TW202143508A - 用於紫外光發射裝置之埋入式接觸層 - Google Patents

用於紫外光發射裝置之埋入式接觸層 Download PDF

Info

Publication number
TW202143508A
TW202143508A TW110115177A TW110115177A TW202143508A TW 202143508 A TW202143508 A TW 202143508A TW 110115177 A TW110115177 A TW 110115177A TW 110115177 A TW110115177 A TW 110115177A TW 202143508 A TW202143508 A TW 202143508A
Authority
TW
Taiwan
Prior art keywords
layer
sublayer
superlattice
light
sub
Prior art date
Application number
TW110115177A
Other languages
English (en)
Inventor
才 唐
駿韜 李
吉列爾梅 托西
克里斯多夫 弗林
連恩 安德森
提摩西 W 布雷
Original Assignee
新加坡商西拉娜Uv科技私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商西拉娜Uv科技私人有限公司 filed Critical 新加坡商西拉娜Uv科技私人有限公司
Publication of TW202143508A publication Critical patent/TW202143508A/zh

Links

Images

Classifications

    • H01L33/06
    • H01L33/04
    • H01L33/0025
    • H01L33/14
    • H01L33/32
    • H01L33/38
    • H01L33/12
    • H01L33/145

Landscapes

  • Led Devices (AREA)

Abstract

在一些實施例中,一種發光結構包含一分層半導體堆疊,該分層半導體堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件。該第一組摻雜層可包含一第一子層、一第二子層及一第三子層,其中該第三子層鄰近於該發光層。通向該第一組摻雜層之該電接觸件可經製造成通向該第二子層。該第一子層、該第二子層及該第三子層可以係n型摻雜的,且該第二子層之一電導率可高於該第一子層及該第三子層之一電導率。在一些情況下,該第二子層可與該第一子層或該第三子層相比吸收更多的自該發光層發射之光。

