TW202201037A - 霍爾效應感測器裝置以及形成霍爾效應感測器裝置的方法 - Google Patents

霍爾效應感測器裝置以及形成霍爾效應感測器裝置的方法 Download PDF

Info

Publication number
TW202201037A
TW202201037A TW110104741A TW110104741A TW202201037A TW 202201037 A TW202201037 A TW 202201037A TW 110104741 A TW110104741 A TW 110104741A TW 110104741 A TW110104741 A TW 110104741A TW 202201037 A TW202201037 A TW 202201037A
Authority
TW
Taiwan
Prior art keywords
isolation
hall
region
regions
hall plate
Prior art date
Application number
TW110104741A
Other languages
English (en)
Other versions
TWI799789B (zh
Inventor
孫永順
榮發 卓
萍 鄭
Original Assignee
新加坡商格羅方德半導體私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商格羅方德半導體私人有限公司 filed Critical 新加坡商格羅方德半導體私人有限公司
Publication of TW202201037A publication Critical patent/TW202201037A/zh
Application granted granted Critical
Publication of TWI799789B publication Critical patent/TWI799789B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/077Vertical Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本發明可提供一種霍爾效應感測器裝置,包括一個或多個感測器結構。各感測器結構可包括:具有第一導電類型的基層;設置在基層之上並具有與第一導電類型相反的第二導電類型的霍爾板區域;設置在霍爾板區域周圍並鄰接所述霍爾板區域且與基層接觸的第一隔離區域;設置在所述霍爾板區域內的複數個第二隔離區域;以及設置在霍爾板區域內的複數個終端區域。第一隔離區域和第二隔離區域可以包括電性絕緣材料,並且各相鄰對的終端區域可以藉由多個第二隔離區域中的一者而彼此電性隔離。

