TW202207373A - Non-volatile memory structure and method of manufacturing the same - Google Patents

Non-volatile memory structure and method of manufacturing the same Download PDF

Info

Publication number
TW202207373A
TW202207373A TW109126167A TW109126167A TW202207373A TW 202207373 A TW202207373 A TW 202207373A TW 109126167 A TW109126167 A TW 109126167A TW 109126167 A TW109126167 A TW 109126167A TW 202207373 A TW202207373 A TW 202207373A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
gate
structures
volatile memory
layer
Prior art date
Application number
TW109126167A
Other languages
Chinese (zh)
Other versions
TWI797467B (en
Inventor
余秉隆
邵柏竣
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109126167A priority Critical patent/TWI797467B/en
Publication of TW202207373A publication Critical patent/TW202207373A/en
Application granted granted Critical
Publication of TWI797467B publication Critical patent/TWI797467B/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Stored Programmes (AREA)
  • Debugging And Monitoring (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A non-volatile memory structure includes a substrate and a tunnel dielectric layer on the substrate, a plurality of gate structures separately formed on the substrate, wherein the gate structures are disposed within an array region of the substrate, and each of the gate structures includes a floating gate and a control gate on the floating gate. A first dielectric layer is formed above the substrate and covers the top surface of the tunnel dielectric layer. The first dielectric layer also covers the side surfaces and the top surface of each of the gate structures. Space between the portions of the first dielectric layer on the side surfaces of two adjacent gate structures is fully filled with an airgap. A plurality of insulating block are formed on the first dielectric layer and corresponding to each of the gate structures. Also, a second dielectric layer is formed on the insulating blocks and covers the insulating blocks and the airgaps.

Description

非揮發性記憶體結構及其製造方法Nonvolatile memory structure and method of making the same

本發明係有關於一種非揮發性記憶體結構及其製造方法,且特別係有關於一種具有一致高度的氣隙的非揮發性記憶體結構及其製造方法。The present invention relates to a non-volatile memory structure and a method of fabricating the same, and more particularly, to a non-volatile memory structure having a uniform height of air gaps and a method of fabricating the same.

在非揮發性記憶體中,依據記憶體內的資料能否在使用電腦時隨時改寫,可分為二大類產品,分別為唯讀記憶體(read-only memory, ROM)與快閃記憶體(flash memory)。其中快閃記憶體因成本較低,而逐漸成為非揮發性記憶體的主流技術。In the non-volatile memory, according to whether the data in the memory can be rewritten at any time when using the computer, it can be divided into two types of products, namely read-only memory (ROM) and flash memory (flash memory). memory). Among them, flash memory has gradually become the mainstream technology of non-volatile memory due to its low cost.

一般而言,一個快閃記憶體包含兩個閘極,第一個閘極為儲存資料的浮置閘極,而第二個閘極為進行資料的輸入和輸出的控制閘極。浮置閘極係位於控制閘極之下方且為「漂浮」的狀態。所謂漂浮係指以絕緣材料環繞且隔離浮置閘極以防止電荷流失。控制閘極係連接至字元線以控制裝置。快閃記憶體的優點之一為可以區塊-區塊抹除資料(block-by-block erasing)。快閃記憶體廣泛地用於企業伺服器、儲存和網路科技,以及廣泛的消費電子產品,例如隨身碟快閃驅動裝置、行動電話、數位相機、平板電腦、筆記型電腦的個人電腦插和嵌入式控制器等等。Generally speaking, a flash memory includes two gates, the first gate is a floating gate for storing data, and the second gate is a control gate for data input and output. The floating gate is located below the control gate and is in a "floating" state. Floating means surrounding and isolating the floating gate with insulating material to prevent charge loss. The control gate is connected to the word line to control the device. One of the advantages of flash memory is block-by-block erasing. Flash memory is widely used in enterprise server, storage, and networking technologies, as well as in a wide range of consumer electronics, such as flash drives for flash drives, mobile phones, digital cameras, tablets, notebook PCs, and PC sockets. Embedded controllers, etc.

於現有非揮發性記憶體中,位於相鄰控制閘極之間的空氣隙在高度上和輪廓上並不均勻,而影響了記憶體電性表現的穩定度。再者,於現有非揮發性記憶體中,空氣隙的高度低於控制閘極,因此沉積於控制閘極上方的介電層(例如氧化層) 也會填入相鄰控制閘極之間。換言之,相鄰控制閘極之間除了空氣隙也會存在有介電層(例如氧化層),而產生漏電流的問題,使記憶體的電性表現及可靠度下降。In the existing non-volatile memory, the air gap between adjacent control gates is not uniform in height and profile, which affects the stability of the electrical performance of the memory. Furthermore, in the conventional non-volatile memory, the height of the air gap is lower than that of the control gate, so the dielectric layer (eg, oxide layer) deposited over the control gate also fills in between adjacent control gates. In other words, in addition to the air gap, a dielectric layer (such as an oxide layer) also exists between adjacent control gates, resulting in the problem of leakage current, which reduces the electrical performance and reliability of the memory.

因此,雖然現存的非揮發性記憶體的形成方法已足夠應付它們原先預定的用途,但它們仍未在各個方面皆徹底的符合要求,因此非揮發性記憶體的技術目前仍有需克服的問題。Therefore, although the existing non-volatile memory formation methods are sufficient for their original intended use, they have not yet fully met the requirements in all aspects. Therefore, there are still problems to be overcome in the non-volatile memory technology. .

本發明的一些實施例係揭示一種非揮發性記憶體結構,包括:一基底以及位於基底上的一穿隧介電層,其中基底包含一陣列區域。位於基底上方和陣列區域中的複數個閘極結構,且此些閘極結構係彼此相距設置,各個閘極結構包含位於穿隧介電層上的一浮置閘極,以及位於浮置閘極上方的一控制閘極。位於基底的上方並覆蓋穿隧介電層的頂面以及覆蓋閘極結構的側面和頂面的第一介電層,其中在相鄰閘極結構的側面上的第一介電層之間的空間係填滿空氣隙。複數個絕緣塊體,其位於第一介電層上且分別對應於各個閘極結構。位於絕緣塊體上的第二介電層,第二介電層並覆蓋絕緣塊體和空氣隙。Some embodiments of the present invention disclose a non-volatile memory structure comprising: a substrate and a tunneling dielectric layer on the substrate, wherein the substrate includes an array region. A plurality of gate structures located above the substrate and in the array area, and the gate structures are disposed apart from each other, each gate structure includes a floating gate on the tunnel dielectric layer, and a floating gate on the floating gate A control gate of the square. a first dielectric layer overlying the substrate and covering the top surface of the tunneling dielectric layer and covering the side and top surfaces of the gate structures, wherein the first dielectric layer between the first dielectric layers on the sides of adjacent gate structures The space system fills the air gap. A plurality of insulating blocks are located on the first dielectric layer and correspond to the gate structures respectively. a second dielectric layer on the insulating block, the second dielectric layer covering the insulating block and the air gap.

本發明的一些實施例係揭示一種非揮發性記憶體結構的製造方法,包括:提供一基底以及形成一穿隧介電層於基底上,其中基底包含一第一區域和一第二區域。形成複數個第一堆疊結構和複數個第二堆疊結構於穿隧介電層上,且此些堆疊結構係彼此相距設置,其中第一堆疊結構和第二堆疊結構分別位於第一區域和第二區域中。於基底的上方形成一第一介電層,且第一介電層覆蓋穿隧介電層的頂面以及覆蓋第一堆疊結構和第二堆疊結構的頂面和側面。於第一介電層上形成複數個絕緣塊體,且此些絕緣塊體分別對應於第一堆疊結構的頂面和第二堆疊結構的頂面。於第一堆疊結構和第二堆疊結構上方形成一第二介電層,並形成空氣隙。第二介電層覆蓋此些絕緣塊體以及此些空氣隙,其中相鄰的第一堆疊結構的側面上的第一介電層之間係填滿空氣隙。Some embodiments of the present invention disclose a method for fabricating a non-volatile memory structure, including: providing a substrate and forming a tunnel dielectric layer on the substrate, wherein the substrate includes a first region and a second region. forming a plurality of first stacking structures and a plurality of second stacking structures on the tunnel dielectric layer, and these stacking structures are disposed apart from each other, wherein the first stacking structures and the second stacking structures are located in the first region and the second respectively in the area. A first dielectric layer is formed above the substrate, and the first dielectric layer covers the top surface of the tunnel dielectric layer and the top surface and side surfaces of the first stack structure and the second stack structure. A plurality of insulating blocks are formed on the first dielectric layer, and the insulating blocks correspond to the top surface of the first stack structure and the top surface of the second stack structure respectively. A second dielectric layer is formed over the first stack structure and the second stack structure, and an air gap is formed. The second dielectric layer covers the insulating blocks and the air gaps, wherein the air gaps are filled between the first dielectric layers on the sides of the adjacent first stacked structures.

參照本發明實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之元件標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of embodiments of the invention. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar element numbers refer to the same or similar elements, and the following paragraphs will not describe them one by one.

