TW202201044A - 光學感測裝置 - Google Patents
光學感測裝置 Download PDFInfo
- Publication number
- TW202201044A TW202201044A TW109121046A TW109121046A TW202201044A TW 202201044 A TW202201044 A TW 202201044A TW 109121046 A TW109121046 A TW 109121046A TW 109121046 A TW109121046 A TW 109121046A TW 202201044 A TW202201044 A TW 202201044A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical sensing
- recessed portion
- detector
- sensing device
- concave portion
- Prior art date
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Light Receiving Elements (AREA)
Abstract
本發明公開一種光學感測裝置,其包括一電路基板、一發射器及一偵測器分別設置在電路基板上,一封裝結構包覆在發射器與偵測器上,並藉由一第一凹陷部分隔發射器與偵測器,更提供一第二凹陷部於偵測器上方。因此,通過第一凹陷部與第二凹陷部改變發射器所產生的光束的散射路徑,降低發射器產生的光束直接傳遞至偵測器,以提升光學感測裝置的感測準確度,降低光學串擾的影響。
Description
本發明涉及一種光學感測裝置,特別是涉及一種可改變發射器的光束傳遞方向的光學感測裝置。
近距離感測器(Proximity Sensor,PS)是能夠在無實體直接接觸的情況下檢測是否存在附近物體的感測器。近距離感測器通常發射電磁波、靜電場或者電磁輻射波束(例如,紅外)並搜尋場的變化或返回信號。被感測的物體通常稱為近距離感測器的目標。不同的近距離感測器物件需要不同的感測器。例如,電容或光電感測器可以用於塑膠物件,電感近距離感測器可以適於金屬物件。因此,應用近距離感測器的感測模組可稱為光學感測模組。
許多光學感測模組通常包括金屬遮罩件,以提供發射器與偵測器之間的光學隔離,來使得發射器與偵測器之間的不期望的光學串擾(Crosstalk)最小化。然而,使用金屬遮罩件的方式,雖然可以提供發射器與偵測器之間的光學隔離,但是金屬遮罩件的設置會增加光學感測模組的製造成本,因此,改以應用一開口在發射器與偵測器之間,同樣可以達到降低光學感測模組的光學串擾的問題。
圖1顯示一種現有的光學感測裝置的立體圖,如圖1所示,光學感測裝置1包括一電路板11、一發射器12、一偵測器13、一封裝構件14以及一開口15。發射器12與偵測器13設置在電路板11上,封裝構件14設置在發射器12與偵測器13上,通過在發射器12與偵測器13之間形成開口15,達到改變光束的散射路徑。
然而,設計開口的方式相較於無設計開口的方式,雖然可以有效降低光學串擾的問題,但是當光學感測模組的體積越來越小時,設置開口的方式,還是有很高的機率讓發射器12所散射的光束直接傳遞至偵測器13,如圖1所示,而無法將光學串擾的問題降低至可容忍的範圍內。
故,如何通過結構設計的改良,來降低光學串擾的問題提升光學感測裝置的感測效果,已成為該項事業所欲解決的重要課題之一。
本發明所要解決的技術問題在於,針對現有技術的不足提供一種光學感測裝置,其包括一電路基板、一發射器、一偵測器與一封裝構件。電路基板的表面包括彼此獨立的多個電路區域,發射器及偵測器分別設置在多個電路區域上。封裝構件包覆多個電路區域,並分別設置於多個電路區域上的發射器與偵測器上,且封裝構件包括一第一凹陷部與一第二凹陷部。第一凹陷部深度設置於對應發射器與偵測器之間,第二凹陷部深度設置於對應偵測器之上。第二凹陷部的深度低於第一凹陷部的深度,通過第一凹陷部與第二凹陷部改變發射器產生的光束於封裝構件內的散射路徑。
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種光學感測裝置,其包括一電路基板、一發射器、一偵測器與一光阻絕封裝構件。