Description

霍爾效應感測器裝置以及形成霍爾效應感測器裝置的方法
本揭露通常係關於霍爾效應感測器裝置以及形成所述霍爾效應感測器裝置的方法。
能夠確定磁場強度的霍爾效應感測器裝置可用於各種應用中,例如汽車應用。霍爾效應感測器裝置通常包括由導電材料組成的霍爾板(Hall plate)以及連接至所述霍爾板的終端。外部電壓可施加在終端上,以使電流流過霍爾板。在垂直於霍爾板的平面存在有磁場的情況下,電流中的載流子(charge carrier)會受到洛倫茲力(Lorentz force)的作用。這可能會在霍爾板內產生霍爾電壓(Hall voltage)。藉由確定霍爾電壓的大小,可以確定磁場的強度。
霍爾效應感測器裝置可以被實作為半導體裝置,其霍爾板和終端包括摻雜的半導體材料。在一些現有的霍爾效應感測器裝置中,可以在每對相鄰的終端之間設置中間區域(intermediate region)。所述中間區域還可包括摻雜半導體材料,但其導電類型與霍爾板和終端的導電類型相反。這導致在霍爾板內存在許多p-n接面。這些p-n接面的耗盡寬度(depletion width)可以根據施加到終端的 外部電壓和霍爾板周圍的溫度而變化。例如,當向終端施加更高的外部電壓時,這些耗盡寬度可能增加。此外,不同p-n接面的耗盡寬度的變化可能不同。結果,在霍爾板的不同區域之間可能存在電阻失配。因此,現有霍爾效應感測器裝置的信噪比(signal-to-noise ratio;SNR)和偏移/殘餘電壓(換句話說,在沒有磁場的情況下產生的霍爾電壓)通常是高的。
根據各種非限制性實施例,可以提供包括感測器結構的霍爾效應感測器裝置,其中,感測器結構可以包括:具有第一導電類型的基層;霍爾板區域,設置在所述基層之上並具有與所述第一導電類型相反的第二導電類型;設置在所述霍爾板區域周圍並鄰接所述霍爾板區域的第一隔離區域,其中,所述第一隔離區域可以包括電性絕緣材料並且可以接觸所述基層;設置在所述霍爾板區域內的複數個第二隔離區域,其中所述複數個第二隔離區域中的每一個可包括電性絕緣材料;以及設置在所述霍爾板區域內的複數個終端區域,各相鄰對的終端區域藉由所述複數個第二隔離區域中的一個而彼此電性隔離。
根據各種非限制性實施例,可提供一種形成霍爾效應感測器裝置的方法,包括:提供具有第一導電類型的基板;在基板內形成具有第一導電類型的基層和包括電性絕緣材料的第一隔離區,其中,所述第一隔離區域可與所述基層接觸;在所述基層之上形成具有與所述第一導電類型相反的第二導電類型的霍爾板區域,其中,所述第一隔離區域可設置在所述霍爾板區域周圍並鄰接所述霍爾板區域;在所述霍爾板區域內形成複數個第二隔離區域板區域,其中所述複數個第二隔離區域中的每一個可以包括電性絕緣材料;並且在所述霍爾板區域 內形成複數個終端區域,各相鄰對的終端區域藉由所述複數個第二隔離區域中的一個而彼此電性隔離。
根據各種非限制性實施例,可提供一種霍爾效應感測器裝置,包括感測器結構,其中感測器結構可包括:絕緣層;設置在絕緣層之上的霍爾板區域;設置在霍爾板區域周圍並鄰接霍爾板區域的第一隔離區域,其中第一隔離區域可以包括電性絕緣材料並且可以接觸絕緣層;複數個第二隔離區域設置在霍爾板區域內,其中複數個第二隔離區域中的每一個可以包括電性絕緣材料;以及設置在所述霍爾板區域內的複數個終端區域,各相鄰對的終端區域藉由所述複數個第二隔離區域中的一個而彼此電性隔離。
100:霍爾效應感測器裝置、裝置、半導體裝置
102:感測器結構
104:基層
106:霍爾板區域
108:第一隔離區域
110a:第二隔離區域
110b:第二隔離區域
110c:第二隔離區域
110d:第二隔離區域
110e:第二隔離區域
110f:第二隔離區域
112a:第一終端區域、終端區域
112b:第二終端區域、終端區域
112c:第三終端區域、終端區域
112d:第四終端區域、終端區域
112e:第五終端區域、終端區域
202:第一電流、電流
204:第二電流、電流
206:磁場
208:垂直方向
300:方法
302:步驟
304:步驟
306:步驟
308:步驟
310:步驟
500:霍爾效應感測器裝置、裝置、半導體裝置
502:第一感測器結構、感測器結構
504:第二感測器結構、感測器結構
506:第三感測器結構、感測器結構
508:第四感測器結構、感測器結構
510:第一電流、電流
512:第二電流、電流
514:第三電流、電流
516:第四電流、電流
518:第五電流、電流
520:第六電流、電流
522:磁場
524:垂直方向
550:連接器
D108:厚度
D110:厚度
D112:厚度
S106:側面
T106:頂面、表面
T108:頂面、表面
W106:寬度
在附圖中,類似的元件符號通常指的是貫穿不同視圖的相同部分。此外,附圖不必按照比例繪製,而是通常將重點放在說明本發明的原理上。為了示例的目的,現在將僅參考以下附圖來說明本發明的非限制性實施例,其中:
圖1A、圖1B和圖1C分別示出了根據各種非限制性實施例的霍爾效應感測器裝置的簡化透視圖、簡化俯視圖和簡化截面圖;
圖2示出了圖1A至圖1C的使用中的霍爾效應感測器裝置;
圖3示出了形成圖1A至圖1C的霍爾效應感測器裝置的方法的流程圖;
圖4示出了根據替換的非限制性實施例的霍爾效應感測器裝置的簡化截面圖;
圖5A和圖5B分別示出根據替換的非限制性實施例的霍爾效應感測器裝置的簡化俯視圖和簡化截面圖;
圖6示出了圖5A和圖5B的使用中的霍爾效應感測器裝置;以及
圖7示出了根據替換的非限制性實施例的霍爾效應感測器裝置的簡化俯視圖。
各實施例通常係關於半導體裝置。更具體地,一些實施例是關於包括霍爾效應感測器裝置的感測器裝置。感測器裝置可用於感測磁場,並可用於各種行業,例如但不限於用於位置測量的汽車行業。
下面參考附圖中所示的非限制性示例,更全面地解釋本發明的各個方面及其某些特徵、優點和細節。其中,省略了對於公知的材料、製造工具、處理技術等的描述,以便不必要地使本發明在細節上模糊不清。然而,應當理解,在指示本發明的各個方面的同時,實施方式和具體實施例僅作為說明而給出,而非作為限制。根據本發明,在基本發明構思的精神和/或範圍內的各種替換、修改、添加和/或佈置對於本領域技術人員將是顯而易見的。
