位於第二感測元件122與發光面板200之間。在本實施例中,光轉換層124例如位於透鏡ML及感測元件122A之間。具體而言,光轉換層124例如位於第三絕緣層134中靠近透鏡ML的一側。雖然圖2A中繪示為光轉換層124直接接觸透鏡ML的底部,但在其他實施例中,光轉換層124與透鏡ML之間可間隔一距離;或者在第三絕緣層134為多層結構的情況下,還間隔有多層結構的其中至少一層,只要光轉換層124位於第一波形的初始光210的行經路線上即可,本發明不以此為限。The light conversion layer 124 of the second sensing pixel structure 120 is located between the second sensing element 122 and the light emitting panel 200 . In this embodiment, the light conversion layer 124 is, for example, located between the lens ML and the sensing element 122A. Specifically, the light conversion layer 124 is located, for example, on the side of the third insulating layer 134 close to the lens ML. Although it is shown in FIG. 2A that the light conversion layer 124 directly contacts the bottom of the lens ML, in other embodiments, the light conversion layer 124 and the lens ML can be separated by a distance; or the third insulating layer 134 has a multi-layer structure. In this case, at least one layer of the multi-layer structure is also spaced apart, as long as the light conversion layer 124 is located on the traveling path of the initial light 210 of the first waveform, and the present invention is not limited thereto.

在本實施例中,第二感測光220包括經由光轉換層124轉換第一波形的初始光210的一部分而獲得的轉換光,以及通過光轉換層124但未經光轉換層124轉換過的第一波形的初始光210的另一部分。依據波長轉換特性,第二感測畫素結構120可包括三種設計,例如第二感測畫素結構120A、第二感測畫素結構120B以及第二感測畫素結構120C。第二感測畫素結構120A可包括用於將第一波形的初始光210調整成第二感測光220A的光轉換層124A以及感測第二感測光220A的第二感測元件122A;第二感測畫素結構120B可包括用於將第一波形的初始光210調整成第二感測光220B的光轉換層124B以及感測第二感測光220B的第二感測元件122B;第二感測畫素結構120C可包括用於將第一波形的初始光210調整成第二感測光220C的光轉換層124C以及感測第二感測光220C的第二感測元件122C。不過,在一些實施例中,多個第二感測畫素結構120可以僅具有同一種設計,或是整個感測裝置10A可以僅包括單一個第二感測畫素結構120。In this embodiment, the second sensed light 220 includes converted light obtained by converting a part of the initial light 210 of the first waveform via the light conversion layer 124 , and the second light that passes through the light conversion layer 124 but is not converted by the light conversion layer 124 . Another portion of the initial light 210 of a waveform. According to the wavelength conversion characteristics, the second sensing pixel structure 120 can include three designs, such as the second sensing pixel structure 120A, the second sensing pixel structure 120B and the second sensing pixel structure 120C. The second sensing pixel structure 120A may include a light conversion layer 124A for adjusting the initial light 210 of the first waveform into the second sensing light 220A and a second sensing element 122A for sensing the second sensing light 220A; the second sensing element 122A; The sensing pixel structure 120B may include a light conversion layer 124B for adjusting the initial light 210 of the first waveform to the second sensing light 220B and a second sensing element 122B for sensing the second sensing light 220B; the second sensing The pixel structure 120C may include a light conversion layer 124C for adjusting the initial light 210 of the first waveform into the second sensing light 220C, and a second sensing element 122C for sensing the second sensing light 220C. However, in some embodiments, the plurality of second sensing pixel structures 120 may only have the same design, or the entire sensing device 10A may include only a single second sensing pixel structure 120 .

以下將例示說明第二感測畫素結構120A、第二感測畫素結構120B及第二感測畫素結構120C中分別獲得的第二感測光220A、第二感測光220B及第二感測光220C的實施形態,但本發明並不限定於以下的實施形態。The second sensing light 220A, the second sensing light 220B, and the second sensing light obtained in the second sensing pixel structure 120A, the second sensing pixel structure 120B, and the second sensing pixel structure 120C, respectively, will be illustrated below. 220C, but the present invention is not limited to the following embodiments.

在第二感測畫素結構120A中,光轉換層124A的波長轉換特性例如可將初始光210的第一短波長部分212轉換為第一轉換光222,但不轉換初始光210的第一長波長部分214及第一中波長部分216。也就是說,第一短波長部分212的波長範圍可以為光轉換層124A的吸收波長範圍,而第一轉換光222的波長範圍可以為光轉換層124A的激發波長範圍。因此,第二感測畫素結構120A的第二感測元件122A可接受經由光轉換層124A轉換過的第一轉換光222以及通過光轉換層124A但未經光轉換層124A轉換過的第一長波長部分214及第一中波長部分216。如此一來,第二感測元件122A接收由第一轉換光222、第一長波長部分214及第一中波長部分216相互疊加而形成的第二感測光220A。在一些實施例中,初始光210的第一短波長部分212可能並未完全被光轉換層124A吸收,因此第二感測光220A甚至可包括部分的未被轉換的第一短波長部分212。在一些實施例中,第一短波長部分212、第一長波長部分214及第一中波長部分216分別呈現為藍色、紅色與綠色,而第一轉換光222例如呈現為紅色,則第二感測光220A相較於初始光210而言例如偏橘色。In the second sensing pixel structure 120A, the wavelength conversion characteristic of the light conversion layer 124A can, for example, convert the first short wavelength portion 212 of the initial light 210 into the first converted light 222 , but does not convert the first long wavelength of the initial light 210 . The wavelength portion 214 and the first mid-wavelength portion 216 . That is, the wavelength range of the first short wavelength portion 212 may be the absorption wavelength range of the light conversion layer 124A, and the wavelength range of the first converted light 222 may be the excitation wavelength range of the light conversion layer 124A. Therefore, the second sensing element 122A of the second sensing pixel structure 120A can receive the first converted light 222 converted by the light conversion layer 124A and the first converted light 222 that has passed through the light conversion layer 124A but is not converted by the light conversion layer 124A. Long wavelength portion 214 and first medium wavelength portion 216 . In this way, the second sensing element 122A receives the second sensing light 220A formed by the overlapping of the first converted light 222 , the first long wavelength portion 214 and the first medium wavelength portion 216 . In some embodiments, the first short wavelength portion 212 of the initial light 210 may not be fully absorbed by the light conversion layer 124A, so the second sensed light 220A may even include a portion of the unconverted first short wavelength portion 212 . In some embodiments, the first short-wavelength portion 212 , the first long-wavelength portion 214 and the first medium-wavelength portion 216 appear blue, red, and green, respectively, and the first converted light 222 appears red, for example, then the second The sensing light 220A is, for example, orange in color compared to the initial light 210 .

