TW202137395A - Low-k material and method for manufacturing the same - Google Patents
Low-k material and method for manufacturing the same Download PDFInfo
- Publication number
- TW202137395A TW202137395A TW109145693A TW109145693A TW202137395A TW 202137395 A TW202137395 A TW 202137395A TW 109145693 A TW109145693 A TW 109145693A TW 109145693 A TW109145693 A TW 109145693A TW 202137395 A TW202137395 A TW 202137395A
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide
- weight ratio
- ceramic
- low
- silicon oxide
- Prior art date
Links
Images
Landscapes
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本揭露關於低介電材料與其形成方法。This disclosure relates to low dielectric materials and methods of forming them.
因應 5G 行動寬頻通訊於 ICT/IoT、穿戴式電子、及綠能等應用需求逐漸顯現,已開始帶動國內高頻產業如毫米波基板、材料/元件及模組整合等相關市場蓬勃發展。為實現全 5G 應用(4G 或 5G sub-6 GHz 以及 5G mmWave), 應開發具有低溫燒結、低介電、低損耗和低諧振頻率溫度飄移係數之 LTCC 元件及封裝用粉體,以實現有小型化、高集成能力、高可靠度,又能兼容毫米波高頻低損耗需求、低吸水和高散熱的低溫共燒陶瓷(Low Temperature Co-fired Ceramic,LTCC)封裝技術。In response to the gradual emergence of 5G mobile broadband communications in ICT/IoT, wearable electronics, and green energy applications, it has begun to drive the domestic high-frequency industry such as millimeter wave substrates, materials/components and module integration and other related markets to flourish. In order to achieve full 5G applications (4G or 5G sub-6 GHz and 5G mmWave), LTCC components and packaging powders with low temperature sintering, low dielectric, low loss and low resonant frequency temperature drift coefficient should be developed to achieve a small size Low Temperature Co-fired Ceramic (LTCC) packaging technology that is compatible with millimeter wave high frequency and low loss requirements, low water absorption and high heat dissipation.
本揭露一些實施例所提供之低介電材料的形成方法,包括:提供多個核殼粒子,核殼粒子的核心具有低熔點的第一陶瓷,且核殼粒子的殼層具有低熔點且低介電常數的第二陶瓷;燒結核殼粒子,使其成型為低介電材料,其中核殼粒子的殼層相連成微晶相的網狀結構。The method for forming a low-dielectric material provided by some embodiments of the present disclosure includes: providing a plurality of core-shell particles, the core of the core-shell particles has a first ceramic with a low melting point, and the shell layer of the core-shell particles has a low melting point and a low melting point. Dielectric constant second ceramic; sintering core-shell particles to form a low-dielectric material, wherein the shell layers of the core-shell particles are connected to form a network structure of microcrystalline phase.
在一些實施例中,核心的第一陶瓷包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、與氧化鋅,其中氧化矽與氧化鎂的重量比為100:0至100:85,其中氧化矽與氧化鋁的重量比為100:20至100:150,其中氧化矽與氧化鈣的重量比為100:2至100:20,其中氧化矽與氧化硼的重量比為100:2至100:70,以及其中氧化矽與氧化鋅的重量比為100:2至100:70。In some embodiments, the first ceramic of the core includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, and zinc oxide, wherein the weight ratio of silicon oxide to magnesium oxide is 100:0 to 100:85, wherein The weight ratio of silicon oxide to aluminum oxide is 100:20 to 100:150, wherein the weight ratio of silicon oxide to calcium oxide is 100:2 to 100:20, and the weight ratio of silicon oxide to boron oxide is 100:2 to 100 : 70, and the weight ratio of silicon oxide to zinc oxide is 100:2 to 100:70.
在一些實施例中,核心的第一陶瓷包括氧化矽、氧化鋁、氧化鈣、與氧化硼,其中氧化矽與氧化鋁的重量比為100:15至100:25,其中氧化矽與氧化鈣的重量比為100:10至100:25,以及其中氧化矽與氧化硼的重量比為100:30至100:50。In some embodiments, the first ceramic of the core includes silicon oxide, aluminum oxide, calcium oxide, and boron oxide, wherein the weight ratio of silicon oxide to aluminum oxide is 100:15 to 100:25, and the weight ratio of silicon oxide to calcium oxide The weight ratio is 100:10 to 100:25, and the weight ratio of silicon oxide to boron oxide is 100:30 to 100:50.
在一些實施例中,殼層的第二陶瓷包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅,其中氧化矽與氧化鎂的重量比為100:15至100:40,其中氧化矽與氧化鋁的重量比為100:35至100:90,其中氧化矽與氧化鈣的重量比為100:0.2至100:10,其中氧化矽與氧化硼的重量比為100:5至100:25,其中氧化矽與氧化鉍的重量比為100:2至100:15,其中氧化矽與氧化鈦的重量比為100:0.2至100:25,以及其中氧化矽與氧化銅的重量比為100:0.2至100:15。In some embodiments, the second ceramic of the shell layer includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide, wherein the weight ratio of silicon oxide to magnesium oxide is 100: 15 to 100:40, where the weight ratio of silicon oxide to aluminum oxide is 100:35 to 100:90, where the weight ratio of silicon oxide to calcium oxide is 100:0.2 to 100:10, where the weight of silicon oxide and boron oxide The ratio is 100:5 to 100:25, wherein the weight ratio of silicon oxide to bismuth oxide is 100:2 to 100:15, and the weight ratio of silicon oxide to titanium oxide is 100:0.2 to 100:25, and the weight ratio of silicon oxide is 100:0.2 to 100:25. The weight ratio to copper oxide is 100:0.2 to 100:15.
在一些實施例中,殼層的第二陶瓷包括氧化矽、氧化鋁、氧化鈣、氧化硼、與氧化鋰,其中氧化矽與氧化鋁的重量比為100:90至100:110,其中氧化矽與氧化鈣的重量比為100:0.2至100:10,其中氧化矽與氧化硼的重量比為100:5至100:25,以及其中氧化矽與氧化鋰的重量比為100:90至100:110。In some embodiments, the second ceramic of the shell layer includes silicon oxide, aluminum oxide, calcium oxide, boron oxide, and lithium oxide, wherein the weight ratio of silicon oxide to aluminum oxide is 100:90 to 100:110, and silicon oxide The weight ratio to calcium oxide is 100:0.2 to 100:10, wherein the weight ratio of silicon oxide to boron oxide is 100:5 to 100:25, and the weight ratio of silicon oxide to lithium oxide is 100:90 to 100: 110.
在一些實施例中,核心的第一陶瓷與殼層的第二陶瓷的莫耳比例介於100:0.1至100:10之間。In some embodiments, the molar ratio of the first ceramic of the core to the second ceramic of the shell is between 100:0.1 and 100:10.
在一些實施例中,核心的第一陶瓷的熔點為700℃至900℃,殼層的第二陶瓷的熔點為760℃至910℃,且第二陶瓷的熔點大於第一陶瓷的熔點。In some embodiments, the melting point of the first ceramic of the core is 700°C to 900°C, the melting point of the second ceramic of the shell layer is 760°C to 910°C, and the melting point of the second ceramic is greater than the melting point of the first ceramic.
在一些實施例中,燒結核殼粒子的溫度為800℃至900℃。In some embodiments, the temperature of sintering the core-shell particles is 800°C to 900°C.