實施例提出的非揮發性記憶體結構可以是不同種類之非揮發性記憶體結構,其中包含浮置閘極的記憶體結構皆可應用本揭露之實施例。一個非揮發性記憶體結構可包含多個堆疊結構。於示例中,在基底的第一區域(例如陣列區域,或稱主動區域)和第二區域(例如週邊區域)中設置有複數個第一堆疊結構和複數個第二堆疊結構,且一介電層覆蓋前述堆疊結構的頂面和側面。各個堆疊結構至少包含基底上方的浮置閘極、控制閘極以及位於浮置閘極和控制閘極之間的閘極間介電層,其中在相鄰第一堆疊結構的側面上的介電層之間係具有高度一致的空氣隙。根據本揭露的一些實施例,這些空氣隙填滿了相鄰的第一堆疊結構的側面上的該第一介電層之間的空間。前述空氣隙具有足夠寬度可暴露出覆蓋於第一堆疊結構之側面上的所有介電層,其製造方法和製得結構之細節將敘述於後。為簡化敘述,實施例所配合之圖式係繪製三個第一堆疊結構和一個第二堆疊結構於基底上方以及延伸於該些第一堆疊結構之間的空氣隙,以做非揮發性記憶體結構之示例說明。The non-volatile memory structures proposed in the embodiments can be different types of non-volatile memory structures, and the memory structures including floating gates can be applied to the embodiments of the present disclosure. A non-volatile memory structure may include multiple stacked structures. In an example, a plurality of first stacking structures and a plurality of second stacking structures are arranged in the first area (eg, the array area, or the active area) and the second area (eg, the peripheral area) of the substrate, and a dielectric The layers cover the top and side surfaces of the aforementioned stack. Each stack structure includes at least a floating gate above the substrate, a control gate, and an inter-gate dielectric layer between the floating gate and the control gate, wherein the dielectric on the sides adjacent to the first stack structure There are highly consistent air gaps between the layers. According to some embodiments of the present disclosure, the air gaps fill the spaces between the first dielectric layers on the sides of adjacent first stack structures. The aforementioned air gap has a sufficient width to expose all the dielectric layers covering the side surfaces of the first stacked structure. The details of the fabrication method and the fabricated structure will be described later. In order to simplify the description, the accompanying drawings in the embodiment are drawn three first stack structures and one second stack structure above the substrate and the air gaps extending between the first stack structures for non-volatile memory. Example of structure.

第1A-1I圖是根據本揭露的一些實施例之製造非揮發性記憶體結構的不同中間階段所對應的剖面示意圖。請參照第1A圖,提供基底10,且於基底10上形成一穿隧介電層(tunnel dielectric layer)12。一些實施例中,基底10包含一第一區域(例如陣列區域)A1 和一第二區域(例如週邊區域)A2 。基底10的材料可包含矽、砷化鎵、氮化鎵、矽化鍺、絕緣層上覆矽(silicon on insulator,SOI)、其他合適之材料或前述之組合。一些實施例中,穿隧介電層12的材料例如是氧化矽或高介電常數材料(介電常數例如是大於4)。高介電常數材料例如可包括氧化鉿、氧化鉿矽、氧化鉿鋁或氧化鉿鉭。在一實施例中,穿隧介電層12的厚度範圍可為約3 nm至約10 nm。1A-1I are schematic cross-sectional views corresponding to different intermediate stages of fabricating a non-volatile memory structure according to some embodiments of the present disclosure. Referring to FIG. 1A , a substrate 10 is provided, and a tunnel dielectric layer 12 is formed on the substrate 10 . In some embodiments, the substrate 10 includes a first area (eg, an array area) A 1 and a second area (eg, a peripheral area) A 2 . The material of the substrate 10 may include silicon, gallium arsenide, gallium nitride, germanium silicide, silicon on insulator (SOI), other suitable materials, or a combination of the foregoing. In some embodiments, the material of the tunnel dielectric layer 12 is, for example, silicon oxide or a high dielectric constant material (for example, the dielectric constant is greater than 4). The high dielectric constant material may include, for example, hafnium oxide, hafnium silicon oxide, hafnium aluminum oxide, or hafnium tantalum oxide. In one embodiment, the thickness of the tunnel dielectric layer 12 may range from about 3 nm to about 10 nm.

再參照第1A圖,形成複數個堆疊結構於穿隧介電層12上,例如形成堆疊結構S1和堆疊結構S2分別位於第一區域A1 和第二區域A2 中,且前述堆疊結構係在方向D1(如X方向)上彼此相距的設置。再者,各個堆疊結構包含兩種或兩種以上的材料層在方向D2(如Z方向)上垂直堆疊,且在方向D3(如Y方向)上延伸。Referring to FIG. 1A again, a plurality of stacked structures are formed on the tunnel dielectric layer 12, for example, the stacked structure S1 and the stacked structure S2 are formed in the first area A1 and the second area A2, respectively, and the aforementioned stacked structure is tied in An arrangement that is spaced from each other in the direction D1 (eg, the X direction). Furthermore, each stacked structure includes two or more material layers stacked vertically in the direction D2 (eg, the Z direction) and extending in the direction D3 (eg, the Y direction).

在一實施例中,堆疊結構S1為位於陣列區域中的複數個閘極結構14,各個閘極結構包含一浮置閘極141、一閘極間介電層142以及一控制閘極CG,其中浮置閘極141位於穿隧介電層12上,控制閘極CG位於浮置閘極141上方,閘極間介電層142位於浮置閘極141和控制閘極CG之間。In one embodiment, the stack structure S1 is a plurality of gate structures 14 located in the array area, each gate structure includes a floating gate 141 , an inter-gate dielectric layer 142 and a control gate CG, wherein The floating gate 141 is located on the tunnel dielectric layer 12 , the control gate CG is located above the floating gate 141 , and the inter-gate dielectric layer 142 is located between the floating gate 141 and the control gate CG.

在一些實施例中,浮置閘極141包含多晶矽。在一實施例中,閘極間介電層142可為單層結構或多層結構,且閘極間介電層142的材料可包括氧化矽、氮化矽或其組合。舉例而言,閘極間介電層142可為氧化矽/氮化矽/氧化矽的結構(ONO結構),或者NONON結構。再者,控制閘極CG可以是單層或多層結構。於一些實施例中,控制閘極CG的材料包含多晶矽、金屬、金屬矽化物或其他導體材料。舉例而言,金屬可包括鈦、鉭、鎢、鋁或鋯。金屬矽化物可包括矽化鎳、矽化鈦、矽化鎢或矽化鈷。在此示例中,控制閘極CG包含一多晶矽閘極144以及一金屬閘極145位於多晶矽閘極144上,金屬閘極145例如包含金屬矽化物,例如矽化鈷。另外,在此示例中,堆疊結構S2包含與堆疊結構S1相同的材料層堆疊,在此不再重複贅述。In some embodiments, the floating gate 141 includes polysilicon. In one embodiment, the inter-gate dielectric layer 142 may be a single-layer structure or a multi-layer structure, and the material of the inter-gate dielectric layer 142 may include silicon oxide, silicon nitride, or a combination thereof. For example, the inter-gate dielectric layer 142 may be a silicon oxide/silicon nitride/silicon oxide structure (ONO structure), or a NONON structure. Furthermore, the control gate CG may be a single-layer or multi-layer structure. In some embodiments, the material of the control gate CG includes polysilicon, metal, metal silicide or other conductive materials. For example, the metal may include titanium, tantalum, tungsten, aluminum, or zirconium. The metal silicide may include nickel silicide, titanium silicide, tungsten silicide, or cobalt silicide. In this example, the control gate CG includes a polysilicon gate 144 and a metal gate 145 located on the polysilicon gate 144. The metal gate 145 includes, for example, a metal silicide, such as cobalt silicide. In addition, in this example, the stacked structure S2 includes the same material layer stack as that of the stacked structure S1, and details are not repeated here.

參照第1B圖,於基底10的上方形成一介電層16,且介電層16覆蓋穿隧介電層12的頂面並覆蓋堆疊結構S1和堆疊結構S2的頂面和側面。在此示例中,介電層16包括位於堆疊結構S1之頂面(例如金屬閘極145的頂面145a)的第一部份161、位於相鄰堆疊結構S1之間的第二部份162、位於相鄰堆疊結構S2之間的第三部份163以及位於堆疊結構S2之頂面的第四部份164。其中,第二部份162和第三部份163係分別如襯層(liner)般形成於相鄰堆疊結構S1之間以及相鄰堆疊結構S2之間。如第1B圖所示,第二部份162覆蓋浮置閘極141的側面、閘極間介電層142的側面以及控制閘極CG(例如包括多晶矽閘極144和金屬閘極145)的側面。再者,於一實施例中,介電層16為一氮化層,例如氮化矽。Referring to FIG. 1B , a dielectric layer 16 is formed over the substrate 10 , and the dielectric layer 16 covers the top surface of the tunnel dielectric layer 12 and the top and side surfaces of the stacked structures S1 and S2 . In this example, the dielectric layer 16 includes a first portion 161 located on the top surface of the stack structure S1 (eg, the top surface 145a of the metal gate 145), a second portion 162 located between adjacent stack structures S1, The third portion 163 located between adjacent stacked structures S2 and the fourth portion 164 located on the top surface of the stacked structure S2. Wherein, the second portion 162 and the third portion 163 are respectively formed as a liner between adjacent stacked structures S1 and between adjacent stacked structures S2. As shown in FIG. 1B , the second portion 162 covers the side surface of the floating gate 141 , the side surface of the inter-gate dielectric layer 142 , and the side surface of the control gate CG (eg, including the polysilicon gate 144 and the metal gate 145 ) . Furthermore, in one embodiment, the dielectric layer 16 is a nitride layer, such as silicon nitride.