在第二感測畫素結構120B中,光轉換層124B的光轉換特性例如可將初始光210的第一短波長部分212轉換為第二轉換光224,但不轉換初始光210的第一長波長部分214及第一中波長部分216。如此一來,第二感測元件122B接收由第二轉換光224、第一長波長部分214及第一中波長部分216相互疊加而形成的第二感測光220B。在一些實施例中,初始光210的第一短波長部分212可能並未完全被光轉換層124B吸收,因此第二感測光220B甚至可包括部分的未被轉換的第一短波長部分212。在一些實施例中,第一短波長部分212、第一長波長部分214及第一中波長部分216分別呈現為藍色、紅色與綠色,而第二轉換光224例如呈現為綠色,則第二感測光220B相較於初始光210而言偏黃綠色。In the second sensing pixel structure 120B, the light conversion properties of the light conversion layer 124B can, for example, convert the first short wavelength portion 212 of the initial light 210 into the second converted light 224 , but do not convert the first long wavelength portion of the initial light 210 . The wavelength portion 214 and the first mid-wavelength portion 216 . In this way, the second sensing element 122B receives the second sensing light 220B formed by the overlapping of the second converted light 224 , the first long-wavelength portion 214 and the first medium-wavelength portion 216 . In some embodiments, the first short wavelength portion 212 of the initial light 210 may not be fully absorbed by the light conversion layer 124B, so the second sensed light 220B may even include a portion of the unconverted first short wavelength portion 212 . In some embodiments, the first short-wavelength portion 212 , the first long-wavelength portion 214 and the first medium-wavelength portion 216 appear blue, red, and green, respectively, and the second converted light 224 appears green, for example, then the second The sensing light 220B is yellowish green compared to the initial light 210 .

在第二感測畫素結構120C中,光轉換層124C的光轉換特性例如可將初始光210的第一短波長部分212轉換為第三轉換光226,但不轉換初始光210的第一長波長部分214及第一中波長部分216。如此一來,第二感測元件122C接收由第三轉換光226、第一長波長部分214及第一中波長部分216相互疊加而形成的第二感測光220C。在一些實施例中,初始光210的第一短波長部分212可能並未完全被光轉換層124C吸收,因此第二感測光220C甚至可包括部分的未被轉換的第一短波長部分212。在一些實施例中,第三轉換光226的波長範圍不同於第一短波長部分212的波長範圍。具體而言,第三轉換光226的波長範圍例如是第一短波長部分212的波長範圍朝向長波長範圍的方向偏移。舉例來說,第三轉換光226的波長範圍可介於第一短波長部分212的波長範圍及第一中波長部分216的波長範圍之間。在一些實施例中,由於第三轉換光226的波長範圍相較於第一短波長部分212朝向長波長範圍偏移,則第二感測光220C例如呈現與初始光210不同的光。In the second sensing pixel structure 120C, the light conversion properties of the light conversion layer 124C may, for example, convert the first short wavelength portion 212 of the initial light 210 into the third converted light 226 , but do not convert the first long wavelength portion of the initial light 210 . The wavelength portion 214 and the first mid-wavelength portion 216 . In this way, the second sensing element 122C receives the second sensing light 220C formed by the overlapping of the third converted light 226 , the first long wavelength portion 214 and the first medium wavelength portion 216 . In some embodiments, the first short wavelength portion 212 of the initial light 210 may not be fully absorbed by the light conversion layer 124C, so the second sensed light 220C may even include a portion of the unconverted first short wavelength portion 212 . In some embodiments, the wavelength range of the third converted light 226 is different from the wavelength range of the first short wavelength portion 212 . Specifically, the wavelength range of the third converted light 226 is, for example, a direction in which the wavelength range of the first short wavelength portion 212 is shifted toward the long wavelength range. For example, the wavelength range of the third converted light 226 may be between the wavelength range of the first short wavelength portion 212 and the wavelength range of the first medium wavelength portion 216 . In some embodiments, since the wavelength range of the third converted light 226 is shifted toward the long wavelength range compared to the first short wavelength portion 212 , the second sensing light 220C, for example, exhibits a different light than the initial light 210 .

光轉換層124的波長轉換作用可改變光的波長範圍但不會大幅吸收光線。因此,經由光轉換層124可將被手指F反射而入射至第二感測畫素結構120的第一波形的初始光210調整成第二波形的第二感測光220,但不會導致明顯的光量損失。如此一來,第二感測元件122A、第二感測元件122B及第二感測元件122C可接收足夠光量的第二感測光220,從而提升感測元件的正確性。換言之,藉由光傳換層124的設置可增強感測元件所接收到的訊號強度,從而改善感測裝置10A的品質,以提升指紋防偽效果。The wavelength conversion function of the light conversion layer 124 can change the wavelength range of light without absorbing the light significantly. Therefore, the initial light 210 of the first waveform reflected by the finger F and incident on the second sensing pixel structure 120 can be adjusted to the second sensing light 220 of the second waveform through the light conversion layer 124 , but it will not cause obvious light loss. In this way, the second sensing element 122A, the second sensing element 122B, and the second sensing element 122C can receive a sufficient amount of the second sensing light 220, thereby improving the accuracy of the sensing elements. In other words, the signal strength received by the sensing element can be enhanced by the arrangement of the light-transmitting layer 124 , thereby improving the quality of the sensing device 10A and enhancing the fingerprint anti-counterfeiting effect.

在一些實施例中,第一感測元件112與各第二感測元件122的吸收頻譜可依據感測層材料或是感測結構的設計而有所限定。舉例而言,採用富矽氧化層(Silicon-rich oxide;SRO)作為感測層的感測元件大致具有波長範圍落在480 nm至520 nm的吸收頻譜,而具有PIN二極體結構的感測元件大致具有波長範圍落在580 nm至620 nm的吸收頻譜。因此,初始光210的第一短波長部分212、第一長波長部分214及第一中波長部分216並非都可有效致使感測元件感測。對於數量較少的第二感測畫素結構120而言,第二感測元件122的感測效率可能受到限制。不過,本實施例在數量較少的第二感測畫素結構120中設置光轉換層124,可藉由光轉換材料的選擇,讓第二感測光220的更多部分的光線具有落在感測元件的吸收頻譜中的波長,從而有助於提升第二感測元件122的感測靈敏性及感測效率。因此,感測裝置10A可以具有理想的防偽辨識功能。In some embodiments, the absorption spectrum of the first sensing element 112 and each of the second sensing elements 122 may be defined according to the material of the sensing layer or the design of the sensing structure. For example, a sensing element using a silicon-rich oxide (SRO) as a sensing layer generally has an absorption spectrum in the wavelength range of 480 nm to 520 nm, and a sensing element with a PIN diode structure The element generally has an absorption spectrum with wavelengths ranging from 580 nm to 620 nm. Therefore, not all of the first short wavelength portion 212, the first long wavelength portion 214, and the first medium wavelength portion 216 of the initial light 210 can effectively cause the sensing element to sense. For a small number of second sensing pixel structures 120, the sensing efficiency of the second sensing element 122 may be limited. However, in this embodiment, the light conversion layer 124 is arranged in a small number of the second sensing pixel structures 120 , so that more part of the light of the second sensing light 220 can fall on the sensor by selecting the light conversion material. The wavelengths in the absorption spectrum of the sensing element are thus helpful to improve the sensing sensitivity and sensing efficiency of the second sensing element 122 . Therefore, the sensing device 10A can have an ideal anti-counterfeiting identification function.