在一些實施例中,殼層的第二陶瓷的介電常數小於6。In some embodiments, the dielectric constant of the second ceramic of the shell layer is less than 6.
在一些實施例中,核殼粒子的粒徑為0.3微米(μm)至3微米。In some embodiments, the core-shell particles have a particle size of 0.3 micrometers (μm) to 3 micrometers.
在一些實施例中,上述方法更包括在燒結核殼粒子時添加多個氧化鋁粒子,使低介電材料包括氧化鋁粒子分散其中,其中核殼粒子與氧化鋁粒子的重量比為100:25至100:45,且氧化鋁粒子的粒徑為50 nm至2 µm。In some embodiments, the above method further includes adding a plurality of alumina particles when sintering the core-shell particles to disperse the low-dielectric material including alumina particles, wherein the weight ratio of the core-shell particles to the alumina particles is 100:25. To 100:45, and the particle size of alumina particles is 50 nm to 2 µm.
在一些實施例中,低介電材料的介電常數為3至5。In some embodiments, the dielectric constant of the low-k material is 3 to 5.
本揭露一實施例提供之低介電材料,包括:低熔點的第一陶瓷,分散於相連的低熔點且具低介電常數的第二陶瓷中,且第二陶瓷具有一微晶相的網狀結構。The low-dielectric material provided by an embodiment of the present disclosure includes: a first ceramic with a low melting point, dispersed in a connected second ceramic with a low melting point and a low dielectric constant, and the second ceramic has a microcrystalline phase net状结构。 Like structure.
在一些實施例中,第一陶瓷包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、與氧化鋅,其中氧化矽與氧化鎂的重量比為100:0至100:85,其中氧化矽與氧化鋁的重量比為100:20至100:150,其中氧化矽與氧化鈣的重量比為100:2至100:20,其中氧化矽與氧化硼的重量比為100:2至100:70,以及其中氧化矽與氧化鋅的重量比為100:2至100:70。In some embodiments, the first ceramic includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, and zinc oxide, wherein the weight ratio of silicon oxide to magnesium oxide is 100:0 to 100:85, and silicon oxide The weight ratio to alumina is 100:20 to 100:150, wherein the weight ratio of silicon oxide to calcium oxide is 100:2 to 100:20, and the weight ratio of silicon oxide to boron oxide is 100:2 to 100:70 , And the weight ratio of silicon oxide to zinc oxide is 100:2 to 100:70.
在一些實施例中,第一陶瓷包括氧化矽、氧化鋁、氧化鈣、與氧化硼,其中氧化矽與氧化鋁的重量比為100:15至100:25,其中氧化矽與氧化鈣的重量比為100:10至100:25,以及其中氧化矽與氧化硼的重量比為100:30至100:50。In some embodiments, the first ceramic includes silicon oxide, aluminum oxide, calcium oxide, and boron oxide, wherein the weight ratio of silicon oxide to aluminum oxide is 100:15 to 100:25, and the weight ratio of silicon oxide to calcium oxide It is 100:10 to 100:25, and the weight ratio of silicon oxide to boron oxide is 100:30 to 100:50.
在一些實施例中,第二陶瓷包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅,其中氧化矽與氧化鎂的重量比為100:15至100:40,其中氧化矽與氧化鋁的重量比為100:35至100:90,其中氧化矽與氧化鈣的重量比為100:0.2至100:10,其中氧化矽與氧化硼的重量比為100:5至100:25,其中氧化矽與氧化鉍的重量比為100:2至100:15,其中氧化矽與氧化鈦的重量比為100:0.2至100:25,以及其中氧化矽與氧化銅的重量比為100:0.2至100:15。In some embodiments, the second ceramic includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide, wherein the weight ratio of silicon oxide to magnesium oxide is 100:15 to 100 : 40, where the weight ratio of silicon oxide to aluminum oxide is 100:35 to 100:90, where the weight ratio of silicon oxide to calcium oxide is 100:0.2 to 100:10, where the weight ratio of silicon oxide to boron oxide is 100 :5 to 100:25, where the weight ratio of silicon oxide to bismuth oxide is 100:2 to 100:15, where the weight ratio of silicon oxide to titanium oxide is 100:0.2 to 100:25, and where silicon oxide and copper oxide The weight ratio is 100:0.2 to 100:15.
在一些實施例中,第二陶瓷包括氧化矽、氧化鋁、氧化鈣、氧化硼、與氧化鋰,其中氧化矽與氧化鋁的重量比為100:90至100:110,其中氧化矽與氧化鈣的重量比為100:0.2至100:10,其中氧化矽與氧化硼的重量比為100:5至100:25,以及其中氧化矽與氧化鋰的重量比為100:90至100:110。In some embodiments, the second ceramic includes silicon oxide, aluminum oxide, calcium oxide, boron oxide, and lithium oxide, wherein the weight ratio of silicon oxide to aluminum oxide is 100:90 to 100:110, and silicon oxide and calcium oxide The weight ratio is 100:0.2 to 100:10, wherein the weight ratio of silicon oxide to boron oxide is 100:5 to 100:25, and the weight ratio of silicon oxide to lithium oxide is 100:90 to 100:110.
在一些實施例中,第一陶瓷與第二陶瓷的莫耳比例為100:0.1至100:10。In some embodiments, the molar ratio of the first ceramic to the second ceramic is 100:0.1 to 100:10.
在一些實施例中,第一陶瓷的熔點為700℃至900℃,第二陶瓷的熔點為760℃至910℃,且第二陶瓷的熔點大於第一陶瓷的熔點。In some embodiments, the melting point of the first ceramic is 700°C to 900°C, the melting point of the second ceramic is 760°C to 910°C, and the melting point of the second ceramic is greater than the melting point of the first ceramic.
在一些實施例中第二陶瓷的介電常數小於6。In some embodiments, the dielectric constant of the second ceramic is less than 6.
在一些實施例中,低介電材料更包括多個氧化鋁粒子分散其中,其中第一陶瓷與第二陶瓷的總重與氧化鋁粒子的重量之間的比例為100:25至100:45,且氧化鋁粒子的粒徑為50 nm至2 µm。In some embodiments, the low dielectric material further includes a plurality of alumina particles dispersed therein, wherein the ratio between the total weight of the first ceramic and the second ceramic and the weight of the alumina particles is 100:25 to 100:45, And the particle size of alumina particles is 50 nm to 2 µm.
在一些實施例中,低介電材料的介電常數為3至5。In some embodiments, the dielectric constant of the low-k material is 3 to 5.
