TW202130849A - 藉由原子層沉積法所沉積之鉿鋁氧化物塗層 - Google Patents

藉由原子層沉積法所沉積之鉿鋁氧化物塗層 Download PDF

Info

Publication number
TW202130849A
TW202130849A TW109136783A TW109136783A TW202130849A TW 202130849 A TW202130849 A TW 202130849A TW 109136783 A TW109136783 A TW 109136783A TW 109136783 A TW109136783 A TW 109136783A TW 202130849 A TW202130849 A TW 202130849A
Authority
TW
Taiwan
Prior art keywords
hafnium
aluminum
corrosion
mol
resistant coating
Prior art date
Application number
TW109136783A
Other languages
English (en)
Inventor
大衛 芬威克
語南 孫
周政玄
小明 賀
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202130849A publication Critical patent/TW202130849A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Abstract

本揭露內容的實施例涉及物品、塗覆的物品以及用耐腐蝕塗層塗覆這些物品的方法。耐腐蝕塗層可以包括鉿鋁氧化物。可以藉由例如原子層沉積的非直視性沉積來沉積耐腐蝕塗層。可塗覆的物品可包括腔室部件,例如氣體管線。

Description

藉由原子層沉積法所沉積之鉿鋁氧化物塗層
本揭露內容涉及耐腐蝕的鉿鋁氧化物塗層、塗覆的物品以及利用原子層沉積形成上述塗層的方法。
在半導體工業中,藉由許多產生尺寸不斷縮小的結構的製造製程來製造元件。有些製造製程,例如電漿蝕刻和電漿清洗製程,將基板暴露在高速的電漿流中以蝕刻或清洗基板。電漿可能具有高度的腐蝕性,且可能會腐蝕處理腔室和其他暴露在電漿中的表面和部件。這種腐蝕可能會產生顆粒,這些顆粒經常會污染正在加工的基板,從而導致元件缺陷。可包括鹵素離子和自由基的含鹵素電漿可能是特別苛刻的,導致電漿與處理腔室內的材料相互作用而產生的顆粒。由於自由基重組所引起的部件表面化學變化,這些電漿也會造成晶圓處理漂移。
隨著元件幾何尺寸的縮小,缺陷的易感性增加,顆粒污染的規格(即晶圓性能)也變得更加嚴格。為了減少電漿蝕刻和/或電漿清潔過程中所引入的顆粒污染物,已經開發出耐電漿的腔室材料。這些耐電漿材料的實例包括由Al2 O3 、AlN、SiC、Y2 O3 、石英和ZrO2 組成的陶瓷。不同的陶瓷具有不同的材料特性,如耐電漿性、剛性、彎曲強度、抗熱震性等。另外,不同的陶瓷具有不同的材料成本。因此,有些陶瓷具有較好的耐電漿性,有些陶瓷具有較低的成本,還有一些陶瓷具有較好的抗彎強度和/或抗熱震性。
由Al2 O3 、AlN、SiC、Y2 O3 、石英和ZrO2 形成的電漿噴塗層可減少腔室部件的顆粒生成,但上述電漿噴塗層無法滲入和塗覆高深寬比特徵,例如氣體管線和噴頭的孔。雖然某些沉積技術能夠塗覆高深寬比特徵,但在某些電漿環境(例如,含鹵素電漿)中,所製造的塗層可能會被侵蝕並形成顆粒,或因為塗層中的相互滲透不足而導致材料層的機械上分離。
根據本文的實施例,所描述的塗覆物品包括主體和在主體的表面上的耐腐蝕塗層。耐腐蝕塗層可包括鉿鋁氧化物,鉿鋁氧化物包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁及剩餘的氧,其中鉿鋁氧化物包括約20 mol%至約98 mol%的氧。
本文的實施例中還描述了一種方法,包括使用原子層沉積在物品的表面上沉積耐腐蝕塗層。耐腐蝕塗層可包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁及剩餘mol%的氧。物品可包括處理腔室的部件,部件選自腔室壁、噴頭、噴嘴、電漿產生單元、射頻電極、電極外殼、擴散器及氣體管線所構成之群組。
本文的實施例中還描述了一種方法,包括使用原子層沉積在物品的表面上沉積鉿鋁氧化物塗層。沉積鉿鋁氧化物塗層可包括將表面與含鉿前驅物或含鋁前驅物接觸第一時間以形成第一吸附層。沉積鉿鋁氧化物塗層可進一步包括將第一吸附層與含氧反應物接觸,以形成包括氧化鉿或氧化鋁的第一層。沉積鉿鋁氧化物塗層還可包括將第一層與含鋁前驅物或含鉿前驅物接觸第二時間,以形成第二吸附層。沉積鉿鋁氧化物塗層可進一步包括將第二吸附層與含氧反應物接觸以形成包含氧化鋁或氧化鉿的第二層。在實施例中,當第一層包含氧化鉿時,第二層包含氧化鋁,反之亦然。方法還可包括從第一層和第二層形成鉿鋁氧化物塗層。耐腐蝕塗層可包括鉿鋁氧化物,鉿鋁氧化物包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁及剩餘的氧,其中鉿鋁氧化物包括約20 mol%至約98 mol%的氧。
本文所述的實施例涉及用於改善腔室部件在電漿環境或在腐蝕性非電漿環境中的耐腐蝕和耐侵蝕性的鉿鋁氧化物耐腐蝕塗層。實施例還涉及塗覆的物品(例如腔室部件)和使用原子層沉積(ALD)形成上述耐腐蝕塗層的方法。
在半導體工業中,有些製造製程,例如電漿蝕刻和電漿清洗製程,將基板暴露在高速的電漿流中以蝕刻或清洗基板。電漿可能具有高度的腐蝕性,且可能會腐蝕處理腔室和其他暴露在電漿中的表面和部件。這種腐蝕可能會產生顆粒,這些顆粒經常會污染正在加工的基板,從而導致元件缺陷。可包括鹵素離子和自由基的含鹵素電漿可能是特別苛刻的,導致電漿與處理腔室內的材料相互作用而產生的顆粒。由於自由基重組所引起的部件表面化學變化,這些電漿也會造成晶圓處理漂移。
藉由ALD沉積的鉿鋁氧化物塗層塗覆的腔室部件(如不銹鋼和鋁部件)與無塗覆和氧化鋁塗覆的部件相比,在Cl基溶液中具有更強的耐腐蝕性。使用Hfx Aly Oz 塗覆的腔室部件,在使用腐蝕性化學品的製程中,可能會比目前使用氧化鋁塗覆的部件更大程度地減少晶圓(即基板)上金屬/顆粒污染物。可用薄的鉿鋁氧化物達到卓越的耐腐蝕性,這使得耐腐蝕塗層可能更具成本效益。此外,與傳統的塗層相比,鉿鋁氧化物塗層可以承受相對較高的溫度而不會裂開或失效。
在某些實施例中,耐腐蝕塗層可包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁以及剩餘的氧,其中塗層中氧的含量可以是約20 mol%至約98 mol%。在其他實施例中,耐腐蝕塗層可包含約10 mol%至約20 mol%的鉿、約15 mol%至約30 mol%的鋁和剩餘的氧。在某些實施例中,耐腐蝕塗層可包括具有約0.8至約2.5的鋁與鉿莫耳比的鉿及鋁均勻混合物。在實施例中,耐腐蝕塗層可包括HfAl2 O5 或Hf2 Al2 O7 中的至少一種。
可塗覆本文所述耐腐蝕塗層的物品可包括處理腔室的部件,部件選自腔室壁、噴頭、噴嘴、電漿產生單元、射頻電極、電極外殼、擴散器及氣體管線所構成之群組。在某些實施例中,塗覆有本文所述耐腐蝕塗層的物品可包括具有深度與寬度的深寬比介於約10:1至約200:1的部分,而具有所述深寬比的物品部分可塗覆有耐腐蝕塗層。例如,根據實施例,氣體管線的表面可塗覆有耐腐蝕層。
耐腐蝕塗層可以是保形的、非晶的、具有低孔隙度(例如,約0%)及/或具有均勻厚度(例如,厚度變化小於約+/-5%)。在某些實施例中,耐腐蝕塗層可具有從約0.5 nm到約1 μm的厚度,或包含在其中的另一厚度。
在某些實施例中,耐腐蝕塗層通過HCl氣泡測試和/或通過FeCl3 浸泡測試和/或通過HCl浸泡測試和/或通過二氯矽烷(DSC)曝露測試和/或通過Cl2 浸泡測試展示其耐腐蝕性,將於下文進一步描述細節。
例如,在一個實施例中,在5 %HCl溶液或15 %HCl溶液中進行的HCl氣泡測試中,與較厚的氧化鋁塗層或與較厚的氧化釔矽塗層相比,具有約300 nm厚度的耐腐蝕塗層可表現出更長的失效時間。例如,耐腐蝕塗層在約300 nm的厚度下,可表現出a)根據在5 % HCl溶液中進行的HCl氣泡測試試驗出至少約13小時的失效時間,或b)根據在15 % HCl溶液中進行的HCl氣泡測試試驗出至少約10小時的失效時間這兩者的至少一者。
