TW202132124A - Inkjet printing method and inkjet printing device for matching a landing pitch of droplets with a coating target pitch of a coating target portion with high precision - Google Patents

Inkjet printing method and inkjet printing device for matching a landing pitch of droplets with a coating target pitch of a coating target portion with high precision Download PDF

Info

Publication number
TW202132124A
TW202132124A TW109143473A TW109143473A TW202132124A TW 202132124 A TW202132124 A TW 202132124A TW 109143473 A TW109143473 A TW 109143473A TW 109143473 A TW109143473 A TW 109143473A TW 202132124 A TW202132124 A TW 202132124A
Authority
TW
Taiwan
Prior art keywords
inkjet head
rotation angle
target
substrate
aforementioned
Prior art date
Application number
TW109143473A
Other languages
Chinese (zh)
Inventor
井上隆史
Original Assignee
日商松下知識產權經營股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商松下知識產權經營股份有限公司 filed Critical 日商松下知識產權經營股份有限公司
Publication of TW202132124A publication Critical patent/TW202132124A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04536Control methods or devices therefor, e.g. driver circuits, control circuits using history data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/304Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • B41J2029/3935Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns by means of printed test patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

The invention includes: a first step for reading data of landing position deviation characteristics of a landing position from a memory section that memorizes landing position deviation characteristics, wherein the landing position deviation characteristics is calculated according to landing position deviation measured from a target position for a liquid droplet ejected from an inkjet head in each angle of a first rotation angle and a second rotation angle that are different from each other; and a second step for calculating a target rotation angle for the inkjet head according to the landing position deviation characteristics, an arrangement pitch of droplet ejection nozzles of the inkjet head, and a coating target pitch of a coating object in a direction orthogonal to a scanning direction, and generating a printing pattern corresponding to the target rotation angle. As such, it is able to provide an inkjet printing method that matches the landing pitch of droplets with the coating target pitch of a coating target portion with high precision.

Description

噴墨印刷方法及噴墨印刷裝置Inkjet printing method and inkjet printing device

本發明是有關於一種噴墨印刷裝置及使用了該裝置之噴墨印刷方法,特別是有關於一種噴墨頭的塗佈間距的調整方法。The invention relates to an inkjet printing device and an inkjet printing method using the device, and in particular to a method for adjusting the coating pitch of an inkjet head.

近年來,使用噴墨印刷裝置來製造元件的方法正受到注目。噴墨印刷裝置具有吐出液滴的複數個噴嘴,並且一邊控制噴嘴與印刷對象物的塗佈目標部之位置關係,一邊從噴嘴吐出液滴。藉此,噴墨印刷裝置即可對印刷對象物的塗佈目標部塗佈液滴。作為印刷對象物,存在有以顯示元件為代表之印刷對象物,其是以一定的間距來配列印刷對象物的塗佈目標部。In recent years, methods for manufacturing components using inkjet printing devices are attracting attention. The inkjet printing apparatus has a plurality of nozzles that discharge liquid droplets, and discharges liquid droplets from the nozzles while controlling the positional relationship between the nozzles and the application target portion of the printing object. Thereby, the inkjet printing apparatus can apply droplets to the application target portion of the printing object. As the printing target, there is a printing target represented by a display element, which is a coating target portion in which the printing target is arranged at a constant pitch.

上述噴墨印刷裝置是使以一定間距配置複數個噴嘴的噴墨頭,以印刷對象物面的法線方向的旋轉軸為中心來旋轉。藉此,將已落點的液滴的間距匹配於塗佈對象物的塗佈目標部的間距來塗佈的方法例如已揭示於日本特開2001-108820號公報(以下,記載為「專利文獻1」)。The above-mentioned inkjet printing apparatus is an inkjet head in which a plurality of nozzles are arranged at a constant pitch, and is rotated around a rotation axis in the normal direction of the surface of the object to be printed. In this way, a method of coating the dropped droplets with the pitch of the deposited droplets matching the pitch of the coating target portion of the coating object is disclosed in, for example, Japanese Patent Application Publication No. 2001-108820 (hereinafter referred to as "Patent Documents 1").

針對專利文獻1所揭示的以往的方法,使用圖14A、圖14B及圖15來說明。圖14A及圖14B是顯示塗佈對象部的間距與噴墨頭的液滴吐出噴嘴之位置關係的圖。圖15是顯示以往的將塗佈對象部的間距與從噴墨頭所吐出並落點於基板上的液滴的落點間距進行調整之動作流程的圖。The conventional method disclosed in Patent Document 1 will be described using FIGS. 14A, 14B, and 15. 14A and 14B are diagrams showing the positional relationship between the pitch of the application target portion and the droplet ejection nozzle of the inkjet head. 15 is a diagram showing a conventional operation flow for adjusting the pitch of the application target portion and the pitch of the droplets ejected from the inkjet head and landed on the substrate.

圖14A及圖14B圖示出噴墨頭108、噴墨頭108的液滴吐出噴嘴117、基板119、基板119上的塗佈對象部101、及已對塗佈對象部101落點的液滴118等。14A and 14B illustrate the inkjet head 108, the droplet ejection nozzle 117 of the inkjet head 108, the substrate 119, the coating target portion 101 on the substrate 119, and the droplets that have landed on the coating target portion 101 118 and so on.

圖14A表示出塗佈對象部101的塗佈目標間距W1 與液滴吐出噴嘴117的間距L相等的情況。另一方面,圖14B表示出塗佈對象部101的塗佈目標間距W2 比液滴吐出噴嘴117的間距L更小的情況。FIG 14A shows a target coated with the coating object portion 101 of the spacing W 1 117 of the droplet ejection nozzle pitch L equal to each other. On the other hand, FIG. 14B shows a case where the application target pitch W 2 of the application target portion 101 is smaller than the pitch L of the droplet ejection nozzle 117.

如圖14A及圖14B所示,噴墨頭108與基板119是構成為:一邊在圖中所示的X方向上相對移動,一邊藉由液滴吐出噴嘴117吐出液滴來對塗佈對象部101塗佈液滴。此時,在塗佈對象部101的塗佈目標間距W2 比液滴吐出噴嘴117的間距L更小的情況下,如圖14B所示,是構成為:使噴墨頭108旋轉角度θ,來使液滴吐出噴嘴117的Y方向的間距匹配於塗佈對象部101的塗佈目標間距W2As shown in FIGS. 14A and 14B, the inkjet head 108 and the substrate 119 are configured such that, while relatively moving in the X direction as shown in the figure, the droplet ejection nozzle 117 ejects droplets to the coating target portion. 101 Coating droplets. At this time, the coating object is coated target portion 101 of the nozzle pitch of 117 L W 2 smaller than the droplet discharged, 14B, is configured to: cause the ink jet head 108 rotational angle [theta], In this way, the pitch in the Y direction of the droplet ejection nozzle 117 is matched to the application target pitch W 2 of the application target portion 101.

一邊參照圖15,一邊說明在上述以往的方法中,將從液滴吐出噴嘴117吐出並落點於基板119上的液滴118的Y方向的間距與基板119的塗佈對象部101的間距進行匹配的動作。15, while explaining in the above-mentioned conventional method, the Y-direction pitch of the droplets 118 discharged from the droplet discharge nozzle 117 and landed on the substrate 119 and the pitch of the coating target portion 101 of the substrate 119 are performed. Matching actions.

另外,如圖15所示,上述動作是由步驟S1到步驟S10的10個步驟所構成。In addition, as shown in FIG. 15, the above-mentioned operation is composed of 10 steps from step S1 to step S10.

具體而言,步驟S1的「描繪調整用圖案」是塗佈液滴間距測定用的測試圖案之步驟,步驟S2的「藉由感測器輸入已描繪的圖案」是將測試圖案以相機等來匯入之步驟。又,步驟S3的「點(dot)切割處理」是進行從在步驟S2中所匯入的資料切割出液滴部分的處理之步驟,步驟S4的「點重心運算處理」是從在步驟S3中所抽出的液滴資料算出液滴的重心之步驟。此外,步驟S5的「R間距算出、G間距算出、B間距算出」是從在步驟S4中所求出的R、G、B的各落點液滴的重心位置算出R、G、B的各落點液滴的落點間距之步驟。又,步驟S6的「RG間間距算出、GB間間距算出」是從在步驟S4中所抽出的R落點液滴、G落點液滴、B落點液滴各自的重心位置算出RG間的落點間距與GB間的落點間距之步驟。步驟S7的「RGB各間距已成為預定的距離?」是判定在步驟S5中所算出的R、G、B的各落點液滴的落點間距是否已成為目標的距離之步驟。步驟S8的「RG間間距、GB間間距已成為預定的距離?」是判定在步驟S6中所算出的RG間落點間距及GB間落點間距是否已成為目標的距離之步驟。步驟S9的「調整描繪頭的Y軸」是在步驟S8中,RG間落點間距、GB間落點間距未成為目標的距離的情況下,使描繪頭在Y方向上移動來進行位置調整之步驟。並且,步驟S10的「調整描繪頭的θ軸」是在步驟S7中,RGB各落點間距未成為目標的距離的情況下,將描繪頭進行θ旋轉調整之步驟。Specifically, the "pattern for drawing adjustment" in step S1 is a step of applying a test pattern for measuring the droplet pitch, and the "input of the drawn pattern by a sensor" in step S2 is to transfer the test pattern with a camera or the like. Import steps. In addition, the "dot cutting process" in step S3 is a step for cutting out the droplet portion from the data imported in step S2, and the "dot barycentric calculation process" in step S4 is from the data imported in step S3. The step of calculating the center of gravity of the droplet from the extracted droplet data. In addition, the "R-spacing calculation, G-spacing calculation, and B-spacing calculation" in step S5 is to calculate each of R, G, and B from the position of the center of gravity of each droplet of R, G, and B obtained in step S4. The step of the drop point pitch. In addition, the "calculation of the distance between RGs and the calculation of the distance between GBs" in step S6 calculates the distance between the RGs from the respective positions of the centers of gravity of the R droplets, G droplets, and B droplets extracted in step S4. Steps for the distance between the drop points and the GB between the drop points. The "each RGB pitch has become a predetermined distance?" in step S7 is a step for determining whether the drop point pitch of each droplet of R, G, and B calculated in step S5 has become the target distance. "Has the inter-RG pitch and the inter-GB pitch become the predetermined distance?" in step S8 is a step of determining whether the inter-RG landing point pitch and the inter-GB landing point pitch calculated in step S6 have become the target distance. Step S9 "Adjust the Y-axis of the drawing head" is the step S8, when the distance between RG and GB is not the target distance, the drawing head is moved in the Y direction to perform position adjustment. step. In addition, "adjusting the θ axis of the drawing head" in step S10 is a step for adjusting the θ rotation of the drawing head when the pitch of each RGB point has not reached the target distance in step S7.

亦即,以往的方法是以下所述的方法:在步驟S1中,印刷測試圖案,並且在步驟S2到步驟S4中,檢測測試圖案的液滴之落點位置。此外,在步驟S5中,算出R、G、B各自的落點間距,並且在步驟S7中,判定落點間距是否已符合於目標值。並且,在落點間距未符合於目標值的情況下,在步驟S10中,實施描繪頭的θ旋轉調整,之後,再次從步驟S1的測試印刷重新開始。又,在R、G、B的全部的落點間距符合於目標值後,接著,在步驟S8中,判定在步驟S6中所算出的RG間的落點間距、GB間的落點間距是否已符合於目標值。並且,在RG間及GB間的落點間距未符合於目標值的情況下,在步驟S9中,實施Y軸調整後,再次從步驟S1的測試印刷重新開始。That is, the conventional method is the following method: in step S1, a test pattern is printed, and in step S2 to step S4, the drop position of the test pattern is detected. In addition, in step S5, the respective drop-point pitches of R, G, and B are calculated, and in step S7, it is determined whether the drop-point pitch has reached the target value. In addition, when the dot pitch does not meet the target value, in step S10, the θ rotation adjustment of the drawing head is performed, and after that, the test printing in step S1 is restarted again. Furthermore, after all the drop point pitches of R, G, and B meet the target value, next, in step S8, it is determined whether the drop point pitch between RGs and the drop point pitch between GBs calculated in step S6 have been Meet the target value. In addition, when the drop point pitch between RGs and GBs does not meet the target value, the Y-axis adjustment is performed in step S9, and the test printing of step S1 is restarted again.

如以上所述,在以往的方法中,每當塗佈目標部的間距改變,便會實施測試印刷,來測定該液滴的落點間距。並且,有必要依據測定到的結果,進一步微調整旋轉角度,重複執行旋轉角度的逼近及Y方向的逼近,直到進入目標的閾值為止。即便是這種方法,在精細度較低,且目標的閾值較大的情況下,透過上述1~2次的逼近處理便可以完成調整,因此並不太會成為問題。As described above, in the conventional method, whenever the pitch of the coating target portion is changed, test printing is performed to measure the pitch of the droplets. In addition, it is necessary to further fine-tune the rotation angle based on the measured results, and repeat the approach of the rotation angle and the Y direction until it reaches the threshold of the target. Even with this method, when the fineness is low and the target threshold is large, the adjustment can be completed through the above-mentioned 1 to 2 approximation processing, so it is unlikely to be a problem.

然而,近年來,在對顯示元件的高精細化之期待升高的背景下,有必要縮小塗佈目標部的間距。因此,有必要將從噴嘴所吐出的液滴的落點間距精密地對位。在塗佈於高精細的顯示元件的情況下,從各噴嘴所吐出的液滴的吐出角度傾向所造成的微小的落點位置的偏移,或伴隨於塗佈對象物與噴墨頭的相對移動的落點位置的偏移,會對塗佈位置精度造成極大影響。However, in recent years, under the background of increasing expectations for high-definition display elements, it is necessary to reduce the pitch of the application target portions. Therefore, it is necessary to precisely align the pitch of the droplets discharged from the nozzle. In the case of coating on a high-definition display element, the droplet ejection angle tendency of the ejected liquid droplets from each nozzle causes a slight displacement of the landing position, or is accompanied by the relative difference between the coating object and the inkjet head The offset of the moving drop point will greatly affect the accuracy of the coating position.

因此,在以往的方法中,在塗佈於高精細的顯示元件的情況下,每當塗佈目標部的間距改變,就有必要停止通常的印刷動作,重複實施很多次上述落點間距的逼近作業。其結果,使得噴墨印刷裝置的運作率降低。又,為了逼近落點間距,也有必要準備測試用的專用基板,或是在生產用基板上設置寬廣的測試印刷區域。Therefore, in the conventional method, in the case of coating on a high-definition display element, whenever the pitch of the coating target portion changes, it is necessary to stop the normal printing operation and repeat the approach of the landing pitch many times. Operation. As a result, the operation rate of the inkjet printing device is reduced. In addition, in order to approach the landing point pitch, it is also necessary to prepare a dedicated substrate for testing, or to provide a wide test printing area on the production substrate.

本發明提供一種即便塗佈對象物的塗佈目標部分的間距改變,也可以決定最適當的頭的旋轉量,使液滴的落點間距與塗佈目標部的間距高精度地匹配之噴墨印刷方法及使用了該方法之噴墨印刷裝置。The present invention provides an ink jet that can determine the most appropriate head rotation amount even if the pitch of the coating target portion of the coating object is changed, so that the droplet pitch and the pitch of the coating target portion can be matched with high accuracy Printing method and inkjet printing device using the method.