本揭露一些實施例提供之低介電材料的形成方法,包括提供多個圖1所示的核殼粒子100。核殼粒子100的核心具有低熔點的第一陶瓷101,且核殼粒子100的殼層具有低熔點且低介電常數的第二陶瓷103。The method for forming a low-k material provided by some embodiments of the present disclosure includes providing a plurality of core-
在一些實施例中,核心的第一陶瓷101包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、與氧化鋅。其中,氧化矽與氧化鎂的重量比為100:0至100:85,例如是100:1至100:80、100:5至100:75、100:10至100:70、或100:15至100:60等,但不限於此。若氧化鎂的比例過低,則熔點過高,無法燒結成形。若氧化鎂的比例過高,則熔點過低,易熔融而無法與LTCC製程配合。氧化矽與氧化鋁的重量比為100:20至100:150,例如是100:25至100:125、100:30至100:130、100:40至100:140、或100:20至100:120等,但不限於此。若氧化鋁的比例過低,則容易產生介電損失。若氧化鋁的比例過高,則熔點過高,無法燒結成形。氧化矽與氧化鈣的重量比為100:2至100:20,例如是100:3至100:18、100:5至100:15、或100:6至100:12等,但不限於此。若氧化鈣的比例過低,則熔點過高,無法燒結成形。若氧化鈣的比例過高,則熔點過低,易熔融而無法與LTCC製程配合。氧化矽與氧化硼的重量比為100:2至100:70,例如是100:5至100:65、100:6至100:60、或100:8至100:50等,但不限於此。若氧化硼的比例過低,則熔點過高,無法燒結成形。若氧化硼的比例過高,則會導致熔點過低,易熔融而無法與LTCC製程配合。氧化矽與氧化鋅的重量比為100:2至100:70,例如是100:5至100:65、100:6至100:60、或100:8至100:50等,但不限於此。若氧化鋅的比例過低,則熔點過高,無法燒結成形。若氧化鋅的比例過高,則熔點過低,易熔融而無法與LTCC製程配合。若第一陶瓷的熔點過高,除了無法燒結成形以與LTCC製程配合,亦無法與第二陶瓷的熔點搭配形成核殼粒子結構。In some embodiments, the core first ceramic 101 includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, and zinc oxide. Wherein, the weight ratio of silicon oxide to magnesium oxide is 100:0 to 100:85, for example, 100:1 to 100:80, 100:5 to 100:75, 100:10 to 100:70, or 100:15 to 100:60 etc., but not limited to this. If the proportion of magnesium oxide is too low, the melting point will be too high, and sintering and forming will not be possible. If the proportion of magnesium oxide is too high, the melting point is too low, and it is easy to melt and cannot be matched with the LTCC process. The weight ratio of silica to alumina is 100:20 to 100:150, for example, 100:25 to 100:125, 100:30 to 100:130, 100:40 to 100:140, or 100:20 to 100: 120 etc., but not limited to this. If the proportion of alumina is too low, dielectric loss is likely to occur. If the proportion of alumina is too high, the melting point will be too high, and sintering and forming will not be possible. The weight ratio of silicon oxide to calcium oxide is 100:2 to 100:20, such as 100:3 to 100:18, 100:5 to 100:15, or 100:6 to 100:12, but not limited to this. If the ratio of calcium oxide is too low, the melting point will be too high, and sintering and forming will not be possible. If the proportion of calcium oxide is too high, the melting point will be too low and will easily melt and cannot be matched with the LTCC process. The weight ratio of silicon oxide to boron oxide is 100:2 to 100:70, for example, 100:5 to 100:65, 100:6 to 100:60, or 100:8 to 100:50, but not limited thereto. If the proportion of boron oxide is too low, the melting point will be too high, and sintering and forming will not be possible. If the proportion of boron oxide is too high, the melting point will be too low, which is easy to melt and cannot be matched with the LTCC process. The weight ratio of silicon oxide to zinc oxide is 100:2 to 100:70, for example, 100:5 to 100:65, 100:6 to 100:60, or 100:8 to 100:50, but not limited thereto. If the proportion of zinc oxide is too low, the melting point will be too high, and sintering and forming will not be possible. If the proportion of zinc oxide is too high, the melting point is too low, and it is easy to melt and cannot be matched with the LTCC process. If the melting point of the first ceramic is too high, in addition to being unable to be sintered and formed to match the LTCC process, it cannot be matched with the melting point of the second ceramic to form a core-shell particle structure.
在一實施例中,核心的第一陶瓷101包括氧化矽、氧化鋁、氧化鈣、與氧化硼。氧化矽與氧化鋁的重量比為100:15至100:25,例如是100:15至100:20、或100:20至100:25等,但不限於此。若氧化鋁的比例過低,則容易產生介電損失。若氧化鋁的比例過高,則熔點過高而無法燒結成形。氧化矽與氧化鈣的重量比為100:10至100:25,例如是100:10至100:15、100:15至100:20、100:20至100:25、或100:12至100:22等,但不限於此。若氧化鈣的比例過低,則熔點過高而無法燒結成形。若氧化鈣的比例過高,則熔點過低,易熔融而無法與LTCC製程配合。氧化矽與氧化硼的重量比為100:30至100:50,例如是100:30至100:40、100:40至100:50、100:32至100:48、或100:35至100:45等,但不限於此。若氧化硼的比例過低,則熔點過高,無法燒結成形。若氧化硼的比例過高,則會導致熔點過低,易熔融而無法與LTCC製程配合。若第一陶瓷的熔點過高,除了無法燒結成形以與LTCC製程配合,亦無法與第二陶瓷的熔點搭配形成核殼粒子結構。In one embodiment, the core first ceramic 101 includes silicon oxide, aluminum oxide, calcium oxide, and boron oxide. The weight ratio of silicon oxide to aluminum oxide is 100:15 to 100:25, such as 100:15 to 100:20, or 100:20 to 100:25, but not limited thereto. If the proportion of alumina is too low, dielectric loss is likely to occur. If the proportion of alumina is too high, the melting point is too high and sintering cannot be formed. The weight ratio of silicon oxide to calcium oxide is 100:10 to 100:25, for example, 100:10 to 100:15, 100:15 to 100:20, 100:20 to 100:25, or 100:12 to 100: 22 and so on, but not limited to this. If the ratio of calcium oxide is too low, the melting point is too high and sintering cannot be formed. If the proportion of calcium oxide is too high, the melting point will be too low and will easily melt and cannot be matched with the LTCC process. The weight ratio of silicon oxide to boron oxide is 100:30 to 100:50, for example, 100:30 to 100:40, 100:40 to 100:50, 100:32 to 100:48, or 100:35 to 100: 45 and so on, but not limited to this. If the proportion of boron oxide is too low, the melting point will be too high, and sintering and forming will not be possible. If the proportion of boron oxide is too high, the melting point will be too low, which is easy to melt and cannot be matched with the LTCC process. If the melting point of the first ceramic is too high, in addition to being unable to be sintered and formed to match the LTCC process, it cannot be matched with the melting point of the second ceramic to form a core-shell particle structure.