在另一個實施例中,在約50℃下進行約12小時的6%FeCl3 浸泡測試中,具有約100 nm厚度的鉿鋁氧化物耐腐蝕塗層比具有相同厚度的氧化鋁塗層表現出較少的凹陷。在又另一個實施例中,如在HCl浸泡試驗中測量所示,與具有相同厚度的氧化鋁塗層相比,鉿鋁氧化物塗層增強了不銹鋼的耐腐蝕性。
在一個實施例中,鉿鋁氧化物耐腐蝕塗層造成在溫度範圍為約150°C至約180°C將塗層暴露於二氯矽烷的處理環境中,在約900次晶圓處理循環(約45分鐘)後,沒有金屬污染。
在一個實施例中,鉿鋁氧化物耐腐蝕塗層造成在380°C的真空腔室中將塗層在Cl2 中浸泡約25小時後,不會產生腐蝕(例如,由厚度變化可見)。
在一些實施例中,在使用10微米金剛石觸針在刮痕黏著測試中,厚度約300 nm的鉿鋁氧化物耐腐蝕塗層需要至少約52 mN、至少約75 mN、至少約80 mN、或至少約100 mN的力,以暴露主體的表面。
如下文所述,耐腐蝕塗層可以使用非直視性技術(如原子層沉積(ALD))進行共沉積、共配料或依序沉積到物品上。
本文所述的塗層在暴露於用於半導體處理和腔室清洗的電漿化學物質(例如,具有鹵素離子和鹵素自由基的含鹵素電漿)時,也可具有耐腐蝕性。因此,塗層在上述處理和清洗製程中提供了良好的顆粒性能和處理穩定性性能。本文所用的術語「耐侵蝕塗層」或「耐電漿塗層」是指當暴露於特定的電漿、化學物和自由基(例如,氟基電漿、化學物和/或自由基、溴基電漿、化學物和/或自由基、氯基電漿、化學物和/或自由基等)時具有特別低侵蝕率的塗層。
本文所述的耐侵蝕和耐腐蝕塗層也可以耐鹵素非電漿腐蝕環境,例如,鹵素(如氯、氟、溴等)和任何含鹵素的化合物(如含氯化合物、含氟化合物、含溴化合物等)。
在整個塗覆部件的操作和暴露於電漿的期間,透過「蝕刻速率」(ER)可測量塗層對電漿的耐受性,其單位可以是埃/分(Å/min)。也可透過侵蝕率來測量電漿耐受性,侵蝕率的單位為奈米/射頻小時(nm/RFHr),其中一個RFHr代表在電漿處理條件下的一個小時處理。可在不同的處理時間後進行測量。例如,可以在處理前、50處理小時後、150處理小時後、200處理小時後等處進行測量。在鹵素電漿中,低於100 nm/RFHr的侵蝕率是典型的耐侵蝕性塗層。腔室部件上沉積的塗層成分的變化可能會導致多個不同的電漿耐受性或侵蝕率數值。此外,一個用一種成分耐腐蝕的塗層暴露在不同的電漿中,可能會有多個不同的電漿耐受性或侵蝕率數值。例如,特定的塗層可能具有與第一種類型的電漿相關的第一電漿耐受性或侵蝕率,以及與第二種類型的電漿相關的第二電漿耐受性或侵蝕率。
圖1是根據本文所述的實施例具有一個或多個用耐腐蝕塗層塗佈的腔室部件的半導體處理腔室100的剖面圖。腔室的至少一些部件的基材可包括Al(例如Alx Oy 、AlN、Al 6061或Al 6063)、Si(例如Six Oy 、SiO2 或SiC)、銅(Cu)、鎂(Mg)、鈦(Ti)和不銹鋼(SST)中的一種或多種。處理腔室100可用於提供腐蝕性電漿環境(例如,鹵素電漿,如含氯電漿、含氟電漿、含溴電漿等)的製程。例如,處理腔室100可以是電漿蝕刻器或電漿蝕刻反應器、電漿清洗器、電漿增強CVD或ALD反應器等等的腔室。可包括耐腐蝕塗層的腔室部件的實例包括具有複雜形狀和具有高深寬比特徵的腔室部件。一些示範性腔室部件包括基板支撐組件、靜電夾頭、環(例如,處理套組環或單環)、腔室壁、基座、氣體分配板、噴頭、氣體管路、噴嘴、蓋子、襯墊、襯墊套件、護罩、電漿屏、電漿產生單元、射頻電極、電極外殼、擴散器、流量均衡器、冷卻底座、腔室觀察孔、腔室蓋等。
在某些實施例中,塗覆有本文所述耐腐蝕塗層的腔室部件可包括具有高深度對寬度之深寬比的部分,深寬比的範圍為約3:1至約300:1(例如,約5:1至約250:1、約10:1至約200:1、約20:1、約50:1、約100:1、約150:1等),而具有上述深寬比的物品部分可塗覆耐腐蝕塗層。例如,氣體管線的內表面或噴頭中的氣體管道的內表面可塗覆根據實施例之耐腐蝕層塗層。
圖5描述了根據實施例塗覆有耐腐蝕塗層的具有大的深寬比的氣體管線的放大圖。氣體管線510可具有深度D及寬度W。氣體管線510可具有大的深寬比,定義為D:W,其中深寬比的範圍為約3:1至約300:1(例如,約5:1至約250:1,約10:1至約200:1,約50:1至約100:1,約20:1,約50:1,約100:1,約150:1等)。在一些實施例中,深寬比可小於3:1或大於300:1。
氣體管線510可具有內表面555。內表面555可由鋁、不銹鋼或本文所述的任何其他結構材料製成。可使用如圖2A、2B或2C所述之ALD對內部表面555塗覆耐腐蝕塗層。ALD處理可在氣體管線510(儘管它有大的深寬比)的整個內表面生長出均勻厚度的保形塗層560和565,同時確保最終的耐腐蝕塗層也要薄到足以不堵塞氣體管線。
回到圖1,在一個實施例中,處理腔室100包括圍繞內部容積106的腔室主體102及噴頭130。噴頭130可包括噴頭底座及噴頭氣體分配板。或者,在一些實施例中,噴頭130可由蓋子和噴嘴代替,或者在其他實施例中,由多個餅狀的噴頭艙和電漿產生單元代替。腔室主體102可由鋁、不銹鋼或其它合適的材料製造。腔室主體102一般包括側壁108和底部110。外襯墊116可位於側壁108附近,以保護腔室主體102。噴頭130(或蓋子及/或噴嘴)、側壁108及/或底部110的任何一者可包括本文所述的任何耐腐蝕塗層。
可在腔室主體102中界定排氣口126,且排氣口126可將內部容積106耦合到幫浦系統128。幫浦系統128可包括一個或多個泵和節流閥,用於疏散和調節處理腔室100的內部容積106的壓力。
噴頭130可支撐在腔室主體102的側壁108上。噴頭130(或蓋子)可被打開開口,以允許進入處理腔室100的內部容積106,並可在關閉時為處理腔室100提供密封。氣體面板158可耦接至處理腔室100,以透過噴頭130或蓋子及噴嘴向內部容積106提供處理及/或清洗氣體。噴頭130可用於蝕刻介電質(蝕刻介電質材料)的處理腔室。噴頭130可包括在整個氣體分配板(GDP)中具有多個氣體輸送孔132的GDP。噴頭130可包括結合到鋁基座或陽極處理鋁基座的GDP。GDP可以由Si或SiC製成,也可以是諸如Y2 O3 、Al2 O3 、Y3 Al5 O12 (YAG)等的陶瓷。
針對用於導體蝕刻(導電材料的蝕刻)的處理腔室,可使用蓋子而不是噴頭。蓋子可包括一個裝入蓋子的中心孔的中心噴嘴。蓋子可以是如Al2 O3 、Y2 O3 、YAG的陶瓷,或是包括Y4 Al2 O9 和Y2 O3 -ZrO2 的固溶體的陶瓷化合物。噴嘴也可以是如Y2 O3 、YAG的陶瓷,或是包括Y4 Al2 O9 和Y2 O3 -ZrO2 的固溶體的陶瓷化合物。
可用於處理處理腔室100中之基板的處理氣體的實例包括含鹵素氣體,諸如C2 F6 、SF6 、SiCl4 、HBr、NF3 、CF4 、CHF3 、CH2 F3 、F、NF3 、Cl2 、CCl4 、BCl3 和SiF4 等,以及其他氣體,例如O2 、或N2 O。載氣和清除氣體的實例包括N2 、He、Ar和其他對處理氣體惰性的氣體(例如,非反應性氣體)。
基板支撐組件148位於處理腔室100的內部容積106中且位於噴頭130或蓋子下方。基板支撐組件148包括支撐件136,支撐件136在處理過程中固持基板144。支撐件136附接到軸(未顯示)的末端,該軸通過凸緣164與腔室主體102耦接。基板支撐組件148可包括例如加熱器、靜電夾頭、基座、真空夾頭或其他基板支撐組件部件。
如下面更詳細地討論的那樣,處理腔室100的任何上述部件可包括耐腐蝕塗層。耐腐蝕塗層可包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁,以及剩餘的氧,其中塗層中氧的數量可為約20 mol%至約98 mol%。
圖2A描述了共沉積處理200的一個實施例,共沉積處理200根據ALD技術在物品上(例如,在參考圖1討論的任何腔室部件上)生長或沉積鉿鋁氧化物塗層。圖2B描述了共沉積處理204的另一個實施例,共沉積處理204根據本文所述的ALD技術在物品上生長或沉積鉿鋁氧化物塗層。圖2C描述了依序沉積處理208的另一實施例,依序沉積處理208根據本文所述的ALD技術生長或沉積鉿鋁氧化物塗層。