Description

用於紫外光發射裝置之埋入式接觸層
相關申請案
本申請案主張於2020年5月1日提交之名稱為「BURIED CONTACT LAYER FOR UV EMITTING DEVICE」之美國非臨時專利申請案第16/864,838號之優先權,該申請案出於所有目的特此以引用方式併入。
本發明係有關於用於紫外光發射裝置之埋入式接觸層。
深紫外光(Deep ultraviolet;深UV)發光二極體(light emitting diode;LED)在消毒、水處理、科學分析及其他應用中具有巨大的潛力。然而,習知紫外光C帶(ultraviolet C-band;UVC) LED之效能一直受到高接通電壓及驅動電壓困擾。高帶隙半導體材料用於在習知LED中發射高能UVC光。然而,高帶隙材料亦難以有效地摻雜n型或p型,且因此經製造成通向高帶隙材料之接觸件通常遭受低電導率。UVC LED中使用的高帶隙材料之低電導率係造成所需高驅動電壓之一個因素,尤其對於發射穿過用於n接觸件的寬帶隙n型半導體的光之裝置而言。
例如,利用纖鋅礦半導體之習知UVC LED通常在發射UVC光之主動層中使用具有高Al含量的AlGaN。一些此種裝置使用在主動層中具有較低Al含量井及較高Al含量障壁的量子井結構。在一些情況下,習知LED發射穿過裝置之邊緣或穿過結構之p側的光。在此等情況下,發射光不需要穿過n型接觸層,且具有高電導率的低帶隙材料可用於結構中之n接觸層。在光穿過結構之n側發射之習知裝置中,具有較低電導率之高帶隙光學透明材料係用於n接觸層。然而,此等高帶隙材料之低電導率例如藉由增大操作裝置所需之接通電壓及驅動電壓而降低裝置之效能。
在一些實施例中,一種發光結構包含一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中該第一組摻雜層、該第二層及該發光層包含半導體材料。在一些情況下,該第一組摻雜層包含一第一子層、一第二子層及一第三子層,其中該第三子層鄰近於該發光層。該第一子層、該第二子層及該第三子層可分別包含一第一超晶格、一第二超晶格及一第三超晶格。該第二超晶格之井層可厚於該第一超晶格及該第三超晶格之井層。該第二超晶格之障壁層可薄於該第一超晶格及該第三超晶格之障壁層。通向該第一組摻雜層之該電接觸件可經製造成通向該第二子層。該第一子層、該第二子層及該第三子層可以係n型摻雜的,且該第二子層之電導率可高於該第一子層及該第三子層之電導率。
在一些實施例中,一種發光結構包含一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中該第一組摻雜層、該第二層及該發光層包含半導體材料。該第一組摻雜層可包含一第一子層、一第二子層及一第三子層,其中該第三子層鄰近於該發光層。通向該第一組摻雜層之該電接觸件可經製造成通向該第二子層。該第一子層、該第二子層及該第三子層可以係n型摻雜的,且該第二子層之一電導率可高於該第一子層及該第三子層之一電導率。該第一子層、該第二子層及該第三子層可分別包含一第一超晶格、一第二超晶格及一第三超晶格。該發光層可包含一第四超晶格,且該第二層可包含一第五超晶格。該第一超晶格、該第二超晶格、該第三超晶格、該第四超晶格及該第五超晶格可各自包含GaN井層及AlN障壁層的組。
在一些實施例中,一種發光結構包含一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中該第一組摻雜層、該第二層及該發光層包含半導體材料。該第一組摻雜層可包含一第一子層、一第二子層及一第三子層,其中該第三子層鄰近於該發光層。通向該第一組摻雜層之該電接觸件可經製造成通向該第二子層。該第一子層、該第二子層及該第三子層可以係n型摻雜的,且該第二子層之電導率可高於該第一子層及該第三子層之電導率。所具有的一波長短於300 nm之光可自該發光層發射且可在自該結構發射之前穿過該第一組摻雜層,且該第二子層可與該第一子層或該第三子層相比吸收更多的自該發光層發射之光。
本文中描述了作為n接觸層插入半導體磊晶結構中之埋入層。本文所描述之半導體磊晶結構可用於在短波長下(例如,在UVC帶中,或在小於300 nm之波長下)發射的發光二極體(light emitting diode;LED)中。本發明之埋入層具有高n型電導率,該高n型電導率對於電流自n接觸件注入到結構之主動層中是有益的。埋入層之高電導率材料在感興趣之波長範圍中(例如,在低於300 nm之波長下)亦具有高吸收係數。因此,埋入層之厚度經定製成在埋入層中具有可接受光學吸收量及可接受電阻(即,在結構之n接觸件與主動層之間)。換言之,埋入層之厚度經定製成與習知結構相比,藉由權衡增加的吸收率與降低的層電阻來改良裝置之效能(例如,接通電壓、驅動電壓及輸出功率效率) 。在一些實施例中,使用精細磊晶生長厚度控制來形成具有正確厚度的埋入式n接觸層,且使用精確蝕刻製程來暴露n接觸層,使得可在該n接觸層上沉積n金屬。
在一些實施例中,半導體磊晶結構含有第一組摻雜層、第二層及定位於第一組摻雜層與第二層之間的發光層。第一組摻雜層係n型摻雜的,且n型電接觸件(即,使用n金屬)經製造成通向第一組摻雜層。第一組摻雜層提供具有高電導率之埋入式n接觸層,該埋入式n接觸層(對所發射光之波長)具有可接受的光學透明度,該埋入式n接觸層允許獲得低驅動電壓而無需顯著降低輸出功率。在一些情況下,與具有較低電導率透明n接觸層之結構相比,埋入式n接觸層使結構之輸出功率增大。
在一些實施例中,第一組摻雜層包含第一子層、第二子層及第三子層,其中第三子層鄰近於發光層(即,使得第二子層經「埋入」在第三子層之下,或第三子層位於主動層與第二子層之間)。第二子層係n接觸層,即,第二子層係結構中的連接到n金屬接觸件的層。與第一子層及第三子層相比,第二子層可具有更高的摻雜密度及/或更高的電導率。在一些實施例中,與第一子層及第三子層相比,第二子層對自發光層發射之光具有更高吸收係數。在一些實施例中,第二子層可定位於第一子層與第三子層之間,或第一子層可定位於第二子層與第三子層之間。
在一些實施例中,埋入式n接觸層具有以下特性。首先,可使用與結構中其餘層相同的磊晶生長製程來沉積埋入式n接觸層,這允許該埋入式n接觸層容易地積體到結構製造中。其次,與不具有高電導率n接觸件的類似裝置相比,埋入式n接觸層比周圍層(例如,上述第一子層及第三子層)更具導電性,這改良了電流注入。第三,可使埋入式n接觸層足夠薄,使得它吸收自結構中的主動層發射之可接受量的光(例如,埋入式n接觸層吸收小於60%、小於50%、小於40%或小於30%、或10%至50%、或10%至60%的發射光),且該層不能太薄以致於無法通過蝕刻製程容易地接近以暴露該埋入式n接觸層(例如,埋入式n接觸層厚於約10 nm,或厚於約20 nm)。
在一些實施例中,使用分子束磊晶(molecular beam epitaxy;MBE)、金屬有機化學氣相沉積(metal organic chemical vapor deposition;MOCVD)或氫化物氣相磊晶(hydride vapor phase epitaxy;HVPE)來生長本文所描述之半導體磊晶結構。在一些實施例中,在形成磊晶結構期間對埋入式n接觸層進行摻雜(例如,在MBE系統中使用一或二種摻雜劑源)。在生長半導體磊晶結構之後,可使用標準半導體製造方法來處理半導體磊晶結構,包括蝕刻以形成平台式結構(例如,使用乾式蝕刻)及金屬沉積以沉積n金屬接觸件及p金屬接觸件(例如,使用蒸發或濺鍍)。在一些實施例中,可在磊晶生長之後處理n接觸層,以便增大層之電導率及/或摻雜密度。例如,可使用雷射或熱處理來改良層中之摻雜劑活化。在一些實施例中,可在磊晶生長製程期間,例如在恰好形成埋入式n接觸層之後生長暫停期間執行此種雷射或熱處理。在一些實施例中,亦可使用離子植入來增大層之摻雜密度。
在一些實施例中,第一組摻雜層之第一子層、第二子層及第三子層各自係半導體材料之單層。在一些實施例中,第一子層及第三子層含有與第二子層之半導體相比,具有更高帶隙的半導體。由於較低帶隙材料通常經更有效地摻雜(例如,利用非本徵摻雜劑),因此第二子層之較低帶隙將使得該層與第一子層或第三子層相比摻雜程度更高且具有更高電導率 。然而,較低帶隙亦可致使第二子層之光學吸收率(在發射波長下)高於第一子層及第三子層之光學吸收率,在一些情況下,這將減少自結構發射之光的量。第二子層之較高電導率將藉由減小裝置之n金屬接觸件與主動層之間的電阻來減小(一定量的電流注入)所需之驅動電壓(即,更容易將載子自n接觸件注入到主動層中)。在本發明實施例中,第二子層之厚度經專門調諧成使得歸因於第二子層中增大吸收率的效能下降可藉由經改良的載子注入來進行補償,且出乎意料地,與第二子層與第一子層及第三子層具有相同帶隙之結構相比,總裝置輸出功率可大約相同或甚至得到改良。
例如,第一子層及第三子層可以係Alx Ga1-x N (即,AlGaN),其中0≤x≤1,且第二子層可以係與第一子層及第三子層相比,Al含量更低(即,在Alx Ga1-x N材料中x值更低)之AlGaN。換言之,第一子層及第三子層可以係Alx Ga1-x N之單層,且第二子層可以係Aly Ga1-y N之單層,且x可大於y 。在一些實施例中,第一子層、第二子層及第三子層係彼此具有不同組分之單層,其中與第一子層及第三子層相比,第二子層具有更低帶隙。例如,第一子層可以係Alx Ga1-x N,其中0≤x≤1,第二子層可以係Aly Ga1-y N之單層,第三子層可以係Alz Ga1-z N,其中0≤z≤1,x可大於y,x可大於z,且y及z可彼此不同。在一些實施例中,具有較低Al含量之AlGaN減小該層之帶隙,從而使該層經更有效地摻雜(例如,利用非本徵摻雜劑(諸如Si、Ge或Se)),第二子層之較低Al含量將使得該層與第一子層或第三子層相比摻雜程度更高且具有更高電導率。然而,與第一子層及第三子層相比,第二子層之減小帶隙亦可增加第二子層之光學吸收率(在發射波長下)。此種子層之組分可根據自結構發射之光的波長而不同。例如,如果發射波長係290 nm,則第一子層及第三子層可以係Alx Ga1-x N,其中x大約等於0.45,且第二子層可以係Aly Ga1-y N,其中y大約等於0.1。在此種結構中,第一子層及第三子層可最小程度地吸收290 nm光,且第二子層之低帶隙可改良該子層之電導率。然而,第二子層之低Al含量將致使該層吸收290 nm發射光中之一些。在另一個實例中,如果發射波長係250 nm,則第一子層及第三子層可以係Alx Ga1-x N,其中x大約等於0.6,且第二子層可以係Aly Ga1-y N,其中y大約等於0.1。在此結構中,第一子層及第三子層之較高Al含量可允許它們最小程度地吸收較短波長250 nm光。在此實例中,第二子層之低帶隙可改良該子層之電導率,然而,第二子層之低Al含量亦將致使該層吸收250 nm發射光中之一些。在上述兩個實例中,第二子層中之y值0.1係近似的,且較高或較低y值可提供不同程度之電導率及吸收率,該等不同程度之電導率及吸收率可針對不同結構進行調諧(例如,藉由改變第二子層之組分及/或厚度)。另外,部分地由於使用不同生長技術製造的AlGaN化合物的帶隙及吸收係數之變化,此等實例中針對波長之組分係近似的。在此等實例中,與不具有第二子層之結構相比,第二子層之高電導率可改良結構之操作電壓。此外,在此等實例中,藉由調諧第二子層之厚度,歸因於第二子層中增大吸收率的效能下降可藉由經改良之載子注入來進行補償,且出乎意料地,與第二子層與第一子層及第三子層具有相同Al含量之結構相比,總裝置輸出功率可大約相同或甚至得到改良。