本發明的其中一有益效果在於,本發明所提供的光學感測裝置,其能通過設置第一凹陷部、第二凹陷部與/或第三凹陷部的技術方案,降低發射器產生的光束直接傳遞至偵測器,以提升光學感測模組的感測準確度,降低光學串擾的影響。
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。
以下是通過特定的具體實施例來說明本發明所公開有關“光學感測裝置”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
[第一實施例]
圖2A為本發明第一實施例之光學感測裝置的立體示意圖,圖2B為本發明第一實施例之光學感測裝置的光束傳遞示意圖,參閱圖2A與圖2B所示,本發明第一實施例提供一種光學感測裝置2,其包括:一電路基板21、一發射器22、一偵測器23、一封裝構件24、一第一凹陷部25與一第二凹陷部26。
電路基板21較佳為印刷電路板(Print Circuit Board,PCB),且在電路基板21上可預設多個電路區域,發射器22與偵測器23設置在電路基板21的多個電路區域上,進一步來說,偵測器23設置在與發射器22相同的平面上,且偵測器23與發射器22以一預定間距相鄰地設置在電路基板21上。發射器22可為一發光組件(emitter),偵測器23可為光偵測元件(detector)。須說明的是,以本發明實施例而言,發射器22包括一垂直共振腔面射雷射(Vertical-cavity surface-emitting lasers, VCSELs)以及一齊納二極體,偵測器23是一種整合式的距離與環境光源偵測元件(integrated ambient and proximity sensor),但在此並不侷限。偵測器23可同時包括一第一偵測單元231及一第二偵測單元232,或是只包括一第一偵測單元231或只包括一第二偵測單元232。第一偵測單元231可以為一環境光感測器(Ambient Light Sensor,ALS)與第二偵測單元232可以為一接近感測器(Proximity Sensor,PS),本發明不以偵測器23的種類為限。第一偵測單元231設置在鄰近第一凹陷部25的地方,第二偵測單元232設置在遠離第一凹陷部25的一側,其用於感測發射器22發射至被感測的物體進而由被感測的物體反射至第二偵測單元232的光束,第一偵測單元231與第二偵測單元232的原理與應用範圍為本領域技術人員所熟知,在此不再贅述。
封裝構件24覆蓋在發射器22與偵測器23上,除了可以防止發射器22或偵測器23受到外力的破壞外,還可以阻隔環境光直接傳遞至偵測器23,封裝構件24是由光學上可對應於發射器22所發出之具有特定波長之電磁訊號而定義為透明或透光的環氧樹脂材料或其他適合的模造材料所構成,舉例來說,在訊號偵測器23為一種單一功能的紅外光距離偵測元件(IR proximity sensor)的情況下,透明封裝單元24則為可讓紅外光穿透之化合物。封裝構件24也可以是針對特定波長具有截斷或過濾或遮蔽樹脂,其可以有效阻隔環境光的光束直接傳遞至偵測器23,避免感測的效果降低。舉例來說,當發射器22是一垂直共振腔面射雷射(Vertical-cavity surface-emitting lasers, VCSELs),封裝構件24則可以為紅外線阻絕(用於照度感應器)樹脂,故封裝構件24又可稱為紅外線阻絕封裝構件。
另外,第一凹陷部25設置在發射器22與偵測器23之間,進一步來說,第一凹陷部25的深度D1大約為0.36毫米(mm),且深度深至鄰近電路基板21,但未暴露電路基板21於第一凹陷部25中,而第一凹陷部25的寬度W1大約為0.2毫米(mm)。設置第一凹陷部25的目的在於,讓發射器22所散射出的光束會因為第一凹陷部25的設置,而改變散射光束的傳遞路線,進而降低散射光束直接傳遞至偵測器23的機率,提高偵測器23的感測靈敏度,另外,因為第一凹陷部25的設置,可以限制光束在封裝構件24的表面寬度Wa為0.68毫米(mm)的範圍內直射,達到集中光束的目的。