在一實施例中,殼層的第二陶瓷103包括氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅。氧化矽與氧化鎂的重量比為100:15至100:40,例如約100:20至100:40、100:15至100:35、100:18至100:38、或100:20至100:35等,但不限於此。若氧化鎂的比例過低或過高,則無法形成堇青石(Cordierite)結晶相。氧化矽與氧化鋁的重量比為100:35至100:90,例如約100:35至100:85、100:40至100:80、100:35至100:75、或100:30至100:70等,但不限於此。若氧化鋁的比例過低或過高,則無法形成堇青石結晶相。氧化矽與氧化鈣的重量比為100:0.2至100:10,例如約100:0.5至100:10、100:1至100:10、100:2至100:10、或100:0.5至100:5等,但不限於此。若氧化鈣的比例過低,則助熔效果不佳,燒結溫度偏高。若氧化鈣的比例過高,則無法形成堇青石結晶相。氧化矽與氧化硼的重量比為100:5至100:25,例如約100:5至100:20、100:10至100:25、或100:15至100:25等,但不限於此。若氧化硼的比例過低或過高,則無法形成堇青石結晶相。氧化矽與氧化鉍的重量比為100:2至100:15,例如約100:2至100:12、100:5至100:15、或100:5至100:10等,但不限於此。若氧化鉍的比例過低,則助熔效果不佳,燒結溫度偏高。若氧化鉍的比例過高,則無法形成堇青石結晶相。氧化矽與氧化鈦的重量比為100:0.2至100:25,例如約100:0.5至100:20、100:1至100:15、或100:5至100:25等,但不限於此。若氧化鈦的比例過低,則結晶性差,不易成相。若氧化鈦的比例過高,則無法形成堇青石結晶相。氧化矽與氧化銅的重量比為100:0.2至100:15,例如約100:0.5至100:15、100:1至100:10、或100:2至100:12等,但不限於此。若氧化銅的比例過低,則助熔效果不佳,燒結溫度偏高。若氧化銅的比例過高,則無法形成堇青石結晶相。In one embodiment, the second ceramic 103 of the shell layer includes silicon oxide, magnesium oxide, aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide. The weight ratio of silicon oxide to magnesium oxide is 100:15 to 100:40, for example, about 100:20 to 100:40, 100:15 to 100:35, 100:18 to 100:38, or 100:20 to 100: 35 etc., but not limited to this. If the proportion of magnesium oxide is too low or too high, the cordierite crystal phase cannot be formed. The weight ratio of silica to alumina is 100:35 to 100:90, for example about 100:35 to 100:85, 100:40 to 100:80, 100:35 to 100:75, or 100:30 to 100: 70 etc., but not limited to this. If the proportion of alumina is too low or too high, the cordierite crystal phase cannot be formed. The weight ratio of silicon oxide to calcium oxide is 100:0.2 to 100:10, for example, about 100:0.5 to 100:10, 100:1 to 100:10, 100:2 to 100:10, or 100:0.5 to 100: 5 and so on, but not limited to this. If the proportion of calcium oxide is too low, the fluxing effect will be poor and the sintering temperature will be high. If the ratio of calcium oxide is too high, cordierite crystal phase cannot be formed. The weight ratio of silicon oxide to boron oxide is 100:5 to 100:25, for example, about 100:5 to 100:20, 100:10 to 100:25, or 100:15 to 100:25, but not limited thereto. If the proportion of boron oxide is too low or too high, the cordierite crystal phase cannot be formed. The weight ratio of silicon oxide to bismuth oxide is 100:2 to 100:15, for example, about 100:2 to 100:12, 100:5 to 100:15, or 100:5 to 100:10, but not limited thereto. If the proportion of bismuth oxide is too low, the fluxing effect will be poor and the sintering temperature will be high. If the proportion of bismuth oxide is too high, the cordierite crystal phase cannot be formed. The weight ratio of silicon oxide to titanium oxide is 100:0.2 to 100:25, for example, about 100:0.5 to 100:20, 100:1 to 100:15, or 100:5 to 100:25, but not limited thereto. If the proportion of titanium oxide is too low, the crystallinity is poor and phase formation is difficult. If the proportion of titanium oxide is too high, the cordierite crystal phase cannot be formed. The weight ratio of silicon oxide to copper oxide is 100:0.2 to 100:15, such as about 100:0.5 to 100:15, 100:1 to 100:10, or 100:2 to 100:12, etc., but is not limited thereto. If the proportion of copper oxide is too low, the fluxing effect will be poor and the sintering temperature will be high. If the proportion of copper oxide is too high, the cordierite crystal phase cannot be formed.
在一實施例中,殼層的第二陶瓷103包括氧化矽、氧化鋁、氧化鈣、氧化硼、與氧化鋰。氧化矽與氧化鋁的重量比為100:90至100:110,例如約100:90至100:100、100:100至100:110、或100:95至100:105等,但不限於此。若氧化鋁的比例過低或過高,則無法形成鋰霞石(Eucryptite)結晶相。氧化矽與氧化鈣的重量比為100:0.2至100:10,例如約100:0.5至100:10、100:1至100:10、或100:0.5至100:5等,但不限於此。若氧化鈣的比例過低,則助熔效果不佳,燒結溫度偏高。若氧化鈣的比例過高,則無法形成鋰霞石結晶相。氧化矽與氧化硼的重量比為100:5至100:25,例如約100:5至100:20、100:10至100:25、或100:10至100:20等,但不限於此。若氧化硼的比例過低或過高,則無法形成鋰霞石結晶相。氧化矽與氧化鋰的重量比為100:90至100:110,例如約100:90至100:100、100:100至100:110、或100:95至100:105等,但不限於此。若氧化鋰的比例過低或過高,則無法形成鋰霞石結晶相。In one embodiment, the
在一實施例中,核心的第一陶瓷101與殼層的第二陶瓷103的莫耳比例為100:0.1至100:10,例如約100:0.2至100:8、100:0.5至100:10、100:1至100:5、或100:0.5至100:5等,但不限於此。若第二陶瓷103的比例過低或殼層的厚度過薄,則介電常數高、介電損耗高。若第二陶瓷103的比例過高或殼層的厚度過厚,則介電常數與介電損耗無優化效果,反而浪費第二陶瓷材料的添加量。In an embodiment, the molar ratio of the
在一實施例中,核心的第一陶瓷101的熔點為700℃至900℃,例如約720℃至820℃、750℃至900℃、或720℃至850℃等,但不限於此。殼層的第二陶瓷103的熔點為760℃至910℃,例如約760℃至860℃、800℃至900℃、或780℃至850℃等,但不限於此。若兩種陶瓷材料的熔點過低或過高,皆會使該材料後續製程溫度無法與LTCC製程配合。此外,第二陶瓷103的熔點大於第一陶瓷101的熔點。若第一陶瓷101的熔點大於或等於第二陶瓷103的熔點,則使材料孔隙率提高,介電損耗提升。In an embodiment, the melting point of the
在一實施例中,殼層的第二陶瓷103的介電常數小於6,例如約1、2、3、4、或5等,但不限於此。若第二陶瓷103的介電常數過高,則無法形成後續之低介電常數材料。在一實施例中,核殼粒子100的粒徑為0.3微米至3微米之間,例如約0.3微米至2.5微米、0.5微米至3微米、0.5微米至2微米、或1微米至2.5微米等,但不限於此。若核殼粒子100過小或過大,則該材料不易適用於刮刀製程中,難融入LTCC製程。In an embodiment, the dielectric constant of the
在本揭露一實施例中,形成核殼粒子100的方法為溶膠-凝膠法(sol-gel method)。舉例來說,可將核心所用的第一陶瓷101的粒子,與第二陶瓷103所用的多種氧化物源(如硝酸鋁、硝酸鎂、四乙氧基矽烷、正丁基鈦酸酯、硼酸、硝酸鉍、硝酸銅、硝酸鈣、或上述之組合)的溶液混合形成溶膠,接著加熱溶膠以形成凝膠,再乾燥凝膠並研磨以形成粉末。接著可進一步高溫處理粉末以形成核殼粒子100。值得注意的是,本技術領域中具有通常知識者自可採用適當製程形成核殼粒子100,而不限於上述溶膠-凝膠法。In an embodiment of the present disclosure, the method of forming the core-
接著燒結核殼粒子,使其成型為低介電材料200,如圖2所示。核殼粒子100的殼層的第二陶瓷103將相連成微晶相的網狀結構201,且第一陶瓷101分散於相連的第二陶瓷103中。在一實施例中,燒結核殼粒子100的溫度為800℃至900℃,例如約820℃、830℃、850℃、870℃、或880℃等,但不限於此。若燒結溫度過低,則材料缺陷多,介電常數與介電損耗高。若燒結溫度過高,則材料將熔融無法成型。Then, the core-shell particles are sintered to form a low-
在一實施例中,上述方法更包括在燒結核殼粒子100時添加多個氧化鋁粒子301,使低介電材料300包括氧化鋁粒子301分散其中,如圖3所示。在一些實施例中,核殼粒子100與氧化鋁粒子301的重量比為100:25至100:45,例如約100:25至100:40、100:30至100:45、或100:30至100:40等,但不限於此。添加氧化鋁粒子301可進一步降低低介電材料300的成本。若氧化鋁粒子301的比例過高,則介電常數升高。在一實施例中,氧化鋁粒子301的粒徑為50 nm至2 µm,例如約100 nm至2 µm、200 nm至2 µm、500 nm至1.8 µm、500 nm至1.5 µm、或800 nm至1.5 µm等,但不限於此。若氧化鋁粒子301的粒徑過小,則燒成的材料強度不足。若氧化鋁粒子301的粒徑過大,則破壞網狀結構,介電常數升高。In one embodiment, the above method further includes adding a plurality of
在一實施例中,上述製程所得的低介電材料的介電常數為3至6,例如約3.5、4、4.5、5、5.5、或6等,但不限於此。In one embodiment, the dielectric constant of the low dielectric material obtained by the above process is 3 to 6, such as about 3.5, 4, 4.5, 5, 5.5, or 6, etc., but it is not limited thereto.