在一些實施例中,第一組摻雜層之第一子層、第二子層及第三子層各自含有具有由半導體材料組成的井層及障壁層之超晶格,其中與障壁層相比,井層具有更低帶隙。構成第二子層之超晶格的井及/或障壁之半導體及/或厚度可不同於構成第一子層及/或第三子層之超晶格之彼等半導體及/或厚度,這可使得第二子層能夠具有比第一子層及/或第三子層更高的電導率。在一些實施例中,第二子層(即,n接觸層)係單層,而第一子層及第三子層係超晶格。在一些實施例中,第二子層(即,n接觸層)係超晶格,而第一子層及第三子層各自係單層。在一些實施例中,第一子層、第二子層及第三子層中之一者係超晶格,而另外兩者係單層。在一些實施例中,第一子層、第二子層及第三子層中之兩者係超晶格,而另一層係單層。例如,第三子層可以係(例如,AlN或AlGaN之)單層,而第一子層係超晶格且第二子層係單層或超晶格。另外,在一些實施例中,第三子層含有超晶格,該超晶格鄰近於主動層具有厚障壁層。例如,第三子層可含有超晶格,該超晶格具有含有井(例如,由GaN或AlGaN組成)及障壁(例如,由AlN或AlGaN組成)之重複單位晶胞,其中障壁厚度貫穿超晶格不是恆定的,且最後的障壁可能非常厚(例如,大於1 nm,或大於10 nm)。
在一些實施例中,構成第二子層超晶格之井及/或障壁的半導體與構成第一子層超晶格及/或第三子層超晶格的彼等半導體相比具有更低帶隙。在一些實施例中,第二子層超晶格之井層厚於第一子層超晶格及/或第三子層超晶格之井層,且/或第二子層超晶格之障壁層薄於第一子層超晶格及/或第三子層超晶格之障壁層。在一些實施例中,與第一子層超晶格及/或第三子層超晶格相比,在第二子層超晶格中,構成井及/或障壁的半導體之帶隙更低,井更厚且/或障壁更薄。
在所有上述情況下,第二子層超晶格之有效帶隙可低於第一子層超晶格及第三子層超晶格之有效帶隙。超晶格之井及障壁可產生微小能帶,且有效帶隙可反映整個超晶格之光學性質及電子性質,包括微小能帶之效應。第二子層之有效帶隙低於第一子層及/或第三子層之有效帶隙,因為與第一子層超晶格或第三子層超晶格相比,第二子層超晶格具有更低帶隙材料及/或更高分數之更低帶隙材料。另外,在第二子層超晶格具有更厚井及/或更薄障壁之情況下,載子將更少地約束在井內。換言之,第二子層中之超晶格微小能帶與第一子層超晶格及第三子層超晶格之彼等微小能帶相比以更低能量發生,這將允許微小能帶之間的轉變以更低能量發生,且與第一子層超晶格及第三子層超晶格之彼等情況相比將有效地減小帶隙(且可增大感興趣波長下之光學吸收率)。
由於較低帶隙材料通常經更有效地摻雜(例如,利用非本徵摻雜劑),因此第二子層之較低有效帶隙將使得該層與第一子層或該第三子層相比摻雜程度更高且具有更高電導率 。然而,較低有效帶隙亦可致使第二子層之光學吸收率(在發射波長下)高於第一子層及第三子層之光學吸收率。由於與上述彼等原因類似之原因,第二子層之較高電導率將藉由減小裝置之n金屬接觸件與主動層之間的電阻來減小裝置接通電壓及驅動電壓(即,將更容易將載子自n接觸件注入到主動層中)。在此情況下,如果第二子層之厚度經恰當地調諧,則歸因於第二子層中增大吸收率的效能下降可藉由經改良的載子注入來進行補償,且出乎意料地,與第二子層與第一子層及第三子層具有相同有效帶隙之結構相比,總裝置輸出功率可大約相同或甚至得到改良。
圖1係習知半導體發光結構100之簡化示意圖。結構100含有基板110、緩衝層120、n接觸層130、主動層140、任選層150及p接觸層160。在一些情況下,任選層150可組態為電子阻擋層(electron blocking layer;EBL)。n金屬170與n接觸層130接觸,且p金屬180與p接觸層160接觸。可在金屬接觸件170與180之間施加外部偏壓,該外部偏壓致使主動層140發射例如處於UVC波長帶中之光。為了暴露n接觸層130以被n金屬170接觸,使用蝕刻製程來部分地蝕刻穿過n接觸層130,從而產生平台式結構。在藉由蝕刻暴露n接觸層130之後,可在n接觸層130上沉積n金屬170。在結構100中,n金屬及p金屬覆蓋結構100之與基板110相反的表面之顯著部分,並因此結構100可自裝置之邊緣發射光,或者可穿過n接觸層130、緩衝層120及基板110發射光。如上文所論述,在穿過結構之n側發射光之習知結構中,n接觸層130通常係對發射光具有低光學吸收率之寬帶隙材料,且由於寬帶隙而亦通常具有相對高的電阻。因此,此種習知UVC LED遭受低效能,包括高接通電壓及驅動電壓。
圖2係根據一些實施例的併入埋入式n接觸層(即,第二子層) 230b的半導體發光結構200之簡化示意圖。結構200含有基板210、緩衝層220、一組摻雜層230 (含有第一子層230a、第二子層230b及第三子層230c)、主動層240、EBL 250及p接觸層260。在一些實施例中,緩衝層220、該組摻雜層230、主動層240、EBL 250及p接觸層260全部包含半導體材料,且該等半導體材料可在不同層之間變化。在一些實施例中,該組摻雜層230,即第一子層230a、第二子層230b及第三子層230c全部係n型摻雜的。在一些實施例中,第二子層230b經n型摻雜(例如,使用非本徵摻雜劑(如Si)),且第一子層230a及/或第三子層230c未進行有意地摻雜(即,未被有意地添加非本徵摻雜劑,但可經無意地添加雜質,該等雜質在一些情況下可充當摻雜劑)。蝕刻該結構以形成平台式結構,其中第二子層230b暴露,且n金屬270可與第二子層230b接觸。因此,子層230b可稱為n接觸層。p金屬280與p接觸層260接觸。當在n金屬接觸件270與p金屬接觸件280之間施加外部偏壓時,結構200可發射例如處於UVC波長帶中或波長小於300 nm之光。在此情況下,光自主動層240發射且穿過該組摻雜層230、緩衝層220及基板210,之後自結構200發射。如上所述,在一些實施例中,子層230b比子層230a及230c具有更高的電導率(例如,由於更高的摻雜密度)。在一些實施例中,子層230b之片電阻可小於10,000歐姆/平方、或小於1000歐姆/平方,或可以係10歐姆/平方至1000歐姆/平方、或10歐姆/平方至10,000歐姆/平方。在一些實施例中,子層230b之片電阻可以係子層230a及/或230c之片電阻的約10倍、約100倍、約1000倍或約10,000倍高。埋入式n接觸層之電導率可根據所使用之材料而變化(例如,高於或低於上面列出之值)。例如,將具有中等電導率(例如,大於約1000歐姆/平方或大於約10,000歐姆/平方之片電阻)的埋入式n接觸層添加至具有非常高電阻(例如,大於約10,000歐姆/平方或大於約100,000歐姆/平方之片電阻)的n接觸層材料之習知結構可以係有益的。另外,在一些情況下,與子層230a及230c相比,子層230b在由主動層240發射之波長下具有更高光學吸收率。
在一些實施例中,子層230a及230b可切換位置,使得子層230b (n接觸層)鄰近於緩衝層220,且子層230a位於子層230b與230c之間。在一些情況下,層230a可自結構200省略。在此種情況下,該結構將含有緩衝層220,之後是n接觸層230b、子層230c及主動層240。在一些情況下,層230c可自結構200省略。在此種情況下,該結構將含有緩衝層220,之後是子層230a、n接觸層230b及主動層240。在一些實施例中,第一子層230a及第三子層230c具有相同組分、厚度及/或結構(在多層或超晶格子層之情況下),而在一些實施例中,第一子層230a及第三子層230c具有彼此不同之組分、厚度及/或結構(在多層或超晶格子層之情況下)。
n金屬270可與n接觸層230b之上表面(即,層230b的與基板相反之表面)接觸,或者子層230b可經部分地蝕刻掉且n金屬可與子層230b之內部接觸。在子層230b含有超晶格之實施例中,n金屬270可與子層230b之超晶格之井或障壁接觸。在一些實施例中,n金屬270與子層230b之超晶格內的層接觸,以藉由與子層230b之超晶格內的高度摻雜井層接觸來產生最小可能的肖特基n障壁。在一些實施例中,子層230b含有超晶格,該超晶格之井非常薄(例如,大約1個單層(monolayer;ML)厚,或小於1個ML厚),且用於暴露子層230b之蝕刻製程會將子層230b蝕刻至略微不同深度,從而致使子層230b之暴露表面略微粗糙、不平坦或以其他方式不均勻。在此種情況下,可能的是n金屬在子層230b之超晶格內的不同橫向(即,平行於基板表面)位置處與井及障壁兩者接觸。
在整個本揭露中,描述了分數個單層,即,厚度小於1個ML之層,或厚度等於小數個ML (例如,1.5個ML)之層。所具有的厚度小於1個ML的分數個ML的半導體可含有半導體之3維島狀物,且因此該層可以係不連續的。例如,在兩側經AlN障壁包圍的所具有的厚度小於1個ML之GaN井層可含有被AlN包圍的3維GaN島狀物。所具有的厚度大於1個ML之分數個ML可藉由將含有整數個ML的第一層與所具有的厚度小於1個ML的第二分數個ML層串聯來描述,其中所具有的厚度小於1個ML之第二分數個ML層具有上文描述之性質。