如第1B圖所示,在形成該介電層16後,在相鄰的堆疊結構S1之間具有第一溝槽171,在相鄰的堆疊結構S1與堆疊結構S2之間具有第二溝槽172。於一示例中,堆疊結構S1位於基底10的陣列區域(即前述之第一區域A1 ),堆疊結構S2位於基底10的週邊區域(即前述之第二區域A2 )。相較於堆疊結構S2,堆疊結構S1係更密集的設置,而陣列區域中的堆疊結構S1與週邊區域中的堆疊結構S2之間則具有較寬的間距,因此,第二溝槽172在方向D1上的寬度大於第一溝槽171在方向D1上的寬度。As shown in FIG. 1B, after the dielectric layer 16 is formed, there are first trenches 171 between the adjacent stacked structures S1, and second trenches are formed between the adjacent stacked structures S1 and S2 172. In one example, the stacked structure S1 is located in the array region of the substrate 10 (ie, the aforementioned first region A 1 ), and the stacked structure S2 is located at the peripheral region of the substrate 10 (ie, the aforementioned second region A 2 ). Compared with the stacked structures S2, the stacked structures S1 are arranged more densely, and the stacked structures S1 in the array area and the stacked structures S2 in the peripheral area have a wider distance. Therefore, the second trenches 172 in the direction The width on D1 is greater than the width of the first trench 171 in the direction D1.

接著,形成複數個絕緣塊體(如第1H圖中所示之絕緣塊體211’及214’)於介電層16上,且此些絕緣塊體分別對應於堆疊結構S1和堆疊結構S2的頂面。以下係以第1C-1H圖說明本揭露一實施例之一種絕緣塊體的製法所對應的剖面示意圖。Next, a plurality of insulating blocks (such as the insulating blocks 211 ′ and 214 ′ shown in FIG. 1H ) are formed on the dielectric layer 16 , and these insulating blocks correspond to the stacking structure S1 and the stacking structure S2 respectively. top. The following is a schematic cross-sectional view corresponding to a manufacturing method of an insulating block according to an embodiment of the present disclosure with reference to FIGS. 1C-1H.

參照第1C圖,形成一氧化層18於介電層16上。例如,以非等向性(non-conformal)沉積方式於介電層16上沉積氧化層18。由於堆疊結構S1相較於堆疊結構S2係更密集的設置,第一溝槽171的寬度較小,第二溝槽172的寬度較大,因此在沉積後,氧化層18未填入第一溝槽171(即,位於第一溝槽171的上方),但是可填滿較大的第二溝槽172。Referring to FIG. 1C , an oxide layer 18 is formed on the dielectric layer 16 . For example, oxide layer 18 is deposited on dielectric layer 16 by non-conformal deposition. Since the stacked structure S1 is more densely arranged than the stacked structure S2, the width of the first trench 171 is smaller, and the width of the second trench 172 is larger, so the oxide layer 18 is not filled into the first trench after deposition. Slot 171 (ie, above first trench 171 ), but may fill larger second trench 172 .

參照第1D圖,接著,移除部分的氧化層18,以暴露出介電層16和第一溝槽171,而留下的氧化層的部分182則填滿第二溝槽172。具體而言,例如是以化學機械研磨法(CMP)移除部分的氧化層18,且移除後係暴露出第一溝槽171及覆蓋堆疊結構S1的介電層16,而第二溝槽172中留下的氧化層的部分182的頂面182a係與鄰接之介電層16的第四部份164的頂面(位於堆疊結構S2上方)大抵共平面。此示例中,在移除部分的氧化層18時,介電層16可作為研磨停止層。Referring to FIG. 1D , then, a portion of the oxide layer 18 is removed to expose the dielectric layer 16 and the first trench 171 , and the remaining portion 182 of the oxide layer fills the second trench 172 . Specifically, for example, chemical mechanical polishing (CMP) is used to remove part of the oxide layer 18, and after the removal, the first trench 171 and the dielectric layer 16 covering the stack structure S1 are exposed, and the second trench The top surface 182a of the portion 182 of the oxide layer left in 172 is substantially coplanar with the top surface of the adjacent fourth portion 164 of the dielectric layer 16 (over the stack structure S2). In this example, the dielectric layer 16 may act as a polish stop while removing portions of the oxide layer 18 .

參照第1E圖,接著,沉積一流動性材料19於介電層16之上以及留下的氧化層的部分182之上,其中流動性材料19填滿第一溝槽171。流動性材料19例如是一種包含碳和氧且具有可流動性質的材料。在一些實施例中,流動性材料19包含有機介電層(organic dielectric layer,ODL)、旋塗碳、光阻層、底部抗反射塗層(bottom anti-reflective coating,BARC)、深紫外光吸收層(deep UV light absorbing oxide,DUO)、或其他合適的材料。在此示例中,流動性材料19為有機介電層。Referring to FIG. 1E , next, a flowable material 19 is deposited over the dielectric layer 16 and over the portion 182 of the remaining oxide layer, wherein the flowable material 19 fills the first trench 171 . The flowable material 19 is, for example, a material containing carbon and oxygen and having flowable properties. In some embodiments, the flowable material 19 includes an organic dielectric layer (ODL), spin-on carbon, photoresist layer, bottom anti-reflective coating (BARC), deep ultraviolet light absorption layer (deep UV light absorbing oxide, DUO), or other suitable materials. In this example, the flowable material 19 is an organic dielectric layer.

參照第1F圖,接著,移除部分的流動性材料19,以暴露出介電層16以及留下的氧化層的部分182,而使對應於第一溝槽171處的流動性材料下凹(recessed)。如第1F圖所示,移除部分的流動性材料19之後,係在第一溝槽中171中留下的流動性材料191的上方形成凹陷部(recessed portion)1710。在此例中,此些凹陷部1710係暴露出覆蓋堆疊結構S1的側面的介電層16的至少一部分。Referring to FIG. 1F, then, part of the flowable material 19 is removed to expose the dielectric layer 16 and the remaining part 182 of the oxide layer, so that the flowable material corresponding to the first trench 171 is recessed ( recessed). As shown in FIG. 1F, after a portion of the flowable material 19 is removed, a recessed portion 1710 is formed over the flowable material 191 left in the first trench 171 . In this example, the recesses 1710 expose at least a part of the dielectric layer 16 covering the side surface of the stacked structure S1.

再者,根據本揭露,流動性材料19下凹的深度(即凹陷部1710在方向D2上的高度)不宜過深,以避免使後續沉積絕緣材料層時將凹陷部1710封閉住。流動性材料19下凹的深度亦不宜過淺,以避免後續在堆疊結構上方沉積的絕緣材料層與在凹陷部中沉積的絕緣材料層的厚度差過小。若前述厚度差過小,則在去除第一溝槽中所填入材料層的製程後,在堆疊結構上方將無法留下具有足夠厚度的絕緣塊體,進而影響最終形成的空氣隙的高度。至於流動性材料19下凹的深度的數值,則視實際應用時溝槽的尺寸(包含深度和寬度)而可進行適當調整。Furthermore, according to the present disclosure, the recessed depth of the flowable material 19 (ie, the height of the recessed portion 1710 in the direction D2 ) should not be too deep to prevent the recessed portion 1710 from being closed when the insulating material layer is subsequently deposited. The recessed depth of the flowable material 19 should not be too shallow, so as to avoid that the thickness difference between the insulating material layer deposited on the stacked structure and the insulating material layer deposited in the recessed portion is too small. If the aforementioned thickness difference is too small, after the process of removing the material layer filled in the first trench, an insulating block with sufficient thickness cannot be left on the stacked structure, thereby affecting the height of the final air gap. As for the value of the recessed depth of the flowable material 19, it can be appropriately adjusted according to the size (including depth and width) of the groove in practical application.

在一些實施例中,移除部分的流動性材料19之後,在第一溝槽171中留下的流動性材料191的頂面191a係低於堆疊結構S1的頂面。例如第1F圖所示,在此例中,在第一溝槽171中留下的流動性材料191的頂面191a係低於堆疊結構S1中的金屬閘極145的頂面145a,但不低於堆疊結構S1中的多晶矽閘極144的頂面144a。但本揭露對於流動性材料19下凹後在第一溝槽171中留下的流動性材料191的頂面並不限制於前述的所在位置。In some embodiments, after removing part of the flowable material 19, the top surface 191a of the flowable material 191 left in the first trench 171 is lower than the top surface of the stacked structure S1. For example, as shown in FIG. 1F, in this example, the top surface 191a of the flowable material 191 left in the first trench 171 is lower than the top surface 145a of the metal gate 145 in the stack structure S1, but not lower than The top surface 144a of the polysilicon gate 144 in the stacked structure S1. However, in the present disclosure, the top surface of the flowable material 191 left in the first groove 171 after the flowable material 19 is recessed is not limited to the aforementioned position.