本發明的一種態樣是一邊使噴墨頭對於塗佈對象物相對地掃描,一邊從噴墨頭吐出液滴,在塗佈對象物上塗佈墨水之噴墨印刷方法。噴墨印刷方法包含:第1步驟,從記憶落點位置偏移特性的記憶部讀取與落點位置偏移特性相關的資料,前述落點位置偏移特性是依據落點位置偏移所求出,前述落點位置偏移是噴墨頭在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從噴墨頭所吐出的液滴的從目標位置起算之落點位置偏移。此外,包含:第2步驟,依據落點位置偏移特性、噴墨頭的液滴吐出噴嘴的配列間距、及與掃描方向正交的方向上之塗佈對象物的塗佈目標間距,來求出噴墨頭的目標旋轉角度,並且生成與目標旋轉角度對應的印刷圖案。並且,包含:第3步驟,依據目標旋轉角度、及印刷圖案,來控制噴墨頭對塗佈對象物上的塗佈目標部吐出液滴。One aspect of the present invention is an inkjet printing method in which droplets are ejected from the inkjet head while the inkjet head is relatively scanned with respect to the object to be coated, and ink is applied to the object to be coated. The inkjet printing method includes: the first step, reading data related to the landing position offset characteristic from the memory part that memorizes the landing position offset characteristic, the landing position offset characteristic is obtained based on the landing position offset The aforementioned deviation of the landing position is the deviation of the landing position of the droplets discharged from the inkjet head from the target position in each of the first and second rotation angles that are different from each other. shift. In addition, it includes: the second step, which is determined based on the landing position deviation characteristics, the arrangement pitch of the droplet ejection nozzles of the inkjet head, and the coating target pitch of the coating target in the direction orthogonal to the scanning direction The target rotation angle of the inkjet head is output, and a printing pattern corresponding to the target rotation angle is generated. In addition, it includes a third step of controlling the inkjet head to discharge liquid droplets to the application target portion on the application target based on the target rotation angle and the printing pattern.

又,本發明的其他態樣是一邊使噴墨頭對於塗佈對象物相對地掃描,一邊從噴墨頭吐出液滴,在塗佈對象物上塗佈墨水之噴墨印刷裝置。噴墨印刷裝置具備:記憶部,記憶落點位置偏移特性,前述落點位置偏移特性是依據落點位置偏移所求出,前述落點位置偏移是噴墨頭在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從噴墨頭所吐出的液滴的從目標位置起算之落點位置偏移。此外,具備:運算部,依據落點位置偏移特性、噴墨頭的液滴吐出噴嘴的配列間距、及與掃描方向正交的方向上之塗佈對象物的塗佈目標間距,來求出噴墨頭的目標旋轉角度,並且生成與目標旋轉角度對應的印刷圖案。並且,噴墨印刷裝置是構成為:依據目標旋轉角度、及印刷圖案,來控制噴墨頭對塗佈對象物上的塗佈目標部吐出液滴。In addition, another aspect of the present invention is an inkjet printing device that ejects droplets from the inkjet head while scanning the inkjet head relative to the object to be coated, and applies ink on the object to be coated. The inkjet printing device is equipped with a memory unit that stores the characteristics of the landing position deviation, the aforementioned landing position deviation characteristic is calculated based on the landing position deviation, and the aforementioned landing position deviation is the difference between the inkjet heads. For each of the 1 rotation angle and the second rotation angle, the landing position of the droplet discharged from the inkjet head is shifted from the target position. In addition, it is equipped with a calculation unit to obtain the target pitch of the coating target in the direction orthogonal to the scanning direction based on the characteristics of the landing position shift, the arrangement pitch of the droplet ejection nozzles of the inkjet head, and the coating target pitch in the direction orthogonal to the scanning direction The target rotation angle of the inkjet head, and a print pattern corresponding to the target rotation angle is generated. In addition, the inkjet printing device is configured to control the inkjet head to discharge liquid droplets to the application target portion on the application target object based on the target rotation angle and the printing pattern.

依據本發明的上述態樣,可以提供一種即便塗佈對象物的塗佈目標部的間距改變,也可以使從噴墨頭所吐出的液滴的落點間距匹配於塗佈目標部的間距之噴墨印刷方法及使用了該方法之噴墨印刷裝置。According to the above aspect of the present invention, it is possible to provide a method that can match the pitch of the droplets discharged from the inkjet head to the pitch of the coating target even if the pitch of the coating target portion of the coating object is changed. An inkjet printing method and an inkjet printing device using the method.

較佳實施例之詳細說明 (實施形態) 以下,針對本實施形態的噴墨印刷裝置40,一邊參照圖式,一邊分項來進行說明。 (噴墨印刷裝置之構成)Detailed description of the preferred embodiment (Implementation form) Hereinafter, the inkjet printing apparatus 40 of the present embodiment will be explained separately with reference to the drawings. (Composition of inkjet printing device)

首先,針對本實施形態之一例的噴墨印刷裝置40之整體構成,一邊參照圖1,一邊進行說明。First, the overall configuration of the inkjet printing apparatus 40 as an example of this embodiment will be described with reference to FIG. 1.

圖1是本實施形態之一例的噴墨印刷裝置40的立體圖。FIG. 1 is a perspective view of an inkjet printing device 40 according to an example of this embodiment.

如圖1所示,本實施形態之噴墨印刷裝置40至少具備:支撐裝置的架台18、設置於架台18上的平台(surface plate)17、基板搬送台(stage)30、頭單元32、頭單元移載台(stage)33、及2根支撐部16等。基板搬送台30將設置於平台17上的基板朝X方向搬送。頭單元移載台33將頭單元32朝與基板搬送台30正交的Y方向搬送。2根支撐部16將頭單元移載台33的兩端支撐於平台17上。As shown in FIG. 1, the inkjet printing device 40 of this embodiment includes at least: a stand 18 supporting the device, a surface plate 17 provided on the stand 18, a substrate transfer stage 30, a head unit 32, and a head A unit transfer stage 33, two support parts 16, and the like. The board transfer table 30 transfers the board set on the platform 17 in the X direction. The head unit transfer table 33 transports the head unit 32 in the Y direction orthogonal to the substrate transport table 30. The two supporting parts 16 support both ends of the head unit transfer stage 33 on the platform 17.

基板搬送台30是由以下構件等所構成:基板用導軌5;基板搬送滑件4,在基板用導軌5上被導引,並且被支撐成可在X方向上滑動;基板旋轉機構3,設置於基板搬送滑件4上;及基板吸附台(table)2,設置於基板旋轉機構3上。基板搬送滑件4是藉由基板搬送用線性馬達6、基板搬送位置檢測部7、及未圖示的基板搬送台控制部,來進行回饋控制。The substrate transport table 30 is composed of the following components: a substrate guide rail 5; a substrate transport slider 4, which is guided on the substrate guide rail 5 and supported so as to be slidable in the X direction; a substrate rotation mechanism 3, provided On the substrate conveying slide 4; and the substrate adsorption table (table) 2 is set on the substrate rotating mechanism 3. The substrate transport slider 4 is controlled by a substrate transport linear motor 6, a substrate transport position detection unit 7, and a substrate transport table control unit (not shown).

又,基板旋轉機構3具備未圖示的基板旋轉角度檢測部及基板旋轉驅動部。基板旋轉機構3是構成為:藉由未圖示的基板旋轉機構控制部,而可精密地定位至目標的旋轉角度。In addition, the substrate rotation mechanism 3 includes a substrate rotation angle detection unit and a substrate rotation drive unit that are not shown. The substrate rotation mechanism 3 is configured such that it can be precisely positioned to a target rotation angle by a substrate rotation mechanism control unit (not shown).

另一方面,頭單元移載台33是由以下構件等所構成:頭單元移載用導軌13;及頭單元移載用滑件12,在頭單元移載用導軌13上被導引,並且被支撐成可在Y方向上滑動。頭單元移載用滑件12是藉由頭單元移載用線性馬達14、頭單元移載用位置檢測部15、未圖示的頭單元移載台控制部,來進行回饋控制。On the other hand, the head unit transfer table 33 is composed of the following components: a head unit transfer guide 13; and a head unit transfer slider 12, which is guided on the head unit transfer guide 13, and It is supported to be slidable in the Y direction. The slider 12 for head unit transfer is controlled by the linear motor 14 for head unit transfer, the position detection part 15 for head unit transfer, and the head unit transfer stage control part which is not shown in figure.

頭單元32是在被安裝於頭單元移載用滑件12的頭單元基座22上,搭載噴墨頭部23及對準相機(alignment camera)21來構成。此外,噴墨頭部23具備:透過托架(bracket)11搭載於頭單元基座22的頭旋轉機構10、及透過頭托架(head bracket)9搭載於頭旋轉機構10下的噴墨頭8等。頭旋轉機構10在內部具備未圖示的頭旋轉角度檢測部及頭旋轉驅動部等。頭旋轉機構10是構成為:藉由未圖示的頭旋轉機構控制部,而可精密地定位至目標的旋轉角度。The head unit 32 is configured by mounting an inkjet head 23 and an alignment camera 21 on a head unit base 22 attached to the head unit transfer slider 12. In addition, the inkjet head 23 includes a head rotating mechanism 10 mounted on the head unit base 22 through a bracket 11, and an inkjet head mounted below the head rotating mechanism 10 through a head bracket 9 8 and so on. The head rotation mechanism 10 includes a head rotation angle detection unit, a head rotation drive unit, and the like, which are not shown in the figure. The head rotation mechanism 10 is configured such that it can be precisely positioned to a target rotation angle by a head rotation mechanism control unit (not shown).

此外,噴墨頭8具有複數個液滴吐出噴嘴。噴墨頭8是構成為:可藉由噴墨頭控制部100,依據基板搬送位置檢測部7所得到的檢測位置,對噴墨頭8的每個液滴吐出噴嘴控制吐出時機。另外,噴墨頭8的複數個液滴吐出噴嘴例如是以預定的間距排成一列來配列設置。In addition, the inkjet head 8 has a plurality of droplet ejection nozzles. The inkjet head 8 is configured such that the inkjet head control unit 100 can control the ejection timing for each droplet ejection nozzle of the inkjet head 8 based on the detection position obtained by the substrate transport position detection unit 7. In addition, the plurality of droplet ejection nozzles of the inkjet head 8 are arranged in a row at a predetermined pitch, for example.

噴墨頭控制部100是以控制噴墨頭8的吐出動作之微電腦來構成。具體而言,噴墨頭控制部100包含例如:CPU(中央處理器,Central Processing Unit)、ROM(唯讀記憶體,Read Only Memory)、RAM(隨機存取記憶體,Random Access Memory)、輸入埠、及輸出埠等。The inkjet head control unit 100 is constituted by a microcomputer that controls the discharge operation of the inkjet head 8. Specifically, the inkjet head control unit 100 includes, for example: CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input Port, and output port, etc.

又,噴墨頭控制部100具備:記憶部110、及運算部120等。記憶部110是記憶從噴墨頭8吐出了液滴時的液滴之落點位置偏移特性。運算部120是依據落點位置偏移特性、噴墨頭8的液滴吐出噴嘴的配列間距、及與掃描方向正交的方向上之塗佈對象物的塗佈目標間距,來求出噴墨頭8的目標旋轉角度,並且生成與目標旋轉角度對應的印刷圖案。另外,上述落點位置偏移特性是依據落點位置偏移所求出,前述落點位置偏移是噴墨頭8在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從噴墨頭8所吐出的液滴的從目標位置起算之落點位置偏移。詳細內容將在後面敘述。In addition, the inkjet head control unit 100 includes a storage unit 110, a calculation unit 120, and the like. The storage unit 110 stores the droplet landing position offset characteristics when the droplet is ejected from the inkjet head 8. The arithmetic unit 120 calculates the ink jet based on the landing position offset characteristics, the arrangement pitch of the droplet ejection nozzles of the inkjet head 8, and the application target pitch of the application target in the direction orthogonal to the scanning direction. The target rotation angle of the head 8 and a print pattern corresponding to the target rotation angle are generated. In addition, the above-mentioned landing position deviation characteristic is obtained based on the landing position deviation, and the above-mentioned landing position deviation is that the inkjet head 8 has a first rotation angle and a second rotation angle that are different from each other. The landing position of the droplet discharged from the inkjet head 8 is shifted from the target position. The details will be described later.

另外,在本實施形態之基板搬送台30及頭單元移載台33採用空氣軸承機構。藉此,可實現高精度的定位。 (噴墨印刷裝置的動作)In addition, an air bearing mechanism is used in the substrate transfer table 30 and the head unit transfer table 33 of this embodiment. In this way, high-precision positioning can be achieved. (Operation of inkjet printing device)

接著,針對具備上述構成的噴墨印刷裝置40的動作,使用圖2到圖13來說明。Next, the operation of the inkjet printing device 40 having the above-mentioned configuration will be described with reference to FIGS. 2 to 13.

圖2是顯示本實施形態之一例的塗佈對象物的基板1的平面圖。Fig. 2 is a plan view showing a substrate 1 of an object to be coated according to an example of the present embodiment.

如圖2所示,基板1具有:機材1a、形成於機材1a上的對準標示1b、堤部(bank)1c、塗佈目標部1d、及測試印刷區域1e等。對準標示1b形成於機材1a上的4個角落。堤部1c是發揮提防的作用,以使已印刷於塗佈目標部1d的墨水不會外溢。塗佈目標部1d是以堤部1c來圍繞,並以一定間距來配列。測試印刷區域1e具有落點測定區域1f,是為了測定液滴之落點位置而設置。As shown in FIG. 2, the substrate 1 has a machine material 1a, an alignment mark 1b formed on the machine material 1a, a bank 1c, a coating target part 1d, a test printing area 1e, and the like. Alignment marks 1b are formed at 4 corners on the machine material 1a. The bank portion 1c serves as a guard so that the ink already printed on the application target portion 1d does not overflow. The application target part 1d is surrounded by the bank part 1c, and is arrange|positioned at a certain pitch. The test print area 1e has a drop point measurement area 1f, which is provided to measure the drop point position of the liquid drop.

落點測定區域1f形成於測試印刷區域1e中。落點測定區域1f是以與塗佈目標部1d相同間距,來形成於塗佈目標部1d的延長線上。The drop point measurement area 1f is formed in the test print area 1e. The drop point measurement area 1f is formed on the extension line of the application target portion 1d at the same pitch as the application target portion 1d.

另外,塗佈目標部1d是構成顯示面板的像素的區域。塗佈目標部1d是構成為可使已落點的液滴擴散。另一方面,落點測定區域1f是構成為具有撥液性。藉此,已落點於落點測定區域1f的液滴會保持為圓形形狀。因此,藉由以對準相機21來拍攝已落點的液滴的位置,並以未圖示的圖像處理部來處理,便可以高精度地測定對於落點測定區域1f的圓的中心的位置。In addition, the application target portion 1d is an area of pixels constituting the display panel. The application target portion 1d is configured to diffuse the dropped droplets. On the other hand, the drop point measurement area 1f is configured to have liquid repellency. Thereby, the droplet that has landed on the landing point measurement area 1f is maintained in a circular shape. Therefore, by shooting the position of the dropped droplet with the aiming camera 21 and processing it by an image processing unit not shown, it is possible to measure the center of the circle of the drop measuring area 1f with high accuracy. Location.