對於ALD共沉積處理200和204而言,至少兩種前驅物的吸附到表面或反應物與吸附的前驅物的反應任一者可稱為「半反應」。
在處理200的第一半反應中,第一前驅物210(或第一前驅物混合物)可被脈衝至物品205的表面,時間足以讓前驅物部分(或完全)接觸且吸附至物品的表面(包括物品內的孔及特徵的表面)。在某些實施例中,第一前驅物可被脈衝至ALD腔室達第一持續時間,第一持續時間約為50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。第一前驅物210(或第一前驅物混合物)可以是含鉿前驅物和/或含鋁前驅物。
吸附是自限性的,因為前驅物將吸附在表面上的許多可用位點上,在表面上形成第一金屬(例如鉿和/或鋁)的部分吸附層215。任何已經吸附有前驅物的第一金屬的位點將變得不可用於後續前驅物的進一步吸附。或者,一些已經被第一前驅物的第一金屬吸附的位點可能會被第二前驅物的第二金屬所取代,而第二前驅物的第二金屬吸附在該位點上。
為了完成第一半反應,第二前驅物220(或任選的第二前驅物混合物)可被脈衝到物品205的表面上,持續第二時間足以使第二前驅物的第二金屬(部分或完全)吸附到表面上的可用位點上(並可能取代第一前驅物的一些第一金屬),在表面上形成共沉積吸附層(例如圖2A中的層225)。在某些實施例中,第二前驅物可被脈衝到ALD腔室中達第二持續時間,第二持續時間約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。第二前驅物(或第二前驅物混合物)可以是含鉿前驅物和/或含鋁前驅物。例如,當第一前驅物包含含鉿前驅物時,第二前驅物可包含含鋁前驅物,反之亦然。
在引入反應物230進入ALD腔室之前,從ALD腔室中沖出或清除(即用惰性氣體)多餘的前驅物。在某些實施例中,可將反應物引入ALD腔室中,持續時間為約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。對於氧化物塗層而言,反應物可以是含氧反應物。在含氧反應物230與共吸附層(圖2A中的225)反應以形成塗層層235(例如,Hfx Aly Oz )之後,任何多餘的含氧反應物可以從ALD腔室中沖出。替代地或額外地,可在第一半反應中第一前驅物和第二前驅物沉積之間沖刷ALD腔室。
參照圖2B,可將物品205插入ALD腔室中。在本實施例中,共沉積處理涉及將至少兩種前驅物同時共配料至物品的表面上。可將物品205引導至前驅物210、220(例如含鉿前驅物和含鋁前驅物)的混合物中,持續一段時間,直到物品的表面或物品的主體與前驅物210、220的混合物完全接觸和吸附,形成共吸附層227。在某些實施例中,第一和第二前驅物的混合物可被脈衝到ALD腔室中達第一持續時間,第一持續時間為約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。前驅物210、220的混合物(在此也可稱為前驅物A和B)可以用任何數量的比例共同注入(Ax By )到腔室中,例如A90+B10、A70+B30、A50+B50、A30+B70、A10+A90等,並吸附在物品表面上。在這些例子中,x和y用原子比(mol%)表示Ax +By 。例如A90+B10為90mol%的A和10mol%的B。
在一些實施例中,將兩種前驅物的混合物一起引入(即共配料),其中混合物包括第一重量百分比的含有第一金屬的前驅物和第二重量百分比的含有第二金屬的前驅物。例如,前驅物混合物可包括約1重量%至約90重量%,或約5重量%至約80重量%或約20重量%至約60重量%的含第一金屬的前驅物和約1重量%至約90重量%,或約5重量%至約80重量%或約20重量%至約60重量%的含第二金屬的前驅物。混合物可包括含第一金屬(例如鉿)的前驅物與含第二金屬(例如鋁)的前驅物的比例,該比例適合於形成靶型的鉿鋁氧化物材料。含第一金屬(例如鉿)的前驅物與含第二金屬(例如鋁)的前驅物的原子比可以是約10:1至約1:10,或約8:1至約1:8,或約5:1至約1:5,或約4:1至約1:4,或約3:1至約1:3,或約2:1至約1:2,或約1:1。
隨後,可將具有共吸附層227的物品205引導至氧反應物230,以與共吸附層227反應以生長鉿鋁氧化物耐腐蝕塗層240。在某些實施例中,反應物可被引導至ALD腔室中,持續時間約為50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。
如圖2A和2B所示,用於沉積耐腐蝕塗層235和240的共沉積循環可以重複m次,以達到一定的塗層厚度,其中m是大於1的整數或分數值。對於ALD而言,材料的最終厚度取決於運行的反應循環的數量(m),因為每個反應循環將生長一定厚度的層,可能是一個原子層或一個原子層的部分。
參照圖2C,在一些實施例中,可使用依序沉積ALD處理208將多層堆疊沉積在物品205上。在依序ALD中,含第一金屬的前驅物210(例如,含鉿前驅物或含鋁前驅物)可被引入ALD腔室,以吸附到物品205的表面上,並形成第一吸附層229。在某些實施例中,第一前驅物可被脈衝至ALD腔室,持續約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。此後,惰性氣體可被脈衝到ALD腔室中,以沖出任何未反應的含第一金屬的前驅物210。
然後,可將反應物230(例如含氧反應物)引入ALD腔室,以與第一吸附層229反應並形成第一金屬氧化物層239(例如,氧化鉿層或氧化鋁層)。在某些實施例中,反應物可被脈衝到ALD腔室中,持續約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。可藉由將惰性氣體引入ALD腔室中而沖出任何多餘的反應物。依序ALD處理的這第一部分可重複x次,直到實現了第一金屬氧化物層239的第一目標厚度,其中x可以是整數或分數。在一些實施例中,x大於1。
第一目標厚度可在約5埃至約100埃、約10埃至約80埃或約20埃至約50埃的範圍內。在一些實施例中,第一目標厚度的範圍可從約1 nm到約1000 nm,從約20 nm到約500 nm,從約20 nm到約400 nm,從約20 nm到約300 nm,從約20 nm到約200 nm,從約20 nm到約100 nm,從約50 nm到約100 nm,或從約20 nm到約50 nm。
在依序ALD處理的第一部分的x個週期後,可將含第二金屬的前驅物220(例如,含鉿前驅物或含鋁前驅物,以在第一半反應中未引入者為准)引入ALD腔室,以吸附到第一金屬氧化物層239上,並形成第二吸附層223。在某些實施例中,第二前驅物可被脈衝到ALD腔室中,持續約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。此後,惰性氣體可被脈衝到ALD腔室中,以沖出任何未反應的含第二金屬的前驅物220。
然後,可將反應物(例如含氧反應物)引入ALD腔室,與第二吸附層223反應,並形成第二金屬氧化物層233。在某些實施例中,反應物可被脈衝到ALD腔室中,持續約50毫秒至約60秒,或約1秒至約60秒,或約5秒至約60秒,或約10秒至約60秒。依序ALD處理的第二部分中的反應物可以與依序ALD處理的第一部分的反應物230相同或不同。可藉由引入惰性氣體至ALD腔室而沖出任何過量的反應物。依序ALD處理的第二部分可重複y次,直到達到第二金屬氧化物233的第二目標厚度,其中y可以是整數或分數。在某些實施例中,y大於1。
第二目標厚度的範圍可從約5埃至約100埃、從約10埃至約80埃或從約20埃至約50埃。在一些實施例中,第二目標厚度的範圍可從約1 nm到約1000 nm,從約20 nm到約500 nm,從約20 nm到約400 nm,從約20 nm到約300 nm,從約20 nm到約200 nm,從約20 nm到約100 nm,從約50 nm到約100 nm,或從約20 nm到約50 nm。
在一些實施例中,在交替氧化鉿和氧化鋁層的堆疊中,每一個氧化鉿層的厚度與每一個氧化鋁層的厚度之比的範圍約為10:1至1:10。例如,厚度的比例可以從約8:1到約1:8,從約5:1到約1:5,從約10:1到約1:1,從約1:1到約1:10,從約5:1到約1:1,或從約1:1到約1:5。可以根據具體的腔室應用來選擇厚度比。