圖2B是圖1的感測裝置中沿剖線I-I’的剖面的第二種實施方式的示意圖。在此必須說明的是,圖2B沿用圖2A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 2B is a schematic diagram of a second embodiment of the cross section along line I-I' in the sensing device of FIG. 1 . It must be noted here that FIG. 2B uses the element numbers and part of the content of the embodiment in FIG. 2A , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖2B所示的感測裝置10B與圖2A所示的感測裝置10A相比的不同之處在於:光轉換層124位於發光面板200及透鏡ML之間。In this embodiment, the difference between the sensing device 10B shown in FIG. 2B and the sensing device 10A shown in FIG. 2A is that the light conversion layer 124 is located between the light emitting panel 200 and the lens ML.

具體而言,光轉換層124例如位於發光面板200的背側200b上。因此,被手指F反射的第一波形的初始光210可先經由光轉換層124調整成第二波形的第二感測光220,再通過透鏡ML、第二開口V2及第一開口V1提升準直度。通常經由光轉換層124調整而成的第二感測光220會較初始光210發散,因此感測裝置10B的第二感測光220還通過透鏡ML,以進一步提升其準直度,使各第二感測元件122可以接受到品質良好的指紋訊號,從而改善感測裝置10B的指紋防偽效果。Specifically, the light conversion layer 124 is, for example, located on the backside 200b of the light emitting panel 200 . Therefore, the initial light 210 of the first waveform reflected by the finger F can be adjusted to the second sensing light 220 of the second waveform through the light conversion layer 124, and then the lens ML, the second opening V2 and the first opening V1 are used to improve the collimation Spend. Usually, the second sensing light 220 adjusted by the light conversion layer 124 is more divergent than the initial light 210. Therefore, the second sensing light 220 of the sensing device 10B also passes through the lens ML to further improve its collimation, so that the second sensing light 220 of the sensing device 10B is further improved. The sensing element 122 can receive a fingerprint signal of good quality, thereby improving the fingerprint anti-counterfeiting effect of the sensing device 10B.

圖2C是圖1的感測裝置中沿剖線I-I’的剖面的第三種實施方式的示意圖。在此必須說明的是,圖2C沿用圖2A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 2C is a schematic diagram of a third embodiment of the cross section along line I-I' of the sensing device of FIG. 1 . It must be noted here that FIG. 2C uses the element numbers and part of the content of the embodiment of FIG. 2A , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖2C所示的感測裝置10C與圖2A所示的感測裝置10A相比的不同之處在於:光轉換層124設置於透鏡ML的表面MLa上。In this embodiment, the difference between the sensing device 10C shown in FIG. 2C and the sensing device 10A shown in FIG. 2A is that the light conversion layer 124 is disposed on the surface MLa of the lens ML.

具體而言,光轉換層124例如位於透鏡ML的面向發光面板200的表面MLa上。因此,被手指F反射的第一波形的初始光210可先經由光轉換層124調整成第二波形的第二感測光220,且第二感測光220直接通過透鏡ML,再通過第二開口V2及第一開口V1提升準直度。如此一來,第二感測光220直接通過透鏡ML可避免因光轉換層124所導致的發散現象的產生,從而改善感測裝置10C的指紋防偽效果。Specifically, the light conversion layer 124 is, for example, located on the surface MLa of the lens ML facing the light emitting panel 200 . Therefore, the initial light 210 of the first waveform reflected by the finger F can be adjusted into the second sensing light 220 of the second waveform through the light conversion layer 124, and the second sensing light 220 directly passes through the lens ML, and then passes through the second opening V2 and the first opening V1 to improve the collimation degree. In this way, the second sensing light 220 directly passes through the lens ML to avoid the divergence phenomenon caused by the light conversion layer 124 , thereby improving the fingerprint anti-counterfeiting effect of the sensing device 10C.

圖3是依照本發明的另一實施例的一種感測裝置的俯視示意圖。在此必須說明的是,圖3沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 3 is a schematic top view of a sensing device according to another embodiment of the present invention. It must be noted here that FIG. 3 uses the element numbers and part of the content of the embodiment in FIG. 1 , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖3所示的感測裝置20與圖1所示的感測裝置10相比的不同之處在於:感測裝置20的感測畫素陣列結構SS還包括至少一第三感測畫素結構300。具體來說,感測裝置20的感測畫素陣列結構SS包含成陣列排列的多個第一感測畫素結構110、至少一第二感測畫素結構120以及至少一第三感測畫素結構300。In this embodiment, the difference between the sensing device 20 shown in FIG. 3 and the sensing device 10 shown in FIG. 1 is that the sensing pixel array structure SS of the sensing device 20 further includes at least one first The three-sensing pixel structure 300 . Specifically, the sensing pixel array structure SS of the sensing device 20 includes a plurality of first sensing pixel structures 110 , at least one second sensing pixel structure 120 and at least one third sensing pixel structure arranged in an array. Elemental structure 300.

在一實施例中,第三感測畫素結構300例如可與第二感測畫素結構120同樣是作為防偽辨識之用。舉例來說,第三感測畫素結構300可用於判別與第二感測畫素結構120不同的防偽辨識訊息,從而有助於提升辨識結果的正確性。如圖3所示,第二感測畫素結構120的數量可多於第三感測畫素結構300的數量。In one embodiment, the third sensing pixel structure 300 can be used for anti-counterfeiting identification as the second sensing pixel structure 120, for example. For example, the third sensing pixel structure 300 can be used to discriminate anti-counterfeiting identification information different from the second sensing pixel structure 120, thereby helping to improve the accuracy of the identification result. As shown in FIG. 3 , the number of the second sensing pixel structures 120 may be greater than the number of the third sensing pixel structures 300 .

在本實施例中,第三感測畫素結構300雖以多個為例來說明,但不以此為限。在一些實施例中,排成陣列以構成感測畫素陣列結構SS的感測畫素結構中可以僅包括單一個第三感測畫素結構300。In this embodiment, although a plurality of third sensing pixel structures 300 are used as an example for description, it is not limited thereto. In some embodiments, the sensing pixel structures arranged in an array to form the sensing pixel array structure SS may include only a single third sensing pixel structure 300 .

在本實施例中,第一感測畫素結構110佔整體感測畫素陣列結構SS的配置面積比例大於第二感測畫素結構120及第三感測畫素結構300佔整體感測畫素陣列結構SS的配置面積比例。舉例來說,第二感測畫素結構120及第三感測畫素結構300的配置面積總和佔整體感測畫素陣列結構SS的配置面積比例較佳為少於10%,但超過0%。也就是說,第一感測畫素結構110佔整體感測畫素陣列結構SS的配置面積大於90%,但未達100%。In this embodiment, the proportion of the configuration area of the first sensing pixel structure 110 in the entire sensing pixel array structure SS is larger than that of the second sensing pixel structure 120 and the third sensing pixel structure 300 in the entire sensing image The configuration area ratio of the pixel array structure SS. For example, the ratio of the total arrangement area of the second sensing pixel structure 120 and the third sensing pixel structure 300 to the overall arrangement area of the sensing pixel array structure SS is preferably less than 10%, but exceeds 0% . That is to say, the configuration area of the first sensing pixel structure 110 in the entire sensing pixel array structure SS is greater than 90%, but less than 100%.