為讓本揭露之上述內容和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:[ 實施例 ] In order to make the above content and other purposes, features, and advantages of this disclosure more obvious and understandable, the following specifically enumerates preferred embodiments, which are described in detail in conjunction with the accompanying drawings: [ Examples ]
實施例1 取Al(NO3 )3 •9H2 O (FW=375.14,20.54 g,54.8 mmol)、Mg(NO3 )2 •6H2 O (FW=256.41,6.14 g,23.9 mmol)、Si(C2 H5 O)4 (FW=208.33,14.35 mL,64.3 mmol)、Ti(C4 H9 O)4 (FW=340.32,0.077 mL,0.217 mmol)後,溶於無水乙醇中,再放入填充物glass A(內含主要成份MgO約50重量分、Al2 O3 約38.6重量分、SiO2 約100重量分,平均分子量約為57.4)後,攪拌至均勻,得到液體A。將改質劑H3 BO3 (FW=61.83,0.9328 g,15 mmol)、Bi(NO3 )3 •5H2 O (FW=485.07,0.7299 g,1.5 mmol)、Cu(NO3 )2 •2.5H2 O (FW=232.59,1.3308 g,5.7 mmol)、Ca(NO3 )2 •4H2 O (FW=236.15,0.2211 g,0.94 mmol)加入到無水乙醇和去離水的混合液中,攪拌均勻,並以氨水調節pH值於9.23,得到液體B。將液體A與B混合且攪拌均勻後得到溶膠。Example 1 Al(NO 3 ) 3 • 9H 2 O (FW=375.14, 20.54 g, 54.8 mmol), Mg(NO 3 ) 2 • 6H 2 O (FW=256.41, 6.14 g, 23.9 mmol), Si( C 2 H 5 O) 4 (FW=208.33, 14.35 mL, 64.3 mmol), Ti(C 4 H 9 O) 4 (FW=340.32, 0.077 mL, 0.217 mmol), dissolve in absolute ethanol, and put After filling glass A (which contains about 50 parts by weight of MgO, about 38.6 parts by weight of Al 2 O 3 , about 100 parts by weight of SiO 2 and an average molecular weight of about 57.4) as the main component, stir until uniform to obtain Liquid A. The modifier H 3 BO 3 (FW=61.83, 0.9328 g, 15 mmol), Bi(NO 3 ) 3 •5H 2 O (FW=485.07, 0.7299 g, 1.5 mmol), Cu(NO 3 ) 2 •2.5 Add H 2 O (FW=232.59, 1.3308 g, 5.7 mmol), Ca(NO 3 ) 2 •4H 2 O (FW=236.15, 0.2211 g, 0.94 mmol) to the mixture of absolute ethanol and deionized water, and stir well , And adjust the pH to 9.23 with ammonia water to obtain Liquid B. The liquid A and B are mixed and evenly stirred to obtain a sol.
接著,將溶膠放入40℃的烘箱靜置,使其發生溶膠-凝膠化以得到凝膠,再將凝膠置於80℃環境中乾燥,取出研磨成粉末,並置於250℃下持溫3小時後,再升溫至750℃持溫2小時,冷却後研磨成粉狀,可得到一具有核殼結構之LTCC粉體,其核心(glass A)和殼層(含氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅)之莫耳比為94:6。Next, the sol was placed in an oven at 40°C and allowed to stand for sol-gelation to obtain a gel, then the gel was dried in an environment of 80°C, taken out and ground into powder, and placed at 250°C to maintain the temperature After 3 hours, the temperature is raised to 750°C for 2 hours. After cooling, it is ground into powder to obtain an LTCC powder with a core-shell structure. The core (glass A) and the shell (containing silicon oxide, magnesium oxide, The molar ratio of aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide) is 94:6.
取適量粉體在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時,使核殼粒子的殼層相連成微晶相的網狀結構。上述產物之密度為2.71 g/cm3 、介電常數Dk為4.72 (1GHz)、介電損秏Df為3.4×10-4 (1GHz)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650。Take an appropriate amount of powder and press it into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2 , and hold the temperature at 850 ℃ for 2 hours to connect the shell layers of the core-shell particles into a microcrystalline phase network structure. The above product has a density of 2.71 g/cm 3 , a dielectric constant Dk of 4.72 (1GHz), and a dielectric loss Df of 3.4×10 -4 (1GHz). The measurement standard for the above density is CNS3299-3, and the measurement standard for dielectric constant and dielectric loss is IPC-TM-650.
實施例2 取Al(NO3 )3 •9H2 O (FW=375.14,35.75 g,95.3 mmol)、Mg(NO3 )2 •6H2 O (FW=256.41,10.69 g,41.7 mmol)、Si(C2 H5 O)4 (FW=208.33,23.24 mL,104.2 mmol)、Ti(C4 H9 O)4 (FW=340.32,0.1353 mL,0.398 mmol)後,溶於無水乙醇中,再放入填充物glass A (內含主要成份MgO約50重量分、Al2 O3 約38.6重量分、SiO2 約100重量分,平均分子量約為57.4)後,攪拌至均勻,得到液體A。將改質劑H3 BO3 (FW=61.83,1.6237 g,26.2 mmol)、Bi(NO3 )3 •5H2 O(FW=485.07,1.2705 g,2.62 mmol)、Cu(NO3 )2 •2.5H2 O(FW=232.59,2.3166 g,9.96 mmol)、Ca(NO3 )2 •4H2 O (FW=236.15,0.385 g,1.63 mmol)加入到無水乙醇和去離水的混合液中,攪拌均勻,並以氨水調節pH值於9.23,得到液體B。將液體A與B混合且攪拌均勻後得到溶膠。Example 2 Al(NO 3 ) 3 • 9H 2 O (FW=375.14, 35.75 g, 95.3 mmol), Mg(NO 3 ) 2 • 6H 2 O (FW=256.41, 10.69 g, 41.7 mmol), Si( C 2 H 5 O) 4 (FW=208.33, 23.24 mL, 104.2 mmol), Ti(C 4 H 9 O) 4 (FW=340.32, 0.1353 mL, 0.398 mmol), dissolve it in absolute ethanol, and put it in After filling glass A (which contains about 50 parts by weight of MgO, about 38.6 parts by weight of Al 2 O 3 , about 100 parts by weight of SiO 2 and an average molecular weight of about 57.4) as the main component, stir until uniform to obtain Liquid A. The modifier H 3 BO 3 (FW=61.83, 1.6237 g, 26.2 mmol), Bi(NO 3 ) 3 •5H 2 O (FW=485.07, 1.2705 g, 2.62 mmol), Cu(NO 3 ) 2 •2.5 H 2 O (FW=232.59, 2.3166 g, 9.96 mmol), Ca(NO 3 ) 2 •4H 2 O (FW=236.15, 0.385 g, 1.63 mmol) were added to the mixture of absolute ethanol and deionized water, and stirred well , And adjust the pH to 9.23 with ammonia water to obtain Liquid B. The liquid A and B are mixed and evenly stirred to obtain a sol.