第二凹陷部26設置在偵測器23的上方,但第二凹陷部26的深度D2大約為0.15毫米,且在第二凹陷部26底部的封裝構件24厚度大約在0.05毫米,其厚度誤差範圍在之間,使偵測器23不會暴露在第二凹陷部26的底部。第二凹陷部26的開口從第一凹陷部25與第一偵測單元231之間的位置開始延伸至鄰近第二偵測單元232的地方,第二凹陷部26的寬度W2大約為0.56毫米,且小於偵測器23的寬度。另外,第一凹陷部25與第二凹陷部26的形成方式可以是,舉例來說,蝕刻封裝構件24而產生,或者也可以切割的方式形成第一凹陷部25與第二凹陷部26,而第一凹陷部25與第二凹陷部26可以是在一次的製程步驟同時形成,或者第一凹陷部25與第二凹陷部26可以在兩個不同的程序步驟形成,在此並不侷限。另外,在此需要說明的是,本實施例中第二凹陷部26的寬度W2至少兩倍大於第一凹陷部25的寬度W1或是說大於兩個偵測單元的寬度大小,尤其是當第一偵測單元231是環境光感測器,位於第二凹陷部26底部的封裝構件24具有較薄的厚度有助於環境光的接收,但第一凹陷部25與第二凹陷部26的寬度或深度在不同實施例中,可以有所不同,並不侷限於僅如圖中所示,根據不同的發射器22或不同的偵測器23,可依不同光束的傳遞特性或偵測器23的感測靈敏度而調整第一凹陷部25與第二凹陷部26的寬度或深度。
通過第一凹陷部25雖然會改變散射光束直接傳遞至偵測器23的機率,但是還是有部分的散射光束會經過再次折射而傳遞至偵測器23,因此設置第二凹陷部26,讓往偵測器23傳遞的散射光束經過第二凹陷部26時,會再次發生折射,以進一步降低散射光束傳遞至偵測器23的機率。
[第二實施例]
圖3A為本發明第二實施例之光學感測裝置的立體示意圖,圖3B為本發明第二實施例之光學感測裝置的光束傳遞示意圖,參閱圖3A與圖3B所示,本發明第二實施例提供一種光學感測裝置2,其包括:一電路基板21、一發射器22、一偵測器23、一封裝構件24、一第一凹陷部25、一第二凹陷部26與一第三凹陷部27。
由於第二實施例的電路基板21、發射器22、偵測器23、封裝構件24、第一凹陷部25與第二凹陷部26的設置位置皆與第一實施例相同,因此,有關於電路基板21、發射器22、偵測器23、封裝構件24、第一凹陷部25與第二凹陷部26的設置位置與其它元件的連接關係請參閱上述第一實施例的敘述,在此不再贅述。
同樣,在第二實施例中,第一凹陷部25設置在發射器22與偵測器23之間,進一步來說,第一凹陷部25的深度D1向下延伸至鄰近電路基板21的區域,但未暴露電路基板21於第一凹陷部25中,一般約為0.36毫米,而第一凹陷部25的寬度W1大約為0.2毫米,第三凹陷部27設置在第一凹陷部25的上方,且第三凹陷部27的寬度W3大約為0.4毫米,且約兩倍大於第一凹陷部25的寬度W1,第三凹陷部27的深度D3大約為0.1~0.2毫米。
進一步地說,該第一凹陷部25和第三凹陷部27堆疊成一具有階梯狀的凹陷部,而呈階梯狀的凹陷部在本發明的較佳實施例中,凹陷部的左右兩側為對稱,但在不同實施例中,凹陷部的左右兩側也可以為不對稱,在此並不侷限。設置第一凹陷部25與第三凹陷部27的目的在於,讓發射器22所散射出的光束會因為第一凹陷部25與第三凹陷部27的設置,而改變散射光束的傳遞路線,進而使散射光束不會直接傳遞至偵測器23,造成偵測器23的誤判。另外,因為第三凹陷部27的設置,可以限制光束在封裝構件24的表面寬度Wb為0.58毫米(mm)的範圍內直射,達到集中光束的目的。
另外,第一凹陷部25與第三凹陷部27的形成方式可以是,舉例來說,蝕刻封裝構件24而產生,或者也可以切割的方式形成第一凹陷部25與第三凹陷部27,而第一凹陷部25與第三凹陷部27可以是在一次的製程步驟同時形成,或者第一凹陷部25與第三凹陷部27可以在兩個不同的程序步驟形成,在此並不侷限。第二凹陷部26設置在偵測器23的上方,其深度D2的底部並未暴露出偵測器23,且第二凹陷部26的深度D2略與第三凹陷部27的深度相同,第二凹陷部26的寬度W2大約為0.56毫米,且小於偵測器23的寬度,第二凹陷部26的深度D2大約為0.15毫米且在第二凹陷部26底部的封裝構件24厚度大約在0.05毫米,且厚度誤差範圍在之間。另外,在此需要說明的是,第一凹陷部25、第二凹陷部26與第三凹陷部27的寬度或深度在不同實施例中,可以有所不同,並不局限於僅如圖中所示,根據不同的發射器22或不同的偵測器23,可依不同光束的傳遞特性或偵測器23的感測靈敏度而調整第一凹陷部25、第二凹陷部26與第三凹陷部27的寬度或深度。