第三感測畫素結構300在感測畫素陣列結構SS中的排列布局方式可依不同需求而調整。舉例而言,如圖3所示,感測裝置20例如是將感測裝置10的多個第二感測畫素結構120的其中一者取代為第三感測畫素結構300。也就是說,在感測裝置20的感測畫素陣列結構SS中,以二個第二感測畫素結構120與一個第三感測畫素結構300為一組,且每組的第二感測畫素結構120與第三感測畫素結構300沿著第二方向D2交錯排列的方式布局。在此,第三感測畫素結構300例如位於每組感測畫素結構的一側,而僅相鄰於一個第二感測畫素結構120。在其他實施例中,第三感測畫素結構300也可位於每組感測畫素結構的中間部分,而相鄰於二個第二感測畫素結構120;或者第三感測畫素結構300可不與第二感測畫素結構120相鄰而散佈的排列。所屬技術領域中具有通常知識者可依據設計需求調整第三感測畫素結構300的數量以及排列方式,本發明並不以此為限。The arrangement and layout of the third sensing pixel structure 300 in the sensing pixel array structure SS can be adjusted according to different requirements. For example, as shown in FIG. 3 , for example, the sensing device 20 replaces one of the second sensing pixel structures 120 of the sensing device 10 with the third sensing pixel structure 300 . That is to say, in the sensing pixel array structure SS of the sensing device 20, two second sensing pixel structures 120 and one third sensing pixel structure 300 are set as a group, and the second sensing pixel structure 300 in each set is The sensing pixel structures 120 and the third sensing pixel structures 300 are arranged in a staggered manner along the second direction D2. Here, the third sensing pixel structure 300 is, for example, located on one side of each set of sensing pixel structures, and is only adjacent to one second sensing pixel structure 120 . In other embodiments, the third sensing pixel structure 300 may also be located in the middle part of each set of sensing pixel structures, adjacent to the two second sensing pixel structures 120; or the third sensing pixel structure The structures 300 may be arranged not adjacent to the second sensing pixel structures 120 but interspersed. Those skilled in the art can adjust the number and arrangement of the third sensing pixel structures 300 according to design requirements, and the present invention is not limited thereto.

在本實施例中,第三感測畫素結構300可具有與第一感測畫素結構110及第二感測畫素結構120不同的結構設計而提供不同的感測功能。舉例而言,第三感測畫素結構300可將第一波形的初始光調整成具有第三波形的第三感測光,來感測第三感測光。藉由第一感測畫素結構110、第二感測畫素結構120及第三感測畫素結構300分別感測不同波形的感測光,可產生更多種類的辨識訊號,從而提升感測裝置20的正確性。In this embodiment, the third sensing pixel structure 300 may have a different structure design from the first sensing pixel structure 110 and the second sensing pixel structure 120 to provide different sensing functions. For example, the third sensing pixel structure 300 can adjust the initial light of the first waveform to the third sensing light having the third waveform to sense the third sensing light. Through the first sensing pixel structure 110 , the second sensing pixel structure 120 and the third sensing pixel structure 300 to sense the sensing light of different waveforms respectively, more kinds of identification signals can be generated, thereby improving the sensing Correctness of device 20.

以下,將例示說明可應用於上述實施例中第一感測畫素結構、第二感測畫素結構及第三感測畫素結構的實施形態,但本發明並不限定於以下的實施形態。Hereinafter, the embodiments applicable to the first sensing pixel structure, the second sensing pixel structure and the third sensing pixel structure in the above-mentioned embodiments will be exemplified, but the present invention is not limited to the following embodiments .

圖4A是圖3的感測裝置中沿剖線I-I’的剖面的第一種實施方式的示意圖。在此必須說明的是,圖4A沿用圖2A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 4A is a schematic diagram of a first embodiment of the cross-section along the line I-I' in the sensing device of FIG. 3 . It must be noted here that FIG. 4A uses the element numbers and part of the content of the embodiment in FIG. 2A , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖4A所示的感測裝置20A與圖2A所示的感測裝置10A相比的不同之處在於:感測裝置20A中以第三感測畫素結構300取代感測裝置10A的第二感測畫素結構120C。具體來說,感測裝置20A的感測畫素陣列結構SS例如包括第一感測畫素結構110、第二感測畫素結構120A、第二感測畫素結構120B及第三感測畫素結構300。在其他實施例中,第三感測畫素結構300可取代第二感測畫素結構120A、第二感測畫素結構120B、第二感測畫素結構120C或上述感測畫素結構的其中兩者的組合,本發明不以此為限。In this embodiment, the difference between the sensing device 20A shown in FIG. 4A and the sensing device 10A shown in FIG. 2A is that the sensing device 20A is replaced by a third sensing pixel structure 300 for sensing The second sensing pixel structure 120C of the device 10A. Specifically, the sensing pixel array structure SS of the sensing device 20A includes, for example, a first sensing pixel structure 110 , a second sensing pixel structure 120A, a second sensing pixel structure 120B, and a third sensing pixel structure 120B. Elemental structure 300. In other embodiments, the third sensing pixel structure 300 may replace the second sensing pixel structure 120A, the second sensing pixel structure 120B, the second sensing pixel structure 120C or the above sensing pixel structures The combination of the two is not limited in the present invention.

在本實施例中,感測畫素陣列結構SS的第三感測畫素結構300的每一者可包括第三感測元件302以及彩色濾光層304。第三感測畫素結構300可以不包括光轉換層或是光轉換材料,例如量子點、螢光粉等。彩色濾光層304具有濾光特性,可用於屏蔽及/或吸收特定波長範圍的光線,而只允許另一特定波長範圍的光線通過。也就是說,彩色濾光層304可屏蔽及/或吸收第一波形的初始光210中的一部分,並使第一波形的初始光210中的另一部分通過。在一實施例中,彩色濾光層304可以是所屬技術領域中具有通常知識者所周知的用於感測裝置中的任一種彩色濾光層。因此,第三感測畫素結構300適於將第一波形的初始光210調整成第三感測光310,以提供給第三感測元件302感測,其中第三感測光310所具有的第三波形不同於初始光210所具有的第一波形。In this embodiment, each of the third sensing pixel structures 300 of the sensing pixel array structure SS may include a third sensing element 302 and a color filter layer 304 . The third sensing pixel structure 300 may not include a light conversion layer or a light conversion material, such as quantum dots, phosphors, and the like. The color filter layer 304 has filter properties, and can be used for shielding and/or absorbing light in a specific wavelength range, while allowing only light in another specific wavelength range to pass. That is, the color filter layer 304 can shield and/or absorb a portion of the initial light 210 of the first waveform and pass another portion of the initial light 210 of the first waveform. In one embodiment, the color filter layer 304 may be any color filter layer known to those of ordinary skill in the art for use in sensing devices. Therefore, the third sensing pixel structure 300 is suitable for adjusting the initial light 210 of the first waveform into the third sensing light 310 to provide the third sensing element 302 for sensing, wherein the third sensing light 310 has the third sensing light 310 . The three waveforms are different from the first waveform that the initial light 210 has.