在一些情況下,超晶格(例如,短週期超晶格(short period superlattice;SPSL))含有AlN及GaN之交替層且不含三元AlGaN層,且AlN層及/或GaN層分別含有小於1個ML的AlN及/或GaN。因此,在此種層之一些區域(或奈米區域)中,仍可存在混合化合物Alx Ga1-x N。類似地,在一些情況下,超晶格可僅具有GaN層及AlN層,其中AlN層及/或GaN層厚度為非整數個ML。在此等情況下,在層之一些區域(或奈米區域)中,混合化合物Alx Ga1-x N仍可存在於超晶格內。
基板210可以係許多不同材料,諸如藍寶石、SiC、AlN、GaN、矽或金剛石。在一些實施例中,基板210對自主動層240發射之光具有低吸收係數且/或具有類似於形成磊晶結構200之其他層的材料的晶格常數。在一些實施例中,基板顯著地吸收具有感興趣波長之光,且基板在裝置處理期間經薄化或去除。在一些情況下,基板經局部地薄化以形成窗口,以供自主動層240發射之光逸出結構。
在一些實施例中,緩衝層220係50 nm至1000 nm厚、或50 nm至5000 nm厚,且由對自主動層240發射之光具有低吸收係數且具有類似於形成磊晶結構200之其他層的材料的晶格常數的半導體材料組成。可用於緩衝層220的材料之一些實例係AlN、AlGaN及InAlGaN。在不同實施例中,緩衝層220可以係單層、多個層或超晶格。
在一些實施例中,該組摻雜層230含有經n型摻雜的半導體磊晶層。用於該組摻雜層230的材料之一些實例係GaN、AlN、AlGaN及InAlGaN。該組摻雜層230中的子層230a、230b及230c中之每一者可根據層及總結構具有以下厚度:小於約10 nm至3000 nm、或小於約10 nm至1000 nm、或100 nm至1000 nm、或10 nm至300 nm、或10 nm至100 nm、或約50nm、或小於50 nm。在一些實施例中,子層230a之厚度大於100 nm,以便改良主動層240之材料品質。例如,厚(例如,大於100 nm、或100 nm至500 nm、或100 nm至1000 nm)子層230a可在線位錯能夠到達主動層240且降低裝置效能之前濾除該等線位錯。在一些實施例中,子層230c具有適合於改良應變匹配且將電子更好地約束至主動層240之厚度及自然晶格常數(即,鬆弛或非應變晶格常數)。在一些實施例中,子層230a及230c之帶隙或有效帶隙寬於子層230b之帶隙或有效帶隙,從而致使子層230b吸收更多的自主動層240發射之光。在一些實施例中,子層230a及230c之摻雜密度低於子層230b之摻雜密度,從而致使子層230b具有更高電導率。子層230b之更高電導率亦可歸因於來自非本徵摻雜劑的與摻雜密度無關之原因。例如,由於子層之極化摻雜、自由載子遷移率或其他材料性質,或由於子層之結構及/或尺寸,子層230b之電導率可高於230a及230c之電導率。在下文進一步論述該組摻雜層230之不同組態。
在一些實施例中,主動層240含有經組配來發射光之半導體材料。在一些實施例中,主動層240可含有由較寬帶隙障壁包圍之一或多個較窄帶隙井(例如,在量子井結構、超晶格或短週期超晶格(short-period superlattice;SPSL)中),其中井及障壁之帶隙及厚度經選擇成發射所具有的波長小於300 nm (例如,在UVC帶中)之光。用於主動層240之井及/或障壁的材料之一些實例係GaN、AlN、AlGaN及InAlGaN。主動層可具有例如小於約10 nm至1000 nm、或10 nm至100 nm、或約50 nm之厚度。在一些實施例中,使用超晶格(或SPSL)用於主動層240可有益於來自結構之光發射效率及/或光提取效率。
在一些實施例中,EBL 250含有經組配來阻止電子離開主動層240且進入p接觸層260之寬帶隙半導體材料。在一些情況下,EBL層250可經非本徵地摻雜p型。在一些情況下,EBL 250可未經摻雜,或經由諸如極化摻雜之機制進行摻雜。EBL 250可含有經組配來將電子約束在主動層240內側的具有導帶補償之單層,或可含有多個層。在一些實施例中,EBL係具有井及障壁之啁啾SPSL,其中井及/或障壁之厚度在整個EBL 250中變化。例如,井之厚度可自鄰近於主動層240之較低厚度(例如,小於1個ML、約0.5個ML或約0.25個ML)至鄰近於p接觸層260之較高厚度(例如,大於5個ML或約10個ML)線性地變化。障壁之厚度在整個EBL層250中可以係恆定的或者亦可變化。EBL 250可以係貫穿該層包含改變的井層厚度、改變的障壁層厚度或改變的井層及障壁層厚度的p型啁啾超晶格。EBL層之厚度可為例如5 nm至50 nm,或約20 nm。
在國際專利申請公開案第WO2019/193487號中更完整地描述了EBL,包括用於長波長LED之啁啾EBL,該國際專利申請公開案之全部內容以引用的方式併入本文中。
在一些實施例中,p接觸層260係具有高電導率以在p金屬與主動層240之間實現低接觸電阻之材料。p接觸層可以係窄帶隙材料(例如,以提供高電導率)或寬帶隙材料(例如,以減少對自主動層240發射之光的二次吸收)。在一些實施例中,p接觸層材料具有帶隙,該帶隙提供低電阻接觸且對自結構發射之光的波長亦提供低吸收係數。用於p接觸層260的材料之一些實例係GaN、AlN、AlGaN及InAlGaN。p接觸層260摻雜有p型摻雜劑,諸如Mg。p接觸層之厚度可以係例如10 nm至100 nm、或約40 nm。在一些情況下,p接觸層260可以係超晶格,例如,具有GaN井及AlN障壁或具有AlGaN井及障壁之SPSL。在一些情況下,p接觸層260可在整個層中具有漸變組分,例如Alx Ga1-x N之第一組分至第二組分。
n金屬270及p金屬280可含有分別與n接觸層230b及p接觸層260形成歐姆接觸的金屬之任何組合。可在n金屬及/或p金屬中使用的材料之一些實例係Ti、Al、Ta及Ni。例如,n金屬及p金屬可包括鄰近於n接觸層230b或p接觸層260之Ti層,之後是Al層。在一些情況下,n金屬接觸層及p金屬接觸層各自包括沉積在n接觸層230b或p接觸層260上的1 nm至10 nm (或約2 nm)之Ti,之後是20 nm至400 nm之Al 。n金屬270及p金屬280之總厚度可以係約20 nm至約400 nm。
在一些實施例中,該組摻雜層230 (包括子層230a、230b及230c)、主動層240、EBL 250及任選地p接觸層260完全由SPSL組成,該等SPSL由交替的GaN井及AlN障壁對製成。在此種情況下,可調整井及/或障壁之厚度以定製層230、240、250及260中之每一者的有效帶隙。
在一些實施例中,該組摻雜層230 (包括子層230a、230b及230c)、主動層240、EBL 250及然後p接觸層260完全由SPSL組成,其中該等SPSL之複數個單位晶胞中之每一者(即,SPSL之重複單元,例如GaN/AlN)的平均合金含量沿著生長方向恆定或非恆定。在一些實施例中,該組摻雜層230 (包括子層230a、230b及230c)及主動層240完全由SPSL組成,其中該等SPSL之複數個單位晶胞中之每一者(即,SPSL之重複單元,例如GaN/AlN)的平均合金含量沿著生長方向恆定或非恆定。包含兩種組分(諸如具有厚度tGaN 之GaN層及具有厚度tAlN 之AlN層)的簡單單位晶胞之平均合金含量由xave =tAlN / (tAlN + tGaN )給出,其中xave 表示單位晶胞中該對之有效Al分數。在替代性實施例中,SPSL之單位晶胞可包含三或更多種Alx Ga1-x N組分,且在此種實施例中,可類似地確定有效合金含量。包含二元材料、三元材料及四元材料的其他層組分之平均合金含量可根據一或多種元素成分來限定。例如,層230、240、250及260可含有具有三層單位晶胞之SPSL,該等三層單位晶胞包含如下三層:AlN/Alx Ga1-x N/ GaN或AlN/Alx Ga1-x N/Aly Inz Ga1-y-z N,且亦可確定此等單位晶胞中之平均合金含量(例如,Al分數)。維持恆定平均合金含量實現(例如,層230、240、250及/或260中)不相似超晶格的單位晶胞之有效面內晶格常數的晶格匹配。在一些實施例中,在整個半導體結構中,彼此鄰近的單位晶胞具有實質上相同的平均合金含量。在一些實施例中,複數個單位晶胞中之每一者的平均合金含量在半導體結構200之主要部分中係恆定的。
該組摻雜層230可具有不同組態。在一些實施例中,子層230a、230b及230c全部係單層(例如,半導體材料之單層),且第二子層230b之帶隙低於第一子層230a及/或第三子層230c之帶隙。在其他情況下,子層230a、230b及230c全部係超晶格(例如,含有具有第一半導體材料之井及具有第二半導體材料之障壁的超晶格),且第二子層超晶格之有效帶隙低於第一子層230a超晶格及/或第三子層230c超晶格之有效帶隙。在又其他情況下,子層230a、230b及230c中之一或兩者係單層,子層230a、230b及230c中之一或兩者含有超晶格,且第二子層之帶隙或有效帶隙低於第一子層230a及/或第三子層230c之帶隙或有效帶隙。子層230a、230b及230c中之每一者可具有帶隙,或在超晶格之情況下具有有效帶隙,該帶隙或有效帶隙在整個子層中係恆定的,或在整個子層中可變化。子層230a、230b及230c中之每一者可具有一種組分,或在超晶格之情況下具有每個單位晶胞(例如,井/障壁對)之平均組分,該組分或平均組分在整個子層中係恆定的,或在整個子層中可變化。例如,子層230a、230b及/或230c中之每一者的超晶格內的井及/或障壁之厚度可以係恆定的,或可貫穿子層之厚度改變。
子層230a、230b及230c之厚度(即,在垂直於基板210表面之生長方向上)可全部相同或可彼此不同。子層230a可具有10 nm至3000 nm、或10 nm至1000 nm、或100 nm至500 nm或約400 nm之厚度。子層230b (即,n接觸層230b)可根據材料系統具有小於10 nm至100 nm或約50 nm之厚度。子層230c鄰近於主動層240且可具有小於10 nm至100 nm或約50 nm之厚度。例如,子層230a可厚於子層230b及230c,且子層230a可以係約400 nm厚。子層230c可改良結構中之應變匹配且幫助將電子約束至主動區域(例如,由於帶隙或有效帶隙通常大於子層230b),且因此可具有小於50 nm之厚度。子層230b之厚度係重要的,因為它決定該層之電阻及光學吸收率。在一些實施例中,子層230b可薄於子層230a及/或230c,且可具有約10 nm至約100 nm或約20 nm至約100 nm之厚度。如上所述,子層230b之厚度可經定製成權衡接通電壓及/或驅動電壓與自結構發射之輸出功率。