基板1更具備塗佈區域1g。塗佈區域1g與落點測定區域1f相同地是以具有撥液性的區域來構成。另外,塗佈區域1g是設置為以下區域:在液滴未進入落點測定區域1f的圓中的情況下,用於測定液滴的大致落點位置的區域。 (基板1與噴墨頭8不相對移動時)The substrate 1 further includes a coating area 1g. The application area 1g is composed of a liquid-repellent area similarly to the drop point measurement area 1f. In addition, the application area 1g is an area provided to measure the approximate position of the droplet when the droplet does not enter the circle of the droplet measurement area 1f. (When substrate 1 and inkjet head 8 do not move relative to each other)

接著,針對基板1與噴墨頭8不相對移動時,噴墨頭8的液滴吐出噴嘴之位置與從液滴吐出噴嘴所吐出的液滴到達基板1上之落點位置的關係,使用圖3A到圖4B來說明。Next, use the diagram for the relationship between the position of the droplet ejection nozzle of the inkjet head 8 and the landing position of the droplet ejected from the droplet ejection nozzle on the substrate 1 when the substrate 1 and the inkjet head 8 do not move relative to each other. 3A to 4B to illustrate.

圖3A是說明從噴墨頭8所吐出的液滴的吐出角度傾向所造成的落點位置偏移的平面圖。圖3B是圖3A的側面圖。FIG. 3A is a plan view explaining the displacement of the landing position caused by the tendency of the ejection angle of the droplets ejected from the inkjet head 8. Fig. 3B is a side view of Fig. 3A.

圖4A是說明噴墨頭8的旋轉角度為0(零)度時之液滴的吐出角度傾向所造成的落點位置偏移的平面圖。圖4B是說明噴墨頭的旋轉角度為φ度時之液滴的吐出角度傾向所造成的落點位置偏移的平面圖。FIG. 4A is a plan view illustrating the displacement of the landing position caused by the droplet ejection angle tendency when the rotation angle of the inkjet head 8 is 0 (zero) degrees. Fig. 4B is a plan view illustrating the displacement of the landing position caused by the droplet ejection angle tendency when the rotation angle of the inkjet head is φ degrees.

在此,圖3A中所示的噴墨頭8具有以虛線的圓圈所示的4個液滴吐出噴嘴。並且,將液滴吐出噴嘴的孔位置設為n1 、n2 、n3 、n4 。一般來說,液滴吐出噴嘴各自會因為製造時等的加工精度,而具有吐出的方向不同的傾向(對應於上述吐出角度傾向)。因此,如圖3B所示,落點位置會成為以實線的圓圈所示的落點位置P1 、P2 、P3 、P4 ,前述落點位置是落點於從噴墨頭8的液滴吐出噴嘴面相距恰好距離G的基板1的表面時的落點位置。亦即,落點位置P1 、P2 、P3 、P4 會到達與液滴吐出噴嘴的孔位置n1 、n2 、n3 、n4 的正下方不同的位置。以下,將位置偏移量稱為吐出角度傾向所造成的「落點位置偏移」。Here, the inkjet head 8 shown in FIG. 3A has four liquid droplet ejection nozzles indicated by dotted circles. In addition, the hole positions of the droplet ejection nozzles are set to n 1 , n 2 , n 3 , and n 4 . In general, each of the droplet ejection nozzles tends to have different ejection directions (corresponding to the above-mentioned ejection angle tendency) due to processing accuracy during manufacturing. Therefore, as shown in FIG. 3B, the landing positions will be the landing positions P 1 , P 2 , P 3 , and P 4 shown by the solid circles. The landing position when the droplet ejection nozzle surface is just a distance G from the surface of the substrate 1. That is, the landing positions P 1 , P 2 , P 3 , and P 4 will reach positions different from directly below the hole positions n 1 , n 2 , n 3 , and n 4 of the droplet ejection nozzle. Hereinafter, the amount of positional deviation will be referred to as "deflection of the position of the landing point" caused by the tendency of the discharge angle.

另外,來自各個液滴吐出噴嘴的吐出角度傾向所造成的落點位置偏移是藉由液滴吐出噴嘴的孔的形狀精度、或液滴吐出噴嘴周邊的表面狀態等來決定。亦即,來自液滴吐出噴嘴的吐出角度傾向在所組入的噴墨頭8中,會成為固定的傾向。因此,與圖4A所示的噴墨頭8的旋轉角度為0度時相比,即便是在將圖4B所示的噴墨頭8的旋轉角度旋轉了φ度的情況下,相對於頭的液滴吐出噴嘴的孔位置n1 、n2 、n3 、n4 ,落點位置P1 、P2 、P3 、P4 仍變成是在噴墨頭8內朝相同的方向偏移。亦即,在使噴墨頭8旋轉了φ度的情況下的平面圖即圖4B變成是使圖4A直接旋轉了恰好φ度的位置。另外,在圖4A及圖4B中以黑圓圈所示的旋轉中心O對應於噴墨頭8的旋轉軸。 (基板1與噴墨頭8相對移動的情況)In addition, the displacement of the landing position caused by the tendency of the ejection angle from each droplet ejection nozzle is determined by the shape accuracy of the hole of the droplet ejection nozzle or the surface condition around the droplet ejection nozzle. In other words, the ejection angle from the droplet ejection nozzle tends to be fixed in the inkjet head 8 incorporated. Therefore, compared with the case where the rotation angle of the inkjet head 8 shown in FIG. 4A is 0 degrees, even when the rotation angle of the inkjet head 8 shown in FIG. The hole positions n 1 , n 2 , n 3 , and n 4 of the droplet ejection nozzles and the landing positions P 1 , P 2 , P 3 , and P 4 are still shifted in the same direction in the inkjet head 8. That is, FIG. 4B, which is a plan view when the inkjet head 8 is rotated by φ degrees, becomes a position where FIG. 4A is directly rotated by exactly φ degrees. In addition, the rotation center O indicated by a black circle in FIGS. 4A and 4B corresponds to the rotation axis of the inkjet head 8. (When the substrate 1 and the inkjet head 8 move relative to each other)

接著,針對基板1相對於噴墨頭8以一定速度V行走中時,從噴墨頭8的液滴吐出噴嘴朝向基板1吐出了液滴的情況下之落點位置,使用圖5A到圖6B來說明。Next, for the landing position when the substrate 1 is traveling at a constant speed V with respect to the inkjet head 8 and the droplet is ejected from the droplet ejection nozzle of the inkjet head 8 toward the substrate 1, FIGS. 5A to 6B are used. To illustrate.

圖5A是說明在塗佈對象物停止中的情況下,從噴墨頭8所吐出的液滴之落點位置偏移的平面圖。圖5B是圖5A的側面圖。圖6A是說明在塗佈對象物以速度V行走中的情況下,從噴墨頭所吐出的液滴之落點位置偏移的平面圖。圖6B是圖6A的側面圖。FIG. 5A is a plan view explaining the displacement of the landing position of the droplets discharged from the inkjet head 8 when the application target is stopped. Fig. 5B is a side view of Fig. 5A. FIG. 6A is a plan view explaining the displacement of the landing position of the droplets discharged from the inkjet head when the coating target is traveling at a speed V. FIG. Fig. 6B is a side view of Fig. 6A.

如圖5A所示,在基板1停止中的狀態下,將從噴墨頭8的孔位置n1 的液滴吐出噴嘴所吐出的液滴落點於基板1上的落點位置設成P1 。另外,落點位置P1 對孔位置n1 的位置偏移量相當於以圖4A及圖4B所說明過的吐出角度傾向所造成的落點位置偏移。相對於此,從孔位置n1 的液滴吐出噴嘴所吐出的液滴是帶著速度朝以一定速度V行走中的基板1飛翔。因此,直到液滴到達基板1為止會需要時間。若將該時間設成Δt的話,在此期間,基板1會行走恰好Δt×V。因此,如圖6A所示,液滴在基板1上之落點位置Q1 相對於使基板1在停止狀態下落點時的落點位置P1 會變得有所偏移。As shown in FIG. 5A, in the state where the substrate 1 is stopped, the landing position of the droplet ejected from the droplet ejection nozzle at the hole position n 1 of the inkjet head 8 on the substrate 1 is set to P 1 . Further, the position P 1 of apertures placement position offset n 1 corresponds to FIG. 4A and 4B are described as favoring the discharge caused by the landing position offset. On the other hand, the discharged liquid droplet ejection nozzle hole from the droplet position with the speed n 1 is flying toward the constant speed V 1 to the traveling substrate. Therefore, it may take time until the droplet reaches the substrate 1. If this time is set to Δt, the substrate 1 will travel exactly Δt×V during this period. Thus, as shown in FIG. 6A, the droplet landing position on the substrate 1 Q 1 with respect to the substrate 1 in a stopped state drop landing position point P 1 becomes somewhat offset.

另外,實際上,在液滴朝向基板1飛翔的期間,由於受到空氣的阻力而減速的影響、或藉由基板1的行走所產生的風的影響,使得液滴會流動,因此會變成更加複雜的位置偏移。以下,將這種藉由基板1的行走所產生的行走方向之落點位置偏移ΔX1v 稱為行走所造成的「落點位置偏移」。亦即,這種行走所造成的落點位置偏移是伴隨於基板1的行走而來的落點位置偏移,所以基本上是產生於行走方向上的位置偏移。因此,與噴墨頭8的吐出角度傾向所造成的位置偏移不同,即便在已使噴墨頭8旋轉的情況下,也不會與噴墨頭8的旋轉一起旋轉。In addition, in fact, when the droplet is flying toward the substrate 1, the droplet will flow due to the influence of air resistance and deceleration, or the influence of the wind generated by the walking of the substrate 1, which will become more complicated. The position offset. Hereinafter, such an impact position deviation ΔX 1v in the walking direction caused by the walking of the substrate 1 is referred to as "an impact position deviation" caused by walking. That is, the positional deviation of the landing point caused by such walking is the positional deviation of the landing point accompanying the walking of the substrate 1, so it is basically a positional deviation caused in the walking direction. Therefore, unlike the positional deviation caused by the tendency of the ejection angle of the inkjet head 8, even when the inkjet head 8 has been rotated, it does not rotate together with the rotation of the inkjet head 8.

如以上說明,在基板1停止中的情況下,從液滴吐出噴嘴的孔位置n1 所吐出的液滴在基板1上之落點位置,會成為僅由吐出角度傾向所造成的落點位置偏移的落點位置P1 。相對於此,在基板1以速度V行走中的情況下,變成會落點於對落點位置P1 再加上了落點位置偏移ΔX1v後的位置,前述落點位置P1 是由於吐出角度傾向而造成了落點位置偏移的位置,前述落點位置偏移ΔX1v是基板1在行走方向上行走所造成的偏移。As explained above, when the substrate 1 is stopped, the landing position of the droplet ejected from the hole position n 1 of the droplet ejection nozzle on the substrate 1 becomes the landing position caused only by the inclination of the ejection angle. The offset point position P 1 . On the other hand, when the substrate 1 is traveling at a speed V, the landing point will be at the position of the landing position P 1 plus the landing position offset ΔX1v. The landing position P 1 is due to the discharge The angular tendency causes the position of the drop point to shift, and the aforementioned drop point position shift ΔX1v is the shift caused by the substrate 1 walking in the traveling direction.

接著,針對對基板1的塗佈目標部1d印刷液滴的方法,以下分為1)、2)來說明。Next, the method of printing liquid droplets on the application target portion 1d of the substrate 1 will be described in 1) and 2) below.

1)一開始,針對基板1的對準方法來說明。1) At the beginning, the alignment method of the substrate 1 will be described.

首先,將基板1吸附固定在基板吸附台2上,並移動基板搬送台30與頭單元移載台33。First, the substrate 1 is suction-fixed on the substrate suction table 2 and the substrate transfer table 30 and the head unit transfer table 33 are moved.

接著,使基板1的4個角落的對準標示1b移動至已搭載於頭單元32的對準相機21下。Next, the alignment marks 1b at the four corners of the substrate 1 are moved under the alignment camera 21 that has been mounted on the head unit 32.

接著,以對準相機21拍攝對準標示1b,並且以未圖示的圖像辨識部量測對準標示1b的位置。另一方面,依據當時的基板搬送位置檢測部7所得到的檢測位置、頭單元移載用位置檢測部15所得到的檢測位置,藉由未圖示的控制部,來驅動基板旋轉機構3並進行調節,以使基板搬送台30的行走方向與基板1的塗佈目標部1d的方向成為平行。Next, the alignment camera 21 is used to photograph the alignment mark 1b, and the position of the alignment mark 1b is measured by an image recognition unit not shown. On the other hand, based on the detection position obtained by the substrate transport position detection section 7 and the detection position obtained by the head unit transfer position detection section 15 at the time, a control section not shown drives the substrate rotating mechanism 3 and The adjustment is performed so that the traveling direction of the substrate transfer table 30 and the direction of the coating target portion 1d of the substrate 1 become parallel.

2)接著,針對液滴吐出噴嘴與基板1的塗佈目標部1d的位置調整方法,使用圖7來說明。2) Next, the position adjustment method of the droplet ejection nozzle and the application target portion 1d of the substrate 1 will be described using FIG. 7.

圖7是說明在塗佈對象物以速度V行走的情況下,將噴墨頭設為第1旋轉角度(在此,旋轉角度0(零)度)時所吐出的液滴之落點位置的平面圖。FIG. 7 is a diagram illustrating the position of the droplet ejected when the inkjet head is set to the first rotation angle (here, the rotation angle is 0 (zero) degrees) when the coating target is traveling at a speed V Floor plan.

在圖7中,圖中的虛線的圓表示噴墨頭8中的液滴吐出噴嘴的孔位置n1 、n2 、n3 、n4 。並且,實線的圓表示落點位置P1 、P2 、P3 、P4 ,前述落點位置P1 、P2 、P3 、P4 是由於從液滴吐出噴嘴所吐出的液滴的吐出角度傾向而在到達基板1時造成了位置偏移後的位置。又,圖7的雙重實線的圓表示落點位置Q1 、Q2 、Q3 、Q4 ,前述落點位置Q1 、Q2 、Q3 、Q4 是對落點位置P1 、P2 、P3 、P4 再加上了行走所造成的落點位置偏移後的位置,前述行走所造成的落點位置偏移是由於基板1的行走所產生的偏移。In FIG. 7, the dotted circles in the figure indicate the hole positions n 1 , n 2 , n 3 , and n 4 of the droplet ejection nozzles in the inkjet head 8. In addition, the solid-line circles indicate the landing positions P 1 , P 2 , P 3 , and P 4. The aforementioned landing positions P 1 , P 2 , P 3 , and P 4 are due to the droplets discharged from the droplet discharge nozzle The discharge angle tends to cause a position shifted when it reaches the substrate 1. In addition, the double solid-line circle in FIG. 7 represents the drop point positions Q 1 , Q 2 , Q 3 , and Q 4 , and the aforementioned drop point positions Q 1 , Q 2 , Q 3 , and Q 4 are the opposite drop point positions P 1 , P 2. P 3 and P 4 are added to the position after the landing position offset caused by walking. The landing position offset caused by the aforementioned walking is the offset caused by the walking of the substrate 1.

另外,在圖7中,為了使噴墨頭8的Y方向的液滴間距符合於塗佈目標部1d的塗佈目標間距W0 ,而將旋轉角度定位至0度,前述旋轉角度是噴墨頭8的旋轉軸繞著以黑圓圈所示的旋轉中心O的旋轉角度。 (落點位置偏移特性的算出)In addition, in FIG. 7, in order to make the droplet pitch in the Y direction of the inkjet head 8 match the coating target pitch W 0 of the coating target portion 1d, the rotation angle is positioned to 0 degrees, and the aforementioned rotation angle is inkjet The rotation axis of the head 8 has a rotation angle around the rotation center O shown by a black circle. (Calculation of the offset characteristic of the landing position)

接著,針對算出噴墨印刷裝置40從噴墨頭8吐出了液滴時所產生的落點位置偏移的特性(以下,簡稱為「落點位置偏移特性」)的方法,使用圖8A到圖8E來說明。Next, for the method of calculating the characteristic of the landing position shift (hereinafter referred to as "the landing position shift characteristic") that occurs when the inkjet printing device 40 ejects droplets from the inkjet head 8, FIGS. 8A to 8 are used. Figure 8E to illustrate.