依序ALD處理的第一部分和第二部分一起形成一個超級週期。這個超級週期可重複m次,直到耐腐蝕塗層245的目標厚度被實現,並且直到第一金屬氧化物和第二金屬氧化物的交替層的目標數被實現。超級週期的次數(m)可以是整數或分數。在某些實施例中,m大於1。
塗層中第一金屬(如鉿)和第二金屬(如鋁)的相對濃度可由所使用的前驅物類型、ALD腔室在將前驅物吸附到物品表面過程中的溫度、特定前驅物在ALD腔室中停留的時間、前驅物的分壓等因素控制。在某些實施例中,塗層可包含約1 mol%至約40 mol%,約5 mol%至約30 mol%,或約10 mol%至約20 mol%的鉿和約1 mol%至約40 mol%,約5 mol%至約35 mol%,或約15 mol%至約30 mol%的鋁。塗層的其餘部分可以是氧,從而在某些實施例中,鉿、鋁和氧的總莫耳%可合起來約100莫耳%。 例如,塗層可含有約2 mol%至約98 mol%的氧,約35 mol%至約90 mol%的氧,或約50 mol%至約75 mol%的氧。
在某些實施例中,耐腐蝕塗層可包括Hfx Aly Oz ,其中變數x、y、z可以是正整數或小數。在某些實施例中,鋁與鉿的莫耳比(y:x)的範圍可以是約0.5至約4,約0.6至約3,約0.7至約2.8,或約0.8至約2.5。在一個實施例中,鋁與鉿的莫耳比可以是約2.2。在另一個實施例中,鋁與鉿的莫耳比可以是約1.0。在實施例中,耐腐蝕塗層可包括HfAl2 O5 、Hf2 Al2 O7 或其混合物。
在根據本文所述的任何ALD處理沉積耐腐蝕層235、240或245之前,可將選擇性的緩衝層沉積到物品205上。亦可藉由ALD處理200、204或208中所舉例的ALD處理沉積緩衝層。緩衝層可包括但不限於氧化鋁(例如Al2 O3 )、氧化矽(例如SiO2 )、氮化鋁、它們的組合或其他合適的材料。在緩衝層是氧化鋁(Al2 O3 )的實例中,前驅物可以是含鋁前驅物(例如,三甲基鋁(TMA)),而反應物可以是含氧反應物(例如,H2 O)。應該理解的是,本文所述的耐腐蝕塗層也可沉積在緩衝層上,而不是在物品的表面上。本文所述的任何ALD處理均可用於在緩衝層上沉積耐腐蝕塗層。在實施例中,緩衝層可具有約10 nm至約1.5 μm的厚度,或約10 nm至約15 nm,或約0.8 μm至約1.2 μm。
緩衝層可提供強健的機械性能,增強介電強度、提供更好的耐腐蝕塗層至部件的黏著,以及可在溫度高達約350℃、或高達約300℃、或高達約250℃、或高達約200℃、或由約200℃至約350℃、或由約250℃至約300℃的情況下防止耐腐蝕塗層的裂開。例如,將要塗覆的腔室部件的結構材料的熱膨脹係數可能顯著高於耐腐蝕塗層的熱膨脹係數。藉由先施加緩衝層,可以控制腔室部件和耐腐蝕塗層之間的熱膨脹係數不匹配的不利影響。在一些實施例中,緩衝層可包括熱膨脹係數介於腔室部件的熱膨脹係數值和耐腐蝕塗層的熱膨脹係數值之間的材料。此外,緩衝層可作為阻障層,防止金屬污染物(如Mg、Cu等微量金屬)從部件遷移至耐腐蝕塗層。在耐腐蝕塗層下加入緩衝層,可藉由紓緩集中在耐腐蝕塗層/腔室部件介面某些區域的高應力,從而提高耐腐蝕塗層的整體熱阻。
在一個實施例中,緩衝層可以是Al2 O3 ,例如非晶Al2 O3 。在耐腐蝕塗層下加入非晶Al2 O3 層作為緩衝層,可藉由紓緩集中在耐腐蝕塗層/腔室部件介面某些區域的高應力,從而增加耐腐蝕塗層的整體熱阻。此外,由於共同的元素(即鋁),Al2 O3 對鋁基部件具有良好的黏著性。同樣地,Al2 O3 對含有金屬氧化物的耐腐蝕塗層也有良好的黏著,因為有共同的元素(即氧化物)。這些改進的介面減少了容易引發裂紋的介面缺陷。此外,非晶Al2 O3 層可作為阻障層,防止金屬污染物(如Mg、Cu等微量金屬)從部件遷移到耐腐蝕塗層中。
在一些實施例中,本文所述的耐腐蝕塗層的厚度可在約0.5 nm至約1000 nm的範圍內。在實施例中,塗層可具有約750 nm的最大厚度、約500 nm的最大厚度、約400 nm的最大厚度、約300 nm的最大厚度、約250 nm的最大厚度、約200 nm的最大厚度、約150 nm的最大厚度、約100 nm的最大厚度、約50 nm的最大厚度、約30 nm的最大厚度、約20 nm的最大厚度或另一最大厚度。在實施例中,塗層可具有約1 nm的最小厚度、約5 nm的最小厚度、約10 nm的最小厚度、約20 nm的最小厚度、約25 nm的最小厚度、約35 nm的最小厚度、約50 nm的最小厚度、約100 nm的最小厚度、約150 nm的最小厚度或另一最小厚度。
耐腐蝕塗層厚度與緩衝層厚度的比率(如有的話)可以是約200:1至約1:200,或約100:1至約1:100,或約50:1至約1:50。耐腐蝕層厚度與緩衝層厚度的較高比率(例如200:1、100:1、50:1、20:1、10:1、5:1、2:1等)可提供更好的耐腐蝕性和耐侵蝕性,而耐腐蝕層厚度與緩衝層厚度的較低比率(例如1:2、1:5、1:10、1:20、1:50、1:100、1:200)可提供更好的耐熱性(例如,改善對熱循環引起的開裂和/或分層的抵抗力)。可根據具體的腔室應用來選擇厚度比。
除了是一種保形處理,ALD也是一種均勻處理,能夠形成非常薄的膜。所有暴露的物品表面都會有相同或大致相同數量的材料沉積。ALD技術可在相對較低溫度(例如,約20℃至650℃,約25℃至350℃,約20℃至200℃,約20℃至150℃,約20℃至100℃等等)下沉積薄材料層,因此它不會損壞或變形部件的任何材料。
此外,ALD技術還可在物品上的複雜幾何形狀和特徵(如孔和縫隙等高寬比特徵)以及三維結構中,沉積保形、均勻、連續、低孔隙度和高密度的材料層。此外,ALD技術一般會產生無孔隙度(即無銷孔)的塗層,這可能會消除沉積過程中形成的裂縫。因此,所有由ALD沉積的層可以是均勻的、連續的、保形的、具有高密度的,並且是無孔隙度的(例如,具有0%的孔隙度)。
在一些實施例中,本文所述的耐腐蝕塗層對被塗覆的底層表面(包括塗覆的表面特徵)具有保形及完整的覆蓋,並具有均勻的厚度,其厚度變化小於約+/-20%、厚度變化小於約+/-10%、厚度變化小於約+/-5%或更低的厚度變化,其測量方法是將一個位置的耐腐蝕塗層的厚度與另一個位置的耐腐蝕塗層的厚度進行比較(或將多個位置的耐腐蝕塗層的厚度進行比較,並計算所獲得的厚度值的標準偏差)。
在一些實施例中,耐腐蝕塗層的粗糙度可與被塗覆的底層表面的粗糙度相匹配。在某些實施例中,耐腐蝕塗層的表面粗糙度與被塗覆的底層表面的表面粗糙度相比,可在約+/-20%或以下,約+/-10%或以下,或約+/-5%或以下。在某些實施例中,被塗覆的表面粗糙度可為約120 μin至約180 μin,或約130 μin至約170 μin,或約140 μin至約160 μin。
在一些實施例中,耐腐蝕塗層與其他沉積技術(例如電子束IAD或電漿噴塗)相比,可能非常緻密及具有非常低的孔隙度。例如,耐腐蝕塗層的孔隙度可少於約1.5%、少於約1%、少於約0.5%或約0%(即無孔隙度)。本文使用的術語「無孔隙度」是指藉由透射電子顯微鏡(TEM)測量,沿塗層的整個深度沒有任何孔隙、銷孔、空隙或裂縫。相比之下,傳統的電子束IAD或電漿噴塗技術或摻雜或漿料基礎塗層,其孔隙度可能為1-5%,在某些情況下甚至更高。
在一些實施例中,本文所述的耐腐蝕塗層可具有雷射剝蝕ICP-MS測量的成分純度約90%至100%、約95%至100%、約97%至100%、約99%至100%、大於約99.95%或約99.98%。
在某些實施例中,在執行本文所述的任何一種ALD處理以沉積耐腐蝕塗層後,塗層可進行退火。退火可以在大約200°C至2000°C、大約400°C至1800°C、大約600°C至1500°C、大約800°C至1200°C的溫度範圍以及其中的任何範圍內進行。在某些實施例中,高達約500°C的退火溫度可用於本文所述的耐腐蝕塗層。退火可能有助於各種金屬氧化物之間的相互擴散(例如,氧化鉿部分和氧化鋁部分之間的相互擴散),以形成同質交互擴散混合(或複合)的金屬氧化物耐腐蝕層(例如,同質交互擴散鉿鋁氧化物層)。
在一些實施例中,上述兩種或更多的ALD沉積技術可以結合,以產生同質的金屬氧化物耐腐蝕塗層。例如,共沉積和共配料可以結合,共沉積和依序沉積可以結合,及/或共配料和依序沉積可以結合。
本文所述的ALD處理可先選擇性地清洗將要塗覆的物品,並放置/載入將要塗覆的物品進入ALD沉積腔室,並選擇ALD條件(例如,前驅物類型和濃度、反應物類型和濃度、ALD溫度、壓力等)以形成耐腐蝕塗層。清洗物品和/或選擇ALD條件和/或沉積塗層可以全部由同一實體或多個實體執行。