在本說明書和申請專利範圍中使用的近似語言可用於修改任何可允許變化的定量表示,而不會導致與其相關的基本功能的變化。因此,由一個或多個術語(例如“近似”、“大約”)修飾的值不限於指定的精確值。在某些情況下,近似語言可能對應於用於測量值的儀器的精度。此外,方向被一個或多個術語修飾,例如“基本上,”意味著所述方向將在半導體行業的正常公差範圍內應用。例 如,“基本平行”是指在半導體工業的正常公差範圍內大致沿同一方向延伸,“基本垂直”是指在90度角上加上或減去半導體工業的正常公差。
本文中使用的術語僅用於描述特定示例,並不旨在限制本發明。如本文所使用的,除非上下文另有明確指示,否則單數形式“一”、“一個”和“所述”也意在包括複數形式。應進一步理解,術語“包含”(以及任何形式的包含,例如“包含”和“包含有”)、“具有”(以及任何形式的具有)、“包括”(以及任何形式的包括,例如“包括”和“包括有”)是開放式的連接動詞。結果,“包括”、“具有”、或“包含”一個或多個步驟或元件的方法或裝置具有所述一個或多個步驟或元件,但不限於僅擁有所述一個或多個步驟或元件。同樣地,“包括”、“具有”、或“包含”一個或多個特徵的裝置的方法或元件的步驟具有所述一個或多個特徵,但不限於僅具有所述一個或多個特徵。此外,以特定方式配置的裝置或結構至少以所述方式配置,但也可以以未列出的方式配置。
如本文所使用的術語“連接”當用於兩個物理元件時,是指兩個物理元件之間的直接連接。然而,術語“耦接”可意指直接連接或藉由一個或多個中間元件的連接。
如本文所使用的術語“可能”和“可能是”表示在一系列情況下發生的可能性;具有特定屬性、特徵或功能;和/或藉由表達與限定動詞相關的一種或多種能力或可能性來限定另一動詞。因此,“可以”和“可以是”的用法表示修改後的術語顯然是適當的、有能力的或適合於所指示的能力、功能或用法,同時考慮到在某些情況下修改後的術語有時可能是不適當的、沒有能力的或不適合的。例如,在某些情況下,事件或能力是可以預期的,而在其他情況下,事件或能力是不可能發生的。這一區別由術語“可能”和“可能是”來體現。
圖1A示出了根據各種非限制性實施例的霍爾效應感測器裝置100的簡化透視圖。圖1B示出了裝置100的簡化俯視圖,圖1C示出了沿圖1B的線A-A’的裝置100的橫截面圖。裝置100可以是垂直霍爾效應感測器裝置100,並且可以包括單個感測器結構102。
如圖1C所示,感測器結構102可包括基層104。基層104可包括半導體基板,例如矽基板。也可使用其它類型的半導體基板,例如矽鍺基板。基層104可具有第一導電類型,其中第一導電類型可為p型或n型。例如,基層104可包括p型基板或n型基板。請注意,為簡單起見,在圖1A中未示出基層104。
感測器結構102還可包括設置在基層104之上的基本矩形的霍爾板區域106。霍爾板區域106可替代地稱為感測器主體。霍爾板區域106可以具有單一導電類型。例如,霍爾板區域106可以具有與第一導電類型相反的第二導電類型。第二導電類型可以是p型或n型。藉由配置基層104和霍爾板區域106使得它們可以包括相反導電類型的摻雜劑,可以最小化從霍爾板區域106流過基層104的電流(並且在一個非限制性示例中,可以完全限制)。
感測器結構102可進一步包括設置在基層104之上圍繞霍爾板區域106的第一隔離區域108。第一隔離區域108可以鄰接霍爾板區域106並且可以接觸基層104。如圖1C所示,第一隔離區域108可以部分地延伸到基層104中(但是,可選地,整個第一隔離區域108可以在基層104之上)。此外,第一隔離區域108的頂面T108可與霍爾板區域106的頂面T106水平對準。因此,第一隔離區域108可以完全包圍霍爾板區域106的側面S106。第一隔離區域108可以包括深溝槽隔離(DTI)結構,並且可以包括電性絕緣材料,例如但不限於多晶矽。 在非限制性實施例中,第一隔離區域108的厚度D108可以在約1um到約3um的範圍內,並且可以是約2um。
如圖1A至圖1C所示,感測器結構102可進一步包括複數個第二隔離區域110a-110f,其排列在霍爾板區域106內且沿著霍爾板區域106的頂面T106。如圖1B中更清楚地示出的,第二隔離區域110a-110f可以彼此基本平行地延伸。具體地,第二隔離區域110a-110f可在霍爾板區域106的寬度W106上延伸,使得至少一個第二隔離區域110a-110f可在寬度W106的一端或兩端接觸第一隔離區域108。例如,如圖1B所示,每個第二隔離區域110a-110f可以在寬度W106的兩端接觸第一隔離區域108。或者,一個或多個第二隔離區域110a-110f可以不接觸第一隔離區域108,或者可以僅在寬度W106的一端接觸第一隔離區域108。各第二隔離區域110a-110f可包括淺溝槽隔離(STI)結構,且可包括電性絕緣材料,例如但不限於介電材料。例如,第二隔離區域110a-110f可包括間隙填充氧化物或氮化物或兩者的組合。各第二隔離區域110a-110f的厚度D110可以小於第一隔離區域108的厚度D108。因此,雖然第一隔離區域108可以接觸基層104,但是第二隔離區域110a-110f可以不接觸。各第二隔離區域110a~110f的厚度D110可以等於或大於0.4um。如圖1C所示,裝置100中的第二隔離區域110a-110f可以具有相同的厚度D110,但是在替換實施例中,第二隔離區域110a-110f可以具有不同的厚度。