圖3示出根據一些實施例的含有子層230a、230b及230c的一組摻雜層230的實例之簡化示意圖。在此實例中,子層230a、230b及230c全部係超晶格。子層230a超晶格含有井310及障壁315之重複對,子層230b超晶格含有井320及障壁325之重複對,且子層230c超晶格含有井330及障壁335之重複對。子層230a、230b及/或230c中的井及障壁之重複對(即,重複單位)之數目可以係小(例如,對於薄層約10個重複單位)至大(例如,對於較厚層約一千個重複單位或更多)。例如,子層230a、230b及/或230c可含有約10個至約1000個、或約10個至約200個、或約10個至約100個重複單位。在一些實施例中,子層230b超晶格之井320及障壁325與子層230a及230c的超晶格之井310及330以及障壁315及335具有不同組分及/或厚度。
圖3示出在子層超晶格中之每一者中可存在井310、320及330以及障壁315、325及335之許多重複對。另外,子層超晶格中之每一者可以井或障壁開始及結束。然而,在一些實施例中,在鄰近超晶格之間不可能存在鄰近於彼此之井或障壁。換言之,在一些實施例中,鄰近超晶格之井310及320將在它們之間具有障壁層(315或325),且鄰近超晶格之井320及330將在它們之間具有障壁層(325或335)。類似地,在一些實施例中,鄰近超晶格之障壁315及325將在它們之間具有井(310或320),且鄰近超晶格之障壁325及335將在它們之間具有井(320或330)。
井310、320及330以及障壁315、325和335之厚度可根據此等層(及結構200之其他層)中所使用之材料而變化。在一些實施例中,井310、320及330可以係0.1個ML至10個ML或0.1個ML至4個ML,且障壁可以係2個ML至20個ML。
在一些實施例中,該組摻雜層230含有Alx Ga1-x N (其中x可以係0至1)之不同組分以形成井310、320及330及/或障壁315、325及335。例如,井320可以係Alx Ga1-x N,其中Al含量低於井310及330之Al含量。在此情況下,由於井320中之較低Al分數,因此子層230b將具有低於子層230a及230c之有效帶隙。子層230b中井320之較低Al含量將使得該層與第一子層230a及第三子層230c相比摻雜程度更高(例如,利用非本徵摻雜劑(諸如Si))且具有更高電導率。然而,與子層230a及子層230c相比,由較低Al含量造成的子層230b之減小的有效帶隙亦可增加子層230b之光學吸收率。在此實例中,藉由調諧子層230b的井320之組分及子層230b之總厚度,可藉由經改良的載子注入來補償歸因於子層230b中增大吸收率之效能下降,且與子層230b之井320與第一子層230a及第三子層230c之井310及330具有相同Al含量之結構相比,自該結構發射之光的總輸出功率可大約相同或甚至得到改良。
在一些實施例中,該組摻雜層230含有不同厚度(即,在垂直於基板210表面之生長方向上)之井310、320及330及/或障壁315、325及335。例如,井320可厚於井310及330。在另一個實例中,井320可厚於井310及330,且障壁325可薄於障壁315及335。在另一個實例中,井320可與井310及330具有相同厚度,且障壁325可薄於障壁315及335。在所有此等情況下,由於較厚之井320及/或較薄之障壁325,子層230b將具有低於子層230a及230c之有效帶隙,從而減少如上文所論述將載子約束在子層230b之井內。子層230b之較低有效帶隙將使得該層能夠與第一子層230a及第三子層230c相比摻雜程度更高(例如,利用非本徵摻雜劑(諸如Si))且具有更高電導率。然而,與子層230a及子層230c相比,子層230b之減小的有效帶隙亦可增加子層230b之光學吸收率(在由主動層240發射之波長下)。在此實例中,藉由調諧子層230b之井320及/或障壁325之厚度及子層230b之總厚度,可藉由經改良之載子注入來補償歸因於子層230b中增大吸收率之效能下降,且與子層230b之井320及/或障壁325與第一子層230a及第三子層230c之井310及330及/或障壁315及335具有相同厚度的結構相比,自該結構發射之光的總輸出功率可大約相同或甚至得到改良。
在一些實施例中,子層230b之井320及/或障壁325之組分及厚度兩者不同於子層230a及230c之井310及330以及障壁315及335之成分及厚度。在此情況下,與子層230a及230c中之井310及330及/或障壁315及335相比,由於井320及/或障壁325之更低帶隙組分以及更厚井320及/或更薄障壁325之組合,可使子層230b之有效帶隙低於子層230a及230c之有效帶隙。在一些情況下,構成子層230b之井320的材料之組分可改變,方式為使得構成井320的材料之體帶隙增加,同時可增大井320之厚度,方式為使得子層230b的整個超晶格之有效帶隙可減小。在一些情況下,構成子層230b之井320的材料之組分可改變,方式為使得構成井320的材料之體帶隙減小,同時可減小井320之厚度,方式為使得可減小子層230b的超晶格之有效帶隙。類似於以上情況,藉由調諧子層230b之井320及/或障壁325之組分及厚度以及子層230b之總厚度,可藉由經改良之載子注入來補償歸因於子層230b中增大吸收率之效能下降,且與子層230b之井320及/或障壁325與第一子層230a及第三子層230c之井310及330及/或障壁315及335具有相同組分及厚度的結構相比,自該結構發射之光的總輸出功率可大約相同或甚至得到改良。
在一些實施例中,本文描述之LED結構(例如,具有類似於圖2中的結構200之結構)發射所具有的波長小於300 nm、或200 nm至300 nm之非相干光。在一些實施例中,本文描述之LED結構具有0.1%至90%之總插座效率(即,光學輸出功率對消耗的電輸入功率之比率)。在一些實施例中,本文描述之LED結構具有0.1 mW至1 W之總輸出功率。在一些實施例中,本文描述之LED結構具有3 V至10 V或3 V至20 V之接通電壓及/或操作電壓。在一些實施例中,本文描述之LED結構所具有的操作電壓小於未併入埋入式n接觸層的類似LED結構之操作電壓的60%、或小於50%、或小於40%、或小於35%、或小於30%。在一些實施例中,本文描述之LED結構所具有的接通電壓小於未併入埋入式n接觸層的類似LED結構之接通電壓的60%、或小於50%、或小於40%、或小於35%、或小於30%。在一些實施例中,與未併入埋入式n接觸層之類似LED結構之輸出功率相比,本文描述之LED結構所具有的輸出功率經改良了大於100%、或大於80%、或大於60%、或大於40%、或大於20%、或大於10%。在一些實施例中,與未併入埋入式n接觸層之類似LED結構之插座效率(wall plug efficiency;WPE)相比,本文描述之LED結構所具有的WPE改良了大於1000%、或大於750%、或大於500%、或大於400%、或大於300%、或大於200%、或大於100%、或大於50%。在一些實施例中,與未併入埋入式n接觸層之類似LED結構之輸出功率相比,本文描述之LED結構之輸出功率與之大約相同或甚至更小,然而,該等結構之WPE由於經改良的操作電壓而得到改良。
實例
圖4A及圖4B分別示出兩個UVC LED結構401及402之簡化示意圖,該等UVC LED結構具有使用MBE製造之磊晶層、使用乾式蝕刻而蝕刻之平台及藉由蒸發沉積之金屬接觸件。圖4A及圖4B兩者含有基板410、緩衝層420、主動層440、EBL層450、p接觸層460、n金屬470及p金屬480。然而,圖4A例示併入單一n接觸層435之基線結構(即,控制結構),且圖4B例示併入一組摻雜層430之經改良結構。層430含有第一子層430a、第二子層430b (其充當埋入式n接觸層430b)及第三子層430c。結構401及402兩者穿過基板而非穿過結構之p側發射大約233 nm UV光,這係有利的,因為幾乎沒有發射光被金屬接觸件470及480吸收或阻擋。
在結構401及402兩者中,基板410係藍寶石,且緩衝層420係400 nm厚之AlN緩衝層。結構401及402兩者亦併入相同主動層440,該等主動層係50 nm厚的未摻雜(即,在層生長期間沒有故意添加摻雜劑)短週期超晶格(short period superlattice;SPSL)層。主動層440之SPSL含有GaN井444及AlN障壁442之重複對,其中GaN井444及AlN障壁442具有厚度,使得結構401及402兩者中之主動層440發射波長為大約233 nm之UV光。結構401及402兩者之EBL層450係20 nm厚之啁啾SPSL EBL,該啁啾SPSL EBL含有GaN井及AlN障壁,其中GaN井之厚度在整個層450中線性地變化。用於結構401及402兩者之p接觸層460係p摻雜有Mg以提供足夠孔的40 nm厚GaN層。結構401及402兩者中之n金屬接觸層470及p金屬接觸層480係Ti/Al層,該等Ti/Al層係在藉由蝕刻穿過該等結構之上層(即,460、450、440、及435或430c之一部分)而產生LED平台式結構之後沉積。
結構401中之n接觸層435係具有交替的GaN井434及AlN障壁432之400 nm厚SPSL。在此實例中,GaN井434及AlN障壁432之厚度分別與主動層440中之GaN井444及AlN障壁442之厚度相同。n接觸層435摻雜有Si以使該層導電。n接觸層435之片電阻係約5×104 歐姆/平方至約2×105 歐姆/平方。如下文所論述,通過n接觸層435之相對高的片電阻導致達成100 mA電流注入所需之相對高的接通電壓及驅動電壓。需注意,n接觸層435具有與主動層相同之SPSL井及障壁組分及厚度。然而,n接觸層435並不吸收顯著量的來自主動層之光,因為對於此種SPSL,發射能量高於吸收邊緣之能量。