在某些實施例中,可用酸性溶液清洗物品。在一個實施例中,物品被沐浴在酸性溶液中。在實施例中,酸性溶液可以是氫氟酸(HF)溶液、鹽酸(HCl)溶液、硝酸(HNO3 )溶液,或其組合。酸性溶液可從物品去除表面污染物和/或可從物品表面去除氧化物。以酸性溶液清洗物品可提高使用ALD沉積塗層的品質。在一個實施例中,含有大約0.1-5.0 vol%的HF的酸性溶液被用來清洗由石英製成的腔室部件。在一個實施例中,含有約0.1-20 vol%HCl的酸性溶液被用來清洗Al2 O3 製成的物品。在一個實施例中,含有約5-15 vol% HNO3 的酸性溶液被用來清洗由鋁和其他金屬製成的物品。
在實施例中,可用於ALD處理中沉積鉿鋁氧化物耐腐蝕塗層的含鉿前驅物可包括(但不限於)雙(環戊二烯基)二甲基鉿、雙(甲基環戊二烯基)二甲基鉿、雙(甲基環戊二烯基)甲氧基甲基鉿、叔丁醇鉿(IV)、乙醇鉿(IV)、四(二乙胺)鉿(TDMAHf)、四(乙基甲基胺)鉿(TEMAHf)、四(2,2,6,6-四甲基-3,5-庚烷二酸)鉿(IV)、HfCl4 、HfCp、或上述之任何組合。
在實施例中,可用於ALD處理中沉積鉿鋁氧化物耐腐蝕塗層(或氧化鋁緩衝層)的含鋁前驅物可包括(但不限於)三甲基鋁(TMA)、乙氧基二乙基鋁、三(乙基甲基醯胺基)鋁、仲丁醇鋁、三溴化鋁、三氯化鋁、三乙基鋁(TEA)、三異丁基鋁、三甲基鋁、三(二乙基醯胺基)鋁、或上述之任何組合。
在實施例中,可在ALD處理中使用以沉積鉿鋁氧化物耐腐蝕塗層(或氧化鋁緩衝層)的含氧反應物可包括(但不局限於)氧氣(O2 )、水蒸汽(H2 O)、臭氧(O3 )、氧自由基(O*)、醇反應物或其他含氧材料。
列舉以下實例是為了幫助理解本文所述的實施例,而不應被解釋為特別限制本文所述和要求的實施例。上述變化(包括現在已知的或本領域技術人員的視野內以後開發的所有等效物的替代)以及配方的變化或實驗設計的微小變化,應被視為屬於本文所包含的實施例的範圍。可藉由執行本文所述的方法來實現這些實例。 實例1–ALD沉積的鉿鋁氧化物塗層的性質
利用盧瑟福背向散射/X射線螢光(RBS/XRF)膜的化學計量法,確定了由ALD沉積的兩個鉿鋁氧化物塗層中的Hf、Al和O的原子濃度在整個膜的深度內是恆定的(即在整個膜的深度內是均勻的)。表1提供了兩個鉿鋁氧化物塗層的鉿、鋁和氧的原子濃度。 表1–RBS/XRF數據
目標組成物 Hf (at. %) Al (at. %) O (at. %) Al/Hf比
HfAl2 O5 11.6 25.4 63 2.2
Hf2 Al2 O7 16.9 17.3 65.8 1.0
圖3A和3B描述了表1中鉿鋁氧化物塗層的微觀結構。圖3A是ALD沉積的Hf2 Al2 O7 塗層在20 nm的比例尺下的TEM圖像。圖3B是ALD沉積的HfAl2 O5 塗層在20 nm的比例尺下的TEM圖像。圖3A和3B的TEM圖像說明鉿鋁氧化物塗層是非晶、緻密、無孔隙度、均勻、連續和保形的。 實例2–FeCl3 凹陷(浸泡)測試
根據凹陷測試比較了兩種ALD沉積的鉿鋁氧化物塗層和ALD沉積的氧化鋁塗層的耐腐蝕性。比較了以下四個樣品:2a)未塗覆的不銹鋼電拋光316L試片,2b)經ALD沉積之約100 nm的HfAl2 O5 塗層塗覆的不銹鋼電拋光316L試片,2c)經ALD沉積之約100 nm的Hf2 Al2 O7 塗層塗覆的不銹鋼電拋光316L試片,以及2d)經ALD沉積之約100nm的Al2 O3 塗層塗覆的不銹鋼電拋光316L試片。
將這四個樣品在約50℃的6%FeCl3 溶液中浸泡約12小時。此後,將樣品從溶液中取出,並檢查表面的品質,以確定是否有凹陷。圖4A1、4B1、4C1、和4D1分別描述了在上述凹陷測試後的樣品2a)、2b)、2c)和2d)的表面的數位相機圖像。圖4A2、4B2、4C2和4D2分別描繪了樣品2a)、2b)、2c)和2d)表面上表現出更多凹陷的區域的光學顯微鏡圖像。圖4A3、4B3、4C3和4D3分別描繪了樣品2a)、2b)、2c)和2d)表面上表現出較少凹陷的區域的光學顯微鏡圖像。
如圖4A1至4D3所示,與ALD沉積的氧化鋁塗層(圖4D1、4D2及4D3)或與未塗覆的不銹鋼表面(圖4A1、4A2及4A3)相比,鉿鋁氧化物塗層(即圖4B1、4B2、4B3、4C1、4C2及4C3中的樣品2b)及2c)在凹陷(浸泡)測試中表現較佳,這可能與具有較佳的耐腐蝕性有關。 實例3–HCl氣泡測試
基於HCl氣泡測試,對以ALD沉積的鉿鋁氧化物塗層的耐腐蝕性與ALD沉積的氧化鋁塗層的耐腐蝕性和ALD沉積的的氧化釔矽塗層的耐腐蝕性進行了比較。測試的3個樣品是:3a)以ALD沉積的約500 nm的Al2 O3 塗層塗覆的Al 6061試片,3b)以ALD沉積的約300 nm的Hf2 Al2 O7 塗層塗覆的Al 6061試片,以及3c)以ALD沉積的約500nm的Y2 Si2 O7 塗層塗覆的Al 6061試片。
HCl氣泡測試藉由將每個塗層樣品(樣品3a)、3b)和3c)的一部分暴露在兩種HCl酸性溶液(5%的HCl溶液和15%的HCl溶液)中一段時間,直到HCl和底層基板(Al 6061)之間的反應變得可見。這種測試可能表明塗層在腐蝕性條件下(例如,腐蝕性處理條件)對底層基板的保護。氣泡的出現表明HCl已經滲透到塗層中,並開始與塗層下的Al 6061基板發生反應。較長的氣泡出現時間(即HCl滲入塗層的時間)可能與更好的耐腐蝕性和/或腔室性能相關。
失效時間(即HCl穿透塗層並開始與底層基板反應的時間,由樣品3a)、3b)和3c)的氣泡出現所證明)總結於下表2: 表2–Al 6061基板上之塗層的失效時間
溶液 樣品3a – 500 nm Al2 O3 樣品3b – 300 nm Hf2 Al2 O7 樣品3c – 500 nm Y2 Si2 O7
5% HCl 11小時 13小時 8小時
15% HCl 6小時 10小時 6小時
如表2所示,樣品3b(以ALD沉積的300 nm的Hf2 Al2 O7 塗覆的Al 6061試片)在任何給定的HCl溶液中的失效時間都比樣品3a(以ALD沉積的500 nm的Al2 O3 塗覆的Al 6061試片)和樣品3c(以ALD沉積的500nm的Y2 Si2 O7 塗覆的Al 6061試片)長,儘管樣品3b具有較小的厚度。 實例4–HCl浸泡測試
基於HCl浸泡測試,比較了兩種ALD沉積的鉿鋁氧化物塗層和ALD沉積的氧化鋁塗層的耐腐蝕性。比較了以下四個樣品:4a)未塗覆的不銹鋼試片,4b)以ALD沉積的約100 nm的HfAl2 O5 塗層塗覆的不銹鋼試片,4c)以ALD沉積的約100 nm的Hf2 Al2 O7 塗層塗覆的不銹鋼試片,4d)以ALD沉積的約100 nm的Al2 O3 塗層塗覆的不銹鋼試片。
將這四個樣品在室溫下浸泡在5%的HCl溶液中約12小時。然後從溶液中取出樣品,並利用電感耦合電漿光學發射光譜(ICP-OES)分析以檢測樣品中的化學元素。下表3提供了樣品4a)、4b)、4c)和4d)的ICP-OES分析摘要。 表3–在5 wt% HCl溶液12小時浸泡後的ICP-OES (ppm)
元素 樣品4a - 未塗覆的不銹鋼 樣品4b – 不銹鋼上的100 nm HfAl2 O5 樣品4c – 不銹鋼上的100 nm Hf2 Al2 O7   樣品4d – 不銹鋼上的100 nm Al2 O3
Al <0.5 <0.5 <0.5 0.6
Fe 24 <0.5 <0.5 4.9
Cr 6.2 <0.5 <0.5 1.1
Ni 3.7 <0.5 <0.5 0.6
如表3所示,與ALD沉積的氧化鋁塗層(樣品4d)或與未塗覆的不銹鋼表面(樣品4a)相比,ALD沉積的鉿鋁氧化物塗層(樣品4b和4c)增強了塗覆之不銹鋼試片在HCl溶液中的耐腐蝕性。 實例5-刮痕黏著
藉由使用10微米的金剛石觸針評估鋁基板暴露所需的力(mN)來測量ALD沉積在鋁上的300 nm Hf2 Al2 O7 塗層的刮痕黏著。該力被測量了三次。結果匯總於下表4。 表4–Al上的300 nm Hf2 Al2 O7 塗層的刮痕黏著測試結果
測量# 力(mN)
1 53.15
2 53.62
3 48.20
平均 51.66
實例6–純度