圖8A是說明在圖7的狀態下,亦即,在塗佈對象物以速度V行走的情況下,噴墨頭的旋轉角度為0度時,所吐出的液滴之落點位置與塗佈對象物的塗佈目標部1d在Y方向上的位置偏移量的平面圖。Fig. 8A is a diagram illustrating the position of the ejected droplets and the coating position when the rotation angle of the inkjet head is 0 degrees in the state of Fig. 7, that is, when the coating object is traveling at a speed V. A plan view of the amount of positional deviation in the Y direction of the application target portion 1d of the object.

另外,在圖8A中,是將液滴之落點位置Q1 、Q2 、Q3 、Q4 在Y方向上的位置與塗佈目標部1d的中心軸在Y方向上的距離,各自以ΔY10 、ΔY20 、ΔY30 、ΔY40 來表示。In addition, in Figure 8A, the droplet landing positions Q 1 , Q 2 , Q 3 , Q 4 in the Y direction and the center axis of the coating target portion 1d in the Y direction, each with ΔY 10 , ΔY 20 , ΔY 30 , and ΔY 40 are expressed.

亦即,關於噴墨頭8與基板1在Y方向上的對位,是對位成使得ΔY10 、ΔY20 、ΔY30 、ΔY40 的總誤差成為最小。That is, regarding the alignment of the inkjet head 8 and the substrate 1 in the Y direction, the alignment is such that the total error of ΔY 10 , ΔY 20 , ΔY 30 , and ΔY 40 is minimized.

又,圖8B是說明在圖7的狀態下,亦即,在塗佈對象物以速度V行走的情況下,噴墨頭8的旋轉角度為0度時,所吐出的液滴之落點位置與Y軸在X方向上的距離的平面圖。8B is a description of the state of FIG. 7, that is, when the coated object is traveling at a speed V, and the rotation angle of the inkjet head 8 is 0 degrees, the landing position of the discharged droplets A plan view of the distance from the Y axis in the X direction.

另外,在圖8B中,是將液滴之落點位置Q1 、Q2 、Q3 ,Q4 與Y軸在X方向上的距離,各自以X1S0 、X2S0 、X3S0 、X4S0 來表示。Further, in FIG. 8B, the liquid droplet landing position is Q 1, Q 2, Q 3 , Q 4 and Y-axis distance in the X direction, each in X 1S0, X 2S0, X 3S0 , X 4S0 to Express.

又,圖8C是顯示已將相當於X方向的距離即X1S0 、X2S0 、X3S0 、X4S0 的吐出時機修正的情況下之落點位置。亦即,如圖8C所示,藉由調整吐出時機的修正,可以將液滴從全部的液滴吐出噴嘴吐出而到達基板1的落點位置幾乎對準於Y軸(包含Y軸)上來印刷。以下,將這種印刷圖案設為「第1印刷圖案」。And, FIG. 8C is a graph showing the X-direction have a distance that is equivalent to X 1S0, X 2S0, X 3S0 , X 4S0 landing position under the discharge timing correction case. That is, as shown in FIG. 8C, by adjusting the ejection timing correction, the droplets can be ejected from all the droplet ejection nozzles to reach the substrate 1 and the landing position is almost aligned on the Y axis (including the Y axis) for printing. . Hereinafter, this kind of printing pattern is referred to as the "first printing pattern".

並且,圖8D是顯示在上述狀態下,已印刷於基板1的落點測定區域1f及塗佈目標部1d的情況下的液滴之落點位置。以下,將這種印刷設為「第1印刷步驟」。在此,在圖8D中,是將塗佈目標部1d中的液滴以雙圓圈來表示。但是,實際上,塗佈目標部1d具有親水性。因此,已落點於塗佈目標部1d的液滴變得會在塗佈目標部1d內擴散。另一方面,落點測定區域1f具有撥液性。因此,如以圖8D所示,已落點於落點測定區域1f的液滴便會在圍繞落點測定區域1f的圓圈中成為圓形形狀。In addition, FIG. 8D shows the landing position of the droplet when it has been printed on the landing measurement area 1f and the application target portion 1d of the substrate 1 in the above-mentioned state. Hereinafter, this printing is referred to as the "first printing step". Here, in FIG. 8D, the droplets in the application target portion 1d are represented by double circles. However, actually, the application target portion 1d has hydrophilicity. Therefore, the droplets that have landed on the application target portion 1d become diffused in the application target portion 1d. On the other hand, the drop point measurement area 1f has liquid repellency. Therefore, as shown in FIG. 8D, the droplet that has landed on the landing point measurement area 1f becomes a circular shape in a circle surrounding the landing point measurement area 1f.

此外,圖8E是與圖8D的平面圖一起顯示之圖8D中的A部的放大圖。In addition, FIG. 8E is an enlarged view of part A in FIG. 8D displayed together with the plan view of FIG. 8D.

在上述狀態中,將圖8E的落點測定區域1f以對準相機21來拍攝,並進行圖像處理。並且,檢測塗佈目標間距W0 的落點測定區域1f的圓圈與落點測定區域1f內的液滴的圓圈在Y方向上的位置偏移ΔYi0 以及在X方向上的位置偏移ΔXi0 (i=1,2,3,4)。藉此,可以正確地測定液滴之落點位置偏移。以下,將這種測定設為「第1落點位置偏移檢測步驟」。In the above state, the impact measurement area 1f of FIG. 8E is shot with the camera 21 aimed at, and image processing is performed. In addition, the Y-direction positional deviation ΔY i0 between the circle of the landing measurement area 1f of the coating target distance W 0 and the circle of the droplet in the landing measurement area 1f and the positional deviation ΔX i0 in the X-direction are detected. (i=1, 2, 3, 4). In this way, it is possible to accurately measure the positional deviation of the droplet's landing point. Hereinafter, this measurement will be referred to as the "first landing point position shift detection step".

其結果,從上述的落點測定區域1f中的液滴之落點位置偏移的測定結果ΔXi0 及ΔYi0 、與藉由圖8C的吐出時機的修正而移位的修正量XiS0 ,便可以正確地算出不進行吐出時機的修正的情況下之落點位置。以下,將這種算出步驟設為「第1落點位置算出步驟」。並且,將所算出的落點位置資料設為「第1落點位置資料」。 As a result, the measurement results ΔX i0 and ΔY i0 , which are shifted from the drop position of the droplet in the above-mentioned landing measurement area 1f, and the correction amount X iS0 shifted by the correction of the discharge timing of FIG. 8C, are It is possible to accurately calculate the position of the landing point without correcting the discharge timing. Hereinafter, this calculation step is referred to as the "first landing position calculation step". In addition, the calculated landing position data is set as the "first landing position data".

接著,針對在塗佈目標部1d的塗佈目標間距為比W0 更小的W1 的情況下,為了使液滴間距符合於W1 ,而使噴墨頭8繞著旋轉軸即旋轉中心O旋轉θ度來塗佈的情狀,使用圖9A到圖9E來說明。Next, in the case where the coating target pitch of the coating target portion 1d is W 1 smaller than W 0 , in order to make the droplet pitch match W 1 , the inkjet head 8 is moved around the axis of rotation, that is, the center of rotation. The situation of O rotated by θ degrees for coating will be explained using FIGS. 9A to 9E.

圖9A是說明在塗佈對象物以速度V行走的情況下,將噴墨頭8設為第2旋轉角度(在此,旋轉角度θ度)時所吐出的液滴之落點位置與塗佈對象物的塗佈目標部1d在Y方向上的位置偏移量的平面圖。另外,在圖9A中,是將液滴之落點位置Q1 、Q2 、Q3 、Q4 在Y方向上的位置與塗佈目標部1d的中心軸在Y方向上的距離,各自以ΔY 、ΔY 、ΔY 、ΔY 來表示。9A is a diagram illustrating the position and application of the droplets discharged when the inkjet head 8 is set to the second rotation angle (here, the rotation angle θ degrees) when the coating object is traveling at a speed V A plan view of the amount of positional deviation in the Y direction of the application target portion 1d of the object. In addition, in FIG. 9A, the droplet landing positions Q 1 , Q 2 , Q 3 , Q 4 in the Y direction and the center axis of the coating target portion 1d in the Y direction, each with ΔY , ΔY , ΔY , and ΔY are expressed.

並且,在噴墨頭8與基板1在Y方向上的對位中,是對位成使得ΔY 、ΔY 、ΔY 、ΔY 的總誤差成為最小。In addition, in the alignment of the inkjet head 8 and the substrate 1 in the Y direction, the alignment is such that the total error of ΔY 1θ , ΔY , ΔY , and ΔY 4θ is minimized.

圖9B是說明在圖9A的狀態下,亦即,在塗佈對象物以速度V行走的情況下,噴墨頭8的旋轉角度為θ度時,所吐出的液滴之落點位置與Y軸在X方向上的距離的平面圖。9B is a diagram illustrating the position of the drop point and Y of the ejected droplet when the rotation angle of the inkjet head 8 is θ degrees in the state of FIG. Plan view of the distance of the axis in the X direction.

另外,在圖9B中,是將液滴之落點位置Q1 、Q2 、Q3 ,Q4 與Y軸在X方向上的距離,各自以X1Sθ 、X2Sθ 、X3Sθ 、X4Sθ 來表示。In addition, in FIG. 9B, the droplet landing positions Q 1 , Q 2 , Q 3 , and the distance between Q 4 and the Y axis in the X direction are taken as X 1Sθ , X 2Sθ , X 3Sθ , X 4Sθ Express.

又,圖9C是顯示已將圖9B所示的相當於X方向的距離X1Sθ 、X2Sθ 、X3Sθ 、X4Sθ 的吐出時機修正的情況下的液滴之落點位置。亦即,如圖9C所示,藉由調整吐出時機,可以將從全部的液滴吐出噴嘴吐出而到達基板1的液滴之落點位置幾乎對準於Y軸上(包含Y軸上)。以下,將這種印刷圖案設為「第2印刷圖案」。In addition, FIG. 9C shows the droplet landing position when the ejection timing of the distances X 1Sθ , X 2Sθ , X 3Sθ , and X 4Sθ corresponding to the X direction shown in FIG. 9B has been corrected. That is, as shown in FIG. 9C, by adjusting the ejection timing, the landing positions of the droplets ejected from all the droplet ejection nozzles and reach the substrate 1 can be almost aligned on the Y axis (including the Y axis). Hereinafter, this printing pattern is referred to as the "second printing pattern".

圖9D是顯示在圖9C的狀態下,已印刷於基板1的落點測定區域1f及塗佈目標部1d的情況下的液滴之落點位置。以下,將這種印刷設為「第2印刷步驟」。另外,在圖9D中,是將塗佈目標部1d中的液滴以雙圓圈來表示。但是,實際上,塗佈目標部1d具有親水性。因此,已落點於塗佈目標部1d的液滴變得會擴散。另一方面,落點測定區域1f具有撥液性。因此,如以圖9D所示,已落點於落點測定區域1f的液滴便會在圍繞落點測定區域1f的圓圈中成為圓形形狀。FIG. 9D shows the landing position of the droplet in the case where the landing point measurement area 1f and the application target portion 1d of the substrate 1 have been printed in the state of FIG. 9C. Hereinafter, this printing is referred to as the "second printing step". In addition, in FIG. 9D, the droplets in the application target portion 1d are represented by double circles. However, actually, the application target portion 1d has hydrophilicity. Therefore, the droplets that have landed on the application target portion 1d become diffused. On the other hand, the drop point measurement area 1f has liquid repellency. Therefore, as shown in FIG. 9D, the droplet that has landed on the landing point measurement area 1f becomes a circular shape in a circle surrounding the landing point measurement area 1f.

此外,圖9E是與圖9D的平面圖一起顯示之圖9D中的A部的放大圖。In addition, FIG. 9E is an enlarged view of the portion A in FIG. 9D displayed together with the plan view of FIG. 9D.

在上述狀態中,將圖9E的落點測定區域1f以對準相機21來拍攝,並進行圖像處理。並且,檢測塗佈目標間距W1 的落點測定區域1f的圓圈與落點測定區域1f內的液滴的圓圈在Y方向上的位置偏移ΔY 以及在X方向上的位置偏移ΔX (i=1,2,3,4)。藉此,可以正確地測定液滴之落點位置偏移。以下,將這種測定設為「第2落點位置偏移檢測步驟」。In the above-mentioned state, the impact measurement area 1f of FIG. 9E is captured by aiming at the camera 21, and image processing is performed. And, detecting a target pitch circle coated droplets measured within a circle with the placement region 1f 1f W is the placement of a measurement area ΔY iθ positional deviation in the Y direction and the position in the X direction offset ΔX iθ (i=1, 2, 3, 4). In this way, it is possible to accurately measure the positional deviation of the droplet's landing point. Hereinafter, this measurement will be referred to as the "second step of detecting displacement of the landing position".

其結果,從上述的落點測定區域1f中的液滴之落點位置偏移的測定結果ΔX 及ΔY 、與藉由圖9C的吐出時機的修正而移位的修正量XiSθ ,便可以正確地算出不進行吐出時機的修正的情況下之落點位置。以下,將這種算出步驟設為「第2落點位置算出步驟」。並且,將所算出的落點位置資料設為「第2落點位置資料」。 As a result, the measurement results ΔX iθ and ΔY that deviate from the drop position of the drop in the drop measurement area 1f described above , and the correction amount X iSθ shifted by the correction of the discharge timing of FIG. 9C, are It is possible to accurately calculate the position of the landing point without correcting the discharge timing. Hereinafter, this calculation step is referred to as the "second landing position calculation step". In addition, the calculated landing position data is set as the "second landing position data".

另外,在本實施形態中,是將上述的第1印刷步驟中的噴墨頭8與基板1的相對移動速度、與第2印刷步驟中的噴墨頭8與基板1的相對移動速度設定成相同。In addition, in this embodiment, the relative movement speed of the inkjet head 8 and the substrate 1 in the above-mentioned first printing step and the relative movement speed of the inkjet head 8 and the substrate 1 in the second printing step are set to same.

如以上所述,對於圖8A所示的塗佈目標部1d的塗佈目標間距為W0 的基板、與圖9A所示的塗佈目標部1d的塗佈目標間距為W1 的基板,使噴墨頭8旋轉θ度。藉此,可以將液滴的塗佈目標間距匹配於塗佈目標部的塗佈目標間距來印刷。 As described above, for the substrate with the coating target pitch W 0 of the coating target portion 1d shown in FIG. 8A and the substrate with the coating target pitch W 1 of the coating target portion 1d shown in FIG. 9A, make The inkjet head 8 rotates by θ degrees. Thereby, it is possible to print by matching the coating target pitch of the droplets with the coating target pitch of the coating target portion.

此時,對於不同的塗佈目標部1d的塗佈目標間距,可以正確地測定各自的液滴之落點位置。At this time, for the application target pitches of the different application target portions 1d, the respective droplet landing positions can be accurately measured.