接著,將溶膠放入40℃的烘箱靜置,使其發生溶膠-凝膠化以得到凝膠,再將凝膠置於80℃環境中乾燥,取出研磨成粉末,並置於250℃下持溫 3小時後,再升溫至750℃持溫2小時,冷却後研磨成粉狀,可得到一具有核殼結構之LTCC粉體,其核心(glass A)和殼層(含氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅)之莫耳比為90:10。Next, the sol was placed in an oven at 40°C and allowed to stand for sol-gelation to obtain a gel, then the gel was dried in an environment of 80°C, taken out and ground into powder, and placed at 250°C to maintain the temperature After 3 hours, the temperature is raised to 750°C for 2 hours. After cooling, it is ground into powder to obtain an LTCC powder with a core-shell structure. The core (glass A) and the shell (containing silicon oxide, magnesium oxide, The molar ratio of aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide) is 90:10.
取適量粉體在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時,使核殼粒子的殼層相連成微晶相的網狀結構。上述產物之密度為2.72 g/cm3 、介電常數Dk為5.13 (1GHz)、介電損秏Df為5.4×10-4 (1GHz)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650。Take an appropriate amount of powder and press it into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2 , and hold the temperature at 850 ℃ for 2 hours to connect the shell layers of the core-shell particles into a microcrystalline phase network structure. The above product has a density of 2.72 g/cm 3 , a dielectric constant Dk of 5.13 (1GHz), and a dielectric loss Df of 5.4×10 -4 (1GHz). The measurement standard for the above density is CNS3299-3, and the measurement standard for dielectric constant and dielectric loss is IPC-TM-650.
實施例3 取Al(NO3 )3 •9H2 O (FW=375.14,5.19 g,13.9 mmol)、Mg(NO3 )2 •6H2 O (FW=256.41,1.55g,6.1 mmol)、Si(C2 H5 O)4 (FW=208.33,3.37mL,15.1 mmol)、Ti(C4 H9 O)4 (FW=340.32,0.019 mL,0.0536 mmol)後,溶於無水乙醇中,再放入填充物glass B (內含主要成份B2 O3 約47.2重量分、Al2 O3 約105.5重量分、SiO2 約100重量分,平均分子量約為72.5)後,攪拌至均勻,得到液體A。將改質劑H3 BO3 (FW=61.83,0.118 g,1.9 mmol)、Bi(NO3 )3 •5H2 O(FW=485.07,0.066 g,0.14 mmol)、Cu(NO3 )2 •2.5H2 O(FW=232.59,0.336 g,1.4 mmol)、Ca(NO3 )2 •4H2 O(FW=236.15,0.056 g,0.2 mmol)加入到無水乙醇和去離水的混合液中,攪拌均勻,並以氨水調節pH值於9.23,得到液體B。將液體A與B混合且攪拌均勻後得到溶膠。Example 3 Al(NO 3 ) 3 • 9H 2 O (FW=375.14, 5.19 g, 13.9 mmol), Mg(NO 3 ) 2 • 6H 2 O (FW=256.41, 1.55g, 6.1 mmol), Si( C 2 H 5 O) 4 (FW=208.33, 3.37 mL, 15.1 mmol), Ti(C 4 H 9 O) 4 (FW=340.32, 0.019 mL, 0.0536 mmol), dissolve it in absolute ethanol, and put it in After filling glass B (containing the main components of B 2 O 3 about 47.2 parts by weight, Al 2 O 3 about 105.5 parts by weight, SiO 2 about 100 parts by weight, and average molecular weight of about 72.5), stir until uniform to obtain Liquid A. The modifier H 3 BO 3 (FW=61.83, 0.118 g, 1.9 mmol), Bi(NO 3 ) 3 • 5H 2 O (FW=485.07, 0.066 g, 0.14 mmol), Cu(NO 3 ) 2 • 2.5 H 2 O (FW=232.59, 0.336 g, 1.4 mmol), Ca(NO 3 ) 2 •4H 2 O (FW=236.15, 0.056 g, 0.2 mmol) were added to the mixture of absolute ethanol and deionized water, and stirred well , And adjust the pH to 9.23 with ammonia water to obtain Liquid B. The liquid A and B are mixed and evenly stirred to obtain a sol.
接著,將溶膠放入40℃的烘箱靜置,使其發生溶膠-凝膠化以得到凝膠,再將凝膠置於80℃環境中乾燥,取出研磨成粉末,並置於250℃下持溫 3小時後,再升溫至750℃持溫2小時,冷却後研磨成粉狀,可得到一具有核殼結構之LTCC粉體,其核心(glass B)和殼層(含氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅)之莫耳比為98:2。Next, the sol was placed in an oven at 40°C and allowed to stand for sol-gelation to obtain a gel, then the gel was dried in an environment of 80°C, taken out and ground into powder, and placed at 250°C to maintain the temperature After 3 hours, the temperature is raised to 750°C for 2 hours. After cooling, it is ground into powder to obtain an LTCC powder with a core-shell structure. The core (glass B) and the shell (containing silicon oxide, magnesium oxide, The molar ratio of aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide) is 98:2.
取適量粉體在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時,使核殼粒子的殼層相連成微晶相的網狀結構。上述產物之密度為2.66 g/cm3 、介電常數Dk為3.21 (11GHz)、介電損秏Df為2.21×10-3 (11GHz)、諧振頻率溫度係數τf為-0.20 (20o C~100o C、DC=1V)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650,諧振頻率溫度係數的量測方法可參考Journal of the Ceramic Society of Japan 122 [6], page 492-495, 2014。Take an appropriate amount of powder and press it into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2 , and hold the temperature at 850 ℃ for 2 hours to connect the shell layers of the core-shell particles into a microcrystalline phase network structure. The density of the above product is 2.66 g/cm 3 , the dielectric constant Dk is 3.21 (11GHz), the dielectric loss Df is 2.21×10 -3 (11GHz), and the temperature coefficient of resonance frequency τf is -0.20 (20 o C~100 o C, DC=1V). The measurement standard of the above density is CNS3299-3, the measurement standard of dielectric constant and dielectric loss is IPC-TM-650, and the measurement method of the temperature coefficient of resonance frequency can refer to Journal of the Ceramic Society of Japan 122 [6] , page 492-495, 2014.