參照第1G圖,接著,D1形成一絕緣材料層21於介電層16、留下的氧化層的部份182以及留下的流動性材料191之上。以等向性沉積(conformal)方式於介電層16上沉積一絕緣材料層21。在此示例中,絕緣材料層21包括位於堆疊結構S1之頂面(例如金屬閘極145的頂面145a)上的第一部份211、沉積於凹陷部1710之側壁上和底面上的第二部份212s和212b、位於留下的氧化層182上的第三部份213以及位於堆疊結構S2之頂面上的第四部份214。另外,絕緣材料層21例如為一氧化層。Referring to FIG. 1G , then, D1 forms an insulating material layer 21 on the dielectric layer 16 , the remaining portion 182 of the oxide layer, and the remaining fluid material 191 . An insulating material layer 21 is deposited on the dielectric layer 16 by conformal deposition. In this example, the insulating material layer 21 includes a first portion 211 located on the top surface of the stacked structure S1 (eg, the top surface 145 a of the metal gate 145 ), a second portion 211 deposited on the sidewall and bottom surface of the recess 1710 Portions 212s and 212b, a third portion 213 on the remaining oxide layer 182, and a fourth portion 214 on the top surface of the stack structure S2. In addition, the insulating material layer 21 is, for example, an oxide layer.

再者,由於堆疊結構S1更密集的設置,第一溝槽171的寬度較小,因此絕緣材料層21沉積於凹陷部1710之側壁和底面上的第二部份212s和212b的厚度係小於沉積於堆疊結構S1之頂面上的厚度。亦即,絕緣材料層21的第一部份211(在方向D2上)的厚度TS0 大於第二部份212b(在方向D2上)的厚度TS1Furthermore, due to the denser arrangement of the stacked structure S1, the width of the first trench 171 is smaller, so the thicknesses of the second portions 212s and 212b of the insulating material layer 21 deposited on the sidewalls and bottom surfaces of the recessed portion 1710 are smaller than those deposited thereon. The thickness on the top surface of the stacked structure S1. That is, the thickness T S0 of the first portion 211 (in the direction D2 ) of the insulating material layer 21 is greater than the thickness T S1 of the second portion 212b (in the direction D2 ).

參照第1H圖,接著,移除第一溝槽171處的絕緣材料層和流動性材料。具體而言,移除絕緣材料層21的部分(例如此示例中係移除沉積於凹陷部1710之側壁上和底面上的第二部份212s和212b),並且移除對應於第一溝槽171處的留下的流動性材料191,而暴露出第一溝槽171,並形成多個絕緣塊體211’和214’分別對應於堆疊結構S1和第二堆疊結構的上方S2,如第1H圖所示。Referring to FIG. 1H, next, the insulating material layer and the fluid material at the first trench 171 are removed. Specifically, parts of the insulating material layer 21 are removed (eg, the second parts 212s and 212b deposited on the sidewalls and the bottom surfaces of the recesses 1710 in this example) are removed, and the first trenches corresponding to the first trenches are removed. The remaining fluid material 191 at 171 exposes the first trench 171, and forms a plurality of insulating blocks 211' and 214' respectively corresponding to the stack structure S1 and the upper part S2 of the second stack structure, such as the 1H as shown in the figure.

在一些實施例中,係以乾式蝕刻方式進行絕緣材料層和流動性材料191的移除。值得一提的是,如第1G圖所示之沉積絕緣材料層21的第一部份211的厚度TS0 甚大於第二部份212b的厚度TS1 ,因此不需要使用光罩,而是通過自對準(self-aligned)蝕刻步驟即可移除流動性材料191。如第1H圖所示,蝕刻後所形成的絕緣塊體211’和214’的厚度TS2 係小於蝕刻前沉積的第一部份211的厚度TS0 ,但是可以增加堆疊結構上方的高度,有助於增加後續形成之空氣隙的高度。In some embodiments, the removal of the insulating material layer and the flowable material 191 is performed by dry etching. It is worth mentioning that, as shown in FIG. 1G, the thickness T S0 of the first portion 211 of the insulating material layer 21 is much larger than the thickness T S1 of the second portion 212b, so it is not necessary to use a photomask, but The flowable material 191 can be removed by a self-aligned etch step. As shown in FIG. 1H, the thickness T S2 of the insulating blocks 211 ′ and 214 ′ formed after etching is smaller than the thickness T S0 of the first portion 211 deposited before etching, but the height above the stacked structure can be increased. Helps to increase the height of the air gap formed later.

再者,如第1H圖所示,進行自對準蝕刻步驟後,各個絕緣塊體211’的側面211s係與第一介電層的側面大致上齊平。如第1H圖所示之示例,各個絕緣塊體211’的側面211s係與位於相鄰堆疊結構S1之間的第一介電層之第二部份162的側面162s大致上齊平。Furthermore, as shown in FIG. 1H, after the self-aligned etching step, the side surfaces 211s of each insulating block 211' are substantially flush with the side surfaces of the first dielectric layer. In the example shown in FIG. 1H, the side surfaces 211s of each insulating block 211' are substantially flush with the side surfaces 162s of the second portion 162 of the first dielectric layer between adjacent stacked structures S1.

參照第1I圖,接著,形成一介電層23於絕緣塊體211’(對應於堆疊結構S1)和絕緣塊體214’(對應於堆疊結構S2)上方,並形成空氣隙25,且介電層23覆蓋空氣隙25以及絕緣塊體211’和214’。具體而言,在形成介電層23後,介電層23的底面23b係與第一溝槽171以及堆疊結構S1上方的絕緣塊體211’之間的空間形成空氣隙25。Referring to FIG. 1I, then, a dielectric layer 23 is formed over the insulating block 211' (corresponding to the stack structure S1) and the insulating block 214' (corresponding to the stack structure S2), and an air gap 25 is formed, and the dielectric Layer 23 covers air gap 25 and insulating blocks 211' and 214'. Specifically, after the dielectric layer 23 is formed, the bottom surface 23b of the dielectric layer 23 forms an air gap 25 with the space between the first trench 171 and the insulating block 211' above the stacked structure S1.

根據本揭露一些實施例,所形成的空氣隙25至少填滿相鄰的堆疊結構S1之側面上的第一介電層(例如第二部份162)之間的空間。換言之,相鄰的堆疊結構S1之間在方向D1上僅有介電層16和空氣隙25的存在,而沒有介電層23存在。According to some embodiments of the present disclosure, the formed air gaps 25 at least fill the spaces between the first dielectric layers (eg, the second portions 162 ) on the side surfaces of the adjacent stacked structures S1 . In other words, only the dielectric layer 16 and the air gap 25 exist between the adjacent stacked structures S1 in the direction D1, but no dielectric layer 23 exists.

根據本揭露,介電層23的材料和介電層16的材料不同。於此示例中,介電層23為一氧化層,介電層16為一氮化層。再者,於一些實施例中,介電層23的材料和絕緣材料層21/絕緣塊體211’、214’的材料相同,例如包含相同的氧化物。According to the present disclosure, the material of the dielectric layer 23 and the material of the dielectric layer 16 are different. In this example, the dielectric layer 23 is an oxide layer, and the dielectric layer 16 is a nitride layer. Furthermore, in some embodiments, the material of the dielectric layer 23 and the material of the insulating material layer 21/insulating blocks 211', 214' are the same, for example, contain the same oxide.

如第1I圖所示之結構,由於設置了絕緣塊體211’和214’,使得相鄰的堆疊結構S1之間的第一溝槽171可在方向D2上延伸,而增加了後續沉積的介電層23與基板10之間的距離,進而增加相鄰的堆疊結構S1之間的空氣隙25(在方向D2上)的高度。因此,在一些實施例中,所形成的空氣隙25除了填滿相鄰的堆疊結構S1之側面上的第一介電層(例如第二部份162)之間的空間,更填滿相鄰絕緣塊體211’(對應於堆疊結構S1的上方)之間的空間。換言之,相鄰的堆疊結構S1之間以及相鄰的絕緣塊體211’之間在方向D1上僅有介電層16和空氣隙25的存在,而沒有介電層23存在。As shown in FIG. 1I , due to the insulating blocks 211 ′ and 214 ′, the first trenches 171 between the adjacent stacked structures S1 can extend in the direction D2 , thereby increasing the dielectric for subsequent deposition. The distance between the electrical layer 23 and the substrate 10 increases the height of the air gap 25 (in the direction D2 ) between the adjacent stacked structures S1 . Therefore, in some embodiments, the formed air gap 25 not only fills the space between the first dielectric layers (eg, the second portion 162 ) on the side surface of the adjacent stacked structure S1 , but also fills the adjacent space between the first dielectric layers (eg, the second portion 162 ). The space between the insulating blocks 211 ′ (corresponding to the upper part of the stacked structure S1 ). In other words, only the dielectric layer 16 and the air gap 25 exist between the adjacent stacked structures S1 and the adjacent insulating blocks 211' in the direction D1, but no dielectric layer 23 exists.