在本實施例中,第三感測畫素結構300還包括依序疊置於第三感測元件302上的光準直結構LS與透鏡ML。具體來說,光準直結構LS與透鏡ML的結構設計及配置關係可參照前述實施例的描述,而不再重述。In this embodiment, the third sensing pixel structure 300 further includes a light collimation structure LS and a lens ML sequentially stacked on the third sensing element 302 . Specifically, for the structural design and configuration relationship between the light collimation structure LS and the lens ML, reference may be made to the descriptions of the foregoing embodiments, and will not be repeated.

第三感測畫素結構300的彩色濾光層304例如位於第三感測元件302及發光面板200之間。在本實施例中,彩色濾光層304例如填滿第二遮光層BM2的第二開口V2,且覆蓋部分的第二遮光層BM2的頂面,但本發明不以此為限。在其他實施例中,彩色濾光層304與第二遮光層BM2之間可間隔一距離;或者在第三絕緣層134為多層結構的情況下,還間隔有多層結構的其中至少一層,只要彩色濾光層304位於第一波形的初始光210的行經路線上即可。The color filter layer 304 of the third sensing pixel structure 300 is, for example, located between the third sensing element 302 and the light emitting panel 200 . In this embodiment, the color filter layer 304, for example, fills the second opening V2 of the second light shielding layer BM2, and covers part of the top surface of the second light shielding layer BM2, but the invention is not limited thereto. In other embodiments, the color filter layer 304 and the second light shielding layer BM2 may be separated by a distance; or in the case where the third insulating layer 134 is a multi-layer structure, at least one layer of the multi-layer structure may be separated, as long as the color The filter layer 304 only needs to be located on the traveling path of the initial light 210 of the first waveform.

在本實施例中,第三感測光310僅包括通過彩色濾光層304的初始光210中的一部分。依據第三感測畫素結構300的濾光特性,第三感測畫素結構300可僅允許落在短波長範圍、中波長範圍或長波長範圍的光線通過。舉例而言,將初始光210的第一波形劃分成第一短波長部分212、第一長波長部分214以及第一中波長部分216且第三感測畫素結構300僅允許第一短波長部分212的光線通過的情況下,第一長波長部分214及第一中波長部分216會被彩色濾光層304屏蔽及/或吸收,而僅有第一短波長部分212才能通過彩色濾光層304以作為第三感測光310被第三感測元件302感測。如此,第一波形的初始光210在通過彩色濾光層304後僅會剩餘第一短波長部分212可提供給第三感測元件302。相較於第二感測畫素結構120的第二感測元件122而言,第三感測元件302接收到的光量相對較少,但可能接收到波長範圍較集中的光線。因此,搭配第二感測畫素結構120與第三感測畫素結構300,可得到多重感測訊號,而有助於提升辨識結果的正確性。在一些實施例中,第一短波長部分212、第一長波長部分214及第一中波長部分216分別呈現為藍色、紅色與綠色,第三感測光310則例如呈現為藍光,但不以此為限。在其他實施例中,彩色濾光層304可基於材料的選擇而僅允許第一長波長部分214通過,或是僅允許第一中波長部分216通過。In this embodiment, the third sensing light 310 includes only a part of the initial light 210 passing through the color filter layer 304 . According to the filter characteristics of the third sensing pixel structure 300 , the third sensing pixel structure 300 can only allow light within a short wavelength range, a medium wavelength range or a long wavelength range to pass through. For example, the first waveform of the initial light 210 is divided into a first short wavelength portion 212, a first long wavelength portion 214 and a first medium wavelength portion 216 and the third sensing pixel structure 300 allows only the first short wavelength portion When the light from 212 passes through, the first long wavelength portion 214 and the first medium wavelength portion 216 are shielded and/or absorbed by the color filter layer 304 , and only the first short wavelength portion 212 can pass through the color filter layer 304 It is sensed by the third sensing element 302 as the third sensing light 310 . In this way, after the initial light 210 of the first waveform passes through the color filter layer 304 , only the first short wavelength portion 212 remains and can be provided to the third sensing element 302 . Compared with the second sensing element 122 of the second sensing pixel structure 120 , the third sensing element 302 receives a relatively small amount of light, but may receive light with a relatively concentrated wavelength range. Therefore, with the combination of the second sensing pixel structure 120 and the third sensing pixel structure 300, multiple sensing signals can be obtained, which helps to improve the accuracy of the identification result. In some embodiments, the first short-wavelength portion 212 , the first long-wavelength portion 214 and the first medium-wavelength portion 216 appear as blue, red, and green, respectively, and the third sensing light 310 appears as blue, but not in This is limited. In other embodiments, the color filter layer 304 may allow only the first long wavelength portion 214 to pass through, or only the first mid-wavelength portion 216 based on material selection.

基於上述,藉由搭配具有光轉換層的第二感測畫素結構以及具有彩色濾光層的第三感測畫素結構,可用於判別不同的防偽辨識訊息,以增加感測裝置20A所判別的訊息種類,從而提升辨識結果的正確性。Based on the above, by matching the second sensing pixel structure with the light conversion layer and the third sensing pixel structure with the color filter layer, it can be used to discriminate different anti-counterfeiting identification information, so as to increase the discrimination of the sensing device 20A information types, so as to improve the accuracy of the identification results.

圖4B是圖3的感測裝置中沿剖線I-I’的剖面的第二種實施方式的示意圖。在此必須說明的是,圖4B沿用圖4A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 4B is a schematic diagram of a second embodiment of the cross section along the line I-I' in the sensing device of FIG. 3 . It must be noted here that FIG. 4B uses the element numbers and part of the content of the embodiment in FIG. 4A , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖4B所示的感測裝置20B與圖4A所示的感測裝置20A相比的不同之處在於:光轉換層124位於發光面板200及透鏡ML之間。具體而言,第二感測畫素結構120A的光轉換層124A及第二感測畫素結構120B的光轉換層124B位於發光面板200及透鏡ML之間。如此一來,通過光轉換層124A及光轉換層124B所造成的散射光線,可以先通過透鏡ML、第二開口V2以及第一開口V1提升準直度,以使第二感測元件122A及第二感測元件122B可以取得品質良好的指紋訊號,從而使感測裝置20B具有良好的指紋防偽效果。In this embodiment, the difference between the sensing device 20B shown in FIG. 4B and the sensing device 20A shown in FIG. 4A is that the light conversion layer 124 is located between the light emitting panel 200 and the lens ML. Specifically, the light conversion layer 124A of the second sensing pixel structure 120A and the light conversion layer 124B of the second sensing pixel structure 120B are located between the light emitting panel 200 and the lens ML. In this way, the scattered light caused by the light conversion layer 124A and the light conversion layer 124B can first pass through the lens ML, the second opening V2 and the first opening V1 to improve the collimation, so that the second sensing element 122A and the first opening V1 can be collimated. The two sensing elements 122B can obtain fingerprint signals of good quality, so that the sensing device 20B has a good fingerprint anti-counterfeiting effect.