感測器結構102還可包括複數個終端區域(terminal region),包括設置在霍爾板區域106內的第一終端區域至第五終端區域112a-112e。複數個終端區域112a-112e也可以沿著霍爾板區域106的頂面T106設置。特別地,各終端區域112a-112e可以設置在兩個第二隔離區域110a-110f之間,因此,終端區域 112a-112e的各相鄰對可以藉由第二隔離區域110a-110f中的一個彼此電性隔離。如圖1C所示,複數個終端區域112a-112e可以與複數個第二隔離區域110a-110f相鄰地交替。換言之,各終端區域112a-112e可與設置在其之間設置的第二隔離區域110a-110f相鄰。如圖1B中更清楚地示出的,終端區域112a-112e可以彼此基本平行地延伸到第二隔離區域110a-110f。與第二隔離區域110a-110f類似,終端區域112a-112e也可以在霍爾板區域106的寬度W106上延伸,使得至少一個終端區域112a-112e可以在寬度W106的一端或兩端與第一隔離區域108接觸。例如,如圖1B所示,各終端區域112a-112e可以在寬度W106的兩端接觸第一隔離區域108。或者,一個或多個終端區域112a-112e可以不接觸第一隔離區域108,或者可以僅在寬度W106的一端接觸第一隔離區域108。
複數個第二隔離區域110a-110f可以比複數個終端區域112a-112e更深入地延伸到霍爾板區域106中。換句話說,各終端區域112a-112e的厚度D112可以小於各第二隔離區域110a-110f的厚度D110。各終端區域112a-112e的厚度D112的範圍可以在約0.1um到約1.5um之間。如圖1C所示,裝置100中的終端區域112a-112e可以具有相同的厚度D112,但是在替代實施例中,終端區域112a-112e可以具有不同的厚度。
如圖1A至圖1C所示,第一終端區域112a和第五終端區域112e可藉由各自的第二隔離區域110a、110f而與第一隔離區域108隔開,其中,這些第二隔離區域110a、110f可沿著霍爾板區域106的寬度W106鄰接第一隔離區域108。或者,可以省略裝置100中的第二隔離區域110a、110f,並且第一終端區域112a和第五終端區域112e可以沿著霍爾板區域106的寬度W106鄰接第一 隔離區域108。此外,雖然圖1A至圖1C中描繪了五個終端區域112a-112e和六個第二隔離區域110a-110f,但是可以包括更多或者更少的各區域。
在裝置100中,各終端區域112a-112e可以具有單一的導電類型。具體地,終端區域112a-112e和霍爾板區域106可以具有相同的導電類型(第二導電類型)。換句話說,當基層104包括p型摻雜劑時,霍爾板區域106和終端區域112a-112e可包括n型摻雜劑;並且當基層104包括n型摻雜劑時,霍爾板區域106和終端區域112a-112e可包括p型摻雜劑。p型摻雜劑可包括硼(B)、鋁(Al)、銦(In)或其組合;而n型摻雜劑可包括磷(p)、砷(As)、銻(Sb)或其組合。霍爾板區域106可比基層104具有更重的摻雜(換句話說,可包括更高的摻雜劑濃度(每單位體積的摻雜劑數量));然而,終端區域112a-112e可比霍爾板區域106具有更重的摻雜。例如,基層104可具有範圍在約1e15cm-3至約1e16cm-3之間的摻雜濃度,且各終端區域112a-112e可具有範圍在約1e19cm-3至約1e20cm-3之間的摻雜濃度。
終端區域112a-112e中的每一個可以被配置成電性連接到外部裝置。外部裝置可以被配置為提供電流通過霍爾板區域106(例如,外部裝置可以是外部電壓源),或者可以被配置為確定在霍爾板區域106中產生的霍爾電壓。例如,圖2示出了以第一終端區域112a、第三終端區域112c和第五終端區域112e電性連接到外部電壓源的裝置100。第二終端區域112b和第四終端區域112d可以連接到外部裝置(圖2中未示出)以確定霍爾電壓。換句話說,第一終端區域、第三終端區域和第五終端區域112a、112c、112e可以用作電流終端區域(current terminal region);而第二終端區域和第四終端區域112b、112d可以用作 感測終端區域(sensing terminal region)。請注意,圖2中沒有標註尺寸D108、D110、D112、表面T106、T108和側面S106,以避免混淆附圖。
具體而言,如圖2所示,第一終端區域112a和第五終端區域112e可以連接到接地電壓GND(換句話說,0V);而第三終端區域112c可連接到大於接地電壓GND的外部電壓V1。取決於用於製造霍爾效應感測器裝置100的技術,外部電壓V1可在約1V到約6V的範圍內。由於第一終端區域112a和第三終端區域112c之間以及第三終端區域112c和第五終端區域112e之間的電壓差,包括電荷載流子的第一電流202和第二電流204可沿相反方向流過霍爾板區域106。具體而言,第一電流202可以從第三終端區域112c流向第一終端區域112a;而第二電流204可以從第三終端區域112c流向第五終端區域112e。在垂直於霍爾板區域106的平面的磁場206的存在下(換句話說,如圖2所示的進入圖紙中並垂直於電流202、204的方向流動),洛倫茲力可以以相反的垂直方向208施加在第一和第二電流202、204的電荷載流子上。因此,可以在第二終端區域112b和第四終端區域112d之間產生電壓差(或者換句話說,霍爾電壓),並且可以由這些終端區域112b、112d連接到的外部裝置來確定所述電壓差。霍爾電壓可以與磁場206的強度成比例,因此,藉由確定霍爾電壓,可以確定磁場206的強度。
終端區域112a-112e可以不同於參考圖2所描述的方式連接到外部裝置。例如,第四終端區域112d和第二終端區域112b可以分別連接到接地電壓GND和外部電壓(類似於上述V1);而第一終端區域112a、第三終端區域112c、第五終端區域112e可以連接到外部裝置以測量在霍爾板區域106中產生的霍爾 電壓。第一終端區域112a和第五終端區域112e可以連接到外部裝置的相同連接器。
裝置100中的第一隔離區域108和第二隔離區域110a-110f可有助於限制霍爾板區域106和終端區域110a-110e的尺寸和形狀的變化量。此外,由於與現有技術的霍爾效應感測器裝置相比,裝置100的霍爾板區域106中可能存在較少的p-n接面,因此裝置100的性能可能對霍爾板區域106周圍的溫度變化、不同終端區域112a-112e中的摻雜劑改變以及被施加到霍爾板區域106的外部電壓都不太敏感。反之,可以降低霍爾板區域106內不同區域之間的電阻失配,並且可以降低裝置100的偏移電壓(offset voltage)。另外,藉由用第一隔離區域108和基層104包圍霍爾板區域106,電流202-204的流動可以更好地限制在霍爾板區域106內。