如第1I圖所示,D1堆疊結構S1的側面上的第一介電層(例如第二部份162)之間的空間在方向D1上的寬度W1,係與空氣隙在25方向D1上的寬度WAir 相等。As shown in FIG. 1I, the width W1 of the space between the first dielectric layers (eg, the second portion 162 ) on the side surface of the stack structure S1 of D1 in the direction D1 is the same as the width W1 of the air gap in the direction D1 of 25 The width W Air is equal.

再者,如第1I圖所示,在一示例中,空氣隙25至少暴露出位於各個堆疊結構S1的控制閘極CG之所有側面上的介電層(例如第二部份162)的部分。在此示例中,在方向D2上延伸的空氣隙25亦直接接觸絕緣塊體211’的側面,使得相鄰的絕緣塊體211’之間在方向D1上僅有介電層16和空氣隙25的存在,而沒有介電層23存在。Furthermore, as shown in FIG. 1I , in one example, the air gap 25 exposes at least a portion of the dielectric layer (eg, the second portion 162 ) on all sides of the control gate CG of each stack structure S1 . In this example, the air gaps 25 extending in the direction D2 also directly contact the side surfaces of the insulating blocks 211 ′, so that there are only the dielectric layer 16 and the air gap 25 between the adjacent insulating blocks 211 ′ in the direction D1 the presence of the dielectric layer 23 without the presence of the dielectric layer 23 .

再者,在一些實施例中,在方向D2上延伸的空氣隙25,其頂端25a係高於絕緣塊體211’的頂面211a。Furthermore, in some embodiments, the top end 25a of the air gap 25 extending in the direction D2 is higher than the top surface 211a of the insulating block 211'.

另外,介電層23可透過一般沉積方式、或是其他合適的沉積方式進行沉積。於一些示例中,在第一區域A1 (例如陣列區域)中的堆疊結構S1係較緊密的設置而具有狹窄的第一溝槽171,因此介電層23不易填入第一溝槽171中。In addition, the dielectric layer 23 can be deposited by conventional deposition methods or other suitable deposition methods. In some examples, the stacked structures S1 in the first area A1 (eg, the array area) are arranged closely and have narrow first trenches 171 , so the dielectric layer 23 is not easy to fill in the first trenches 171 .

於一些其它示例中,可選用四乙氧基矽烷(TEOS)材料,並通過選擇性方式沉積。例如,通過化學氣相沉積方式在次常壓(sub-atmospheric pressure,SA)下進行TEOS沉積,以形成介電層23。TEOS次常壓製程在不同的材料上具有不同的沉積速率,例如在氧化層上的沉積速率較快,在氮化層上的沉積速率較慢,其沉積速率比例如是約2:1。在此示例中,絕緣塊體211’例如是氧化層,在堆疊結構S1側面上的介電層16例如是氮化層,且介電層23不易填入狹窄的第一溝槽171中,因此在沉積介電層23後,所形成的空氣隙25,如第1I圖所示,其頂端25a係高過絕緣塊體211’的頂面211a。In some other examples, a tetraethoxysilane (TEOS) material may be selected and deposited by selective means. For example, TEOS deposition is performed under sub-atmospheric pressure (SA) by chemical vapor deposition to form the dielectric layer 23 . The TEOS sub-atmospheric pressure process has different deposition rates on different materials, for example, the deposition rate on the oxide layer is faster, and the deposition rate on the nitride layer is slower, and the deposition rate ratio is, for example, about 2:1. In this example, the insulating block 211 ′ is, for example, an oxide layer, the dielectric layer 16 on the side of the stacked structure S1 is, for example, a nitride layer, and the dielectric layer 23 is not easily filled into the narrow first trench 171 , so After the dielectric layer 23 is deposited, the formed air gap 25, as shown in FIG. 1I, has a top 25a higher than the top surface 211a of the insulating block 211'.

於一些實施例中,介電層23在絕緣塊體211’上的沉積速率和在介電層16上的沉積速率的比值例如是在約1.5至約2.5的範圍之間,例如約2。In some embodiments, the ratio of the deposition rate of the dielectric layer 23 on the insulating block 211' to the deposition rate on the dielectric layer 16 is, for example, in the range of about 1.5 to about 2.5, such as about 2.

根據上述實施例,通過絕緣塊體211’和214’的設置(第1H圖),使得相鄰的堆疊結構S1之間的第一溝槽171可在方向D2上延伸,以增加後續沉積的介電層23到基板10之間的距離(第1I圖),進而增加相鄰的堆疊結構S1之間的空氣隙25(在方向D2上)的高度。再者,藉由在各個第一溝槽中對流動性材料191進行深度一致的下凹步驟,可於後續形成厚度一致的絕緣塊體211’和214’,進而控制後續形成的空氣隙25的高度及其輪廓的一致性,進而改善非揮發性記憶體結構的穩定度。在一些實施例中,空氣隙25在方向D2(例如Z方向)上具有相同的高度。According to the above-mentioned embodiment, through the disposition of the insulating blocks 211 ′ and 214 ′ ( FIG. 1H ), the first trenches 171 between the adjacent stacked structures S1 can extend in the direction D2 to increase the dielectric for subsequent deposition. The distance between the electrical layer 23 and the substrate 10 (FIG. 1I) increases the height of the air gap 25 (in the direction D2) between the adjacent stacked structures S1. Furthermore, by performing the step of recessing the fluid material 191 with the same depth in each of the first trenches, the insulating blocks 211 ′ and 214 ′ with the same thickness can be subsequently formed, thereby controlling the size of the air gap 25 formed subsequently. Consistency of height and profile, which in turn improves the stability of non-volatile memory structures. In some embodiments, the air gaps 25 have the same height in the direction D2 (eg, the Z direction).

第2A-2F圖是根據本發明的另一實施例之製造非揮發性記憶體結構的不同中間階段所對應的剖面示意圖,其示出接續於第1G圖步驟後的另一製造流程。第2A-2F圖中與第1A-1I圖中相同或相似的元件係沿用相同或相似的標號,以利清楚說明。FIGS. 2A-2F are schematic cross-sectional views corresponding to different intermediate stages of manufacturing a non-volatile memory structure according to another embodiment of the present invention, which illustrate another manufacturing process following the step of FIG. 1G. Elements in Figures 2A-2F that are the same or similar to those in Figures 1A-1I are given the same or similar reference numerals for clarity.

第2A圖的形成步驟與構型則與第1H圖的形成步驟與構型相同,為了簡化說明,在此不再詳述。並且,在此示例中,依前述製法分別在堆疊結構S1、S2上方所形成的絕緣塊體211’、214’ 於以下說明時係稱為第一絕緣層211’、214’。The formation steps and configuration of FIG. 2A are the same as those of FIG. 1H, and are not described in detail here for simplicity of description. In addition, in this example, the insulating blocks 211' and 214' respectively formed on the stacked structures S1 and S2 according to the aforementioned manufacturing method are referred to as first insulating layers 211' and 214' in the following description.

接著,參照第2B圖,在一實施例中,再沉積另一流動性材料29於第一絕緣層211’、214’之上。流動性材料29可以與流動性材料19具有相同材料,其沉積方式和材料如前述流動性材料19,在此不重複敘述。Next, referring to FIG. 2B, in one embodiment, another flowable material 29 is deposited on the first insulating layers 211', 214'. The flowable material 29 may have the same material as the flowable material 19 , and the deposition method and material thereof are the same as the aforementioned flowable material 19 , which will not be repeated here.

接著,參照第2C圖,在一實施例中,移除部分的流動性材料29,以暴露出第一絕緣層211’、214’以及留下的氧化層的部分182,而使對應於第一溝槽171處的流動性材料29下凹。如第2C圖所示,移除部分的流動性材料29之後,係在第一溝槽中171中留下的流動性材料291的上方形成凹陷部2710。Next, referring to FIG. 2C , in one embodiment, a portion of the fluid material 29 is removed to expose the first insulating layers 211 ′, 214 ′ and the remaining portion 182 of the oxide layer, so that the portion 182 corresponding to the first insulating layer 211 ′, 214 ′ and the remaining oxide layer is exposed. The flowable material 29 at the grooves 171 is recessed. As shown in FIG. 2C , after removing part of the flowable material 29 , a recess 2710 is formed above the flowable material 291 left in the first groove 171 .

在一些實施例中,移除部分的流動性材料29之後,在第一溝槽171中留下的流動性材料291的頂面291a係低於第一絕緣層211’、214’的頂面211a、214a。如第2C圖所示,流動性材料29下凹的深度例如是(但不限制是)可暴露出第一絕緣層211’以及214’的側面。In some embodiments, after removing part of the flowable material 29, the top surface 291a of the flowable material 291 left in the first trench 171 is lower than the top surface 211a of the first insulating layers 211', 214' , 214a. As shown in FIG. 2C, the recessed depth of the flowable material 29 is, for example (but not limited to), to expose the side surfaces of the first insulating layers 211' and 214'.