圖4C是圖3的感測裝置中沿剖線I-I’的剖面的第三種實施方式的示意圖。在此必須說明的是,圖4C沿用圖4A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,在此不贅述。FIG. 4C is a schematic diagram of a third embodiment of the cross section along line I-I' in the sensing device of FIG. 3 . It must be noted here that FIG. 4C uses the element numbers and part of the content of the embodiment of FIG. 4A , wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

在本實施例中,圖4C所示的感測裝置20C與圖4A所示的感測裝置20A相比的不同之處在於:光轉換層124設置於透鏡ML的表面MLa上。具體而言,第二感測畫素結構120A的光轉換層124A及第二感測畫素結構120B的光轉換層124B設置於透鏡ML的表面MLa上。如此一來,通過光轉換層124A及光轉換層124B所造成的散射光線因直接通過透鏡ML而提升準直度,接著,再通過第二開口V2以及第一開口V1進一步提升準直度,從而使感測裝置20C具有良好的指紋防偽效果。In this embodiment, the difference between the sensing device 20C shown in FIG. 4C and the sensing device 20A shown in FIG. 4A is that the light conversion layer 124 is disposed on the surface MLa of the lens ML. Specifically, the light conversion layer 124A of the second sensing pixel structure 120A and the light conversion layer 124B of the second sensing pixel structure 120B are disposed on the surface MLa of the lens ML. In this way, the scattered light caused by the light conversion layer 124A and the light conversion layer 124B directly passes through the lens ML to improve the collimation degree, and then further improves the collimation degree through the second opening V2 and the first opening V1, thereby The sensing device 20C has a good fingerprint anti-counterfeiting effect.

在一些可選用的實施例中,光轉換層124A及光轉換層124B可位在與彩色濾光層304相同的膜層位置中,也就是位於第三絕緣層134與第二遮光層BM2之間。In some optional embodiments, the light conversion layer 124A and the light conversion layer 124B may be located in the same film layer position as the color filter layer 304 , that is, between the third insulating layer 134 and the second light shielding layer BM2 .

綜上所述,本發明的感測裝置藉由設置第一感測畫素結構及至少一第二感測畫素結構,可分別感測不同波形的感測光,以產生不同的辨識訊號。如此一來,感測裝置可經由演算法分析不同的訊號以判斷感測畫素陣列結構所感測到的指紋訊號是否異常,從而辨識所獲得的指紋訊號的真偽。另外,藉由第二感測畫素結構的光轉換層將初始光調整成具有不同波形的感測光,可在避免光量損失的同時,提升感測元件所接收到的訊號強度、感測靈敏性及感測效率,從而改善感測裝置的品質,以提升指紋防偽效果。To sum up, the sensing device of the present invention can sense sensing light of different waveforms to generate different identification signals by setting the first sensing pixel structure and at least one second sensing pixel structure. In this way, the sensing device can analyze different signals through an algorithm to determine whether the fingerprint signal sensed by the sensing pixel array structure is abnormal, so as to identify the authenticity of the obtained fingerprint signal. In addition, the initial light is adjusted to sensing light with different waveforms by the light conversion layer of the second sensing pixel structure, which can improve the signal strength and sensing sensitivity received by the sensing element while avoiding the loss of light quantity. and sensing efficiency, thereby improving the quality of the sensing device and enhancing the fingerprint anti-counterfeiting effect.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

10、10A、10B、10C、20、20A、20B、20C:感測裝置 100:基板 110:第一感測畫素結構 112:第一感測元件 120、120A、120B、120C:第二感測畫素結構 122、122A、122B、122C:第二感測元件 124、124A、124B、124C:光轉換層 130:第一絕緣層 132:第二絕緣層 134:第三絕緣層 200:發光面板 200a:前側 200b:背側 210:初始光 212:第一短波長部分 214:第一長波長部分 216:第一中波長部分 220、220A、220B、220C:第二感測光 222:第一轉換光 224:第二轉換光 226:第三轉換光 300:第三感測畫素結構 302:第三感測元件 304:彩色濾光層 310:第三感測光 BM1:第一遮光層 BM2:第二遮光層 BM3:第三遮光層 D1:第一方向 D2:第二方向 F:手指 LS:光準直結構 ML:透鏡 MLa:表面 SS:感測畫素陣列結構 V1:第一開口 V2:第二開口 V3:第三開口10, 10A, 10B, 10C, 20, 20A, 20B, 20C: Sensing device 100: Substrate 110: First sensing pixel structure 112: The first sensing element 120, 120A, 120B, 120C: the second sensing pixel structure 122, 122A, 122B, 122C: the second sensing element 124, 124A, 124B, 124C: light conversion layer 130: first insulating layer 132: Second insulating layer 134: The third insulating layer 200: Luminous Panel 200a: Front side 200b: Dorsal 210: Initial Light 212: First short wavelength part 214: first long wavelength part 216: first mid-wavelength part 220, 220A, 220B, 220C: the second sensing light 222: First converted light 224: Second converted light 226: Third Conversion Light 300: The third sensing pixel structure 302: The third sensing element 304: Color filter layer 310: The third sensing light BM1: first light shielding layer BM2: Second light shielding layer BM3: The third shading layer D1: first direction D2: Second direction F: finger LS: light collimation structure ML: Lens MLa: Surface SS: Sensing pixel array structure V1: The first opening V2: Second opening V3: Third opening

圖1是依照本發明的一實施例的一種感測裝置的俯視示意圖。 圖2A是圖1的感測裝置中沿剖線I-I’的剖面的第一種實施方式的示意圖。 圖2B是圖1的感測裝置中沿剖線I-I’的剖面的第二種實施方式的示意圖。 圖2C是圖1的感測裝置中沿剖線I-I’的剖面的第三種實施方式的示意圖。 圖3是依照本發明的另一實施例的一種感測裝置的俯視示意圖。 圖4A是圖3的感測裝置中沿剖線I-I’的剖面的第一種實施方式的示意圖。 圖4B是圖3的感測裝置中沿剖線I-I’的剖面的第二種實施方式的示意圖。 圖4C是圖3的感測裝置中沿剖線I-I’的剖面的第三種實施方式的示意圖。FIG. 1 is a schematic top view of a sensing device according to an embodiment of the present invention. FIG. 2A is a schematic diagram of a first embodiment of a cross section along line I-I' in the sensing device of FIG. 1 . FIG. 2B is a schematic diagram of a second embodiment of the cross section along line I-I' in the sensing device of FIG. 1 . FIG. 2C is a schematic diagram of a third embodiment of the cross section along line I-I' of the sensing device of FIG. 1 . FIG. 3 is a schematic top view of a sensing device according to another embodiment of the present invention. FIG. 4A is a schematic diagram of a first embodiment of the cross-section along the line I-I' in the sensing device of FIG. 3 . FIG. 4B is a schematic diagram of a second embodiment of the cross section along the line I-I' in the sensing device of FIG. 3 . FIG. 4C is a schematic diagram of a third embodiment of the cross section along line I-I' in the sensing device of FIG. 3 .