結構402中之一組摻雜層430含有三個SPSL子層:400 nm厚SPSL子層430a、50 nm厚子層430b (即,n接觸層430b)及30 nm厚SPSL子層430c,每個子層含有GaN井及AlN障壁。該組摻雜層430亦全部經n型摻雜有Si。在經改良結構402中,與子層430a及430c中之井厚度及障壁厚度相比,藉由改變GaN井及AlN障壁之厚度而使n接觸層430b更具導電性。在層430a及430c中,GaN井434厚度及AlN障壁432厚度與圖4A中之n接觸層435中之彼等厚度相同。然而,在層430b中,GaN井438厚度係圖4B中之層430a及430c (及圖4A中之435)中之GaN井434厚度的約4倍,且AlN障壁436厚度係圖4B中之層430a及430c (及圖4A中之435)中之AlN障壁432厚度的約一半。子層430b中相較於子層430a及430c中之更寬GaN井438厚度及更窄AlN障壁436厚度允許子層430b比子層430a及430c更具導電性。子層430b之片電阻係約100歐姆/平方至約300歐姆/平方,或者與子層430a及430c相比,子層430b的導電性更高約二至三個數量級。
與結構401中n接觸層435之設計相比,結構402中n接觸層430b之經改良設計顯著地減小達成100 mA電流注入所需之接通電壓及驅動電壓,如下所述。然而,由於與結構401中n接觸層435之井及障壁相比,結構402中n接觸層430b之更寬井438及更窄障壁436,n接觸層430b吸收顯著量的自主動層440發射之光,如以下資料所示。令人驚訝地,與結構401之輸出功率相比,來自結構402之輸出功率亦得到改良,如以下資料所示。不受理論限制,輸出功率可能已得到改良,因為n接觸層430b之厚度及該層內GaN井438及AlN障壁436之厚度經調諧成使得n接觸層430b之減小電阻對結構402之輸出功率的改良大於該層中之吸收對輸出功率的減小,如下文所進一步論述。換言之,與401之彼等情況相比,即使子層430b吸收來自主動層之光,n接觸層430b之經改良結構亦改良操作期間之接通電壓、驅動電壓及自結構402輸出之功率。
圖5A示出來自具有不同總厚度的SPSL的吸收光譜510之量測結果,每個SPSL與圖4B中的n接觸層430b具有相同結構(即,具有GaN井438及AlN障壁436)。在具有厚AlN緩衝層之藍寶石基板上生長405 nm厚SPSL。厚SPSL經順序地量測,經由蝕刻進行薄化,且再次量測,以產生七個吸收光譜510。圖5A中的曲線圖之y軸係百分比吸收率,且x軸係以nm表示的波長。產生吸收光譜510的SPSL樣本之厚度係71 nm、97 nm、151 nm、253 nm、301 nm、352 nm及405 nm。如箭頭520所示,較厚SPSL層在233 nm下之吸收率更高。圖5A亦示出三種不同厚度的AlN層之吸收光譜530,其示出AlN層(具有與在經量測以產生吸收光譜510之SPSL中使用的類似厚度)吸收約10%的233 nm光。圖5A亦示出藍寶石基板之吸收資料540,其示出基板吸收最小量的233 nm光。
圖5B示出在圖5A中量測的SPSL在233 nm波長下之吸收資料550,及吸收資料作為厚度的函數之多項式擬合555。圖5B中的曲線圖之y軸係SPSL之百分比吸收率,且x軸係SPSL之以nm表示的厚度。為了得到吸收資料550 (其係僅SPSL之吸收率),自圖5A所示的233 nm下之實驗吸收資料去除自厚AlN層之吸收率(即,在233 nm下約10%)及自基板之吸收率。圖5B示出此種SPSL之估計的吸收率可自300 nm之SPSL厚度下的約70%吸收率降低至50 nm之SPSL厚度下的約30%吸收率。
圖6A至圖6E示出來自結構401及402之實驗資料以說明埋入式n接觸層430b在減小驅動電壓及改良輸出功率方面之效果。受測試結構之橫向尺寸(即,平行於基板之表面)係930微米 × 930微米。
圖6A示出來自結構401及402之發射光譜,包括來自三個結構401 (不具有埋入式n接觸層)之三個光譜610及來自三個結構402 (具有埋入式n接觸層430b)之三個光譜620。y軸係以W/nm為單位之光譜通量,且x軸係以nm表示的波長。光譜610及620全部具有類似的峰值發射波長。令人驚訝地,與來自結構401 (不具有埋入式n接觸層)之光譜610相比,來自結構402 (具有埋入式n接觸層430b)之光譜620示出更高輸出強度。
圖6B示出來自三個結構401 (不具有埋入式n接觸層)之輸出功率630及來自三個結構402 (具有埋入式n接觸層430b)之輸出功率635。y軸係以mW為單位之輸出功率,且x軸係晶圓上測試結構的位置的以mm表示的半徑。此曲線圖示出:將具有較高電導率而且亦具有較高光學吸收率之埋入式接觸層併入至UVC LED結構中將輸出功率自約0.8 mW改良至約1.2 mW或約1.3 mW,這改良了約60%。
圖6C示出來自三個結構401 (不具有埋入式n接觸層)之峰值發射波長640及來自三個結構402 (具有埋入式n接觸層430b)之峰值發射波長645。y軸係以nm表示之峰值發射波長,且x軸係晶圓上測試結構的位置的以mm表示的半徑。所有峰值發射波長在233 nm與235 nm之間。峰值發射640與645相比之變化(即,小於2 nm)與在具有相同設計的半導體結構之不同磊晶生長之間觀察到的典型變化一致,這示出埋入式接觸層不會顯著地影響所產生之波長。亦可注意到,在此實例中,即使峰值發射波長645短於峰值發射波長640,具有埋入式n接觸層430b之裝置亦具有更亮發射(例如,如圖6B所示),這確認更高輸出功率係由於不同n接觸件設計所致,而非由於來自波長差之偽影所致。
圖6D示出來自三個結構401 (不具有埋入式n接觸層)之電流-電壓(IV)回應650及來自三個結構402 (具有埋入式n接觸層430b)之IV回應655。y軸係以安培表示之電流,且x軸係以伏特表示之電壓。需注意,來自三個結構402之IV回應655的電流在超過約7V之電壓時在量測硬體之200mA之電流順從極限下飽和。圖6E示出三個結構401 (不具有埋入式n接觸層)所需之驅動電壓660及三個結構402 (具有埋入式n接觸層430b)達到100 mA注入電流所需之驅動電壓665。y軸係以伏特表示之驅動電壓(在100 mA下),且x軸係晶圓上測試結構的位置的以mm表示的半徑。圖6D至圖6E表明:埋入層的插入將100 mA下的驅動電壓(即,在100 mA下驅動裝置所需之電壓)自約20 V減小至約6.5 V。由於改良的輸出功率及下降的操作電壓,WPE自結構401 (圖4A)之約0.04%增大至具有埋入式n接觸層430b的結構402 (圖4B)之約0.18%,這增加了約400%。
已經詳細參考所揭示發明之實施例,該等實施例中之一或多個實例已在附圖中進行了例示。每個實例已經藉助於解釋本技術來提供,而非作為對本技術之限制。實際上,儘管本說明書已經相對於本發明之特定實施例進行了詳細描述,但將瞭解,熟習此項技術者在理解前述內容之後可容易地想到此等實施例之替代形式、變化及等效物。例如,經例示或描述為一個實施例之一部分的特徵可與另一個實施例一起使用以產生另外的實施例。因此,本標的意圖涵蓋在所附申請專利範圍及其等效物之範疇內的所有此種修改及變化。在不背離本發明之範疇(其在所附申請專利範圍中經更特定地闡述)的情況下,一般熟習此項技術者可實踐本發明之此等及其他修改及變化。此外,一般熟習此項技術者將瞭解,前述描述僅為舉例說明,而並不意圖限製本發明。
100:習知半導體發光結構 110、210、410:基板 120、220、420:緩衝層 130、435:n接觸層 140、240、440:主動層 150:任選層 160、260、460:p接觸層 170、270:n金屬、金屬接觸件 180、280:p金屬、金屬接觸件 200:半導體發光結構、磊晶結構 230、430:一組摻雜層 230a:第一子層 230b、430b:第二子層、埋入式n接觸層 230c:第三子層 250、450:電子阻擋層(EBL) 310、320、330:井 315、325、335:障壁 401、402:UVC LED結構 430a:第一子層、SPSL子層 430c:第三子層、SPSL子層 432、436、442:AlN障壁 434、438、444:GaN井 470:n金屬、金屬接觸件、n金屬接觸層 480:p金屬、金屬接觸件、p金屬接觸層 510、530:吸收光譜 520:箭頭 540、550:吸收資料 555:多項式擬合 610、620:光譜 630、635:輸出功率 640、645:峰值發射波長 650、655:電流-電壓(IV)回應 660、665:驅動電壓
圖1示出習知半導體結構之簡化示意圖。
圖2示出根據一些實施例的併入埋入式n接觸層的半導體發光結構之簡化示意圖。
圖3示出根據一些實施例的含有第一子層、第二子層及第三子層的一組摻雜層的實例之簡化示意圖。
圖4A示出不具有埋入式n接觸層的半導體發光二極體結構之簡化示意圖。
圖4B示出根據一些實施例的具有埋入式n接觸層的半導體發光二極體結構之簡化示意圖。
圖5A示出根據一些實施例的來自具有不同總厚度的短週期超晶格(short period superlattice;SPSL)的吸收光譜之量測結果。
圖5B示出根據一些實施例的來自具有不同總厚度的SPSL在233 nm下的吸收率的量測結果之曲線圖。
圖6A示出根據一些實施例的來自具有和不具有埋入式n接觸層的結構的發射光譜的量測結果之曲線圖。
圖6B示出根據一些實施例的來自具有和不具有埋入式n接觸層的結構的功率輸出之曲線圖。
圖6C示出根據一些實施例的來自具有和不具有埋入式n接觸層的結構的峰值發射波長的曲線圖。
圖6D示出根據一些實施例的來自具有和不具有埋入式n接觸層的結構的電流-電壓(IV)曲線的曲線圖。
圖6E示出根據一些實施例的來自具有和不具有埋入式n接觸層的結構的在100 mA注入電流下的操作(即,驅動)電壓的曲線圖。
200:半導體發光結構、磊晶結構
210:基板
220:緩衝層
230:一組摻雜層
230a:第一子層
230b:第二子層、埋入式n接觸層
230c:第三子層
240:主動層
250:電子阻擋層(EBL)
260:p接觸層
270:n金屬、n金屬接觸件
280:p金屬、p金屬接觸件