並且,依據上述兩種基板1中的液滴之落點位置的測定結果,對於任意的塗佈目標間距的基板,算出落點偏移成為最小的噴墨頭8的最適當的旋轉角度。藉此,可以在不進行測試印刷的情況下,對於任意的塗佈目標間距的基板,將液滴塗佈於適當的位置。Then, based on the measurement results of the drop positions of the droplets on the above-mentioned two kinds of substrates 1, the most appropriate rotation angle of the inkjet head 8 that minimizes the deviation of the drop points is calculated for a substrate with an arbitrary coating target pitch. With this, it is possible to apply droplets to an appropriate position on a substrate of an arbitrary coating target pitch without performing test printing.

以下,針對上述方法,使用圖11來說明。Hereinafter, the above-mentioned method will be explained using FIG. 11.

圖11是顯示對於噴墨頭8內的1個噴嘴,在繞著頭的旋轉中心O的旋轉角度為0(零)度時,與使其從該處旋轉了θ度的情況下,各自的液滴之落點位置的關係的圖。在此,將頭的旋轉中心O的X座標設為δx、Y座標設為δy。又,將旋轉角度為0度時之落點位置設為Q0 ,並將Q0 的X座標設為Xa、Y座標設為Ya,來標記為Q0 (Xa、Ya)。另一方面,將旋轉角度為θ度時之落點位置設為Qθ ,並將Qθ 的X座標設為Xb、Y座標設為Yb,來標記為Qθ (Xb、Yb)。此外,將基板1的行走所造成的液滴之落點位置在X方向上的位置偏移設為ΔXVFIG. 11 is a diagram showing that for one nozzle in the inkjet head 8, when the rotation angle around the rotation center O of the head is 0 (zero) degrees, and when it is rotated by θ degrees therefrom, the respective A graph showing the relationship between the drop point positions. Here, the X coordinate of the rotation center O of the head is set to δx, and the Y coordinate is set to δy. In addition, the position of the landing point when the rotation angle is 0 degrees is set to Q 0 , the X coordinate of Q 0 is set to Xa, and the Y coordinate is set to Ya, which is marked as Q 0 (Xa, Ya). On the other hand, the position of the landing point when the rotation angle is θ degrees is Q θ , and the X coordinate of Q θ is set to Xb and the Y coordinate is set to Yb, which is denoted as Q θ (Xb, Yb). In addition, the positional deviation in the X direction of the droplet landing position caused by the traveling of the substrate 1 is set to ΔX V.

亦即,在塗佈於行走的基板1的情況下,從噴墨頭8所吐出並落點於基板1上的液滴之落點位置偏移會成為:對從液滴吐出噴嘴吐出液滴時的吐出角度傾向所造成的落點位置偏移加上了基板1的行走所造成的落點位置偏移後的值。此時,如上述,吐出角度傾向所造成的落點位置偏移會與噴墨頭8的旋轉一起旋轉。另一方面,基板1的行走所造成的落點位置偏移並非取決於噴墨頭8的旋轉,而是由基板1的行走方向來決定。亦即,僅由噴墨頭8的旋轉角度0度及θ度各自的吐出角度傾向所造成的落點位置P0 、Pθ 各自會是:P0 的X座標成為Xa-ΔXV 、Y座標成為Ya;Pθ 的X座標成為Xb-ΔXV 、Y座標成為Yb。That is, in the case of coating on the traveling substrate 1, the position of the droplet ejected from the inkjet head 8 and landed on the substrate 1 will be offset as follows: The offset of the landing position caused by the tendency of the discharge angle at the time is added to the offset of the landing position caused by the walking of the substrate 1. At this time, as described above, the displacement of the landing position caused by the tendency of the ejection angle rotates together with the rotation of the inkjet head 8. On the other hand, the displacement of the landing position caused by the traveling of the substrate 1 does not depend on the rotation of the inkjet head 8 but is determined by the traveling direction of the substrate 1. That is, the landing positions P 0 and P θ caused by the respective ejection angle tendencies of the rotation angle of the inkjet head 8 at 0 degrees and θ degrees will each be: the X coordinate of P 0 becomes Xa-ΔX V , the Y coordinate It becomes Ya; the X coordinate of P θ becomes Xb-ΔX V , and the Y coordinate becomes Yb.

並且,落點位置Pθ 相當於將落點位置P0 繞著頭旋轉軸即旋轉中心O旋轉θ度後的位置。因此,落點位置Pθ 的點與落點位置P0 的點之關係可以依據座標的旋轉的算式,表示成如以下所示的式(1)、式(2)。

Figure 02_image001
In addition, the landing position P θ corresponds to a position obtained by rotating the landing position P 0 about the head rotation axis, that is, the rotation center O by θ degrees. Therefore, the relationship between the point of the landing position P θ and the point of the landing position P 0 can be expressed as the following formulas (1) and (2) based on the calculation formula of the rotation of the coordinates.
Figure 02_image001

又,藉由上述式(1)、式(2),噴墨頭8的旋轉軸的Y座標δy與基板1的行走所造成的位置偏移ΔXV 可以如式(3)、式(4)來求出。另外,關於噴墨頭8的旋轉軸的X軸座標δx,則需要另外量測。關於其量測方法將在後面說明。

Figure 02_image003
Moreover, by the above formulas (1) and (2), the positional deviation ΔX V caused by the Y coordinate δy of the rotation axis of the inkjet head 8 and the travel of the substrate 1 can be as shown in formulas (3) and (4) Come to find out. In addition, the X-axis coordinate δx of the rotation axis of the inkjet head 8 needs to be measured separately. The measurement method will be described later.
Figure 02_image003

如以上所述,在事前求出噴墨頭8的頭的旋轉中心O的X座標δx。並且,在一邊使基板1以速度V行走一邊印刷的方式中,量測噴墨頭8的頭的旋轉角度為0度(第1旋轉角度)與θ度(第2旋轉角度)的兩種角度下之落點位置Q0 (Xa、Ya)(第1落點位置資料)、Qθ (Xb,Yb)(第2落點位置資料)。藉此,可以求出基板1的行走所造成的液滴之落點位置偏移ΔXV 。此外,只要可以求出落點位置偏移ΔXV 的話,就可以求出吐出角度傾向所造成的落點位置偏移。以下,將這種算出步驟設為「落點位置偏移特性算出步驟」。As described above, the X coordinate δx of the head rotation center O of the inkjet head 8 is obtained in advance. In addition, in the method of printing while moving the substrate 1 at a speed V, the rotation angle of the inkjet head 8 is measured as two angles of 0 degrees (first rotation angle) and θ degrees (second rotation angle) The lower landing position Q 0 (Xa, Ya) (the first landing position data), Q θ (Xb, Yb) (the second landing position data). In this way, it is possible to obtain the positional deviation ΔX V of the drop point caused by the traveling of the substrate 1. In addition, as long as the impact position deviation ΔX V can be obtained, the impact position deviation due to the inclination of the discharge angle can be obtained. Hereinafter, such a calculation step is referred to as a "drop point position deviation characteristic calculation step".

與藉由上述方法所算出的落點位置偏移特性相關的資料是作為顯示所使用的噴墨頭8之固有特性的資料而儲存於記憶部110。The data related to the characteristic of the landing position offset calculated by the above-mentioned method is stored in the memory 110 as data showing the inherent characteristics of the inkjet head 8 used.

另外,用於算出落點位置偏移特性的液滴吐出動作例如是在印刷塗佈目標部1d時,一起對落點測定區域1f塗佈液滴。並且,可以藉由量測落點測定區域1f內的液滴之落點位置偏移來實施。 (印刷執行時的動作)In addition, the droplet ejection operation for calculating the landing position deviation characteristic is, for example, when the landing point measurement area 1f is applied with the droplets at the time of printing and coating the target portion 1d. In addition, it can be implemented by measuring the displacement of the drop point of the drop in the drop point measurement area 1f. (Operation at the time of printing execution)

噴墨印刷裝置40的運算部120利用以上述方法所算出的落點位置偏移特性,來求出印刷執行時的噴墨頭8的目標旋轉角度。此外,運算部120生成與目標旋轉角度對應的印刷圖案。The calculation unit 120 of the inkjet printing device 40 uses the landing position offset characteristics calculated by the above-mentioned method to obtain the target rotation angle of the inkjet head 8 when printing is performed. In addition, the computing unit 120 generates a print pattern corresponding to the target rotation angle.

另外,在本實施形態中,在從噴墨頭8的各液滴吐出噴嘴已吐出液滴時,將塗佈對象物的塗佈目標部1d中的位置偏移成為最小的旋轉角度設成印刷執行時的噴墨頭8的目標旋轉角度。In addition, in the present embodiment, when the droplets are discharged from the respective droplet discharge nozzles of the inkjet head 8, the rotation angle at which the positional deviation of the application target portion 1d of the application object becomes the smallest is set as printing The target rotation angle of the inkjet head 8 at the time of execution.

以下,有時會將這種目標旋轉角度稱為「最適當旋轉角度」。此時,目標旋轉角度較理想的是設定成:在從噴墨頭8的各液滴吐出噴嘴已吐出液滴時,塗佈對象物的塗佈目標部1d中的位置偏移成為閾值以下的旋轉角度。Hereinafter, such a target rotation angle may be referred to as the "optimal rotation angle". At this time, the target rotation angle is preferably set so that when the droplets are discharged from the respective droplet discharge nozzles of the inkjet head 8, the positional deviation in the application target portion 1d of the application target becomes less than the threshold value. Rotation angle.

以下,針對在一邊使基板1以速度V行走一邊印刷的方式中,從上述所求出的落點位置偏移特性及噴墨頭8的旋轉中心O(δx、δy)來算出噴墨頭8的任意的第3旋轉角度φ的落點位置的的算出方法,使用圖12來說明。另外,落點位置偏移特性包含:基板1的行走所造成的落點位置偏移ΔXV 、及吐出角度傾向所造成的落點位置偏移。Hereinafter, the inkjet head 8 is calculated from the landing position offset characteristics obtained above and the rotation center O (δx, δy) of the inkjet head 8 in a printing method while the substrate 1 is traveling at a speed V. The method of calculating the impact position of the arbitrary third rotation angle φ will be described with reference to FIG. 12. In addition, the impact position deviation characteristics include the impact position deviation ΔX V caused by the walking of the substrate 1 and the impact position deviation caused by the ejection angle tendency.

圖12是說明噴墨頭8的頭的旋轉角度為0度時與φ度時的液滴之落點位置偏移的圖。FIG. 12 is a diagram illustrating the positional deviation of the droplet landing point when the head rotation angle of the inkjet head 8 is 0 degrees and when φ degrees.

首先,運算部120讀取已記憶於記憶部110的與落點位置偏移特性相關的資料。First, the computing unit 120 reads the data related to the offset characteristic of the landing point that has been stored in the memory unit 110.

接著,運算部120從噴墨頭8的旋轉角度為0度之落點位置Q0 (Xa、Ya)的X座標,扣除行走所造成的落點位置偏移ΔXV 。並且,運算部120求出僅存在吐出角度傾向的情況下的液滴之落點位置P0 (Xa-ΔXV 、Ya)。 Next, the computing unit 120 subtracts the landing position offset ΔX V caused by walking from the X coordinate of the landing position Q 0 (Xa, Ya) where the rotation angle of the inkjet head 8 is 0 degrees. In addition, the calculation unit 120 obtains the landing position P 0 (Xa-ΔX V , Ya) of the droplet when only the ejection angle tends to be present.

接著,運算部120求出僅存在使落點位置P0 點繞著頭的旋轉中心即旋轉中心O旋轉了φ度的吐出角度傾向的情況下的液滴之落點位置Pφ (Xd、Yd)。並且,運算部120對已求出的落點位置Pφ 點的X座標加上基板1的行走所造成的落點位置偏移ΔXV 。藉此,可求出旋轉角度φ的落點位置Qφ (Xe、Ye)。將此以式子來表示的話,落點位置Pφ 點的座標能夠以式(5)、式(6)來表示,落點位置Qφ 點的座標能夠以式(7)、式(8)來表示。以下,將這種計算噴墨頭8的第3旋轉角度φ的落點位置的步驟設為「落點位置預測步驟」。

Figure 02_image005
Next, the arithmetic unit 120 obtains only the presence of the liquid droplet landing position in a case that the placement position P 0 of the first point about the rotational center i.e. a rotation center O of the rotation angle [Phi] of the discharge tendency P φ (Xd, Yd ). In addition, the computing unit 120 adds the impact position offset ΔX V caused by the walking of the substrate 1 to the X coordinate of the found impact position P φ point. In this way, the impact position Q φ (Xe, Ye) of the rotation angle φ can be obtained. If this is expressed by the formula, the coordinates of the landing position P φ can be expressed by formulas (5) and (6), and the coordinates of the landing position Q φ can be expressed by formulas (7) and (8) To represent. Hereinafter, the step of calculating the landing position of the third rotation angle φ of the inkjet head 8 is referred to as the "pointing position prediction step".
Figure 02_image005

此時,運算部120使噴墨頭8的第3旋轉角度φ進行各種變化,並計算複數個第3旋轉角度φ的每一個角度中的液滴之落點位置。At this time, the computing unit 120 changes the third rotation angle φ of the inkjet head 8 in various ways, and calculates the landing position of the droplet for each of the plurality of third rotation angles φ.

接著,運算部120求出從噴墨頭8對於塗佈對象物的塗佈目標部1d進行液滴吐出時的噴墨頭8的最適當旋轉角度φc 。詳細而言,運算部120是依據噴墨頭8的液滴吐出噴嘴的配列間距、及與掃描方向正交的方向上之塗佈對象物的塗佈目標部1d的塗佈目標間距,來求出最適當旋轉角度φc 。具體而言,運算部120首先算出例如與液滴之落點位置偏移相關的評估值,前述液滴之落點位置偏移是噴墨頭8的複數個第3旋轉角度φ度的每一個角度中的液滴之落點位置對於塗佈目標部1d的偏移。並且,運算部120將已算出的評估值作為基準,來求出最適當旋轉角度φc Next, the computing unit 120 obtains the most appropriate rotation angle φ c of the inkjet head 8 when the inkjet head 8 discharges liquid droplets from the inkjet head 8 to the application target portion 1d of the application target object. In detail, the calculation unit 120 is calculated based on the arrangement pitch of the droplet ejection nozzles of the inkjet head 8 and the application target pitch of the application target portion 1d of the application target in the direction orthogonal to the scanning direction. Find the most appropriate rotation angle φ c . Specifically, the arithmetic unit 120 first calculates, for example, an evaluation value related to the positional deviation of the droplet. The positional deviation of the droplet is each of the plurality of third rotation angles φ degrees of the inkjet head 8. The position of the droplet in the angle is shifted from the application target portion 1d. In addition, the calculation unit 120 uses the calculated evaluation value as a reference to obtain the most appropriate rotation angle φ c .

另外,在上述式(7)、式(8)中,顯示了噴墨頭8的旋轉角度φ度的1個液滴吐出噴嘴之落點位置的算式。In addition, in the above-mentioned equations (7) and (8), the calculation equations for the landing position of one droplet ejection nozzle at the rotation angle φ degree of the inkjet head 8 are shown.

在以下,針對設置有複數個液滴吐出噴嘴的噴墨頭8的情況,顯示液滴吐出噴嘴之落點位置的算式。In the following, for the case of the inkjet head 8 provided with a plurality of droplet ejection nozzles, the formula for the landing position of the droplet ejection nozzles is shown.