請參閱圖2B與圖3B,第一凹陷部25包括第一側邊251與第二側邊252,第二凹陷部26包括第三側邊261與第四側邊262,第三凹陷部27包括第五側邊271與第六側邊272。如圖2B與圖3B所示,利用光束30在不同介質傳遞時會改變其傳遞路徑,當光束30從發射器22發射出,會在封裝構件24中傳遞,有些光束30會直射,有些光束30會散射,當光束30散射至第一凹陷部25,部分的散射光束30會因為介質的改變(固體至氣體或氣體至固體)而產生折射或反射,部分的散射光束會在第一凹陷部25的第一側邊251或第三凹陷部27的第五側邊271折射至大氣中,部分的散射的光束30會折射至第一凹陷部25的第二側邊252或第三凹陷部27的第六側邊272,而再次在封裝構件24中傳遞。接著,散射的光束30會在封裝構件24的表面241反射回封裝構件24,當反射的光束30經過第二凹陷部26的第三側邊261會再次發生折射,部分的光束會傳遞至第二凹陷部26的底部263,光束30在第二凹陷部26的底部263又再一次發生折射,進而降低光束30直接傳遞至接近感測器232的機率。由圖2B與圖3B所示,可以看見光束30因為第一凹陷部25、第二凹陷部26與/或第三凹陷部27的設置而改變其傳遞路線,大幅度地降低光束30直接傳遞至接近感測器232的機率,進而降低串擾(crosstalk)的發生,提高偵測器23的感測效率。
[第三實施例]
圖4A為本發明第三實施例之光學感測裝置的立體示意圖,圖4B為本發明第三實施例之光學感測裝置的剖面圖,如圖4A與圖4B所示,在本發明的第三實施例中,一種光學感測裝置4,其包括:一電路基板41、一發射器42、一偵測器43、一封裝構件44、一第一凹陷部45、一第二凹陷部46與一第三凹陷部47。
由於在本發明第三實施例的光學感測裝置4所包括的元件以及其連接關係都與第一實施例的光學感測裝置2大致相同,光學感測裝置4同樣包括第一偵測單元431與第二偵測單元432,因此有關於光學感測裝置4的電路基板41、發射器42、偵測器43、封裝構件44、第一凹陷部45、第三凹陷部47的設置以及連接關係,在此不再贅述。
第一凹陷部45的寬度W1大約為0.2毫米,第三凹陷部47設置在第一凹陷部45的上方,且第三凹陷部47的寬度W3至少兩倍大於第一凹陷部45的寬度W1,且電路基板41較佳為未暴露於第一凹陷部45底部,所以第一凹陷部45的深度D1須小於封裝構件44的厚度。而且,第一凹陷部45和第三凹陷部47也可堆疊成一具有階梯狀的凹陷部,而呈階梯狀的凹陷部在本發明的較佳實施例中,凹陷部的左右兩側為對稱,但在不同實施例中,凹陷部的左右兩側也可以為不對稱,在此並不侷限。另外,同樣因為第三凹陷部47的設置,可以限制光束在封裝構件44的表面寬度Wb為0.58毫米(mm)的範圍內直射,達到集中光束的目的。第二凹陷部46設置在偵測器43的上方,第二凹陷部46的深度D2大約為0.15毫米,偵測器43的上表面由厚度約0.025~0.075毫米的封裝構件44所覆蓋,未裸露於第二凹陷部46的深度D2底部。第二凹陷部46的開口W2’從第一偵測單元431的一側的位置開始延伸至封裝構件44的一邊緣。第三實施例說明本發明的第二凹陷部46在不同實施例可以有不同的態樣,只要可以改變發射器42的散射光束直接至傳遞至偵測器43的第二感測器432,都可以是本發明的第二凹陷部46的態樣,在此並不侷限。
[第四實施例]
然而,在第四實施例中,例如,如圖4C所示,在本發明的第四實施例中,光學感測裝置4同樣包括:一電路基板41、一發射器42、一偵測器43、一封裝構件44、一第一凹陷部45與一第二凹陷部46’。
同樣,由於圖4C的光學感測裝置4所包括的元件以及其連接關係都與第一實施例的光學感測裝置2大致相同,因此有關於光學感測裝置4的元件或連接關係的敘述,在此不再贅述。在第四實施例的光學感測裝置4中,相較於第三實施例的第二凹陷部46,第四實施例的第二凹陷部46’從封裝構件44的一側邊一直延伸至第一凹陷部45的開口上方。換句話說,第四實施例的第二凹陷部46’與第一凹陷部45相連通構成一L形的缺口。光學感測裝置4更可包括第三凹陷部47,第三凹陷部47設置在第一凹陷部45的上方,第一凹陷部45和第三凹陷部47一側邊堆疊成一具有階梯狀的凹陷部,第三凹陷部47另一側與第二凹陷部46’相連通,通過第四實施例的第一凹陷部45、第二凹陷部46’與/或 第三凹陷部47,同樣可以達到改變發射器42所發射的光束的光傳遞路徑,降低光束直接傳遞至偵測器43的機率。