Claims (26)

  1. 一種發光結構,其包含: 一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中: 該第一組摻雜層、該第二層及該發光層包含半導體材料; 該第一組摻雜層包含一第一子層、一第二子層及一第三子層,該第三子層鄰近於該發光層; 該第一子層、該第二子層及該第三子層分別包含一第一超晶格、一第二超晶格及一第三超晶格; 該第二超晶格之井層厚於該第一超晶格及該第三超晶格之井層; 該第二超晶格之障壁層薄於該第一超晶格及該第三超晶格之障壁層; 通向該第一組摻雜層之該電接觸件經製造成通向該第二子層; 該第一子層、該第二子層及該第三子層係n型摻雜的;且 該第二子層之一電導率高於該第一子層及該第三子層之一電導率。
  2. 如請求項1之發光結構,其中: 自該發光層發射的所具有的一波長短於300 nm之光在自該發光結構發射之前穿過該第一組摻雜層;且 該第二子層吸收到達該第二子層的自該發光層發射之該光的10%至60%。
  3. 如請求項1之發光結構,其中該第二超晶格之該等井層與該第一超晶格及該第三超晶格之該等井層相比包含具有更低帶隙之材料。
  4. 如請求項1之發光結構,其中: 該發光層包含一第四超晶格;且 該第二層包含一第五超晶格。
  5. 如請求項4之發光結構,其中該第一超晶格、該第二超晶格、該第三超晶格、該第四超晶格及該第五超晶格各自包含GaN井層及AlN障壁層的組。
  6. 如請求項4之發光結構,其中該第五超晶格係貫穿該第五超晶格包含改變的井層厚度、改變的障壁層厚度或改變的井層及障壁層厚度的一p型啁啾超晶格。
  7. 一種發光結構,其包含: 一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中: 該第一組摻雜層、該第二層及該發光層包含半導體材料; 該第一組摻雜層包含一第一子層、一第二子層及一第三子層,該第三子層鄰近於該發光層; 通向該第一組摻雜層之該電接觸件經製造成通向該第二子層; 該第一子層、該第二子層及該第三子層係n型摻雜的; 該第二子層之一電導率高於該第一子層及該第三子層之一電導率; 該第一子層、該第二子層及該第三子層分別包含一第一超晶格、一第二超晶格及一第三超晶格; 該發光層包含一第四超晶格; 該第二層包含一第五超晶格;且 該第一超晶格、該第二超晶格、該第三超晶格、該第四超晶格及該第五超晶格各自包含GaN井層及AlN障壁層的組。
  8. 如請求項7之發光結構,其中: 所具有的一波長短於300 nm之光自該發光層發射且在自該發光結構發射之前穿過該第一組摻雜層;且 該第二子層吸收到達該第二子層的自該發光層發射之該光的10%至60%。
  9. 如請求項7之發光結構,其中該第二超晶格之井層厚於該第一超晶格及該第三超晶格之井層。
  10. 如請求項7之發光結構,其中該第五超晶格係貫穿該第五超晶格包含改變的井層厚度、改變的障壁層厚度或改變的井層及障壁層厚度的一p型啁啾超晶格。
  11. 一種發光結構,其包含: 一分層堆疊,該分層堆疊包含一第一組摻雜層、一第二層、定位於該第一組摻雜層與該第二層之間的一發光層及通向該第一組摻雜層之一電接觸件,其中: 該第一組摻雜層、該第二層及該發光層包含半導體材料; 該第一組摻雜層包含一第一子層、一第二子層及一第三子層,該第三子層鄰近於該發光層; 通向該第一組摻雜層之該電接觸件經製造成通向該第二子層; 該第一子層、該第二子層及該第三子層係n型摻雜的; 該第二子層之一電導率高於該第一子層及該第三子層之一電導率; 所具有的一波長短於300 nm之光自該發光層發射且在自該發光結構發射之前穿過該第一組摻雜層;且 該第二子層與該第一子層或該第三子層相比吸收更多的自該發光層發射之光。
  12. 如請求項11之發光結構,其中該第二子層吸收到達該第二子層的自該發光層發射之該光的10%至60%。
  13. 如請求項11之發光結構,其中: 該第一子層及該第三子層各自包含一第一半導體材料之一單層; 且該第二子層包含一第二半導體材料之一單層;且 該第一半導體材料之一帶隙寬於該第二半導體材料之一帶隙。
  14. 如請求項11之發光結構,其中: 該第一子層及該第三子層各自包含Alx Ga1-x N之一單層,其中x大於0且小於或等於1; 且該第二子層包含Aly Ga1-y N之一單層,其中y大於或等於0且小於1;且 x大於y。
  15. 如請求項14之發光結構,其中該第一子層及該第三子層包含AlN,且該第二子層包含GaN。
  16. 如請求項11之發光結構,其中: 該第一子層包含Alx Ga1-x N之一單層,其中x大於0且小於或等於1; 且該第二子層包含Aly Ga1-y N之一單層,其中y大於或等於0且小於1; 該第三子層包含Alz Ga1-z N之一單層,其中z大於0且小於或等於1; x大於y; x大於z;且 y及z彼此不同。
  17. 如請求項11之發光結構,其中: 該第一子層及該第三子層分別包含一第一超晶格及一第三超晶格; 該第一超晶格及該第三超晶格各自包含GaN井及AlN障壁;且 該第二子層包含Alx Ga1-x N之一單層,其中x大於或等於0且小於或等於1。
  18. 如請求項11之發光結構,其中: 該第一子層及該第三子層分別包含一第一單層及一第三單層; 該第一單層及該第三單層各自包含Alx Ga1-x N,其中x大於或等於0且小於或等於1;且 該第二子層包含具有GaN井及AlN障壁之一超晶格。
  19. 如請求項11之發光結構,其中: 該第一子層、該第二子層及該第三子層分別包含一第一超晶格、一第二超晶格及一第三超晶格。
  20. 如請求項19之發光結構,其中: 該第二超晶格之井層厚於該第一超晶格及該第三超晶格之井層;且 該第二超晶格之障壁層薄於該第一超晶格及該第三超晶格之障壁層。
  21. 如請求項19之發光結構,其中: 該第二超晶格之井層與該第一超晶格及該第三超晶格之井層相比包含具有更低帶隙之材料。
  22. 如請求項19之發光結構,其中: 井層之厚度、障壁層之厚度或井層及障壁層兩者之厚度貫穿該第一超晶格變化;或者 井層之厚度、障壁層之厚度或井層及障壁層兩者之厚度貫穿該第三超晶格變化。
  23. 如請求項19之發光結構,其中: 該第一子層或該第三子層包含彼此不同之井厚度;且 該第一子層或該第三子層包含彼此不同之障壁厚度。
  24. 如請求項19之發光結構,其中: 該發光層包含一第四超晶格;且 該第二層包含一第五超晶格。
  25. 如請求項24之發光結構,其中該第一超晶格、該第二超晶格、該第三超晶格、該第四超晶格及該第五超晶格各自包含GaN井層及AlN障壁層的組。
  26. 如請求項24之發光結構,其中該第五超晶格係貫穿該第五超晶格包含改變的井層厚度、改變的障壁層厚度或改變的井層及障壁層厚度的一p型啁啾超晶格。
TW110115177A 2020-05-01 2021-04-27 用於紫外光發射裝置之埋入式接觸層 TW202143508A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/864,838 US11322647B2 (en) 2020-05-01 2020-05-01 Buried contact layer for UV emitting device
US16/864,838 2020-05-01