為了進一步降低偏移電壓,在使用裝置100時,可以應用旋轉電流技術(spinning current technique)。在此技術中,裝置100可以在四種模式下操作。在第一模式和第二模式中,第一終端區域112a、第三終端區域112c、第五終端區域112e可以用作電流終端區域;而第二終端區域112b和第四終端區域112d可以用作感測終端區域。具體地,在第一模式中,第一終端區域112a和第五終端區域112e可以連接到接地電壓GND,第三終端區域112c可以連接到外部電壓V1。在第二模式中,第一終端區域112a和第五終端區域112e可以連接到外部電壓V1,並且第三終端區域112c可以連接到接地電壓GND,使得在第二模式中流過霍爾板區域106的電流可以與在第一模式中的電流相反。在第三模式和第四模式中,第一終端區域112a、第三終端區域112c和第五終端區域112e可以用作感測終端區域;而第二終端區域112b和第四終端區域112d可以 用作電流終端區域。具體地,在第三模式中,第二終端區域112b可以連接到接地電壓GND,第四終端區域112d可以連接到外部電壓V1;而在第四模式中,第二終端區域112b可以連接到外部電壓V1,第四終端區域112d可以連接到接地電壓GND。霍爾電壓可以在每個模式中被確定,並且可以使用在四個模式中確定的霍爾電壓的平均值來獲得裝置100的最終霍爾電壓。平均四種模式中的霍爾電壓可有助於從最終霍爾電壓濾除裝置100的至少一部分偏移電壓。因此,可以降低裝置100的結果偏移電壓。
霍爾效應感測器裝置100可以使用現有技術形成,而不使用額外的遮罩層。圖3示出了根據各種非限制性實施例而說明的用於形成裝置100的方法300的流程圖
參考圖3,在步驟302,可以提供具有第一導電類型的基板,並且在步驟304,可以在基板內形成基層104和第一隔離區域108。基層104和第一隔離區域108可以藉由本領域技術人員已知的任何方法形成。例如,可蝕刻基板以形成部分延伸穿過基板的垂直開口。然後,垂直開口可填充電性絕緣材料以形成第一隔離區域108,並且垂直開口下的基板可作為基層104。
在步驟306,霍爾板區域106可以形成在基層104之上,使得第一隔離區域108設置在霍爾板區域106的周圍並與之相鄰。霍爾板區域106可以藉由使用適當導電類型的摻雜劑摻雜由第一隔離區域108包圍的基板的區域來形成。
在步驟308,第二隔離區域110a-110f可以形成在霍爾板區域106內。此可藉由蝕刻霍爾板區域106以形成複數個開口來實現,並且將電性絕緣材料沉積到這些開口中。
在步驟310,終端區域112a-112e可以形成在霍爾板區域106內。此可藉由使用適當導電類型的摻雜劑摻雜第二隔離區域110a-110f之間的區域來實現
上述方法順序僅用於說明,除非另有特別說明,否則所述方法不限於上述的具體順序。此外,霍爾效應感測器裝置100可以實現為積體電路的一部分,並且所述方法還可以包括本領域技術人員已知的其他製程,例如,用於形成電晶體的製程和/或用於形成層間介電層(inter-layer-dielectric;ILD)和觸點的後段(back-end-of-line;BEOL)製程。
圖4示出了根據替換的非限制性實施例的霍爾效應感測器裝置400。半導體裝置400類似於半導體裝置100,因此,使用相同的標號標記共同特徵,並且無需再做討論。
參考圖4,與裝置100相比,裝置400的基層402可改為包括絕緣層。此絕緣層可包括可最小化(或在非限制性示例中,完全限制)從霍爾板區域106流過基層402的電流的絕緣材料。例如,基層402可包括埋置氧化物層且絕緣材料可包括二氧化矽。絕緣層還可有助於進一步將霍爾板區域106與相鄰組件/結構隔離,特別是與霍爾板區域106下方的組件/結構隔離。儘管圖4中未示出,但裝置400可進一步包括類似於裝置100的基層104的半導體基板,並且基層402可設置在該半導體基板內。然而,可以省略該半導體基板。或者,可以在基層402和半導體基板之間設置其他層。在使用時,裝置400可以以與上述針對裝置100所描述的方式相似的方式來操作。
圖5A示出了根據替換的非限制性實施例的霍爾效應感測器裝置500的簡化俯視圖,圖5B示出了沿圖5A的線B-B'的裝置500的簡化截面圖。 裝置500可以包括另外的感測器結構。具體地,裝置500可以包括複數個感測器結構,包括第一感測器結構502、第二感測器結構504、第三感測器結構506和第四感測器結構508。這些感測器結構502、504、506、508中的每一個類似於半導體裝置100的感測器結構102,因此,使用相同的元件符號標記共同特徵,並且不再討論。然而,請注意,為了避免附圖的混亂,圖5A和圖5B中沒有標註尺寸W106、D108、D110、D112、表面T106、T108和側面S106。此外,儘管示出了四個感測器結構,但是霍爾效應感測器裝置500中的感測器結構的數量可以大於或小於四個。
參考圖5A和圖5B,與半導體裝置100的感測器結構102相比,裝置500的各感測器結構502-508可以包括更少的終端區域112a-112c和第二隔離區域110a-110d。具體地,各感測器結構502-508可以僅包括第一終端區域112a、第二終端區域112b和第三終端區域112c。半導體裝置500中的感測器結構502-508可以使用連接器550彼此電性連接。連接器550可包括導電材料,例如但不限於鋁、銅、鎢、其合金或其組合。例如,連接器550可以包括電線。如圖5A所示,第一感測器結構502、第二感測器結構504、第三感測器結構506和第四感測器結構508可以沿著圖5A的同一軸(沿著線B-B')設置,並且可以按所述順序串聯連接。具體地,第一感測器結構502的第一終端區域112a可以與第四感測器結構508的第三終端區域112c電性連接。此外,第一感測器結構502、第二感測器結構504和第三感測器結構506的第三終端區域112c可分別與第二感測器結構504、第三感測器結構506和第四感測器結構508的第一終端區域112a電性連接。