實施例4 取Al(NO3 )3 •9H2 O (FW=375.14,5.83 g,15.5 mmol)、Mg(NO3 )2 •6H2 O (FW=256.41,1.74g,6.7 mmol)、Si(C2 H5 O)4 (FW=208.33,3.39 mL,15.2 mmol)、Ti(C4 H9 O)4 (FW=340.32,0.022 mL,0.062 mmol)後,溶於無水乙醇中,再放入填充物glass C (內含主要成份B2 O3 約37.21重量分、Al2 O3 約21.39重量分、CaO約19.01重量分、SiO2 約100重量分,平均分子量約為65.7)後,攪拌至均勻,得到液體A。將改質劑H3 BO3 (FW=61.83,0.265 g,4.28 mmol)、Bi(NO3 )3 •5H2 O(FW=485.07,0.2073 g,0.427 mmol)、Cu(NO3 )2 •2.5H2 O(FW=232.59,0.378 g,1.625 mmol)、Ca(NO3 )2 •4H2 O(FW=236.15,0.063 g,0.267 mmol)加入到無水乙醇和去離水的混合液中,攪拌均勻,並以氨水調節pH值於9.23,得到液體B。將液體A與B混合且攪拌均勻後得到溶膠。Example 4 Al(NO 3 ) 3 • 9H 2 O (FW=375.14, 5.83 g, 15.5 mmol), Mg(NO 3 ) 2 • 6H 2 O (FW=256.41, 1.74 g, 6.7 mmol), Si( C 2 H 5 O) 4 (FW=208.33, 3.39 mL, 15.2 mmol), Ti(C 4 H 9 O) 4 (FW=340.32, 0.022 mL, 0.062 mmol), dissolve it in absolute ethanol, and put it in Filling glass C (contains about 37.21 parts by weight of B 2 O 3 , about 21.39 parts by weight of Al 2 O 3 , about 19.01 parts by weight of CaO, about 100 parts by weight of SiO 2 and an average molecular weight of about 65.7) after stirring until Evenly, liquid A is obtained. The modifier H 3 BO 3 (FW=61.83, 0.265 g, 4.28 mmol), Bi(NO 3 ) 3 •5H 2 O (FW=485.07, 0.2073 g, 0.427 mmol), Cu(NO 3 ) 2 •2.5 H 2 O (FW=232.59, 0.378 g, 1.625 mmol), Ca(NO 3 ) 2 • 4H 2 O (FW=236.15, 0.063 g, 0.267 mmol) were added to the mixture of absolute ethanol and deionized water, and stirred well , And adjust the pH to 9.23 with ammonia water to obtain Liquid B. The liquid A and B are mixed and evenly stirred to obtain a sol.
接著,將溶膠放入40℃的烘箱靜置,使其發生溶膠-凝膠化以得到凝膠,再將凝膠置於80℃環境中乾燥,取出研磨成粉末,並置於250℃下持溫 3小時後,再升溫至750℃持溫2小時,冷却後研磨成粉狀,可得到一具有核殼結構之LTCC粉體,其核心(glass C)和殼層(含氧化矽、氧化鎂、氧化鋁、氧化鈣、氧化硼、氧化鉍、氧化鈦、與氧化銅)之莫耳比為98:2。Next, the sol was placed in an oven at 40°C and allowed to stand for sol-gelation to obtain a gel, then the gel was dried in an environment of 80°C, taken out and ground into powder, and placed at 250°C to maintain the temperature After 3 hours, the temperature is raised to 750°C for 2 hours, and then ground into powder after cooling. A core-shell structure of LTCC powder can be obtained. The core (glass C) and shell layer (containing silicon oxide, magnesium oxide, The molar ratio of aluminum oxide, calcium oxide, boron oxide, bismuth oxide, titanium oxide, and copper oxide) is 98:2.
取適量粉體在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時,使核殼粒子的殼層相連成微晶相的網狀結構。上述產物之密度為2.37 g/cm3 、介電常數Dk為4.7 (1GHz)、介電損秏Df為1.5*10-3 (1GHz)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650。Take an appropriate amount of powder and press it into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2 , and hold the temperature at 850 ℃ for 2 hours to connect the shell layers of the core-shell particles into a microcrystalline phase network structure. The density of the above product is 2.37 g/cm 3 , the dielectric constant Dk is 4.7 (1GHz), and the dielectric loss Df is 1.5*10 -3 (1GHz). The measurement standard for the above density is CNS3299-3, and the measurement standard for dielectric constant and dielectric loss is IPC-TM-650.
比較例1 取實施例1的glass A在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時。上述產物之密度為3.13 g/cm3 、介電常數Dk為5.79 (1GHz)、介電損秏Df為1.3×10-3 (1GHz)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650。Comparative Example 1 The glass A of Example 1 was pressed into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2, and the temperature was maintained at 850° C. for 2 hours. The density of the above product is 3.13 g/cm 3 , the dielectric constant Dk is 5.79 (1GHz), and the dielectric loss Df is 1.3×10 -3 (1GHz). The measurement standard for the above density is CNS3299-3, and the measurement standard for dielectric constant and dielectric loss is IPC-TM-650.
比較例2 取實施例3的glass B在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時。上述產物之密度為2.63 g/cm3 、介電常數Dk為5.29 (1GHz)、4.95 (11GHz)、介電損秏Df為7×10-5 (1GHz)、2×10-3 (11GHz)、諧振頻率溫度係數τf為2.99 (20o C~100o C、DC=1V)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650,諧振頻率溫度係數的量測方法可參考Journal of the Ceramic Society of Japan 122 [6], page 492-495, 2014。Comparative Example 2 The glass B of Example 3 was pressed into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2, and the temperature was maintained at 850° C. for 2 hours. The density of the above product is 2.63 g/cm 3 , the dielectric constant Dk is 5.29 (1GHz), 4.95 (11GHz), the dielectric loss Df is 7×10 -5 (1GHz), 2×10 -3 (11GHz), The temperature coefficient of resonance frequency τf is 2.99 (20 o C~100 o C, DC=1V). The measurement standard of the above density is CNS3299-3, the measurement standard of dielectric constant and dielectric loss is IPC-TM-650, and the measurement method of the temperature coefficient of resonance frequency can refer to Journal of the Ceramic Society of Japan 122 [6] , page 492-495, 2014.
比較例3 取實施例4的glass C在壓力為40 kg/m2 條件下壓製成直徑11 mm的圓坯,在850℃持溫2小時。上述產物之密度為2.35 g/cm3 、介電常數Dk為4.91 (1GHz)、介電損秏Df為1.5×10-3 (1GHz)。上述密度的量測標準為CNS3299-3,介電常數與介電損耗的量測標準為IPC-TM-650。Comparative Example 3 The glass C of Example 4 was pressed into a round blank with a diameter of 11 mm under the condition of a pressure of 40 kg/m 2, and the temperature was maintained at 850° C. for 2 hours. The above product has a density of 2.35 g/cm 3 , a dielectric constant Dk of 4.91 (1GHz), and a dielectric loss Df of 1.5×10 -3 (1GHz). The measurement standard for the above density is CNS3299-3, and the measurement standard for dielectric constant and dielectric loss is IPC-TM-650.