亦即,將排序i的液滴吐出噴嘴的噴墨頭8的旋轉角度為0度(第1旋轉角度)之落點位置座標設為(Xia 、Yia )、旋轉角度為θ度(第2旋轉角度)之落點位置座標設為(Xib 、Yib )、排序i的噴嘴的行走所造成的位置偏移量設為ΔXiv 。此外,若將旋轉角度φ(第3旋轉角度)之落點位置座標設為(Xie 、Yie )的話,落點位置座標的值便可以表示成如以下的式(9)、式(10)。

Figure 02_image007
That is, let the rotation angle of the inkjet head 8 of the droplet ejection nozzles of sort i be 0 degrees (the first rotation angle) as the landing position coordinates of (X ia , Y ia ), and the rotation angle of θ degrees (the first rotation angle). 2 Rotation angle) The landing position coordinates are set to (X ib , Y ib ), and the position offset caused by the walking of the nozzles of sort i is set to ΔX iv . In addition, if the landing position coordinates of the rotation angle φ (the third rotation angle) are set to (X ie , Y ie ), the value of the landing position coordinates can be expressed as the following equations (9) and (10) ).
Figure 02_image007

在此,排序i的噴嘴的行走所造成的位置偏移量ΔXiv 能夠以式(11)來表示。 Here, the position shift amount ΔX iv caused by the traveling of the nozzles of the sort i can be expressed by equation (11).

並且,若將排序i的液滴吐出噴嘴的塗佈目標部的Y座標設為Yti 、排序i的液滴吐出噴嘴之落點位置的Y座標設為Yie 的話,該差分ΔYi φ 便能夠以式(12)來表示。Also, if the Y coordinate of the application target portion of the droplet ejection nozzle of sort i is set to Y ti and the Y coordinate of the drop point position of the droplet ejection nozzle of sort i is set to Y ie , the difference ΔY i φ is It can be expressed by equation (12).

在此,圖10A到圖10E是顯示上述差分ΔYi φ 及位置偏移量ΔXiv 的關係。另外,圖10A到圖10E中所示的i是顯示1、2、3、4之4個液滴吐出噴嘴。Here, FIGS. 10A to 10E show the relationship between the above-mentioned difference ΔY i φ and the position shift amount ΔX iv. In addition, i shown in FIGS. 10A to 10E shows four droplet ejection nozzles of 1, 2, 3, and 4.

並且,運算部120為了求出噴墨頭8的最適當旋轉角度φc ,會如式(13)所示,將全部的液滴吐出噴嘴的Y方向位置偏移ΔYi φ 的均方值Δt作為評估值來算出。In addition, in order to obtain the most appropriate rotation angle φ c of the inkjet head 8, the computing unit 120 shifts the Y-direction positions of all the droplet ejection nozzles by the mean square value Δt of ΔY i φ as shown in equation (13) Calculate as an evaluation value.

接著,運算部120使旋轉角度φ變化,並計算各個旋轉角度φ時的均方值Δt,來求出均方值Δt為最小的旋轉角度φ的值。並且,均方值Δt為最小的旋轉角度φ會成為噴墨頭8的最適當旋轉角度φc

Figure 02_image009
Next, the computing unit 120 changes the rotation angle φ, calculates the mean square value Δt at each rotation angle φ, and obtains the value of the rotation angle φ at which the mean square value Δt is the smallest. In addition, the rotation angle φ at which the mean square value Δt is the smallest becomes the most appropriate rotation angle φ c of the inkjet head 8.
Figure 02_image009

此外,運算部120藉由式(14)來算出Y方向的偏位(offset)量Δy。偏位量Δy是在基板1與噴墨頭8的對位時,按已算出的偏位量Δy進行偏位,藉此來反映在印刷中。

Figure 02_image011
In addition, the calculation unit 120 calculates the Y-direction offset amount Δy by using Equation (14). The offset amount Δy is offset by the calculated offset amount Δy when the substrate 1 and the inkjet head 8 are aligned, and this is reflected in the printing.
Figure 02_image011

並且,運算部120對於X方向,是將各液滴吐出噴嘴在X方向上的落點位置座標Xie φc 以式(15)算出,並修正相當於-Xie φc 的量的吐出時機。以下,將這種已修正吐出時機的印刷圖案稱為「最適當印刷圖案」。此外,將這種生成步驟稱為「最適當印刷圖案生成步驟」。

Figure 02_image013
Further, the arithmetic unit 120 to the X-direction, is the placement of each droplet ejection nozzle position coordinates X ie φc in the X direction by the formula (15) is calculated, and the correction amount corresponding to the timing of the discharge -X ie φc. Hereinafter, the printed pattern with the corrected discharge timing will be referred to as the "optimal printed pattern". In addition, this generation step is called "the most suitable print pattern generation step".
Figure 02_image013

另外,在已將噴墨頭8的旋轉角度設定成最適當旋轉角度φc 的情況下,各液滴吐出噴嘴在Y方向上的落點位置座標Yie φc 是以式(16)來算出。又,從目標座標起算之Y方向上的位置偏移ΔYie φc 是以式(17)來算出。並且,在考量了Y方向的偏位的情況下,落點位置的Y座標是成為Yie φc -Δy。

Figure 02_image015
Further, the rotation angle of the inkjet head 8 has been set to the most appropriate rotation angle φ c case, the placement of each of the droplet ejection nozzle position coordinates Y ie φc is of formula (16) in the Y direction is calculated. In addition, the positional offset ΔY ie φc in the Y direction from the target coordinates is calculated by equation (17). Further, in consideration of the case where the Y-direction of the deviation, Y coordinates of the deposition point is to be Y ie φc -Δy.
Figure 02_image015

亦即,噴墨印刷裝置40的噴墨頭控制部100將噴墨頭8定位至上述所算出的最適當旋轉角度φc 及Y方向的偏位量Δy,並依據上述的最適當印刷圖案來印刷。藉此,噴墨印刷裝置40能夠以對於塗佈目標部1d的位置偏移成為最小的方式,來進行液滴吐出。That is, the inkjet head control unit 100 of the inkjet printing device 40 positions the inkjet head 8 to the optimum rotation angle φ c calculated above and the offset amount Δy in the Y direction, and performs the above-mentioned optimum printing pattern. print. Thereby, the inkjet printing device 40 can discharge the droplets so that the positional deviation with respect to the application target portion 1d is minimized.

另外,在印刷時,噴墨印刷裝置40是將基板搬送台30控制成:使噴墨頭8與基板1的相對移動速度成為和上述第1印刷步驟及第2印刷步驟中的速度相同。In addition, during printing, the inkjet printing device 40 controls the substrate transport table 30 so that the relative movement speed of the inkjet head 8 and the substrate 1 becomes the same as the speed in the first printing step and the second printing step described above.

將以上的狀態顯示於圖10B到圖10E。The above state is shown in Fig. 10B to Fig. 10E.

圖10B是顯示在已將噴墨頭8的頭旋轉角度設定成上述所求出的最適當旋轉角度φc 的情況下,1、2、3、4號的各液滴吐出噴嘴之落點位置與Y軸之間的X方向距離的圖。10B shows the position of the droplet ejection nozzles of No. 1, 2, 3, and 4 when the head rotation angle of the inkjet head 8 has been set to the optimum rotation angle φ c obtained above. The graph of the distance in the X direction from the Y axis.

圖10C是顯示和圖10B的各液滴吐出噴嘴之落點位置與Y軸之間的X方向距離相符的吐出時機已修正的情況下之落點位置的圖。亦即,如圖10C所示,若將吐出時機修正恰好-XieΦc 的話,各液滴吐出噴嘴之落點位置便會重疊於Y軸上,前述-XieΦc 是在以上述式(15)計算出的量的相反方向。FIG. 10C is a diagram showing the landing position when the discharge timing corresponding to the X-direction distance between the landing position of each droplet discharge nozzle of FIG. 10B and the Y axis has been corrected. That is, as shown in Fig. 10C, if the ejection timing is corrected to exactly -X ieΦc , the landing position of each droplet ejection nozzle will overlap on the Y axis. The aforementioned -X ieΦc is calculated by the above equation (15) The opposite direction of the amount of output.

並且,圖10D是顯示在上述的狀態下,對基板1塗佈液滴的圖。In addition, FIG. 10D is a diagram showing that a droplet is applied to the substrate 1 in the above-mentioned state.

如圖10D所示,藉由將噴墨頭8的旋轉角度設定成最適當旋轉角度φc ,各液滴吐出噴嘴的落點位置與塗佈目標位置的位置偏移便會成為最小。As shown in FIG. 10D, by setting the rotation angle of the inkjet head 8 to the optimum rotation angle φ c , the positional deviation between the landing position of each droplet ejection nozzle and the application target position is minimized.

此外,圖10E是與圖10D的平面圖一起顯示之實際已塗佈時的落點測定區域1f中的落點位置的放大圖。另外,在圖10E中,顯示從第3及第4液滴吐出噴嘴吐出的液滴在落點測定區域中的落點位置。從圖10E可知,與實際已落點的液滴在X方向上的目標位置之間的位置偏移量ΔX3 φc 、ΔX4 φc 幾乎成為目標位置。In addition, FIG. 10E is an enlarged view of the drop point position in the drop point measurement area 1f when it is actually applied, which is displayed together with the plan view of FIG. 10D. In addition, in FIG. 10E, the landing positions of the droplets discharged from the third and fourth droplet discharge nozzles in the landing point measurement area are displayed. It can be seen from FIG. 10E that the positional deviation amounts ΔX 3 φc and ΔX 4 φc from the target position in the X direction of the actually dropped droplet almost become the target position.

另外,在想更逼近上述位置偏移量ΔX3 φc 、ΔX4 φc 的情況下,可實施和此位置偏移量相符的吐出時機的修正。藉此,可以將位置偏移量ΔX3 φc 、ΔX4 φc 更加縮小。 (針對噴墨頭的旋轉中心的座標的求法)In addition, when it is desired to get closer to the above-mentioned positional deviation amounts ΔX 3 φc and ΔX 4 φc , the discharge timing can be corrected according to the positional deviation amount. Thereby, the positional deviation amounts ΔX 3 φc and ΔX 4 φc can be further reduced. (How to find the coordinates of the rotation center of the inkjet head)

接著,針對噴墨頭8的旋轉中心O(δx、δy)的座標的求法,使用圖13來說明。Next, how to obtain the coordinates of the rotation center O (δx, δy) of the inkjet head 8 will be described using FIG. 13.

圖13是說明在塗佈對象物停止中的情況下,噴墨頭8在旋轉θ度前後的液滴之落點位置的平面圖。FIG. 13 is a plan view illustrating the position of the droplet of the inkjet head 8 before and after the rotation of θ degrees when the application target is stopped.

此時,由於印刷對象物停止中,所以不會產生行走所造成的位置偏移,只會產生來自液滴吐出噴嘴的吐出角度傾向所造成的位置偏移。亦即,若將旋轉前之落點位置設為P0V0 (XaV0 、YaV0 )、旋轉θ度後之落點位置設為PθV0 (XbV0 、YbV0 )的話,落點位置PθV0 便相當於將落點位置P0V0 繞著旋轉中心O旋轉θ度後的位置。因此,該座標的關係能夠以以下的式(18)、式(19)來表示。

Figure 02_image017
At this time, since the printing target is stopped, there will be no positional deviation due to walking, but only positional deviation due to the tendency of the ejection angle from the droplet ejection nozzle. That is, if the landing position before rotation is set to P 0V0 (Xa V0 , Ya V0 ), and the landing position after rotation θ degrees is set to P θV0 (Xb V0 , Yb V0 ), the landing position P θV0 is This corresponds to the position where the landing position P 0V0 is rotated by θ degrees around the rotation center O. Therefore, the relationship of the coordinates can be expressed by the following equations (18) and (19).
Figure 02_image017

並且,若從上述式(18)、式(19)求出噴墨頭8的旋轉中心O的座標(δx、δy)的話,就會變成如式(20)、式(21)。

Figure 02_image019
In addition, if the coordinates (δx, δy) of the rotation center O of the inkjet head 8 are obtained from the above-mentioned formulas (18) and (19), it becomes as shown in the formulas (20) and (21).
Figure 02_image019

另外,特定出噴墨頭8的旋轉中心O的座標之作業只要是在將噴墨頭8安裝於頭旋轉機構10時,在最初僅實施1次即可。另外,上述作業雖然沒有必要使用全部的液滴吐出噴嘴,但較理想的是例如以噴墨頭8的兩端附近之拉開距離的2個液滴吐出噴嘴,選擇吐出再現性高的噴嘴來實施。In addition, the task of specifying the coordinates of the rotation center O of the inkjet head 8 may be performed only once at the beginning when the inkjet head 8 is mounted on the head rotation mechanism 10. In addition, although it is not necessary to use all the droplet ejection nozzles for the above operation, it is preferable to select a nozzle with high ejection reproducibility by using two droplet ejection nozzles separated by a distance near both ends of the inkjet head 8. Implement.

如以上所述,依據本實施形態的噴墨印刷裝置40,首先依據落點位置偏移來算出落點位置偏移特性,前述落點位置偏移是噴墨頭8在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從噴墨頭8所吐出的液滴的從目標位置起算之落點位置偏移。並且,變得可以依據所算出的落點位置偏移特性,對於任意的塗佈目標間距的塗佈目標部1d,在不進行測試印刷的情況下,設定噴墨頭8的最適當的頭旋轉量來印刷。As described above, according to the inkjet printing device 40 of the present embodiment, the landing position deviation characteristic is first calculated based on the landing position deviation. For each of the angle and the second angle of rotation, the droplet discharged from the inkjet head 8 is shifted from the target position of the landing position. In addition, it becomes possible to set the most appropriate head rotation of the inkjet head 8 for the coating target portion 1d of any coating target pitch based on the calculated landing position offset characteristics without performing test printing. Quantity to be printed.

上述方法可以藉由在實際印刷塗佈目標部1d時,同時對落點測定區域1f塗佈液滴,並量測落點測定區域1f內的落點位置偏移來實施。因此,會在塗佈目標間距W0 的基板1、及塗佈目標間距W1 的基板1的生產中,量測落點位置偏移。並且,依據落點位置偏移的量測結果,對於任意的塗佈目標間距的基板1,以落點位置偏移成為最小的方式,來設定噴墨頭8的液滴吐出頭的旋轉角度。其結果,依據本實施形態的噴墨印刷裝置40,即便是有必要將液滴吐出噴嘴的吐出角度傾向所造成的落點位置偏移也納入考量的高精細的印刷,也可以一邊將測試印刷等降低運作率的步驟抑制到最小限度,一邊進行高精度的印刷。The above method can be implemented by applying droplets to the landing point measurement area 1f while actually printing the coating target portion 1d, and measuring the offset of the landing point position in the landing point measurement area 1f. Therefore, in the production of the substrate 1 coated with the target pitch W 0 and the substrate 1 coated with the target pitch W 1 , the displacement of the landing point position will be measured. In addition, based on the measurement result of the landing position deviation, the rotation angle of the droplet ejection head of the inkjet head 8 is set so that the landing position deviation is minimized for the substrate 1 of an arbitrary coating target pitch. As a result, according to the inkjet printing device 40 of this embodiment, even if it is necessary to take into account the displacement of the landing position caused by the ejection angle tendency of the droplet ejection nozzles, it is possible to perform test printing at the same time. Steps such as reducing the operating rate are suppressed to a minimum while performing high-precision printing.