圖6示出了與連接到外部電壓V1(類似於圖2中的V1)的第一感測器結構502的第二終端區域112b和連接到接地電壓GND的第三感測器結構506的第二終端區域112b一起使用的霍爾效應感測器裝置500。第二感測器結構504和第四感測器結構508的第二終端區域112b可以連接到外部設備(圖6中未示出)以藉由裝置500確定霍爾電壓。換句話說,第一感測器結構502和第三感測器結構506的第二終端區域112b可以作用電流終端區域,第二感測器結構504和第四感測器結構508的第二終端區域112b可以用作感測終端區域。
如圖6所示,由於第一感測器結構502和第三感測器結構506的第二終端區域112b之間的電壓差,包括電荷載流子的第一電流到第六電流510-520可以流過感測器結構502-508的霍爾板區域106。具體地,第一電流510和第二電流512可沿相反方向流過第一感測器結構502的霍爾板區域106,其中,第一電流510從第二終端區域112b流向第一終端區域112a,而第二電流512從第二終端區域112b流向第三終端區域112c。第三電流514可以從第一終端區域112a流經第二感測器結構504的霍爾板區域106以流向第三終端區域112c。類似於第一電流510和第二電流512,第四電流516和第五電流518可沿相反方向流過第三感測器結構506的霍爾板區域106。然而,第四電流516可以從第一終端區域112a流向第二終端區域112b;而第五電流518可以從第三終端區域112c流向第二終端區域112b,此外,第六電流520可從第三終端區域112c經由第四感測器結構508的霍爾板區域106流向第一終端區域112a。
在存在垂直於霍爾板區域106平面的磁場522的情況下(如圖6所示,進入圖紙中垂直於第一電流至第六電流510-520的流動),洛倫茲力可以以相反的垂直方向524施加在第三電流514和第六電流520的電荷載流子上。因 此,可以在第二感測器結構504和第四感測器結構508的第二終端區域112b之間產生電壓差(或者換句話說,霍爾電壓),並且可以由這些終端區域112b連接到的外部裝置來確定所述電壓差。霍爾電壓可以與磁場522的強度成比例,因此,裝置500可以基於霍爾電壓來確定磁場522的強度。
圖7示出了根據替換的非限制性實施例的霍爾效應感測器裝置700的簡化俯視圖。裝置700類似於裝置600,因此,使用相同的元件符號來標記共同特徵,並且不再討論。
參照圖7,裝置700還可以包括複數個感測器結構,包括與裝置600的感測器結構相似的第一感測器結構502、第二感測器結構504、第三感測器結構506和第四感測器結構508。然而,與裝置600相比,裝置700的感測器結構502-508可以不沿同一軸設置,而是可以交叉的配置設置。具體地,如圖7所示,第一感測器結構502和第三感測器結構506可沿第一軸Y-Y'設置;而第二感測器結構504和第四感測器結構508可沿垂直於第一軸Y-Y'的第二軸X-X'設置。感測器結構502-508可以類似地使用連接器550彼此電性連接。具體地,第一感測器結構、第二感測器結構、第三感測器結構和第四感測器結構502-508可以按所述順序串聯連接。如圖7所示,第一感測器結構502的第三終端區域112c可以連接到第二感測器結構504的第一終端區域112a,第二感測器結構504的第三終端區域112c可以連接到第三感測器結構506的第三終端區域112c,第三感測器結構506的第一終端區域112a可以連接到第四感測器結構508的第一終端區域112a,並且第四感測器結構508的第三終端區域112c可以連接到第一感測器結構502的第一終端區域112a。裝置700中感測器結構502-508的這種連接可允許裝置700檢測平行於X-X'軸的磁場強度。或者,感測器結構502-508 可以以不同的方式連接以檢測平行於其他軸(例如Y-Y'軸)的磁場強度,或者可以連接到開關元件,所述開關元件被配置成根據強度待確定的磁場的方向改變感測器結構502-508的連接。
與流經裝置100的電流相比,流經裝置500和700的電流可能更為對稱。這可能是因為如圖6所示,當裝置500正在使用時,每個感測器結構502-508中的電流510-520的流動可以類似於另一感測器結構502-508中的電流的流動,只是電流510-520的方向可以相反。例如,在第一感測器結構502和第三感測器結構506中,電流510、512、516、518在第二終端區域112b和第一終端區域112a/第三終端區域112c之間流動,但是第一感測器結構502中的電流510、512的方向可以與第三感測器結構506中的相反。類似地,在第二感測器結構504和第四感測器結構508中,電流514、520在第一終端區域112a和第三終端區域112c之間流動,但方向相反。
在不脫離本發明的精神或本質特徵的情況下,本發明可以以其他具體形式體現。因此,上述實施例將在所有方面被認為是說明性的,而非限制本文所描述的發明。因此,本發明的範圍將由所附申請專利範圍而不是由前述描述來指示,並且在申請專利範圍的等效性的含義和範圍內的所有變化意在包含於其中。
100:霍爾效應感測器裝置、裝置、半導體裝置
102:感測器結構
104:基層
106:霍爾板區域
108:第一隔離區域
110a:第二隔離區域
110b:第二隔離區域
110c:第二隔離區域
110d:第二隔離區域
110e:第二隔離區域
110f:第二隔離區域
112a:第一終端區域、終端區域
112b:第二終端區域、終端區域
112c:第三終端區域、終端區域
112d:第四終端區域、終端區域
112e:第五終端區域、終端區域
D108:厚度
D110:厚度
D112:厚度
S106:側面
T106:頂面、表面
T108:頂面、表面
W106:寬度