[第五實施例]
另外,圖5為本發明第五實施例之光學感測裝置的剖面圖,如圖5所示,在本發明的第五實施例中,一種光學感測裝置5,其包括:一電路基板51、一發射器52、一偵測器53、一光阻絕封裝構件54與一凹陷部55。
同樣,由於在本發明第五實施例的光學感測裝置5所包括的元件以及其連接關係都與第三實施例的光學感測裝置4大致相同,光學感測裝置5之偵測器53同樣包括第一偵測單元531與第二偵測單元532,因此有關於光學感測裝置5的電路基板51、發射器52、偵測器53與光阻絕封裝構件54的設置以及連接關係,在此不再贅述。
凹陷部55的深度D大約為0.15毫米,凹陷部55的寬度W至少兩倍大於兩個偵測單元531,532的寬度大小,且在凹陷部55底部的光阻絕封裝構件54厚度Td大約在0.05毫米,且厚度誤差範圍在±0.025毫米之間,使偵測器53不會裸露在凹陷部55的底部。凹陷部55的開口從第一感測單元531的一側,延伸經過第一感測單元531的上方,至第二感測單元532的一側邊或從第一偵測單元531的一側的位置開始延伸至光阻絕封裝構件54的一邊緣。相較於第三實施例,第五實施例的光學感測裝置5,僅包括的一個凹陷部55,藉由偵測器53上方較薄厚度的光阻絕封裝構件54可降低從發射器52所發出的光束直接傳遞至偵測器53,進一步再搭配一光阻絕封裝材料作為光阻絕封裝構件54,則可更有效阻隔側光。
舉例來說,選用一不透光紅外光阻絕膠材作為光阻絕封裝構件54全面覆蓋發射器52及偵測器53,也就是說,不透光紅外光阻絕膠材具有一特性在選定的波長範圍例如當厚度為0.3mm時,700-900nm透光率下降至60%以下,當厚度增加,則該波段的光線濾出比例隨之增加,較佳小於20%。所以發射器52及偵測器53間的光阻絕封裝構件54具有一間距Tgap,間距Tgap至少兩倍大於光阻絕封裝構件54的原始厚度,使得紅外光至少80%被濾掉,則可有效地屏蔽側光,避免光束直接傳遞至偵測器53,且不影響發射器52的出光及偵測器53的收光。其中,光阻絕封裝構件54對應發射器52的出光表面的厚度Te至少要讓60%的光穿過,所以以不透光紅外光阻絕材料為例,厚度Te要小於0.3mm以下較佳。也就是說,發射器52及偵測器53間的光阻絕封裝構件54之間距Tgap至少兩倍大於光阻絕封裝構件54對應發射器52的出光表面的厚度Te;光阻絕封裝構件54對應發射器52的出光表面的厚度Te大於光阻絕封裝構件54對應偵測器53的入光表面的厚度Td,即間距Tgap大於2倍的厚度Te且大於厚度Td。
圖6A-圖6D為不同設計的光學感測裝置的串擾測試的實驗數據示意圖。圖6A所示的實驗數據結果是光學感測裝置僅包括一個第一凹陷部,而無設置第二凹陷部與第三凹陷部,傳遞至接近感測器的光強度60A大約是1.2240E-6 Watts/cm2
,圖6B所示的實驗數據結果是光學感測裝置包括第一凹陷部與第二凹陷部,而無設置第三凹陷部,傳遞至接近感測器的光強度60B大約是1.0707E-6 Watts/cm2
,由圖6A與圖6B可以看出,光學感測裝置因為增加第二凹陷部,傳遞至接近感測器的光強度60B大約下降15%。圖6C所示的實驗數據結果是本發明第二實施例的光學感測裝置包括第一凹陷部、第二凹陷部與第三凹陷部,傳遞至接近感測器的光強度60C大約是3.672E-7 Watts/cm2
,相較於傳統的感測器封裝結構僅設置第一凹陷部,其光強度大約下降70%。圖6D所示的實驗數據結果是本發明第三實施例的光學感測裝置同樣包括第一凹陷部、第二凹陷部與第三凹陷部傳遞至接近感測器的光強度60D大約是3.59E-7 Watts/cm2
,其光強度大約與第二實施例相似,同樣相較於傳統的感測器封裝結構僅設置第一凹陷部,其光強度大約下降70%。
由實驗結果可以得知,通過設置第一凹陷部、第二凹陷部與第三凹陷部在光學感測裝置中,第二偵測單元的串擾可以從傳統光波動(fluctuation)的400計數至500計數(count),下降至少100計數(count),若串擾過高,會導致光學感測裝置感測失效,使光學感測裝置以為一直接近感測物件,而導致行動裝置的螢幕不會關閉。