如以上所述,依據本實施形態的噴墨印刷裝置40,可以在不使用用於測定落點傾向的特別基板的情況下,以實際生產基板來進行液滴的落點傾向的測定。並且,可以依據測定到的結果,對於任意的塗佈目標間距的基板,在不進行測試印刷的情況下,正確地對基板塗佈液滴。其結果,運作率提高,且可以進行高精細的顯示面板的印刷。As described above, according to the inkjet printing apparatus 40 of the present embodiment, it is possible to measure the droplet droplet tendency by actually producing the substrate without using a special substrate for measuring the droplet tendency. In addition, based on the measured results, it is possible to accurately apply liquid droplets to the substrate without performing test printing for a substrate of an arbitrary coating target pitch. As a result, the operation rate is improved, and high-definition display panel printing can be performed.

1:基板 1a:機材 1b:對準標示 1c:堤部 1d:塗佈目標部 1e:測試印刷區域 1f:落點測定區域 1g:塗佈區域 2:基板吸附台 3:基板旋轉機構 4:基板搬送滑件 5:基板用導軌 6:基板搬送用線性馬達 7:基板搬送位置檢測部 8:噴墨頭 9:頭托架 10:頭旋轉機構 11:托架 12:頭單元移載用滑件 13:頭單元移載用導軌 14:頭單元移載用線性馬達 15:頭單元移載用位置檢測部 16:支撐部 17:平台 18:架台 21:相機 22:頭單元基座 23:噴墨頭部 30:基板搬送台 32:頭單元 33:頭單元移載台 40:噴墨印刷裝置 100:噴墨頭控制部 101:塗佈對象部 108:噴墨頭 110:記憶部 117:液滴吐出噴嘴 118:液滴 119:基板 120:運算部 G:距離 L:間距 n1 ,n2 ,n3 ,n4 :孔位置 O:旋轉中心 P0 ,Pθ ,Pφ ,P1 ,P2 ,P3 ,P4 ,PθV0 ,P0V0 ,Q0 ,Qθ ,Qφ ,Q1 ,Q2 ,Q3 ,Q4 :落點位置 V:速度 W0 ,W1 ,W2 :塗佈目標間距 X,Y,Z:方向 θ,φ:旋轉角度 φc :最適當旋轉角度 Δt:均方值 δx,Xa,Xb,Xd,Xe,XaV0 ,XbV0 :X座標 ΔXV ,ΔXi0 ,ΔX30 ,ΔX40 ,ΔX ,ΔX ,ΔX :X方向上的位置偏移 XiS0 ,XiSθ :修正量 X1S0 ,X2S0 ,X3S0 ,X4S0 ,X1Sθ ,X2Sθ , X3Sθ , X4Sθ :X方向上的距離 Xia ,Xib ,Xie ,Xie φc ,X1e φc ,X2e φc ,X3e φc ,X4e φc :X方向上的落點位置座標 ΔXiv ,ΔX1v ,ΔX2v ,ΔX3v ,ΔX4v ,ΔX3 φc ,ΔX4 φc :位置偏移量 δy,Ya,Yb,Yd,Ye,YaV0 ,YbV0 ,Yti :Y座標 Yia ,Yib ,Yie ,Yie φc :Y方向上的落點位置座標 ΔYi0 ,ΔY10 ,ΔY20 ,ΔY30 ,ΔY40 ,ΔY ,ΔY ,ΔY ,ΔY ,ΔY :Y方向上的位置偏移 ΔYi φ ,ΔY1 φ ,ΔY2 φ ,ΔY3 φ ,ΔY4 φ :差分 S1~S10:步驟1: Substrate 1a: Machine material 1b: Alignment mark 1c: Embankment 1d: Coating target portion 1e: Test printing area 1f: Falling point measurement area 1g: Coating area 2: Substrate suction table 3: Substrate rotation mechanism 4: Substrate Transport slider 5: Board guide rail 6: Linear motor for substrate transport 7: Substrate transport position detection unit 8: Inkjet head 9: Head carriage 10: Head rotation mechanism 11: Carriage 12: Slider for head unit transfer 13: Guide rail for head unit transfer 14: Linear motor for head unit transfer 15: Position detection part for head unit transfer 16: Support part 17: Platform 18: Stage 21: Camera 22: Head unit base 23: Inkjet Head 30: substrate transfer table 32: head unit 33: head unit transfer table 40: inkjet printing device 100: inkjet head control section 101: application target section 108: inkjet head 110: memory section 117: droplets Discharge nozzle 118: droplet 119: substrate 120: calculation section G: distance L: pitch n 1 , n 2 , n 3 , n 4 : hole position O: rotation center P 0 , P θ , P φ , P 1 , P 2 , P 3 , P 4 , P θV0 , P 0V0 , Q 0 , Q θ , Q φ , Q 1 , Q 2 , Q 3 , Q 4 : Fall position V: Speed W 0 , W 1 , W 2 : Coating target spacing X, Y, Z: direction θ, φ: rotation angle φ c : optimal rotation angle Δt: mean square value δx, Xa, Xb, Xd, Xe, Xa V0 , Xb V0 : X coordinate ΔX V , ΔX i0, ΔX 30, ΔX 40 , ΔX iθ, ΔX 3θ, ΔX 4θ: Is0 X position shift in the X direction, X iSθ: correction amount X 1S0, X 2S0, X 3S0 , X 4S0, X 1Sθ, X 2Sθ , X 3Sθ , X 4Sθ : the distance in the X direction X ia , X ib , X ie , X ie φc , X 1e φc , X 2e φc , X 3e φc , X 4e φc : the landing position coordinate ΔX in the X direction iv, ΔX 1v, ΔX 2v, ΔX 3v, ΔX 4v, ΔX 3 φc, ΔX 4 φc: the position shift amount δy, Ya, Yb, Yd, Ye, Ya V0, Yb V0, Y ti: Y coordinate Y ia, Y ib ,Y ie ,Y ie φc : the coordinates of the landing position in the Y direction ΔY i0 , ΔY 10 , ΔY 20 , ΔY 30 , ΔY 40 , ΔY , ΔY , ΔY , ΔY , ΔY : Y direction ΔY i φ , ΔY 1 φ , ΔY 2 φ , ΔY 3 φ , ΔY 4 φ : difference S1~S10: step Sudden

圖1是實施形態之一例的噴墨印刷裝置的立體圖。Fig. 1 is a perspective view of an inkjet printing apparatus as an example of the embodiment.

圖2是顯示實施形態之一例的塗佈對象物的基板的平面圖。Fig. 2 is a plan view showing a substrate of an object to be coated according to an example of the embodiment.

圖3A是說明從噴墨頭所吐出的液滴的吐出角度傾向所造成的落點位置偏移的平面圖。Fig. 3A is a plan view explaining the displacement of the landing position of the droplets discharged from the inkjet head caused by the tendency of the discharge angle of the liquid droplets.

圖3B是說明從噴墨頭所吐出的液滴的吐出角度傾向所造成的落點位置偏移的側面圖。FIG. 3B is a side view explaining the displacement of the landing position caused by the tendency of the ejection angle of the liquid droplets ejected from the inkjet head.

圖4A是說明噴墨頭的旋轉角度為0°時之液滴的吐出角度傾向所造成的落點位置偏移的平面圖。Fig. 4A is a plan view illustrating the displacement of the landing position caused by the droplet ejection angle tendency when the rotation angle of the inkjet head is 0°.

圖4B是說明噴墨頭的旋轉角度為φ度時之液滴的吐出角度傾向所造成的落點位置偏移的平面圖。Fig. 4B is a plan view illustrating the displacement of the landing position caused by the droplet ejection angle tendency when the rotation angle of the inkjet head is φ degrees.

圖5A是說明在塗佈對象物停止中的情況下,從噴墨頭所吐出的液滴之落點位置的平面圖。Fig. 5A is a plan view illustrating the landing position of droplets discharged from the inkjet head when the application target is stopped.

圖5B是說明在塗佈對象物停止中的情況下,從噴墨頭所吐出的液滴之落點位置的側面圖。Fig. 5B is a side view illustrating the landing position of the droplets discharged from the inkjet head when the application target is stopped.

圖6A是說明在塗佈對象物行走中的情況下,從噴墨頭所吐出的液滴之落點位置的平面圖。Fig. 6A is a plan view illustrating the landing position of droplets discharged from the inkjet head when the application target is traveling.

圖6B是說明在塗佈對象物行走中的情況下,從噴墨頭所吐出的液滴之落點位置的側面圖。6B is a side view explaining the landing position of the droplets discharged from the inkjet head when the application target is traveling.

圖7是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為0度時所吐出的液滴之落點位置的平面圖。Fig. 7 is a plan view illustrating the landing position of droplets discharged when the rotation angle of the inkjet head is 0 degrees when the application target is traveling.

圖8A是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為0度時所吐出的液滴之落點位置與塗佈對象物的塗佈目標部之間的Y方向位置偏移量的平面圖。Fig. 8A illustrates the Y-direction positional deviation between the landing position of the ejected droplets and the coating target portion of the coating target when the rotation angle of the inkjet head is 0 degrees when the coating target is walking The plan view of the displacement.

圖8B是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為0度時所吐出的液滴之落點位置與Y軸之間的X方向距離的平面圖。FIG. 8B is a plan view illustrating the distance in the X direction between the landing position of the droplet discharged and the Y axis when the rotation angle of the inkjet head is 0 degrees when the application target is traveling.

圖8C是說明在塗佈對象物行走的情況下,已將吐出時機修正成噴墨頭的旋轉角度為0度時之落點位置成為在Y軸上的情況下之落點位置的平面圖。FIG. 8C is a plan view illustrating the landing position when the ejection timing is corrected so that the rotation angle of the inkjet head is 0 degrees when the coating target is traveling on the Y axis.

圖8D是說明在已將吐出時機修正成噴墨頭的旋轉角度為0度且落點位置成為在Y軸上的狀態下,已印刷於塗佈對象物時的液滴之落點位置的平面圖。Fig. 8D is a plan view illustrating the position of the droplet that has been printed on the coating target in a state where the ejection timing has been corrected so that the rotation angle of the inkjet head is 0 degrees and the landing position is on the Y axis. .

圖8E是圖8D的A部的放大圖。Fig. 8E is an enlarged view of part A of Fig. 8D.

圖9A是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為θ度時所吐出的液滴之落點位置與塗佈對象物的塗佈目標部之間的Y方向位置偏移量的平面圖。9A illustrates the Y-direction deviation between the landing position of the ejected droplets and the coating target portion of the coating target when the rotation angle of the inkjet head is θ degrees when the coating target is walking The plan view of the displacement.

圖9B是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為θ度時所吐出的液滴之落點位置與Y軸之間的X方向距離的平面圖。9B is a plan view illustrating the distance in the X direction between the landing position of the droplet discharged when the rotation angle of the inkjet head is θ degrees and the Y axis when the coating target is traveling.

圖9C是說明在塗佈對象物行走的情況下,已將吐出時機修正成噴墨頭的旋轉角度為θ度時之落點位置成為在Y軸上的情況下之落點位置的平面圖。FIG. 9C is a plan view illustrating the landing position when the ejection timing is corrected so that the rotation angle of the inkjet head is θ degrees when the coating target is traveling.

圖9D是說明在已將吐出時機修正成噴墨頭的旋轉角度為θ度且落點位置成為在Y軸上的狀態下,已印刷於塗佈對象物時的液滴之落點位置的平面圖。FIG. 9D is a plan view illustrating the position of the droplet when the droplet has been printed on the coated object in a state where the ejection timing has been corrected so that the rotation angle of the inkjet head is θ degrees and the landing position is on the Y axis. .

圖9E是圖9D的A部的放大圖。Fig. 9E is an enlarged view of part A of Fig. 9D.

圖10A是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為φ度時所吐出的液滴之落點位置與塗佈對象物的塗佈目標部之間的Y方向位置偏移量的平面圖。Fig. 10A illustrates the Y-direction position deviation between the landing position of the ejected droplets and the coating target portion of the coating target when the rotation angle of the inkjet head is φ degrees when the coating target is walking The plan view of the displacement.

圖10B是說明在塗佈對象物行走的情況下,噴墨頭的旋轉角度為φc 度時所吐出的液滴之落點位置與Y軸之間的X方向距離的平面圖。10B is a plan view illustrating the distance in the X direction between the landing position of the ejected droplets and the Y axis when the rotation angle of the inkjet head is φ c degrees when the coating target is traveling.

圖10C是說明在塗佈對象物行走的情況下,已將吐出時機修正成噴墨頭的旋轉角度為φc 度時之落點位置成為在Y軸上的情況下之落點位置的平面圖。Fig. 10C is a plan view illustrating the landing position when the ejection timing is corrected so that the rotation angle of the inkjet head is φ c degrees when the coating target is traveling.

圖10D是說明在已將吐出時機修正成噴墨頭的旋轉角度為φc 度且落點位置成為在Y軸上的狀態下,已塗佈於塗佈對象物時的液滴之落點位置的平面圖。Fig. 10D illustrates the position of the droplet that has been applied to the coating target when the ejection timing has been corrected so that the rotation angle of the inkjet head is φ c degrees and the landing position is on the Y axis. Floor plan.

圖10E是圖10D的A部的放大圖。Fig. 10E is an enlarged view of part A of Fig. 10D.

圖11是說明在塗佈對象物以速度V掃描中的情況下,噴墨頭在旋轉θ度前後之落點位置的平面圖。FIG. 11 is a plan view illustrating the position of the ink jet head before and after the rotation of θ degrees when the coated object is scanned at a speed of V. FIG.

圖12是說明在塗佈對象物以速度V掃描中的情況下,使噴墨頭旋轉了φ度時之落點位置的平面圖。Fig. 12 is a plan view illustrating the landing position when the inkjet head is rotated by φ when the coating target is scanned at a speed V.

圖13是說明在塗佈對象物停止中的情況下,噴墨頭在旋轉θ度前後之落點位置的平面圖。Fig. 13 is a plan view illustrating the landing position of the inkjet head before and after the rotation of θ degrees when the coating object is stopped.

圖14A是說明在過往例子中,將噴墨頭調整成符合於塗佈對象物的塗佈目標部的間距的情況的圖。FIG. 14A is a diagram for explaining how the inkjet head is adjusted to match the pitch of the application target portion of the application object in the conventional example.

圖14B是說明在過往例子中,將噴墨頭調整成符合於塗佈對象物的塗佈目標部的間距的情況的圖。FIG. 14B is a diagram illustrating a case where the inkjet head is adjusted to match the pitch of the application target portion of the application object in the conventional example.

圖15是過往例子中的用於調整塗佈對象物的塗佈目標部的間距與從噴墨頭所吐出的液滴的間距的流程圖。15 is a flowchart for adjusting the pitch of the application target portion of the application target and the pitch of the droplets discharged from the inkjet head in the past example.