Claims (20)

  1. 一種包括感測器結構的霍爾效應感測器裝置,其中,該感測器結構包括:
    基層,具有第一導電類型;
    霍爾板區域,設置在該基層之上具有與該第一導電類型相反的第二導電類型;
    第一隔離區域,設置在該霍爾板區域周圍並鄰接該霍爾板區域,其中,該第一隔離區域包括電性絕緣材料並與該基層接觸;
    複數個第二隔離區域,設置在該霍爾板區域內,其中,該複數個第二隔離區域中的各者包括電性絕緣材料;以及
    複數個終端區域,設置在該霍爾板區域內,各相鄰對的該終端區域藉由該複數個第二隔離區域中的一者而彼此電性隔離。
  2. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個終端區域與該複數個第二隔離區域相鄰地交替。
  3. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個第二隔離區域延伸到比該複數個終端區域更深的該霍爾板區域中。
  4. 如請求項1所述的霍爾效應感測器裝置,其中,該第一隔離區域完全包圍該霍爾板區域的側面。
  5. 如請求項1所述的霍爾效應感測器裝置,其中,該第一隔離區域部分地延伸到該基層中。
  6. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個第二隔離區域在該霍爾板區域的寬度延伸,使得該複數個第二隔離區域中的至少一個第二隔離區域在該寬度的一端或兩端接觸該第一隔離區域。
  7. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個終端區域在該霍爾板區域的寬度延伸,使得該複數個終端區域的至少一個終端區域在該寬度的一端或兩端接觸該第一隔離區域。
  8. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個終端區域在該霍爾板區域的寬度彼此基本平行地延伸。
  9. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個第二隔離區域和該複數個終端區域沿該霍爾板的頂面設置。
  10. 如請求項1所述的霍爾效應感測器裝置,其中,該第一隔離區域的頂面與該霍爾板區域的頂面水平對準。
  11. 如請求項1所述的霍爾效應感測器裝置,其中,該第一隔離區域包括深溝槽隔離結構,並且該複數個第二隔離區域包括淺溝槽隔離結構。
  12. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個終端區域和該霍爾板區域具有相同的導電類型。
  13. 如請求項1所述的霍爾效應感測器裝置,其中,該複數個終端區域比該霍爾板區域摻雜更重。
  14. 如請求項1所述的霍爾效應感測器裝置,其中,該霍爾效應感測器裝置包括單個感測器結構。
  15. 如請求項1所述的霍爾效應感測器裝置,其中,該霍爾效應感測器裝置包括另外的感測器結構,其中,該感測器結構和該另外的感測器結構彼此電性連接。
  16. 如請求項15所述的霍爾效應感測器裝置,其中,該感測器結構和該另外的感測器結構包括依序電性串聯的第一感測器結構、第二感測器結構、第三感測器結構和第四感測器結構,其中,該第一感測器結構和該第三感測器結構沿第一軸設置,且其中,該第二感測器結構和該第四感測器結構沿垂直於該第一軸的第二軸設置。
  17. 一種形成霍爾效應感測器裝置的方法,其中,該方法包括:
    提供具有第一導電類型的基板;
    在該基板內形成具有該第一導電類型的基層和包含電性絕緣材料的第一隔離區域,其中,該第一隔離區域與該基層接觸;
    在該基層之上形成具有與該第一導電類型相反的第二導電類型的霍爾板區域,其中,該第一隔離區域設置在該霍爾板區域周圍並鄰接該霍爾板區域;
    在該霍爾板區域內形成複數個第二隔離區域,其中,該複數個第二隔離區域的各者包括電性絕緣材料;以及
    在該霍爾板區域內形成複數個終端區域,各相鄰對的終端區域藉由該複數個第二隔離區域中的一者而彼此電性隔離。
  18. 一種包括感測器結構的霍爾效應感測器裝置,其中,該感測器結構包括:
    絕緣層;
    霍爾板區域,設置在該絕緣層之上;
    第一隔離區域,設置在該霍爾板區域周圍並鄰接該霍爾板區域,其中,該第一隔離區域包括電性絕緣材料並與該絕緣層接觸;
    複數個第二隔離區域,設置在該霍爾板區域內,其中,該複數個第二隔離區域中的各者包括電性絕緣材料;以及
    複數個終端區域,設置在該霍爾板區域內,各相鄰對的終端區域藉由該複數個第二隔離區域中的一者而彼此電性隔離。
  19. 如請求項18所述的霍爾效應感測器裝置,其中,該第一隔離區域完全包圍該霍爾板區域的側面。
  20. 如請求項18所述的霍爾效應感測器裝置,其中,該複數個第二隔離區域在該霍爾板區域的寬度延伸,使得該複數個第二隔離區域中的至少一個第二隔離區域在該寬度的一端或兩端接觸該第一隔離區域。
TW110104741A 2020-03-13 2021-02-08 霍爾效應感測器裝置以及形成霍爾效應感測器裝置的方法 TWI799789B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/817,623 2020-03-13
US16/817,623 US11372061B2 (en) 2020-03-13 2020-03-13 Hall effect sensor devices and methods of forming hall effect sensor devices