在ALD沉積的鉿鋁氧化物塗層(Hf2 Al2 O7 )上執行電感耦合電漿質譜法(ICP-MS),以評估塗層是否包含任何微量元素(例如,從基板擴散到塗層中的污染物)。ICP-MS的測量結果顯示,在Hf2 Al2 O7 塗層中,以下所有的微量元素都是無法檢測到的(即少於0.05 ppm):Sb、As、Ba、Be、Bi、Br、Cd、Ca、Ce、Cs、Cr、Co、Cu、Dy、Er、Eu、Gd、Ga、Ge、Au、Ho、In、I、Ir、Fe、La、Pb、Li、Lu、Mg、Mn、Hg、Mo、Nd、Ni、Nb、Os、Pd、P、Pt、K、Pr、Re、Rh、Rb、Ru、Sm、Sc、Se、Ag、Na、Sr、Ta、Te、Tb、Tl、Th、Tm、Sn、Ti、W、U、V、Yb、Y、與Zn。
ICP-MS數據顯示Hf2 Al2 O7 塗層含有大部分鋁和鉿(以及微量的硼(23ppm)和鋯(160ppm))。ICP-MS數據證實Hf2 Al2 O7 塗層具有非常低的表面污染物(即約99.98%的純度),並成功地防止了底層基板中的微量元素擴散到ALD沉積塗層中。 實例7–DCS(二氯矽烷)暴露
鋁合金Al6061部件裸露在鹵素氣體(如DCS)和殘留濕氣的腐蝕對ALD處理腔室的晶圓造成金屬污染。三維的、保形的、緻密的、無孔隙度的Hf2 Al2 O7 塗層作為有效的、堅固的腐蝕抑制劑。這一點是基於金屬污染測試結果的證明,總結在下面的表5中。將未塗覆的部分和塗覆的部分(塗有Hf2 Al2 O7 塗層的部分)在DSC和殘留濕氣中在約150°C至約180°C的溫度下暴露45分鐘後(這相當於約900晶圓處理週期),獲得了金屬污染測試結果。 表5–Al上Hf2 Al2 O7 塗層暴露至DSC和殘留濕氣的金屬污染測試結果
金屬 未塗覆部分上的表面濃度(atom/cm2 ) 未塗覆的Al套筒 以Hf2 Al2 O7 塗覆的部分
Al 180e10 23e10 所有分片< 1e10
Cu 所有分片< 1e10 2.9e10 所有分片< 1e10
Ni 2.4 e10 所有分片< 1e10 所有分片< 1e10
Ti 所有分片< 1e10 所有分片< 1e10 所有分片< 1e10
K 所有分片< 1e10 所有分片< 1e10 所有分片< 1e10
Na 所有分片< 1e10 所有分片< 1e10 所有分片< 1e10
從表5中可以看出,塗有Hf2 Al2 O7 塗層的部件暴露在DCS中時,沒有觀察到任何金屬污染。相反,在同樣的條件下,未塗覆的部件暴露於DCS中,確實會產生金屬污染。 實例8–Hf2 Al2 O7 塗層的耐腐蝕性
將鋁試片塗上Hf2 Al2 O7 塗層,並在真空腔室中約380℃下在Cl2 中浸泡約25小時。從浸泡試驗前(圖6A)和浸泡試驗後(圖6B)Hf2 Al2 O7 塗層的厚度不變可以看出,Hf2 Al2 O7 塗層上沒有觀察到Cl2 腐蝕。
前面的描述列出了許多具體細節,例如具體系統、部件、方法等的實例,以提供對本揭露內容的幾個實施例的良好理解。然而,對於本領域的熟練人員來說將是顯而易見的,本揭露內容的至少一些實施例可在沒有這些具體細節的情況下實施。在其他情況下,眾所周知的部件或方法沒有被詳細描述,或者以簡單的框圖形式呈現,以避免不必要地遮蔽本揭露內容。因此,所列出的具體細節僅僅是示例性的。特定的實施例可能與這些示例性細節不同,並且仍然被認為在本揭露內容的範圍內。
在本說明書通篇中提到「一個實施例」或「實施例」是指與實施例有關的描述的特定特徵、結構或特性包括在至少一個實施例中。因此,在本說明書通篇中各個地方出現的「在一個實施例中」或「在實施例中」的短語不一定都是指同一個實施例。此外,術語「或」意指包含性的「或」而不是排他性的「或」。當本文使用術語「約」或「大約」時,意指所提出的標稱值精確在±10%以內。
雖然本文中的方法的操作是以特定的順序顯示和描述的,但是每種方法的操作順序可以被改變,以便某些操作可以以相反順序執行,或使某些操作可以至少部分地與其他操作同時執行。在另一個實施例中,不同操作的指令或子操作可以用間歇和/或交替的方式進行。
要理解的是,上述描述旨在說明性,而不是限制性。對於本領域的技術人員來說,在閱讀和理解上述描述後,許多其他實施例將是顯而易見的。因此,應參照所附申請專利範圍以及這些專利範圍所享有的全部等效物的範圍來確定揭露內容的範圍。
100:處理腔室 102:腔室主體 106:內部容積 108:側壁 110:底部 116:外襯墊 126:排氣口 128:幫浦系統 130:噴頭 132:氣體輸送孔 136:支撐件 144:基板 148:基板支撐組件 158:氣體面板 164:凸緣 200,204:共沉積處理 205:物品 208:依序沉積處理 210:第一前驅物 215:第一金屬的部分吸附層 220:第二前驅物 223:第二吸附層 225,227:共吸附層 229:第一吸附層 230:反應物 233:第二金屬氧化物層 235,240,245:耐腐蝕層 239:第一金屬氧化物層 510:氣體管線 555:內表面 560,565:保形塗層
在附圖的圖中以舉例方式而非限制性的方式說明本揭露內容,其中類似的引用表示相似的元素。應當注意的是,在本揭露內容中對「一」或「一個」實施例的不同引用不一定是指同一實施例,這些引用是指至少一個。
圖1描繪了一個處理腔室的剖面圖。
圖2A描繪了根據本文所述的原子層沉積技術的共沉積處理的一個實施例。
圖2B描繪了根據本文所述的原子層沉積技術的共沉積處理的另一個實施例。
圖2C描繪了根據本文所述的原子層沉積技術的依序沉積處理的一個實施例。
圖3A是依序沉積的Hf2 Al2 O7 塗層的透射電子顯微鏡圖像。
圖3B是依序沉積的HfAl2 O5 塗層的透射電子顯微鏡圖像。
圖4A1是一個非塗覆不銹鋼試片在約50℃下6% FeCl3 浸泡測試約12小時後的數位相機圖像。
圖4A2是一個非塗覆不銹鋼試片中的第一凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4A3是一個非塗覆不銹鋼試片中的第二凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4B1是一個塗有約100微米HfAl2 O5 塗層的不銹鋼試片在約50℃下6% FeCl3 浸泡測試約12小時後的數位相機圖像。
圖4B2是一個塗有約100微米HfAl2 O5 塗層的不銹鋼試片中的凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4B3是一個塗有約100微米HfAl2 O5 塗層的不銹鋼試片中的非凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4C1是一個塗有約100微米Hf2 Al2 O7 塗層的不銹鋼試片在約50℃下6% FeCl3 浸泡測試約12小時後的數位相機圖像。
圖4C2是一個塗有約100微米Hf2 Al2 O7 塗層的不銹鋼試片中的凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4C3是一個塗有約100微米Hf2 Al2 O7 塗層的不銹鋼試片中的非凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4D1是一個塗有約100微米Al2 O3 塗層的不銹鋼試片在約50℃下6% FeCl3 浸泡測試約12小時後的數位相機圖像。
圖4D2是一個塗有約100微米Al2 O3 塗層的不銹鋼試片中的第一凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖4D3是一個塗有約100微米Al2 O3 塗層的不銹鋼試片中的第二凹陷區在約50℃下6% FeCl3 浸泡測試約12小時後的光學顯微鏡圖像。
圖5描繪了根據一個實施例具有大深寬比的耐腐蝕塗層的氣體管線的放大圖。
圖6A是鋁試片上的Hf2 Al2 O7 塗層在Cl2 浸泡測試之前20奈米比例尺下的透射電子顯微鏡圖像。
圖6B是圖6A的Hf2 Al2 O7 塗層在Cl2 浸泡測試後20奈米比例尺下的透射電子顯微鏡圖像。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
200:ALD處理
205:物品
210:第一前驅物
215:第一金屬的部分吸附層
220:第二前驅物
225:共吸附層
230:反應物
235:耐腐蝕層