圖7為本發明的光學感測裝置的製造方法流程圖。如圖7所示,並參考本發明第一實施例的光學感測裝置的元件標號,在步驟S701中,在一電路基板21上設置一發射器22與一偵測器23,發射器22與偵測器23之間具有一間距,因此在後續的製程中,可以在發射器22與偵測器23之間的間距上形成開口。在步驟S702中,填充一封裝構件材料在發射器22、偵測器23與電路基板21上,填充封裝構件24,並將封裝構件24的材料烘烤,封裝構件24除了保護發射器22與偵測器23,還可以阻隔一些環境光,僅讓特定波長的光束(例如紅外線光等)傳遞至偵測器23。如何填充封裝構件24以及如何烘烤封裝構件24的材料為本領域技術人員所熟知,在此不再贅述。
在步驟S703中,在發射器22與偵測器23之間形成第一凹陷部25,第一凹陷部25的形成可以雷射蝕刻的方式形成,或者在不同實施例中,也可以切割的方式形成第一凹陷部25,依照偵測器23的尺寸大小,可以應用不同的製程形成第一凹陷部25,在此並不侷限。接著,在步驟S704中,偵測器23上方形成第二凹陷部26,第二凹陷部26的形成方式可以與形成第一凹陷部25的方式相同,且第二凹陷部26可以與第一凹陷部25在同一個製程步驟中同時形成,或第二凹陷部26可以在第一凹陷部25形成後再形成,在此並不侷限。通過上述的製造流程,可以完成本發明的光學感測裝置2的製造,上述僅是說明本發明的光學感測裝置2的形成方式,並不侷限本發明的光學感測裝置2僅能以上述的製程步驟形成,舉例來說,在不同實施例中,第一凹陷部25或第二凹陷部26也可以由高低落差的模具來形成,而無須使用雷射蝕刻或切割的方式才能形成第一凹陷部25或第二凹陷部26。
另外,在不同實施例的光學感測裝置的製造方法中,更可以包括步驟S704,在步驟S704中,在偵測器23上方形成第二凹陷部26,如圖2A與圖2B所示,第一凹陷部25與第二凹陷部26的形成方式可以是,舉例來說,蝕刻封裝構件24而產生,或者也可以切割的方式形成第一凹陷部25與第二凹陷部26,而第一凹陷部25與第二凹陷部26可以是在一次的製程步驟同時形成,或者第一凹陷部25與第二凹陷部26可以在兩個不同的程序步驟形成,在此並不侷限。
或者,在本發明的另一實施例中,更可以包括步驟S705在第一凹陷部25上形成第三凹陷部27,第二凹陷部26與第三凹陷部27的形成方式可以與形成第一凹陷部25的方式相同,且第二凹陷部26與第三凹陷部27可以與第一凹陷部25在同一個製程步驟中同時形成,或第二凹陷部26與第三凹陷部27可以在第一凹陷部25形成後再形成,在此並不侷限。通過上述的製造流程,可以完成本發明的光學感測裝置2的製造,上述僅是說明本發明的光學感測裝置2的形成方式,並不侷限本發明的光學感測裝置2僅能以上述的製程步驟形成,在此並不侷限。
[實施例的有益效果]
本發明的其中一有益效果在於,本發明所提供的光學感測裝置,其能通過設置第一凹陷部、第二凹陷部與第三凹陷部的技術方案,降低發射器產生的光束直接傳遞至偵測器,以提升光學感測裝置的感測準確度,降低光學串擾的影響。
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。
1:光學感測裝置
11:電路基板
12:發射器
13:光學感測模組
131:環境光感測器
132:接近感測器
14:封裝構件
15:第一凹陷部
2:光學感測裝置
21:電路基板
22:發射器
23:偵測器
231:第一偵測單元
232:第二偵測單元
24:封裝構件
241:表面
25:第一凹陷部
251:第一側邊
252:第二側邊
26:第二凹陷部
261:第三側邊
262:第四側邊
263:底部
27:第三凹陷部
271:第五側邊
272:第六側邊
30:光束
4:光學感測裝置
41:電路基板
42:發射器
43:偵測器
431:第一偵測單元
432:第二偵測單元
44:封裝構件
45:第一凹陷部
46:第二凹陷部
46’:第二凹陷部
47:第三凹陷部
5:光學感測裝置
51:電路基板
52:發射器
53:偵測器
531:第一偵測單元
532:第二偵測單元
54:光阻絕封裝構件
55:凹陷部
W1,W2,W2’,W3,W:寬度
Wa,Wb:表面寬度
D1,D2,D3,D:深度
Te:厚度
Tgap:間距
Td:厚度
60A,60B,60C,60D:光強度
S701~S705:步驟
圖1顯示一種現有的光學感測裝置的立體圖。
圖2A為本發明第一實施例之光學感測裝置的立體示意圖。