接著,參照第2D圖,在一實施例中,形成另一絕緣材料層31於第一絕緣層211’、214’、留下的氧化層的部份182以及留下的流動性材料291的上方。在此示例中,係以等向性沉積方式沉積絕緣材料層31。絕緣材料層31例如為一氧化層。另外,絕緣材料層31可以與絕緣材料層21具有相同或不同的材料;且絕緣材料層31可以與絕緣材料層21具有相同或不同的厚度,視實際應用條件而定。Next, referring to FIG. 2D , in one embodiment, another insulating material layer 31 is formed over the first insulating layers 211 ′, 214 ′, the remaining portion 182 of the oxide layer, and the remaining fluid material 291 . . In this example, the insulating material layer 31 is deposited by isotropic deposition. The insulating material layer 31 is, for example, an oxide layer. In addition, the insulating material layer 31 and the insulating material layer 21 may have the same or different materials; and the insulating material layer 31 and the insulating material layer 21 may have the same or different thickness, depending on actual application conditions.

如第2D圖所示,在一示例中,絕緣材料層31包括位於第一絕緣層211’之頂面上的第一部份311、沉積於凹陷部2710之側壁上和底面上的第二部份312s和312b、位於留下的氧化層182上方的第三部份313以及位於第一絕緣層214’之頂面上的第四部份314。As shown in FIG. 2D , in one example, the insulating material layer 31 includes a first portion 311 located on the top surface of the first insulating layer 211 ′, and a second portion deposited on the sidewall and bottom surface of the recessed portion 2710 . Portions 312s and 312b, a third portion 313 over the remaining oxide layer 182, and a fourth portion 314 over the top surface of the first insulating layer 214'.

接著,參照第2E圖,在一實施例中,移除第一溝槽171處的絕緣材料層和流動性材料。具體而言,移除絕緣材料層31的第二部份312s和312b(位於凹陷部2710之側壁上和底面上),並且移除對應於第一溝槽171處的留下的流動性材料291,以暴露出第一溝槽171,並分別形成第二絕緣層311’和314’於第一絕緣層211’和214’的上方。如第2E圖所示,對應於堆疊結構S1上方的第一絕緣層211’和第二絕緣層311’係構成絕緣塊體IL1 ;而對應於第一堆疊結構S2上方的第一絕緣層214’和第二絕緣層314’係構成絕緣塊體IL2 。至此步驟,係在堆疊結構的上方建構出含有兩層絕緣層的絕緣塊體。Next, referring to FIG. 2E , in one embodiment, the insulating material layer and the fluid material at the first trench 171 are removed. Specifically, the second portions 312s and 312b of the insulating material layer 31 (on the sidewalls and the bottom surface of the recess 2710 ) are removed, and the remaining fluid material 291 corresponding to the first trench 171 is removed , so as to expose the first trench 171 , and respectively form second insulating layers 311 ′ and 314 ′ over the first insulating layers 211 ′ and 214 ′. As shown in FIG. 2E , the first insulating layer 211 ′ and the second insulating layer 311 ′ corresponding to the stack structure S1 constitute the insulating block IL 1 ; and the first insulating layer 214 corresponding to the first stack structure S2 ' and the second insulating layer 314' constitute the insulating block IL 2 . So far, an insulating block including two insulating layers is constructed above the stacked structure.

同樣的,不需要使用光罩就能移除第一溝槽171處的絕緣材料層和流動性材料291。例如,以自對準蝕刻進行移除,移除後各個絕緣塊體的側面係與介電層16的側面大致上齊平。如第2E圖所示,絕緣塊體IL1 包含的第一絕緣層211’ 的側面211s和第二絕緣層311’ 的側面311s係與介電層16的側面162s大致上齊平。Likewise, the insulating material layer and the flowable material 291 at the first trenches 171 can be removed without the use of a photomask. For example, the removal is performed by self-aligned etching, and the sides of each insulating block are substantially flush with the sides of the dielectric layer 16 after removal. As shown in FIG. 2E , the side surfaces 211 s of the first insulating layer 211 ′ and the side surfaces 311 s of the second insulating layer 311 ′ included in the insulating block IL 1 are substantially flush with the side surfaces 162 s of the dielectric layer 16 .

之後,參照第2F圖,在一實施例中,形成介電層23於第二絕緣層311’(對應於堆疊結構S1)和第二絕緣層314’(對應於堆疊結構S2)上方,並形成空氣隙35。介電層23可透過一般沉積方式、或是其他合適的沉積方式進行沉積。例如,可使用次常壓(SA)選擇性沉積方式而形成介電層23,其內容說明如上,在此不再重述。Then, referring to FIG. 2F , in one embodiment, the dielectric layer 23 is formed over the second insulating layer 311 ′ (corresponding to the stacked structure S1 ) and the second insulating layer 314 ′ (corresponding to the stacked structure S2 ), and formed Air gap 35. The dielectric layer 23 can be deposited by conventional deposition methods or other suitable deposition methods. For example, the dielectric layer 23 may be formed using a sub-atmospheric pressure (SA) selective deposition method, the content of which is described above and will not be repeated here.

在一些實施例中,在方向D2上延伸的各個空氣隙35係直接接觸各個絕緣塊體之第一絕緣層211’及第二絕緣層311’的側面。如第2F圖所示,根據本揭露一些實施例,所形成的空氣隙35除了填滿相鄰的堆疊結構S1側面上的第一介電層(例如第二部份162)之間的空間,以及填滿相鄰第一絕緣層211’(對應於堆疊結構S1的上方)之間的空間,更填滿相鄰第二絕緣層311’(對應於堆疊結構S1的上方)之間的空間。換言之,相鄰的堆疊結構S1之間、相鄰的第一絕緣層211’之間以及相鄰的第二絕緣層311’之間在方向D1上僅有介電層16和空氣隙25的存在,而沒有介電層23存在。In some embodiments, each air gap 35 extending in the direction D2 directly contacts the side surfaces of the first insulating layer 211' and the second insulating layer 311' of each insulating block. As shown in FIG. 2F, according to some embodiments of the present disclosure, the formed air gap 35 not only fills the space between the first dielectric layers (eg, the second portion 162) on the side of the adjacent stacked structure S1, but also and filling the space between the adjacent first insulating layers 211 ′ (corresponding to the upper side of the stack structure S1 ), and further filling the space between the adjacent second insulating layers 311 ′ (corresponding to the upper side of the stack structure S1 ). In other words, only the dielectric layer 16 and the air gap 25 exist between the adjacent stacked structures S1 , between the adjacent first insulating layers 211 ′ and between the adjacent second insulating layers 311 ′ in the direction D1 , without the presence of the dielectric layer 23 .

依照上述實施例如第2A~2E圖所示,可以製作出含有多層結構的絕緣塊體(例如第2E圖所示之絕緣塊體IL1 和IL2 ),其中各個絕緣塊體包含多個在方向D2上垂直堆疊的絕緣層。再者,可視實際製程之需求,重複進行如第2A-2E之步驟,以製作出含有三層甚至更多層絕緣材料層的絕緣塊體。According to the above-mentioned embodiment, as shown in Figs. 2A to 2E, an insulating block having a multi-layer structure (such as the insulating blocks IL 1 and IL 2 shown in Fig. 2E ) can be fabricated, wherein each insulating block includes a plurality of insulator blocks in the direction of Vertically stacked insulating layers on D2. Furthermore, depending on the requirements of the actual process, the steps such as steps 2A-2E can be repeated to manufacture an insulating block containing three or more insulating material layers.

再者,比較第1I圖的空氣隙25和第2F圖的空氣隙35,空氣隙35在方向D2上的高度H2係大於空氣隙25在方向D2上的高度H1(H2>H1)。因此,絕緣塊體的厚度越厚、或是所包含的絕緣層數目越多,越提高了空氣隙在方向D2上的高度。Furthermore, comparing the air gap 25 in Fig. 1I with the air gap 35 in Fig. 2F, the height H2 of the air gap 35 in the direction D2 is greater than the height H1 of the air gap 25 in the direction D2 (H2>H1). Therefore, the thicker the thickness of the insulating block, or the greater the number of insulating layers included, the higher the height of the air gap in the direction D2.