Claims (20)

  1. 一種塗覆物品,包括: 一主體;及 一耐腐蝕塗層,在該主體的一表面上, 其中該耐腐蝕塗層包括鉿鋁氧化物,該鉿鋁氧化物包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁與剩餘的氧,其中該鉿鋁氧化物包括約20 mol%至約98 mol%的氧。
  2. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層在約300 nm的一厚度下展現下列至少一者:a)根據一在5 % HCl溶液中進行的HCl氣泡測試試驗出至少約13小時的失效時間,或b)根據一在15 % HCl溶液中進行的HCl氣泡測試試驗出至少約10小時的失效時間。
  3. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層包括約10 mol%至約20 mol%的鉿、約15 mol%至約30 mol%的鋁與剩餘的氧。
  4. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層包括HfAl2 O5
  5. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層包括Hf2 Al2 O7
  6. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層包括鉿及鋁的一均勻混合物,該均勻混合物具有範圍約0.8至約2.5的鋁與鉿的一莫耳比。
  7. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層的一厚度為約0.5 nm至約1 µm。
  8. 如請求項1所述之塗覆物品,其中該物品為一處理腔室的一部件,該部件選自下列所構成之一群組:一腔室壁、一噴頭、一噴嘴、一電漿產生單元、一射頻電極、一電極外殼、一擴散器與一氣體管線。
  9. 如請求項1所述之塗覆物品,其中該物品包括一深度與寬度的深寬比範圍為約10:1至約200:1的部分,其中該物品的該部分塗覆有該耐腐蝕塗層。
  10. 如請求項1所述之塗覆物品,其中該主體包括一材料,該材料為鋁、鋼、矽、銅或鎂的至少一者。
  11. 如請求項1所述之塗覆物品,其中在一50℃下進行約12小時的6%FeCl3 浸泡測試中,比起100 nm厚的氧化鋁塗層而言,該耐腐蝕塗層在約100 nm的一厚度下展現較少凹陷。
  12. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層是保形的、非晶的、具有約0%的一孔隙度及具有厚度變化小於約+/-5%的一均勻厚度。
  13. 如請求項1所述之塗覆物品,其中使用一10微米金剛石觸針在一刮痕黏著測試中,該耐腐蝕塗層在約300 nm的一厚度下需要至少約52 mN的力,以暴露該主體的該表面。
  14. 如請求項1所述之塗覆物品,其中該耐腐蝕塗層的一純度大於約99.95%。
  15. 一種方法,包括以下步驟: 執行原子層沉積,以在一物品的一表面上沉積一耐腐蝕塗層, 其中該耐腐蝕塗層包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁與剩餘的氧,其中該鉿鋁氧化物包括約20 mol%至約98 mol%的氧,及 其中該物品為一處理腔室的一部件,該部件選自下列所構成之一群組:一腔室壁、一噴頭、一噴嘴、一電漿產生單元、一射頻電極、一電極外殼、一擴散器與一氣體管線。
  16. 如請求項15所述之方法,其中沉積該耐腐蝕塗層包括使用該原子層沉積在一物品的一表面上共沉積一鉿鋁氧化物塗層,其中共沉積該鉿鋁氧化物塗層包括: 使該表面接觸一含鉿前驅物或一含鋁前驅物達一第一持續時間,以形成一包括鉿或鋁的部分吸附層; 使該部分吸附層接觸該含鋁前驅物或該含鉿前驅物達一第二持續時間,以形成一包括鉿與鋁的共吸附層,及 使該共吸附層接觸一反應物以形成該鉿鋁氧化物塗層。
  17. 如請求項15所述之方法,其中沉積該耐腐蝕塗層包括使用原子層沉積在一物品的一表面上共沉積一鉿鋁氧化物塗層,其中共沉積該鉿鋁氧化物塗層包括: 執行至少一個共配料循環,該至少一個共配料循環包括: 使該表面接觸一含鉿前驅物與一含鋁前驅物的一混合物達一第一持續時間,以形成一共吸附層;及 使該共吸附層接觸一含氧反應物以形成該鉿鋁氧化物塗層。
  18. 一種方法,包括以下步驟: 使用原子層沉積在一物品的一表面上沉積一鉿鋁氧化物塗層,其中沉積該鉿鋁氧化物塗層包括: 使該表面接觸一含鉿前驅物或一含鋁前驅物達一第一持續時間,以形成一第一吸附層; 使該第一吸附層接觸一含氧反應物以形成一包括一氧化鉿或一氧化鋁的第一層, 使該第一層接觸一含鋁前驅物或一含鉿前驅物達一第二持續時間,以形成一第二吸附層; 使該第二吸附層接觸該含氧反應物以形成一包括一氧化鋁或一氧化鉿的第二層,其中當該第一層包括氧化鉿時該第二層包括氧化鋁,反之亦然,及 自該第一層與該第二層形成該鉿鋁氧化物塗層, 其中該耐腐蝕塗層包括約1 mol%至約40 mol%的鉿、約1 mol%至約40 mol%的鋁與剩餘的氧,其中該鉿鋁氧化物包括約20 mol%至約98 mol%的氧。
  19. 如請求項18所述之方法,其中該含鉿前驅物包括雙(環戊二烯基)二甲基鉿、雙(甲基環戊二烯基)二甲基鉿、雙(甲基環戊二烯基)甲氧基甲基鉿、叔丁醇鉿(IV)、乙醇鉿(IV)、四(二乙胺)鉿、四(乙基甲基胺)鉿、四(2,2,6,6-四甲基-3,5-庚烷二酸)鉿(IV)、HfCl4、HfCp或上述之一組合。
  20. 如請求項18所述之方法,其中該含鋁前驅物包括三甲基鋁(TMA)、乙氧基二乙基鋁、三(乙基甲基醯胺基)鋁、仲丁醇鋁、三溴化鋁、三氯化鋁、三乙基鋁(TEA)、三異丁基鋁、三甲基鋁、或三(二乙基醯胺基)鋁或上述之一組合。
TW109136783A 2019-10-23 2020-10-23 藉由原子層沉積法所沉積之鉿鋁氧化物塗層 TW202130849A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962924938P 2019-10-23 2019-10-23
US62/924,938 2019-10-23
US17/072,301 2020-10-16
US17/072,301 US20210123143A1 (en) 2019-10-23 2020-10-16 Hafnium aluminum oxide coatings deposited by atomic layer deposition