將上述實施例1-4及比較例1-3之產物的核殼莫耳比、密度、介電常數Dk、介電損秏Df、及諧振頻率溫度係數τf以如下表1進行對照。The core-shell molar ratio, density, dielectric constant Dk, dielectric loss Df, and temperature coefficient of resonance frequency τf of the products of the foregoing Examples 1-4 and Comparative Examples 1-3 were compared with Table 1 below.
表1
由表1所示實施例及比較例可知,於介電常數方面,核殼粒子在燒結成型後的介電常數明顯低於僅採用核心材料,且降低幅度可達10-20%以上(實施例1-4及比較例1-3)。而在介電損耗方面,核殼粒子在燒結成型後的介電損耗多低於僅採用核心材料,或至少能維持在同一水準(實施例1-4及比較例1-3)。From the examples and comparative examples shown in Table 1, it can be seen that in terms of dielectric constant, the dielectric constant of core-shell particles after sintering molding is significantly lower than that of only the core material, and the reduction range can reach more than 10-20% (Examples 1-4 and Comparative Example 1-3). In terms of dielectric loss, the dielectric loss of core-shell particles after sintering is mostly lower than that of core materials alone, or at least can be maintained at the same level (Examples 1-4 and Comparative Examples 1-3).
請繼續參照表1,於諧振頻率溫度係數方面,glass B (比較例2)具有正的諧振頻率溫度係數τf=2.99 (20o C~100o C),堇青石具有負的諧振頻率溫度係數τf=-12.61 (20o C~100o C),透過本發明的核殼結構設計,將堇青石作為殼層材料添加至glass B (實施例3),可使glass B的諧振頻率溫度係數τf由正值2.99向趨近於0調整。以核殼莫耳比98:2 (實施例3)為例,整體的諧振頻率溫度係數可被調整至τf=-0.20 (20o C~100o C),換言之,透過此設計,可使整體的諧振頻率溫度係數降低,甚至可趨近於τf=0,而更符合5G的LTCC所應具備之低τf特性。Please continue to refer to Table 1. Regarding the temperature coefficient of resonance frequency, glass B (Comparative Example 2) has a positive resonance frequency temperature coefficient τf=2.99 (20 o C~100 o C), and cordierite has a negative resonance frequency temperature coefficient τf =-12.61 (20 o C~100 o C), through the core-shell structure design of the present invention, cordierite is added as a shell material to glass B (Example 3), the temperature coefficient τf of the resonant frequency of glass B can be changed from A positive value of 2.99 is adjusted towards zero. Taking core-shell molar ratio 98:2 (Example 3) as an example, the overall resonant frequency temperature coefficient can be adjusted to τf=-0.20 (20 o C~100 o C). In other words, through this design, the overall The temperature coefficient of the resonant frequency is reduced, and it can even approach τf=0, which is more in line with the low τf characteristic of 5G LTCC.
綜上所述,本發明之一些實施例所提供的低介電材料具備低Dk、低Df、低τf之特性,以達到低延遲、低損耗、受溫度影響小的應用,更符合5G之LTCC材料的需求。In summary, the low-dielectric materials provided by some embodiments of the present invention have the characteristics of low Dk, low Df, and low τf, so as to achieve low delay, low loss, and low temperature-affected applications, which are more in line with 5G LTCC Material requirements.
雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although this disclosure has been disclosed in several preferred embodiments as described above, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the relevant technical field can make any changes without departing from the spirit and scope of this disclosure. Therefore, the scope of protection of this disclosure shall be subject to the scope of the attached patent application.
100:核殼粒子 101:第一陶瓷 103:第二陶瓷 200、300:低介電材料 201:網狀結構 301:氧化鋁粒子100: core-shell particles 101: The first ceramic 103: The second ceramic 200, 300: low dielectric materials 201: Mesh structure 301: Alumina particles
圖1係本揭露一些實施例中,核殼粒子的示意圖。 圖2係本揭露一些實施例中,低介電材料的示意圖。 圖3係本揭露一些實施例中,低介電材料的示意圖。FIG. 1 is a schematic diagram of core-shell particles in some embodiments of the present disclosure. FIG. 2 is a schematic diagram of low dielectric materials in some embodiments of the present disclosure. FIG. 3 is a schematic diagram of low dielectric materials in some embodiments of the present disclosure.
101:第一陶瓷101: The first ceramic
103:第二陶瓷103: The second ceramic
200:低介電材料200: low dielectric material
201:網狀結構201: Mesh structure
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108148612 | 2019-12-31 | ||
TW108148612 | 2019-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202137395A true TW202137395A (en) | 2021-10-01 |
TWI766494B TWI766494B (en) | 2022-06-01 |
Family
ID=79601269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109145693A TWI766494B (en) | 2019-12-31 | 2020-12-23 | Low-k material and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI766494B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7491444B2 (en) * | 2005-02-04 | 2009-02-17 | Oxane Materials, Inc. | Composition and method for making a proppant |
JP6551355B2 (en) * | 2016-09-30 | 2019-07-31 | 京セラドキュメントソリューションズ株式会社 | Two-component developer and manufacturing method thereof |
-
2020
- 2020-12-23 TW TW109145693A patent/TWI766494B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI766494B (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI708751B (en) | Low k dielectric compositions for high frequency applications | |
CN110790568B (en) | Low-dielectric LTCC green tape and preparation method and application thereof | |
US10899669B2 (en) | Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof | |
CN112624617B (en) | Dielectric constant series adjustable glass powder for low dielectric constant LTCC material and preparation method thereof | |
CN104774005B (en) | Low-temperature sintered lead-free microwave dielectric ceramic and preparation method thereof | |
JP7212052B2 (en) | LTCC substrate and manufacturing method thereof | |
CN108516825B (en) | Low-dielectric microwave dielectric ceramic material and preparation method thereof | |
CN113024122A (en) | SiO (silicon dioxide)2High-frequency low-dielectric low-temperature co-fired ceramic material and preparation method thereof | |
WO2009086724A1 (en) | Low temperature co-fired ceramic powder, special raw material and application thereof | |
JPH05262561A (en) | Glass-based and glass-ceramic-based composite | |
WO2012066976A1 (en) | Crystalline glass powder | |
CN109250920A (en) | A kind of low-temperature co-burning ceramic material and preparation method thereof | |
JP3737774B2 (en) | Dielectric ceramic composition | |
US11939268B2 (en) | Low-k material and method for manufacturing the same | |
CN105399413B (en) | A kind of low-k, low-loss microwave-medium ceramics and preparation method | |
TWI766494B (en) | Low-k material and method for manufacturing the same | |
CN115057695B (en) | LTCC powder with high Q value and low dielectric constant, LTCC material, preparation method, raw porcelain belt, preparation method and application | |
CN112079631B (en) | Low-dielectric LTCC material with near-zero temperature coefficient and preparation method thereof | |
CN108996902B (en) | Low-temperature co-fired ceramic material and preparation method thereof | |
CN112830780A (en) | Regulating agent, LTCC microwave dielectric material and preparation method thereof | |
JP2000327428A (en) | Low temperature sintering glass ceramic and its production | |
CN104445954A (en) | Borosilicate-glass-based low-temperature co-fired ceramic material and preparation method thereof | |
CN110317057A (en) | A kind of medium dielectric constant low-temperature co-fired ceramic and preparation method | |
Synkiewicz-Musialska | LTCC glass-ceramics based on diopside/cordierite/Al2O3 for ultra-high frequency applications | |
CN111362578B (en) | Microcrystalline glass ceramic for 6G communication filter and preparation method thereof |