圖2B為本發明第一實施例之光學感測裝置的光束傳遞的剖面示意圖。
圖3A為本發明第二實施例之光學感測裝置的立體示意圖。
圖3B為本發明第二實施例之光學感測裝置的光束傳遞的剖面示意圖。
圖4A為本發明第三實施例之光學感測裝置的立體示意圖。
圖4B為本發明第三實施例之光學感測裝置的剖面圖。
圖4C為本發明第四實施例之光學感測裝置的剖面圖。
圖5為本發明第五實施例之光學感測裝置的剖面圖。
圖6A-圖6D為不同設計的光學感測裝置的串擾測試的實驗數據示意圖。
圖7為本發明之實施例的光學感測裝置的製造方法流程圖。
2:光學感測裝置
21:電路基板
22:發射器
23:偵測器
231:第一偵測單元
232:第二偵測單元
24:封裝構件
241:表面
25:第一凹陷部
251:第一側邊
252:第二側邊
26:第二凹陷部
261:第三側邊
262:第四側邊
263:底部
27:第三凹陷部
271:第五側邊
272:第六側邊
30:光束
W1,W2,W3:寬度
Wb:表面寬度
D1,D2,D3:深度
Claims (10)
- 一種光學感測裝置,其包括: 一電路基板,其表面包括彼此獨立的多個電路區域; 一發射器及一偵測器分別設置多個所述電路區域上;以及 一封裝構件包覆多個所述電路區域以及其上的所述發射器與所述偵測器,且所述封裝構件包括: 一第一凹陷部,設置於對應所述發射器與所述偵測器之間; 一第二凹陷部,設置於對應所述偵測器之上;以及 其中,所述第二凹陷部的深度低於所述第一凹陷部的深度,通過所述第一凹陷部與所述第二凹陷部改變所述發射器所產生的光束於所述封裝構件內的散射路徑。
- 如請求項1所述的光學感測裝置,其中,位於所述第二凹陷部的所述封裝構件的厚度不小於0.05毫米。
- 如請求項1所述的光學感測裝置,更包括一第三凹陷部,設置於所述第一凹陷部上方,且所述第三凹陷部的寬度大於所述第一凹陷部的寬度。
- 如請求項3所述的光學感測裝置,其中,所述第三凹陷部的深度等於所述第二凹陷部的深度。
- 如請求項1至4中任一項所述的光學感測裝置,其中,所述偵測器包括一第一偵測單元與一第二偵測單元,且所述第二凹陷部的開口從所述第一凹陷部與所述第一偵測單元之間的位置開始延伸至鄰近所述第二偵測單元。
- 如請求項5所述的光學感測裝置,其中,所述第二凹陷部的開口不延伸至所述第二偵測單元上方。
- 如請求項5所述的光學感測裝置,其中,所述第二凹陷部的開口橫跨所述第一偵測單元與所述第二偵測單元,且延伸到所述封裝構件的邊緣。
- 如請求項5所述的光學感測裝置,其中,所述第一偵測單元為一環境光感測器,所述第二偵測單元為一接近感測器。
- 一種光學感測裝置,其包括: 一電路基板,其表面包括彼此獨立的多個電路區域; 一發射器及一偵測器分別設置所述多個電路區域上;以及 一光阻絕封裝構件包覆所述電路基板的所述多個電路區域以及其上的所述發射器與所述偵測器,且所述光阻絕封裝構件包括一凹陷部,設置於所述偵測器上方,且包括一深度; 其中,通過所述凹陷部改變所述發射器所產生的光束於所述光阻絕封裝構件內的散射路徑。
- 如請求項9所述的光學感測裝置,其中,所述偵測器包括一第一偵測單元與一第二偵測單元,所述第一偵測單元鄰近所述發射器,所述凹陷部橫跨所述第一偵測單元與所述第二偵測單元,及或延伸到所述光阻絕封裝構件的邊緣。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109121046A TWI798560B (zh) | 2020-06-22 | 2020-06-22 | 光學感測裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109121046A TWI798560B (zh) | 2020-06-22 | 2020-06-22 | 光學感測裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202201044A true TW202201044A (zh) | 2022-01-01 |
TWI798560B TWI798560B (zh) | 2023-04-11 |
Family