Publications (1)

Publication Number Publication Date
TW202130849A true TW202130849A (zh) 2021-08-16

Family

ID=75585668

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136783A TW202130849A (zh) 2019-10-23 2020-10-23 藉由原子層沉積法所沉積之鉿鋁氧化物塗層

Country Status (6)

Country Link
US (1) US20210123143A1 (zh)
JP (1) JP2023501896A (zh)
KR (1) KR20220084395A (zh)
CN (1) CN114586131A (zh)
TW (1) TW202130849A (zh)
WO (1) WO2021081219A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210079767A (ko) * 2019-12-20 2021-06-30 삼성전자주식회사 물질막 형성 방법과, 집적회로 소자 및 그 제조 방법
KR20210150978A (ko) * 2020-06-03 2021-12-13 에이에스엠 아이피 홀딩 비.브이. 샤워 플레이트, 기판 처리 장치 및 기판 처리 방법
CN116581056B (zh) * 2023-04-13 2023-12-22 北京北方华创微电子装备有限公司 半导体工艺设备及其清洗腔室

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720259B2 (en) * 2001-10-02 2004-04-13 Genus, Inc. Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
US7135421B2 (en) * 2002-06-05 2006-11-14 Micron Technology, Inc. Atomic layer-deposited hafnium aluminum oxide
GB2509335A (en) * 2012-12-31 2014-07-02 Univ Tartu Double-structured corrosion resistant coatings and methods of application
US11326253B2 (en) * 2016-04-27 2022-05-10 Applied Materials, Inc. Atomic layer deposition of protective coatings for semiconductor process chamber components
CN106835066A (zh) * 2017-01-14 2017-06-13 太原理工大学 一种金属表面石墨烯钝化处理防腐涂层的方法
CN107164744A (zh) * 2017-03-20 2017-09-15 南昌大学 一种镁合金表面耐蚀涂层制备方法

Also Published As

Publication number Publication date
US20210123143A1 (en) 2021-04-29
JP2023501896A (ja) 2023-01-20
CN114586131A (zh) 2022-06-03
WO2021081219A1 (en) 2021-04-29
KR20220084395A (ko) 2022-06-21

Similar Documents

Publication Publication Date Title
US11251023B2 (en) Multi-layer plasma resistant coating by atomic layer deposition
KR102592883B1 (ko) 원자 층 증착에 의한 다공성 바디의 내플라즈마성 코팅
TW202130849A (zh) 藉由原子層沉積法所沉積之鉿鋁氧化物塗層
KR20190019887A (ko) 확산 장벽 층 및 내침식성 층을 갖는 다층 코팅
CN110735128B (zh) 通过原子层沉积来沉积的抗侵蚀金属氟化物涂层
JP3224064U (ja) 原子層堆積法で堆積させた耐浸食性金属酸化物コーティング
TW201927996A (zh) 抗濕塗層
JP3224084U (ja) 原子層堆積法で堆積させた耐浸食性金属フッ化物コーティング
TW202113118A (zh) 腔室部件上之抗腐蝕膜及其沉積方法