綜合上述,根據本揭露一些實施例提出的非揮發性記憶體結構和製造方法具有許多優點。例如,可通過簡易且不會增加額外製造成本的方式設置單層或多層結構的絕緣塊體,而增加後續在堆疊結構(例如字元線閘極結構)之間所形成的空氣隙25/35的高度,絕緣塊體的厚度和/或所包含的絕緣層數目係視欲形成的空氣隙的高度而定。實施例並藉由在堆疊結構之間的溝槽(例如第一溝槽)中填充的流動性材料進行深度均勻一致的下凹步驟,而於後續形成厚度均勻一致的絕緣塊體,進而控制各個空氣隙25/35在高度和輪廓上的一致性,進而改善非揮發性記憶體結構的穩定度。再者,根據實施例的製造方法,其可以透過自對準蝕刻方式,不需要使用光罩,就能完全移除位於第一溝槽中的流動性材料,以在沉積介電層23後形成足夠寬的空氣隙25/35,使相鄰的堆疊結構(例如字元線閘極結構)之間僅有介電層16(例如氮化層)和空氣隙25/35的存在,而沒有介電層23(例如氧化層)的存在,甚至相鄰的的絕緣塊體之間也只有空氣隙25/35而沒有介電層23的存在,因而提升相鄰的堆疊結構(例如字元線閘極結構)之間的電性隔離程度,降低漏電流以及減少耦合電容,使非揮發性記憶體結構具有穩定的電性表現,進而提高最終產品的良率及可靠度。In summary, the non-volatile memory structures and fabrication methods proposed according to some embodiments of the present disclosure have many advantages. For example, a single-layer or multi-layer structure of insulating blocks can be provided in a simple manner without increasing additional manufacturing costs, thereby increasing the air gap 25/35 formed between the stacked structures (eg, word line gate structures) subsequently. The height of the insulating block and/or the number of insulating layers included depend on the height of the air gap to be formed. In the embodiment, the grooves (such as the first grooves) between the stacked structures are filled with the fluid material to perform a recessing step with a uniform depth, and subsequently an insulating block with uniform thickness is formed, thereby controlling each The uniformity in height and profile of the air gap 25/35 improves the stability of the non-volatile memory structure. Furthermore, according to the manufacturing method of the embodiment, it is possible to completely remove the fluid material located in the first trench by self-aligned etching without using a mask, so as to form after depositing the dielectric layer 23 The air gaps 25/35 are wide enough so that only the dielectric layer 16 (such as a nitride layer) and the air gaps 25/35 exist between adjacent stacked structures (such as word line gate structures), but no dielectric The presence of the electrical layer 23 (eg oxide layer), even between adjacent insulating blocks, there is only an air gap 25/35 without the presence of the dielectric layer 23, thus enhancing the adjacent stack structures (eg word line gates) The degree of electrical isolation between the polar structures), the leakage current and the coupling capacitance are reduced, so that the non-volatile memory structure has stable electrical performance, thereby improving the yield and reliability of the final product.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make any changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the scope of the appended patent application.

10:基底 12:穿隧介電層 14:閘極結構 141:浮置閘極 142:閘極間介電層 144:多晶矽閘極 144a、145a、182a、191a、211a、214a、291a:頂面 145:金屬閘極 16、23:介電層 161、211、311:第一部份 162、212s、212b、312s、312b:第二部份 162s、211s、311s:側面 163、213、313:第三部份 164、214、314:第四部份 171:第一溝槽 1710、2710:凹陷部 172:第二溝槽 18、182:氧化層 19、191、29、291:流動性材料 21、31:絕緣材料層 211’、214’:絕緣塊體(第一絕緣層) 311’、314’:第二絕緣層 23b:底面 25、35:空氣隙 25a:頂端 A1 :第一區域 A2 :第二區域 CG:控制閘極 D1、D2、D3:方向 H1、H2:高度 IL1 、IL2 :絕緣塊體 S1、S2:堆疊結構 TS0 、TS1 、TS2 :厚度 W1、WAir :寬度10: substrate 12: tunnel dielectric layer 14: gate structure 141: floating gate 142: inter-gate dielectric layer 144: polysilicon gate 144a, 145a, 182a, 191a, 211a, 214a, 291a: top surface 145: metal gate 16, 23: dielectric layer 161, 211, 311: first part 162, 212s, 212b, 312s, 312b: second part 162s, 211s, 311s: side surface 163, 213, 313: first part Three parts 164, 214, 314: Fourth part 171: First trench 1710, 2710: Recess 172: Second trench 18, 182: Oxide layer 19, 191, 29, 291: Fluid material 21, 31: insulating material layer 211', 214': insulating block (first insulating layer) 311', 314': second insulating layer 23b: bottom surface 25, 35: air gap 25a: top end A1: first region A2 : second region CG: control gate D1, D2, D3: direction H1, H2: height IL 1 , IL 2 : insulating block S1 , S2 : stacked structure T S0 , T S1 , T S2 : thickness W1 , W Air :width

第1A-1I圖是根據本揭露的一些實施例之製造非揮發性記憶體結構的不同中間階段所對應的剖面示意圖。 第2A-2F圖是根據本發明的另一實施例之製造非揮發性記憶體結構的不同中間階段所對應的剖面示意圖,其示出接續於第1G圖步驟後的另一製造流程。1A-1I are schematic cross-sectional views corresponding to different intermediate stages of fabricating a non-volatile memory structure according to some embodiments of the present disclosure. FIGS. 2A-2F are schematic cross-sectional views corresponding to different intermediate stages of manufacturing a non-volatile memory structure according to another embodiment of the present invention, which illustrate another manufacturing process following the step of FIG. 1G.

10:基底10: Base

12:穿隧介電層12: Tunneling Dielectric Layer

14:閘極結構14: Gate structure

141:浮置閘極141: floating gate

142:閘極間介電層142: Dielectric layer between gates

144:多晶矽閘極144: polysilicon gate

145:金屬閘極145: Metal gate

16、23:介電層16, 23: Dielectric layer

161:第一部份161: Part One

162:第二部份162: Part II

162s、211s:側面162s, 211s: side

163:第三部份163: Part Three

164:第四部份164: Part Four

182:氧化層182: oxide layer

211’、214’:絕緣塊體211', 214': insulating block

211a:頂面211a: Top surface

23b:底面23b: Underside

25:空氣隙25: Air Gap

25a:頂端25a: top

A1 :第一區域A 1 : The first area

A2 :第二區域A 2 : The second area

CG:控制閘極CG: Control Gate

D1、D2、D3:方向D1, D2, D3: Direction

H1:高度H1: height

W1、WAir :寬度W1, W Air : width

Claims (15)