ID=80787949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109121046A TWI798560B (zh) | 2020-06-22 | 2020-06-22 | 光學感測裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI798560B (zh) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679753B (zh) * | 2014-11-20 | 2018-05-08 | 日月光半导体制造股份有限公司 | 光学模块、其制造方法及电子装置 |
US9588224B2 (en) * | 2015-03-06 | 2017-03-07 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Proximity-sensing device |
-
2020
- 2020-06-22 TW TW109121046A patent/TWI798560B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI798560B (zh) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11733355B2 (en) | Optical sensor module and method for manufacturing an optical sensor module for time-of-flight measurement | |
US11264367B2 (en) | Electronic device, optical module and manufacturing process thereof | |
TWI557885B (zh) | 光電模組及其製造方法以及包含其的設備與裝置 | |
EP0790654B1 (en) | Photoreflective detector and method for producing the same | |
JP5327980B2 (ja) | シールドとレンズが改良された光学式近接センサ | |
TWI587491B (zh) | 光電模組 | |
TWI584452B (zh) | 可回焊之光電模組 | |
TWI679411B (zh) | 光學檢測元件 | |
TWI467777B (zh) | 光學裝置之封裝結構 | |
US20150226839A1 (en) | Optoelectronic device | |
JP4349978B2 (ja) | 光半導体パッケージ及びその製造方法 | |
TWI685641B (zh) | 光學感測系統、光學感測組件及其製造方法 | |
US20200256990A1 (en) | Proximity Sensor and Electronic Device Using the Same | |
US20150041630A1 (en) | Optical Device With Reduced Crosstalk | |
TW202103335A (zh) | 光學裝置及其製造方法 | |
CN112234049B (zh) | 光电传感器、其制作方法和电子设备 | |
JP6683732B2 (ja) | フォトリフレクタ | |
CN110556368A (zh) | 光电传感器及其制备方法 | |
CN112017976A (zh) | 光电传感器封装结构制作方法和光电传感器封装结构 | |
US11474035B2 (en) | Optical sensing apparatus comprising a package structure with a recess portion through which a scattering path of light is altered | |
TWI798560B (zh) | 光學感測裝置 | |
TWI814532B (zh) | 光學感測裝置 | |
CN113900110A (zh) | 光学感测装置 | |
CN216749897U (zh) | 光学感测模块 | |
KR20150130193A (ko) | 센서 패키지 및 그 제조 방법 |