Publications (1)

Publication Number Publication Date
TW202143508A true TW202143508A (zh) 2021-11-16

Family

ID=78293292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115177A TW202143508A (zh) 2020-05-01 2021-04-27 用於紫外光發射裝置之埋入式接觸層

Country Status (7)

Country Link
US (4) US11322647B2 (zh)
EP (1) EP4143893A4 (zh)
JP (1) JP2023524483A (zh)
KR (1) KR20230005861A (zh)
CN (1) CN115552642A (zh)
TW (1) TW202143508A (zh)
WO (1) WO2021220158A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462658B2 (en) * 2019-08-16 2022-10-04 Silanna UV Technologies Pte Ltd Impact ionization light-emitting diodes

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244070A (ja) 1999-02-19 2000-09-08 Sony Corp 半導体装置および半導体発光素子
EP1883141B1 (de) 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
JP2012146847A (ja) 2011-01-13 2012-08-02 Sharp Corp 窒化物半導体発光素子および半導体光学装置
US8748919B2 (en) 2011-04-28 2014-06-10 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporating optically absorbing layers
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130228743A1 (en) * 2012-03-01 2013-09-05 Industrial Technology Research Institute Light emitting diode
US10164150B2 (en) 2012-03-29 2018-12-25 Seoul Viosys Co., Ltd. Near UV light emitting device
KR101938731B1 (ko) * 2012-08-08 2019-01-15 엘지이노텍 주식회사 발광 소자
KR102333773B1 (ko) * 2014-05-27 2021-12-01 실라나 유브이 테크놀로지스 피티이 리미티드 광전자 디바이스
KR102318317B1 (ko) 2014-05-27 2021-10-28 실라나 유브이 테크놀로지스 피티이 리미티드 반도체 구조물과 초격자를 사용하는 진보된 전자 디바이스 구조
KR102237154B1 (ko) 2015-02-25 2021-04-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
WO2017145026A1 (en) * 2016-02-23 2017-08-31 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
KR20170124439A (ko) 2016-05-02 2017-11-10 서울바이오시스 주식회사 고효율 장파장 발광 소자
US10903139B2 (en) * 2016-11-11 2021-01-26 The Johns Hopkins University Superlattice structures for thermoelectric devices
CN107180898B (zh) * 2017-05-09 2019-05-17 天津三安光电有限公司 发光二极管
KR102507671B1 (ko) 2017-10-02 2023-03-08 도와 일렉트로닉스 가부시키가이샤 심자외 발광소자 및 그 제조 방법
US10276746B1 (en) 2017-10-18 2019-04-30 Bolb Inc. Polarization electric field assisted hole supplier and p-type contact structure, light emitting device and photodetector using the same
US10516076B2 (en) * 2018-02-01 2019-12-24 Silanna UV Technologies Pte Ltd Dislocation filter for semiconductor devices
WO2019193487A1 (en) 2018-04-06 2019-10-10 Silanna UV Technologies Pte Ltd Semiconductor structure with chirp layer
EP3576132A1 (en) * 2018-05-28 2019-12-04 IMEC vzw A iii-n semiconductor structure and a method for forming a iii-n semiconductor structure
WO2020012392A1 (en) 2018-07-13 2020-01-16 Silanna UV Technologies Pte Ltd Semiconductor-metal contacts with spontaneous and induced piezoelectric polarization
US10622514B1 (en) * 2018-10-15 2020-04-14 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
US11462658B2 (en) * 2019-08-16 2022-10-04 Silanna UV Technologies Pte Ltd Impact ionization light-emitting diodes

Also Published As

Publication number Publication date
EP4143893A4 (en) 2024-05-29
US20230223491A1 (en) 2023-07-13
CN115552642A (zh) 2022-12-30
KR20230005861A (ko) 2023-01-10
WO2021220158A1 (en) 2021-11-04
US20240266464A1 (en) 2024-08-08
EP4143893A1 (en) 2023-03-08
US20220238754A1 (en) 2022-07-28
US11322647B2 (en) 2022-05-03
US11978824B2 (en) 2024-05-07
US11626535B2 (en) 2023-04-11
JP2023524483A (ja) 2023-06-12
US20210343896A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
CN109686822B (zh) 极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器
US8569738B2 (en) Semiconductor light emitting device, wafer, method for manufacturing semiconductor light emitting device, and method for manufacturing wafer
EP2709170B1 (en) P-Side Layers for Short Wavelength Light Emitters
JP5112511B2 (ja) 放射線放出半導体ボディ
US7326963B2 (en) Nitride-based light emitting heterostructure
US8679876B2 (en) Laser diode and method for fabricating same
US8039830B2 (en) Semiconductor light emitting device and wafer
US6515308B1 (en) Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US9012888B2 (en) Semiconductor light emitting device, wafer, method for manufacturing semiconductor light emitting device, and method for manufacturing wafer
EP1328050A2 (en) Semiconductor laser structure
KR20090019885A (ko) Ⅲ-니트라이드 발광 장치에서 옴 접촉의 형성
US20240266464A1 (en) Buried contact layer for uv emitting device
US8022392B2 (en) Semiconductor layer structure with superlattice
CN111668351B (zh) 异质结构以及采用异质结构的发光器件
EP3699964B1 (en) Polarization electric field assisted hole supplier and p-type contact structure, light emitting device and photodetector using the same
EP4231365A1 (en) A device for emitting light and a method for producing a light-emitting device
WO2024197018A1 (en) Thin quantum barrier with high aluminum content for ultraviolet light emitters
JP2024061325A (ja) 紫外半導体発光素子
WO2013138571A1 (en) Superlattice structure