10A:感測裝置10A: Sensing device

100:基板100: Substrate

110:第一感測畫素結構110: First sensing pixel structure

112:第一感測元件112: The first sensing element

120、120A、120B、120C:第二感測畫素結構120, 120A, 120B, 120C: the second sensing pixel structure

122、122A、122B、122C:第二感測元件122, 122A, 122B, 122C: the second sensing element

124、124A、124B、124C:光轉換層124, 124A, 124B, 124C: light conversion layer

130:第一絕緣層130: first insulating layer

132:第二絕緣層132: Second insulating layer

134:第三絕緣層134: The third insulating layer

200:發光面板200: Luminous Panel

200a:前側200a: Front side

200b:背側200b: Dorsal

210:初始光210: Initial Light

212:第一短波長部分212: First short wavelength part

214:第一長波長部分214: first long wavelength part

216:第一中波長部分216: first mid-wavelength part

220、220A、220B、220C:第二感測光220, 220A, 220B, 220C: the second sensing light

222:第一轉換光222: First converted light

224:第二轉換光224: Second converted light

226:第三轉換光226: Third Conversion Light

BM1:第一遮光層BM1: first light shielding layer

BM2:第二遮光層BM2: Second light shielding layer

BM3:第三遮光層BM3: The third shading layer

F:手指F: finger

LS:光準直結構LS: light collimation structure

ML:透鏡ML: Lens

SS:感測畫素陣列結構SS: Sensing pixel array structure

V1:第一開口V1: The first opening

V2:第二開口V2: Second opening

V3:第三開口V3: Third opening

Claims (10)

一種感測裝置,包括: 發光面板,適於發出第一波形的初始光;以及 感測畫素陣列結構,位於所述發光面板的背側,其中 所述感測畫素陣列結構包含: 多個第一感測畫素結構,各所述第一感測畫素結構包括第一感測元件,且各所述第一感測畫素結構以所述第一波形的所述初始光作為第一感測光提供給所述第一感測元件感測,其中所述多個第一感測畫素結構佔整體所述感測畫素陣列結構的配置面積比例為90%以上但未達100%;以及 至少一第二感測畫素結構,所述至少一第二感測畫素結構包括第二感測元件以及光轉換層,所述光轉換層位於所述第二感測元件與所述發光面板之間,且所述至少一第二感測畫素結構適於將所述第一波形的所述初始光調整成第二感測光以提供給所述第二感測元件感測,且所述第二感測光具有的第二波形不同於所述第一波形, 所述光轉換層具有激發峰值波長且所述激發峰值波長在400 nm至750 nm的範圍內。A sensing device, comprising: a light emitting panel adapted to emit the initial light of the first waveform; and The sensing pixel array structure is located on the back side of the light-emitting panel, wherein The sensing pixel array structure includes: a plurality of first sensing pixel structures, each of the first sensing pixel structures includes a first sensing element, and each of the first sensing pixel structures uses the initial light of the first waveform as the The first sensing light is provided to the first sensing element for sensing, wherein the proportion of the configuration area of the plurality of first sensing pixel structures to the entire sensing pixel array structure is more than 90% but less than 100% %;as well as At least one second sensing pixel structure, the at least one second sensing pixel structure includes a second sensing element and a light conversion layer, the light conversion layer is located between the second sensing element and the light emitting panel and the at least one second sensing pixel structure is adapted to adjust the initial light of the first waveform into a second sensing light to provide the second sensing element for sensing, and the The second sensing light has a second waveform different from the first waveform, The light conversion layer has an excitation peak wavelength and the excitation peak wavelength is in the range of 400 nm to 750 nm. 如請求項1所述的感測裝置,其中所述光轉換層包含量子點。The sensing device of claim 1, wherein the light conversion layer comprises quantum dots. 如請求項1所述的感測裝置,其中所述第二感測光包括經由所述光轉換層轉換所述第一波形的所述初始光的一部分而獲得的轉換光以及通過所述光轉換層但未經所述光轉換層轉換過的所述第一波形的所述初始光的另一部分。The sensing device of claim 1, wherein the second sensed light includes converted light obtained by converting a portion of the initial light of the first waveform via the light conversion layer and passing through the light conversion layer The other portion of the initial light of the first waveform that has not been converted by the light conversion layer. 如請求項1所述的感測裝置,其中所述至少一第二感測畫素結構更包括依序疊置於所述第二感測元件上的光準直結構與透鏡。The sensing device of claim 1, wherein the at least one second sensing pixel structure further comprises a light collimating structure and a lens sequentially stacked on the second sensing element. 如請求項4所述的感測裝置,其中所述至少一第二感測畫素結構的所述光轉換層位於所述透鏡及所述感測元件之間。The sensing device of claim 4, wherein the light conversion layer of the at least one second sensing pixel structure is located between the lens and the sensing element. 如請求項4所述的感測裝置,其中所述至少一第二感測畫素結構的所述光轉換層位於所述發光面板及所述透鏡之間。The sensing device of claim 4, wherein the light conversion layer of the at least one second sensing pixel structure is located between the light emitting panel and the lens. 如請求項1所述的感測裝置,更包含至少一第三感測畫素結構,所述至少一第三感測畫素結構包括第三感測元件以及彩色濾光層,所述彩色濾光層位於所述第三感測元件與所述發光面板之間,且所述至少一第三感測畫素結構適於將所述第一波形的所述初始光調整成第三感測光以提供給所述第三感測元件感測,且所述第三感測光具有的第三波形不同於所述第一波形。The sensing device according to claim 1, further comprising at least one third sensing pixel structure, the at least one third sensing pixel structure comprising a third sensing element and a color filter layer, the color filter The light layer is located between the third sensing element and the light emitting panel, and the at least one third sensing pixel structure is adapted to adjust the initial light of the first waveform into a third sensing light to The third sensing element is provided for sensing, and the third sensing light has a third waveform different from the first waveform. 如請求項7所述的感測裝置,其中所述至少一第二感測畫素結構與所述至少一第三感測畫素結構佔整體所述感測畫素陣列結構的配置面積比例為少於10%,但超過0%。The sensing device according to claim 7, wherein the proportion of the at least one second sensing pixel structure and the at least one third sensing pixel structure in the overall configuration area of the sensing pixel array structure is: Less than 10%, but more than 0%. 如請求項1所述的感測裝置,其中所述第一波形在400 nm至700 nm的波長範圍內。The sensing device of claim 1, wherein the first waveform is in a wavelength range of 400 nm to 700 nm. 一種感測裝置,包括: 感測畫素陣列結構,包含成陣列排列的多個第一感測畫素結構以及至少一第二感測畫素結構,其中, 所述多個第一感測畫素結構佔整體所述感測畫素陣列結構的配置面積比例為90%以上但未達100%, 各所述第一感測畫素結構包括第一感測元件,且各所述第一感測畫素結構以所述第一波形的所述初始光作為第一感測光提供給所述第一感測元件感測,且 所述至少一第二感測畫素結構包括第二感測元件,且所述至少一第二感測畫素結構適於將所述第一波形的所述初始光調整成第二感測光以提供給所述第二感測元件感測,且所述第二感測光具有的第二波形不同於所述第一波形。A sensing device, comprising: The sensing pixel array structure includes a plurality of first sensing pixel structures and at least one second sensing pixel structure arranged in an array, wherein, The proportion of the configuration area of the plurality of first sensing pixel structures in the entire sensing pixel array structure is more than 90% but less than 100%, Each of the first sensing pixel structures includes a first sensing element, and each of the first sensing pixel structures provides the first sensing light with the initial light of the first waveform as a first sensing light the sensing element senses, and The at least one second sensing pixel structure includes a second sensing element, and the at least one second sensing pixel structure is adapted to adjust the initial light of the first waveform into a second sensing light to The second sensing element is provided for sensing, and the second sensing light has a second waveform different from the first waveform.
TW110105004A 2020-08-17 2021-02-09 Sensing device TWI769700B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/361,218 US20220052090A1 (en) 2020-08-17 2021-06-28 Sensing device
CN202110771647.4A CN113569661B (en) 2020-08-17 2021-07-08 Sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063066416P 2020-08-17 2020-08-17
US63/066,416 2020-08-17