Publications (2)

Publication Number Publication Date
TW202201037A true TW202201037A (zh) 2022-01-01
TWI799789B TWI799789B (zh) 2023-04-21

Family

ID=77457286

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104741A TWI799789B (zh) 2020-03-13 2021-02-08 霍爾效應感測器裝置以及形成霍爾效應感測器裝置的方法

Country Status (4)

Country Link
US (1) US11372061B2 (zh)
CN (1) CN113394339B (zh)
DE (1) DE102021102984A1 (zh)
TW (1) TWI799789B (zh)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492697B1 (en) 2000-04-04 2002-12-10 Honeywell International Inc. Hall-effect element with integrated offset control and method for operating hall-effect element to reduce null offset
FR2820211A1 (fr) 2001-02-01 2002-08-02 Schlumberger Ind Sa Cellule a effet hall pour la mesure de courant efficace
US8135560B2 (en) 2009-01-30 2012-03-13 Applied Materials, Inc. Sensor system for semiconductor manufacturing apparatus
EP2234185B1 (en) * 2009-03-24 2012-10-10 austriamicrosystems AG Vertical Hall sensor and method of producing a vertical Hall sensor
US8896303B2 (en) * 2011-02-08 2014-11-25 Infineon Technologies Ag Low offset vertical Hall device and current spinning method
DE102011107767A1 (de) 2011-07-15 2013-01-17 Micronas Gmbh Hallsensor
US8981504B2 (en) * 2012-06-22 2015-03-17 Infineon Technologies Ag Vertical hall sensor with series-connected hall effect regions
US9217783B2 (en) * 2012-09-13 2015-12-22 Infineon Technologies Ag Hall effect device
GB2531536A (en) * 2014-10-21 2016-04-27 Melexis Technologies Nv Vertical hall sensors with reduced offset error
TWI595518B (zh) 2015-11-04 2017-08-11 財團法人工業技術研究院 電隔離器構裝結構及電隔離器的製造方法
US9893119B2 (en) * 2016-03-15 2018-02-13 Texas Instruments Incorporated Integrated circuit with hall effect and anisotropic magnetoresistive (AMR) sensors
DE102016114174B4 (de) * 2016-08-01 2019-10-10 Infineon Technologies Ag Hall-sensor-bauelemente und verfahren zum betreiben derselben
US10050082B1 (en) * 2017-08-16 2018-08-14 Globalfoundries Singapore Pte. Ltd. Hall element for 3-D sensing using integrated planar and vertical elements and method for producing the same
US10534045B2 (en) 2017-09-20 2020-01-14 Texas Instruments Incorporated Vertical hall-effect sensor for detecting two-dimensional in-plane magnetic fields

Also Published As

Publication number Publication date
US11372061B2 (en) 2022-06-28
DE102021102984A1 (de) 2021-09-16
CN113394339A (zh) 2021-09-14
TWI799789B (zh) 2023-04-21
CN113394339B (zh) 2024-04-16
US20210286025A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9285439B2 (en) Vertical hall sensor with series-connected hall effect regions
KR101016836B1 (ko) 홀 소자를 구비한 자장 센서
JP3602611B2 (ja) 横型ホール素子
US9865792B2 (en) System and method for manufacturing a temperature difference sensor
US6313508B1 (en) Semiconductor device of high-voltage CMOS structure and method of fabricating same
JP2005333103A (ja) 縦型ホール素子およびその製造方法
TW201216538A (en) Hall sensor
JP4798102B2 (ja) 縦型ホール素子
US20140015089A1 (en) Differential temperature sensor and its capacitors in cmos/bicmos technology
US5446307A (en) Microelectronic 3D bipolar magnetotransistor magnetometer
JP2822951B2 (ja) 絶縁ゲート電界効果トランジスタの評価素子とそれを用いた評価回路および評価方法
JP2718380B2 (ja) 半導体装置の電気特性検査パターン及び検査方法
US9279864B2 (en) Sensor device and sensor arrangement
US20230378243A1 (en) Isolator
CN113394339B (zh) 霍尔效应感测器装置和形成霍尔效应感测器装置的方法
US8736003B2 (en) Integrated hybrid hall effect transducer
TWI438890B (zh) 半導體裝置
JP2021002548A (ja) 半導体装置および半導体装置の製造方法
JP6774899B2 (ja) ホール素子及びホール素子の製造方法
EP3794649A1 (en) Vertical hall elements having reduced offset and method of manufacturing thereof
JP2004296469A (ja) ホール素子
US20220344581A1 (en) Semiconductor device with cmos process based hall sensor and manufacturing method
JP2002176165A (ja) 半導体磁気センサ
JPS63161656A (ja) 均衡フィールドプレートを有する集積回路の抵抗器
JPH11214685A (ja) 絶縁ゲート型半導体装置