1:基板 1: substrate

2:基板吸附台 2: Substrate adsorption table

3:基板旋轉機構 3: Substrate rotation mechanism

4:基板搬送滑件 4: Substrate conveying slide

5:基板用導軌 5: Rails for substrates

6:基板搬送用線性馬達 6: Linear motor for substrate transfer

7:基板搬送位置檢測部 7: Board conveying position detection unit

8:噴墨頭 8: Inkjet head

9:頭托架 9: Head bracket

10:頭旋轉機構 10: Head rotating mechanism

11:托架 11: Bracket

12:頭單元移載用滑件 12: Slider for head unit transfer

13:頭單元移載用導軌 13: Guide rail for head unit transfer

14:頭單元移載用線性馬達 14: Linear motor for head unit transfer

15:頭單元移載用位置檢測部 15: Position detection unit for head unit transfer

16:支撐部 16: Support part

17:平台 17: Platform

18:架台 18: stand

21:相機 21: Camera

22:頭單元基座 22: Head unit base

23:噴墨頭部 23: Inkjet head

30:基板搬送台 30: substrate transfer table

32:頭單元 32: head unit

33:頭單元移載台 33: Head unit transfer table

40:噴墨印刷裝置 40: Inkjet printing device

100:噴墨頭控制部 100: Inkjet head control section

110:記憶部 110: Memory Department

120:運算部 120: Computing Department

V:速度 V: speed

X,Y,Z:方向 X, Y, Z: direction

Claims (7)

一種噴墨印刷方法,是一邊使噴墨頭對於塗佈對象物相對地掃描,一邊從前述噴墨頭吐出液滴,在前述塗佈對象物上塗佈墨水之噴墨印刷方法,包含以下步驟: 第1步驟,從記憶落點位置偏移特性的記憶部讀取與前述落點位置偏移特性相關的資料,前述落點位置偏移特性是依據落點位置偏移所求出,前述落點位置偏移是前述噴墨頭在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從前述噴墨頭所吐出的液滴的從目標位置起算之落點位置偏移; 第2步驟,依據前述落點位置偏移特性、前述噴墨頭的液滴吐出噴嘴的配列間距及與掃描方向正交的方向上之前述塗佈對象物的塗佈目標間距,來求出前述噴墨頭的目標旋轉角度,並且生成與前述目標旋轉角度對應的印刷圖案;及 第3步驟,依據前述目標旋轉角度及前述印刷圖案,來控制前述噴墨頭對前述塗佈對象物上的塗佈目標部吐出液滴。An inkjet printing method is an inkjet printing method in which droplets are ejected from the inkjet head while the inkjet head is relatively scanned against an object to be coated, and ink is applied to the object to be coated. The inkjet printing method includes the following steps : The first step is to read the data related to the aforementioned drop position deviation characteristic from the memory unit that memorizes the drop position deviation characteristic. The aforementioned drop position deviation characteristic is calculated based on the drop position deviation. The aforementioned drop position The positional deviation is the deviation of the landing position of the droplets discharged from the inkjet head from the target position in each of the first rotation angle and the second rotation angle of the inkjet head that are different from each other; The second step is to obtain the aforementioned landing position offset characteristics, the arrangement pitch of the droplet ejection nozzles of the inkjet head, and the coating target pitch of the aforementioned coating object in a direction orthogonal to the scanning direction. The target rotation angle of the inkjet head, and generate a printing pattern corresponding to the aforementioned target rotation angle; and In the third step, based on the target rotation angle and the print pattern, the inkjet head is controlled to discharge droplets to the coating target portion on the coating target. 如請求項1之噴墨印刷方法,其中前述落點位置偏移特性包含:前述噴墨頭的液滴吐出噴嘴的吐出角度傾向所造成的落點位置偏移量,及伴隨於前述噴墨頭的掃描的落點位置偏移量。The inkjet printing method of claim 1, wherein the drop point position deviation characteristic includes: the drop point position deviation amount caused by the droplet ejection angle tendency of the droplet ejection nozzle of the inkjet head, and the droplet position deviation amount associated with the inkjet head The offset of the landing position of the scan. 如請求項1或2之噴墨印刷方法,其更包含: 第4步驟,在前述噴墨頭為前述目標旋轉角度時,算出偏位量,前述偏位量是朝向與前述噴墨頭的掃描方向正交的方向,用於將前述噴墨頭對位於前述塗佈目標部, 在前述第3步驟中,依據前述目標旋轉角度、前述印刷圖案及前述偏位量,來控制前述噴墨頭對前述塗佈目標部吐出液滴。Such as the inkjet printing method of claim 1 or 2, which further includes: In the fourth step, when the inkjet head is at the target rotation angle, the offset is calculated. The offset is in a direction orthogonal to the scanning direction of the inkjet head for aligning the inkjet head at the Coating target department, In the third step, the inkjet head is controlled to discharge droplets to the coating target portion based on the target rotation angle, the printing pattern, and the offset amount. 如請求項1至3中任一項之噴墨印刷方法,其中前述落點位置偏移特性是藉由以下的A)到E)所示的步驟來求出,並記憶於前述記憶部,包含以下步驟: A)以前述塗佈對象物面的法線方向作為旋轉軸,將前述噴墨頭定位至前述第1旋轉角度,並依第1印刷圖案來吐出液滴; B)檢測在前述A)的步驟中所吐出的液滴的從前述第1印刷圖案所示的目標位置起算之落點位置偏移; C)將前述噴墨頭定位至前述第2旋轉角度,並依第2印刷圖案來吐出液滴; D)檢測在前述C)的步驟中所吐出的液滴的從前述第2印刷圖案所示的目標位置起算之落點位置偏移;及 E)依據在前述B)的步驟中所檢測到的落點位置偏移、在前述D)的步驟中所檢測到的落點位置偏移、及前述噴墨頭的前述旋轉軸的座標,來算出前述落點位置偏移特性。The inkjet printing method according to any one of claims 1 to 3, wherein the aforementioned drop point position offset characteristic is obtained by the following steps A) to E), and is stored in the aforementioned memory unit, including The following steps: A) Using the normal direction of the surface of the coating object as the rotation axis, position the inkjet head to the first rotation angle, and discharge droplets according to the first printing pattern; B) detecting the displacement of the drop position of the droplet discharged in the step A) from the target position shown in the first printing pattern; C) Position the inkjet head to the second rotation angle, and eject droplets according to the second printing pattern; D) detecting the displacement of the drop point of the droplet discharged in the step of C) from the target position shown in the second printing pattern; and E) Based on the deviation of the landing position detected in the step B), the deviation of the landing position detected in the step D), and the coordinates of the rotation axis of the inkjet head, Calculate the aforementioned drop position offset characteristics. 如請求項4之噴墨印刷方法,其中在前述第3步驟中,在前述噴墨頭與前述塗佈對象物的相對移動速度和前述A)的步驟中的前述噴墨頭與前述塗佈對象物的相對移動速度、及前述C)的步驟中的前述噴墨頭與前述塗佈對象物的相對移動速度成為相同的條件下,從前述噴墨頭對前述塗佈目標部吐出液滴。The inkjet printing method of claim 4, wherein in the third step, the relative movement speed of the inkjet head and the coating object and the inkjet head and the coating object in the step A) Under the condition that the relative moving speed of the object and the relative moving speed of the inkjet head and the application target object in the step C) become the same, droplets are discharged from the inkjet head to the application target portion. 一種噴墨印刷裝置,是一邊使噴墨頭對於塗佈對象物相對地掃描,一邊從前述噴墨頭吐出液滴,在前述塗佈對象物上塗佈墨水之噴墨印刷裝置,具備: 記憶部,記憶落點位置偏移特性,前述落點位置偏移特性是依據落點位置偏移所求出,前述落點位置偏移是前述噴墨頭在彼此不同的第1旋轉角度及第2旋轉角度的每一個角度中,從前述噴墨頭所吐出的液滴的從目標位置起算之落點位置偏移;及 運算部,依據前述落點位置偏移特性、前述噴墨頭的液滴吐出噴嘴的配列間距、及與掃描方向正交的方向上之前述塗佈對象物的塗佈目標間距,來求出前述噴墨頭的目標旋轉角度,並且生成與前述目標旋轉角度對應的印刷圖案, 依據前述目標旋轉角度及前述印刷圖案,來控制前述噴墨頭對前述塗佈對象物上的塗佈目標部吐出液滴。An inkjet printing device is an inkjet printing device that ejects droplets from the inkjet head while relatively scanning an inkjet head against an object to be coated, and applies ink on the object to be coated, and includes: The memory unit stores the characteristics of the positional deviation of the landing point. The characteristic of the positional deviation of the landing position is obtained from the deviation of the position of the landing position. The deviation of the landing position is the first rotation angle and the 2 For each of the rotation angles, the drop position from the target position of the droplets discharged from the aforementioned inkjet head is offset; and The arithmetic unit obtains the aforementioned landing position offset characteristics, the arrangement pitch of the droplet ejection nozzles of the aforementioned inkjet head, and the coating target pitch of the aforementioned coating target in the direction orthogonal to the scanning direction. The target rotation angle of the inkjet head, and generate a printing pattern corresponding to the aforementioned target rotation angle, Based on the target rotation angle and the printing pattern, the inkjet head is controlled to discharge droplets to the coating target portion on the coating object. 如請求項6之噴墨印刷裝置,其具備: 基板吸附台,載置相當於前述塗佈對象物的基板; 基板旋轉機構,將前述基板吸附台的下部可旋轉地支撐; 基板搬送台,移載前述基板旋轉機構及前述基板吸附台; 基板搬送位置檢測部,檢測前述基板搬送台的基板搬送位置; 前述噴墨頭,在前述基板的上部配置成與前述基板相對向; 頭旋轉機構,配置於前述噴墨頭的上部,以相對於前述基板之平面的法線方向作為軸,將前述噴墨頭可旋轉地支撐;及 頭移載台,將前述噴墨頭及前述頭旋轉機構朝與前述基板搬送台的移載方向及旋轉軸的方向正交的方向移載。Such as the inkjet printing device of claim 6, which has: A substrate suction table, which mounts a substrate corresponding to the aforementioned coating object; The substrate rotating mechanism rotatably supports the lower part of the aforementioned substrate adsorption table; A substrate transfer table, which transfers the aforementioned substrate rotating mechanism and the aforementioned substrate suction table; The substrate conveying position detection unit detects the substrate conveying position of the aforementioned substrate conveying table; The aforementioned inkjet head is arranged on the upper part of the aforementioned substrate so as to face the aforementioned substrate; A head rotation mechanism, which is arranged on the upper part of the inkjet head, and rotatably supports the inkjet head with the normal direction relative to the plane of the substrate as an axis; and The head transfer stage transfers the inkjet head and the head rotation mechanism in a direction orthogonal to the transfer direction of the substrate transfer stage and the direction of the rotation axis.
TW109143473A 2020-02-26 2020-12-09 Inkjet printing method and inkjet printing device for matching a landing pitch of droplets with a coating target pitch of a coating target portion with high precision TW202132124A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030495 2020-02-26
JP2020030495A JP7442128B2 (en) 2020-02-26 2020-02-26 Inkjet printing method and inkjet printing device

Publications (1)

Publication Number Publication Date
TW202132124A true TW202132124A (en) 2021-09-01

Family

ID=77370828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143473A TW202132124A (en) 2020-02-26 2020-12-09 Inkjet printing method and inkjet printing device for matching a landing pitch of droplets with a coating target pitch of a coating target portion with high precision

Country Status (4)

Country Link
JP (1) JP7442128B2 (en)
KR (1) KR20210108890A (en)
CN (1) CN113306292A (en)
TW (1) TW202132124A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230077086A (en) 2021-11-25 2023-06-01 (주)유니젯 Inkjet Print Equipment
CN116552143B (en) * 2023-07-12 2023-09-12 苏州优备精密智能装备股份有限公司 Cross gantry type printing adjusting device and detection adjusting method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136125B2 (en) * 1998-10-27 2008-08-20 キヤノン株式会社 Print positioning method and printing apparatus
JP2004230660A (en) * 2002-01-30 2004-08-19 Seiko Epson Corp Liquid droplet ejection head, ejection method and device therefor, electrooptic device, method and equipment for manufacturing the same, color filter, method and apparatus for producing the same, device with base material, and method and apparatus for producing the same
CN100431839C (en) * 2002-10-18 2008-11-12 索尼株式会社 Apparatus for discharging liquid and method for discharging liquid
JP2006264041A (en) 2005-03-23 2006-10-05 Brother Ind Ltd Inspection method for inkjet head
US7926900B2 (en) 2006-12-22 2011-04-19 Palo Alto Research Center Incorporated Method of printing with high spot placement accuracy
JP5274083B2 (en) * 2008-04-08 2013-08-28 京セラドキュメントソリューションズ株式会社 Inkjet recording method and inkjet recording apparatus
ATE544601T1 (en) * 2008-05-23 2012-02-15 Oce Tech Bv ADJUSTMENT OF A PRINTING ARRANGEMENT AND SUBSTRATE IN A PRINTING DEVICE
JP2010040632A (en) 2008-08-01 2010-02-18 Nikon Corp Measurement condition optimization method and method of creating program, and aligner
JP4897070B2 (en) * 2009-06-08 2012-03-14 パナソニック株式会社 Functional membrane manufacturing method
JP2012071243A (en) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd Inkjet coating apparatus
JP5748291B2 (en) 2012-02-29 2015-07-15 富士フイルム株式会社 Liquid ejection apparatus, nanoimprint system, and liquid ejection method
JP6329747B2 (en) * 2013-10-07 2018-05-23 株式会社ミマキエンジニアリング Printing apparatus and landing position determination method
CN104512110B (en) * 2013-10-07 2016-09-07 株式会社御牧工程 Printing equipment and the method for detecting of ejection exception
JP6862041B2 (en) * 2016-08-10 2021-04-21 住友重機械工業株式会社 Membrane forming method and film forming apparatus
CN108394197B (en) * 2017-02-08 2021-07-27 松下知识产权经营株式会社 Ink jet printing method
JP2024006461A (en) * 2022-07-01 2024-01-17 パナソニックIpマネジメント株式会社 Inkjet device, control method, and, substrate

Also Published As

Publication number Publication date
JP7442128B2 (en) 2024-03-04
JP2021133289A (en) 2021-09-13
KR20210108890A (en) 2021-09-03
CN113306292A (en) 2021-08-27

Similar Documents

Publication Publication Date Title
US20060158474A1 (en) Method and device for accurately positioning a pattern on a substrate
TW202132124A (en) Inkjet printing method and inkjet printing device for matching a landing pitch of droplets with a coating target pitch of a coating target portion with high precision
JP2007144397A (en) Method and apparatus for inkjet printing on non-planar substrates
US6702419B2 (en) System and method for delivering droplets
TW201729905A (en) Inkjet printing system and method for processing substrates
JP4250184B2 (en) Substrate processing equipment
JP4168728B2 (en) Method for correcting dot position of droplet discharge device, droplet discharge method, and electro-optical device manufacturing method
JP2006258845A (en) Pattern forming device and head correcting method
JP2006245174A (en) Positioning stage, pattern forming equipment, inspection device, position correction method, substrate supporting part
JP2010099597A (en) Coating device and coating method
JP2006239570A (en) Pattern forming apparatus, positioning apparatus, positioning method, and discharge section
JP6695237B2 (en) Droplet ejection device and droplet ejection condition correction method
CN117325563A (en) Ink jet device, control method and substrate
KR101993026B1 (en) Coating device and coating method
JP2010264426A (en) Droplet coating method and apparatus
JP4739426B2 (en) Ink jet head mounting position adjusting method and head position control method of ink jet apparatus
JP5355060B2 (en) Inkjet coating apparatus and method of manufacturing coated body
CN116552143B (en) Cross gantry type printing adjusting device and detection adjusting method thereof
JP2004111074A (en) Manufacturing device of organic el display device and manufacturing method of the same
KR102510910B1 (en) Maintenance unit and apparatus for treating substrate including the same
JP4887845B2 (en) Inkjet coating device
JP2006167559A (en) Composite type ink jet head
JP2004243187A (en) Droplet discharge device, electro-optical device, method for producing electro-optical device, and electronic equipment
CN113492602B (en) Alignment device, inkjet printing system including the same, and alignment method using the same
JP2018122304A (en) Ink jet device, nozzle head positioning method and program