Publications (2)

Publication Number Publication Date
TW202209170A true TW202209170A (en) 2022-03-01
TWI769700B TWI769700B (en) 2022-07-01

Family

ID=81329660

Family Applications (5)

Application Number Title Priority Date Filing Date
TW110101510A TWI757053B (en) 2020-08-17 2021-01-14 Biological feature identification system and method thereof
TW110105004A TWI769700B (en) 2020-08-17 2021-02-09 Sensing device
TW110105991A TWI766583B (en) 2020-08-17 2021-02-20 Biometric sensing device and biometric sensing group
TW110112455A TWI756097B (en) 2020-08-17 2021-04-06 Fingerprint sensing module
TW110122475A TWI767758B (en) 2020-08-17 2021-06-18 Biological feature identification device and manufacturing method of the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110101510A TWI757053B (en) 2020-08-17 2021-01-14 Biological feature identification system and method thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW110105991A TWI766583B (en) 2020-08-17 2021-02-20 Biometric sensing device and biometric sensing group
TW110112455A TWI756097B (en) 2020-08-17 2021-04-06 Fingerprint sensing module
TW110122475A TWI767758B (en) 2020-08-17 2021-06-18 Biological feature identification device and manufacturing method of the same

Country Status (1)

Country Link
TW (5) TWI757053B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823359B (en) * 2022-04-25 2023-11-21 睿生光電股份有限公司 X-ray sensing module

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109389108B (en) * 2017-08-08 2022-03-01 金佶科技股份有限公司 Image capturing device
TWI550524B (en) * 2014-10-20 2016-09-21 光寶電子(廣州)有限公司 Apparatus and method for processing physiological signal
US9459747B2 (en) * 2014-12-11 2016-10-04 Microsoft Technology Licensing, Llc Touch display system with reduced moiré patterns
TWI587203B (en) * 2016-09-22 2017-06-11 友達光電股份有限公司 Touch device and the feedback method for a touch
KR20180067226A (en) * 2016-12-12 2018-06-20 삼성전자주식회사 touch sensor capable of detecting fingerprint, and display device and electronic apparatus including the same
CN108241834A (en) * 2016-12-23 2018-07-03 创智能科技股份有限公司 Biometric recognition device.It
WO2018137589A1 (en) * 2017-01-25 2018-08-02 昆山工研院新型平板显示技术中心有限公司 Touch control display panel and method for manufacturing same, and touch control display device
CN106886767B (en) * 2017-02-23 2019-07-05 京东方科技集团股份有限公司 A kind of optical fingerprint identification device and display panel
KR20190015876A (en) * 2017-08-07 2019-02-15 삼성전자주식회사 Display apparatus for reducing Moire and driving method of the display apparatus
CN110502177B (en) * 2018-05-17 2021-06-11 上海耕岩智能科技有限公司 Screen unlocking method and device for synchronously verifying fingerprint information
CN110175492B (en) * 2018-07-20 2022-03-01 神盾股份有限公司 Optical fingerprint sensing device
CN111566659B (en) * 2018-12-13 2021-08-13 深圳市汇顶科技股份有限公司 Fingerprint identification device and method and electronic equipment
CN109657630B (en) * 2018-12-25 2021-06-18 上海天马微电子有限公司 Display panel, touch recognition method of display panel and display device
CN209765529U (en) * 2019-05-14 2019-12-10 深圳市汇顶科技股份有限公司 Fingerprint identification device and electronic equipment
CN112199979A (en) * 2019-07-07 2021-01-08 奕力科技股份有限公司 Display device capable of detecting fingerprint of finger and fingerprint identification chip
CN110443217B (en) * 2019-08-13 2022-09-02 深圳大学 Multispectral-based fingerprint anti-counterfeiting method and system
CN210605736U (en) * 2019-09-20 2020-05-22 深圳市汇顶科技股份有限公司 Fingerprint detection device, display screen and electronic equipment
CN111291719A (en) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 Fingerprint identification device, display panel, equipment and fingerprint identification method

Also Published As

Publication number Publication date
TW202209179A (en) 2022-03-01
TW202209138A (en) 2022-03-01
TWI756097B (en) 2022-02-21
TWI769700B (en) 2022-07-01
TW202209082A (en) 2022-03-01
TWI767758B (en) 2022-06-11
TWI766583B (en) 2022-06-01
TW202209182A (en) 2022-03-01
TWI757053B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
CN110426891B (en) Display panel and display device
US20140339606A1 (en) Bsi cmos image sensor
CN107563318A (en) A kind of display device and electronic equipment
US11668862B2 (en) Texture image acquiring device, display device, and collimator
CN110164307B (en) Display device with built-in fingerprint identification inductor
CN109271834B (en) Detection device
US20200410202A1 (en) Optical fingerprint sensors
CN108734134A (en) Fingerprint identification device
WO2022143535A1 (en) Fingerprint module and electronic device
TWI769700B (en) Sensing device
CN111881873A (en) Fingerprint identification device and electronic equipment
CN111242012A (en) Display device with fingerprint identification function
WO2022110105A1 (en) Fingerprint identifying module and manufacturing method therefor, and display device
CN113569661B (en) Sensing device
CN112699761A (en) Fingerprint identification panel and fingerprint identification display module
US11928888B2 (en) Image acquisition device
TWI744027B (en) Optical sensor panel
CN112307951B (en) Display device
TWI758093B (en) Biological feature identification device
CN112599012A (en) Display panel and display device
CN113724613B (en) Display module
TWI749864B (en) Optical sensing module
US20220375979A1 (en) Photosensitive device
WO2023184090A1 (en) Display substrate and manufacturing method thereof, display panel, and display device
TWI806280B (en) Optical sensing device