一種非揮發性記憶體結構,包括: 一基底,包含一陣列區域; 一穿隧介電層,位於該基底上; 複數個閘極結構,位於該基底的上方和該陣列區域中,且該些閘極結構係彼此相距,前述各個閘極結構包含位於該穿隧介電層上的一浮置閘極以及位於該浮置閘極上方的一控制閘極; 一第一介電層,位於該基底的上方並覆蓋該穿隧介電層的頂面,該第一介電層並覆蓋前述各個閘極結構的側面和頂面,其中在相鄰的該些閘極結構的該些側面上的該第一介電層之間的空間係填滿空氣隙; 複數個絕緣塊體,位於該第一介電層上且分別對應於該些閘極結構;以及 一第二介電層,位於該些絕緣塊體上並覆蓋該些絕緣塊體和該些空氣隙。A non-volatile memory structure comprising: a substrate, including an array area; a tunneling dielectric layer on the substrate; A plurality of gate structures are located above the substrate and in the array region, and the gate structures are spaced apart from each other, each of the gate structures includes a floating gate on the tunnel dielectric layer and a floating gate on the tunnel dielectric layer a control gate above the floating gate; A first dielectric layer is located above the substrate and covers the top surface of the tunnel dielectric layer, the first dielectric layer covers the side surfaces and the top surface of each gate structure, wherein the adjacent ones the spaces between the first dielectric layers on the sides of the gate structure are filled with air gaps; a plurality of insulating blocks located on the first dielectric layer and corresponding to the gate structures respectively; and A second dielectric layer is located on the insulating blocks and covers the insulating blocks and the air gaps. 如請求項1所述之非揮發性記憶體結構,其中該些空氣隙的頂端係高於該些絕緣塊體的頂面。The non-volatile memory structure of claim 1, wherein tops of the air gaps are higher than top surfaces of the insulating blocks. 如請求項1所述之非揮發性記憶體結構,其中該些空氣隙至少暴露出位於前述各個閘極結構的該控制閘極之所有側面上的該第一介電層的部分。The non-volatile memory structure of claim 1, wherein the air gaps expose at least portions of the first dielectric layer on all sides of the control gate of each of the aforementioned gate structures. 如請求項1所述之非揮發性記憶體結構,其中該些空氣隙更直接接觸該些絕緣塊體的側面。The non-volatile memory structure of claim 1, wherein the air gaps more directly contact the sides of the insulating blocks. 如請求項1所述之非揮發性記憶體結構,其中該些空氣隙在垂直於該基板的方向上具有相同的高度。The non-volatile memory structure of claim 1, wherein the air gaps have the same height in a direction perpendicular to the substrate. 如請求項1所述之非揮發性記憶體結構,其中前述各個絕緣塊體以及前述各個閘極結構的該控制閘極係以該第一介電層相隔開來。The non-volatile memory structure of claim 1, wherein each of the insulating blocks and the control gate of each of the gate structures are separated by the first dielectric layer. 如請求項1所述之非揮發性記憶體結構,其中前述各個絕緣塊體的側面係與該第一介電層的側面齊平。The non-volatile memory structure of claim 1, wherein the side surfaces of each of the insulating blocks are flush with the side surfaces of the first dielectric layer. 如請求項1所述之非揮發性記憶體結構,其中前述各個閘極結構中,該控制閘極包含一多晶矽閘極以及一金屬閘極位於該多晶矽閘極上,其中前述各個絕緣塊體與前述各個閘極結構的該金屬閘極係以該第一介電層相隔開來。The non-volatile memory structure of claim 1, wherein in each of the gate structures, the control gate comprises a polysilicon gate and a metal gate on the polysilicon gate, wherein each of the insulating blocks and the aforementioned The metal gates of each gate structure are separated by the first dielectric layer. 一種非揮發性記憶體結構的製造方法,包括: 提供一基底,該基底包含一第一區域和一第二區域; 形成一穿隧介電層於該基底上; 形成複數個第一堆疊結構和複數個第二堆疊結構彼此相距地位於該穿隧介電層上,且該些第一堆疊結構和該些第二堆疊結構分別位於該第一區域和該第二區域中; 形成一第一介電層於該基底的上方並覆蓋該穿隧介電層的頂面以及覆蓋該些第一堆疊結構和該些第二堆疊結構的頂面和側面; 形成複數個絕緣塊體位於該第一介電層上,且該些絕緣塊體分別對應於該些第一堆疊結構和該些第二堆疊結構的該些頂面;以及 形成一第二介電層於該些第一堆疊結構和該些第二堆疊結構上方,並形成空氣隙,且該第二介電層覆蓋該些絕緣塊體以及該些空氣隙,其中該些空氣隙係填滿相鄰的該些第一堆疊結構的該些側面上的該第一介電層之間的空間。A method of manufacturing a non-volatile memory structure, comprising: providing a substrate, the substrate includes a first region and a second region; forming a tunnel dielectric layer on the substrate; A plurality of first stack structures and a plurality of second stack structures are formed on the tunnel dielectric layer spaced apart from each other, and the first stack structures and the second stack structures are respectively located in the first region and the second stack in the area; forming a first dielectric layer over the substrate and covering the top surface of the tunnel dielectric layer and covering the top and side surfaces of the first stack structures and the second stack structures; forming a plurality of insulating blocks on the first dielectric layer, and the insulating blocks respectively correspond to the top surfaces of the first stack structures and the second stack structures; and A second dielectric layer is formed over the first stack structures and the second stack structures to form air gaps, and the second dielectric layer covers the insulating blocks and the air gaps, wherein the Air gaps fill the spaces between the first dielectric layers on the sides of the adjacent first stack structures. 如請求項9所述之非揮發性記憶體結構的製造方法,其中該些空氣隙更填滿對應於相鄰的該些第一堆疊結構上的該些絕緣塊體之間的空間,該些空氣隙的頂端係高於該些絕緣塊體的頂面。The method for manufacturing a non-volatile memory structure as claimed in claim 9, wherein the air gaps are further filled with the spaces between the insulating blocks on the adjacent first stacked structures, the The tops of the air gaps are higher than the top surfaces of the insulating blocks. 如請求項9所述之非揮發性記憶體結構的製造方法,其中在形成該第一介電層後,在該些第一堆疊結構之間具有第一溝槽,在相鄰的第一堆疊結構與第二堆疊結構之間具有一第二溝槽,其中該第二溝槽在第一方向上的寬度大於前述各個第一溝槽在該第一方向上的寬度。The method for manufacturing a non-volatile memory structure as claimed in claim 9, wherein after the first dielectric layer is formed, there are first trenches between the first stack structures, and adjacent first stack structures have first trenches. There is a second trench between the structure and the second stacked structure, wherein the width of the second trench in the first direction is greater than the width of the first trenches in the first direction. 如請求項11所述之非揮發性記憶體結構的製造方法,其中在形成該第一介電層之後和形成該些絕緣塊體之前,更包括: 沉積一氧化層於該第一介電層上,其中該氧化層位於該些第一溝槽上方但填滿該第二溝槽; 移除部分的該氧化層以暴露出該第一介電層和該些第一溝槽,留下的該氧化層填滿該第二溝槽; 沉積一流動性材料於該第一介電層以及留下的該氧化層上,該流動性材料填滿該些第一溝槽;以及 移除部分的該流動性材料,以使對應於該些第一溝槽處的該流動性材料下凹。The method for manufacturing a non-volatile memory structure as claimed in claim 11, wherein after forming the first dielectric layer and before forming the insulating blocks, further comprising: depositing an oxide layer on the first dielectric layer, wherein the oxide layer is above the first trenches but fills the second trenches; removing a portion of the oxide layer to expose the first dielectric layer and the first trenches, and the remaining oxide layer fills the second trenches; depositing a flowable material on the first dielectric layer and the remaining oxide layer, the flowable material filling the first trenches; and A portion of the flowable material is removed to concave the flowable material corresponding to the first grooves. 如請求項12所述之非揮發性記憶體結構的製造方法,其中移除部分的該流動性材料後,係在該些第一溝槽中留下的該流動性材料的上方形成凹陷部,其中該些凹陷部係暴露出覆蓋該些第一堆疊結構的側面的該第一介電層的至少一部分,在該些第一溝槽中留下的該流動性材料的頂面係低於該些第一堆疊結構的頂面。The method for manufacturing a non-volatile memory structure as claimed in claim 12, wherein after removing part of the flowable material, a concave portion is formed above the flowable material left in the first grooves, Wherein the recesses expose at least a portion of the first dielectric layer covering the sides of the first stack structures, and the top surface of the flowable material left in the first trenches is lower than the the top surfaces of some of the first stacked structures. 如請求項12所述之非揮發性記憶體結構的製造方法,其中前述各個第一堆疊結構包含位於該穿隧介電層上的一浮置閘極以及位於該浮置閘極上方的一控制閘極,且該控制閘極包含一多晶矽閘極以及一金屬閘極位於該多晶矽閘極上,而在移除部分的該流動性材料後,在該些第一溝槽中留下的該流動性材料的頂面係不低於該些第一堆疊結構的該些多晶矽閘極的頂面。The method for fabricating a non-volatile memory structure as claimed in claim 12, wherein each of the first stacked structures includes a floating gate on the tunnel dielectric layer and a control on the floating gate gate, and the control gate includes a polysilicon gate and a metal gate on the polysilicon gate, and after removing part of the flowable material, the flowability left in the first trenches The top surface of the material is not lower than the top surface of the polysilicon gates of the first stacked structures. 如請求項12所述之非揮發性記憶體結構的製造方法,在移除部分的該流動性材料後,更包括: 形成一絕緣材料層於該第一介電層、留下的該氧化層以及留下的該流動性材料上; 移除對應於該些第一溝槽處的該絕緣材料層的部分以及留下的該流動性材料,而暴露出該些第一溝槽以及形成該些絕緣塊體對應於該些第一堆疊結構和該些第二堆疊結構的上方;以及 沉積該第二介電層。The method for manufacturing a non-volatile memory structure according to claim 12, after removing part of the flowable material, further comprising: forming a layer of insulating material on the first dielectric layer, the remaining oxide layer and the remaining fluid material; removing portions of the insulating material layer corresponding to the first trenches and the remaining fluid material, exposing the first trenches and forming the insulating blocks corresponding to the first stacks structure and above the second stacked structures; and The second dielectric layer is deposited.
TW109126167A 2020-08-03 2020-08-03 Non-volatile memory structure and method of manufacturing the same TWI797467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126167A TWI797467B (en) 2020-08-03 2020-08-03 Non-volatile memory structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126167A TWI797467B (en) 2020-08-03 2020-08-03 Non-volatile memory structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202207373A true TW202207373A (en) 2022-02-16
TWI797467B TWI797467B (en) 2023-04-01

Family

ID=81323391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126167A TWI797467B (en) 2020-08-03 2020-08-03 Non-volatile memory structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI797467B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302950A (en) * 2005-04-15 2006-11-02 Renesas Technology Corp Nonvolatile semiconductor device and method of manufacturing the same
KR100843044B1 (en) * 2007-08-20 2008-07-01 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
JP5796029B2 (en) * 2013-02-22 2015-10-21 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
US9263319B2 (en) * 2013-08-30 2016-02-16 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
TW201622063A (en) * 2014-12-15 2016-06-16 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TWI797467B (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US8124478B2 (en) Method for fabricating flash memory device having vertical floating gate
JP2021518057A (en) Memory device and its formation method
US11189637B2 (en) Three-dimensional memory array including self-aligned dielectric pillar structures and methods of making the same
KR20000067767A (en) Dram cell capacitor and manufacturing method thereof
KR20150041266A (en) Method of manufacturing semiconductor device
US11600620B2 (en) Semiconductor memory device
US7888804B2 (en) Method for forming self-aligned contacts and local interconnects simultaneously
KR20210022109A (en) New 3D NAND memory device and its formation method
WO2023077666A1 (en) Semiconductor structure and manufacturing method therefor
TW202201744A (en) Memory device and method of manufacturing the same
US8232170B2 (en) Methods for fabricating semiconductor devices with charge storage patterns
US11756877B2 (en) Three-dimensional memory device with via structures surrounded by perforated dielectric moat structure and methods of making the same
TW202201755A (en) Memory device and method of manufacturing the same
TWI548036B (en) Method of fabricating embedded memory device
TWI733412B (en) Semiconductor device with air gap and method of fabricating the same
US9029216B1 (en) Memory and manufacturing method thereof
TWI797467B (en) Non-volatile memory structure and method of manufacturing the same
TWI760965B (en) Three-dimensional memory device with channel structure having plum blossom shape and method for forming the same
TWI700815B (en) Three-dimensional memory device and manufacturing method thereof
TWI469269B (en) Method of forming word line of embedded flash memory
CN114256252A (en) Non-volatile memory structure and manufacturing method thereof
US11322623B2 (en) Non-volatile memory structure and method of manufacturing the same
WO2023092827A1 (en) Semiconductor structure and manufacturing method therefor
US11716847B2 (en) Three-dimensional NAND memory device with split gates
CN108074932A (en) Semiconductor devices and preparation method thereof, electronic device