TW202129009A - 分析方法及用於其中的陣列 - Google Patents

分析方法及用於其中的陣列 Download PDF

Info

Publication number
TW202129009A
TW202129009A TW109102574A TW109102574A TW202129009A TW 202129009 A TW202129009 A TW 202129009A TW 109102574 A TW109102574 A TW 109102574A TW 109102574 A TW109102574 A TW 109102574A TW 202129009 A TW202129009 A TW 202129009A
Authority
TW
Taiwan
Prior art keywords
biomarkers
cells
performance
respiratory
dendritic
Prior art date
Application number
TW109102574A
Other languages
English (en)
Inventor
斯芬 亨利克 約翰森
羅賓 米凱爾 葛雷丁
Original Assignee
瑞典商森扎基因有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商森扎基因有限責任公司 filed Critical 瑞典商森扎基因有限責任公司
Priority to TW109102574A priority Critical patent/TW202129009A/zh
Publication of TW202129009A publication Critical patent/TW202129009A/zh

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明係關於一種鑑定能夠誘導呼吸道致敏的試劑之方法及用於該方法之陣列及分析套組。

Description

分析方法及用於其中的陣列
本發明係關於一種鑑定能夠誘導呼吸道致敏的試劑之方法及用於該方法之陣列及分析套組。
化學致敏,也稱為化學過敏,係人類免疫系統對化學致敏物反應誘導的疾病病況。此類物質(通常為香料、化妝品添加劑、染料及金屬離子)通過觸發多種複雜的細胞機制而行使其有害作用,因為它們通常能夠穿透組織。當T細胞學會識別特定的化學致敏物時,就會發生致敏作用。在隨後的暴露之後,T細胞會迅速反應以誘導發炎狀態。此相應地導致與疾病相關的症狀,例如在皮膚接觸時會導致發癢、起泡及組織損傷,在吸入時會導致咳嗽、喘息及類哮喘症狀。
眾所周知,暴露途徑可能對觀察到的症狀有影響(Kimber等人,2011)。但是,越來越明顯的是,化合物可能具有固有特性,該特性會分別導致皮膚或呼吸道致敏,分別稱為過敏性接觸性皮炎(ACD)及職業性哮喘(OA)(Dearman等人,2011)。
在此兩種情況下,化學藥品之安全性評估歷來均使用動物實驗進行。儘管當前的金標準,鼠類局部淋巴結檢定(Local Lymph Node Assay,LLNA)(TG 429)還傾向於將兩種化學致敏物分類為陽性,但不足以區分該兩種化學致敏物(Dearman等人,2011)。此外,公眾意見、對人類環境健康之關注及經濟利益已在EU內引起立法,其禁止使用動物實驗來對化妝品及其任何成分進行安全性評估,其趨勢目前在全球範圍內及跨越市場及行業區段擴散。綜上所述,迫切需要開發一種不含動物的方法來評估化學致敏物。
為了滿足此需求,在過去的十年中,許多研究都集中在所謂的活體外、化學及計算機檢定中,亦即可以將所測試化學物質分為致敏物或非致敏物的預測方法,而無需使用動物實驗。雖然已經提出了許多評估皮膚致敏物之方法,但其中一些方法已經過正式驗證,因此被批准用於工業應用(亦即OECD TG 442C,442D及442E),但此種方法仍未實現能夠準確、明確地預測並分類化學呼吸道致敏物的要求。
缺乏化學呼吸道致敏物的預測方法之一促成因素為巨大的知識鴻溝,該等知識鴻溝目前阻礙了對呼吸道致敏所涉及的免疫生物學機制的詳細瞭解。與皮膚致敏的情況相比,不良後果路徑(AOP)尚不可用。但是,創建此類AOP之工作正在進行中,並且機制路徑的許多基本步驟已基本達成共識(例如Kimber等人,2014;Sullivan等人,2017)。
簡而言之,起始分子事件及隨後關鍵事件在很大程度上類似於皮膚致敏的AOP,具有一些關鍵的不確定性領域,以及與細胞事件至呼吸道邊緣之器官特異性再分配相關的明顯差異。然而,雖然誘發通常需要呼吸暴露,但應注意的是,呼吸道致敏亦可通過皮膚暴露而發生(Kimber等人,2002),此進一步證實了皮膚及呼吸道致敏本質上是不同的,優先導致一種不良後果或另一種不良後果,很少兩者兼而有之。
與皮膚致敏的情況相似,建議所提議的AOP從共價蛋白結 合開始,在呼吸或皮膚暴露於低分子量有機化學物質後,可能與肺或皮膚中的離胺酸親核試劑結合。此蛋白質結合會導致應激反應路徑及細胞危險信號的活化,包含上皮細胞釋放的氧化應激、細胞因子及趨化因子,從而導致樹突狀細胞(DC)成熟並遷移至引流淋巴結。半抗原也可以直接促成DC活化。引流淋巴結中的抗原呈遞DC發出T細胞活化及成熟信號,此為致敏階段的特徵,其導致化學呼吸道過敏。
因此,用於化學呼吸道致敏的AOP包含分子起始事件(關鍵事件(KE)1)、肺上皮細胞的炎症反應(KE 2)及DC(KE 3)以及器官反應(例如T細胞反應(KE 4))。儘管人們認為呼吸道致敏物優先誘導Th2型免疫反應,而不是主要由皮膚致敏物引發的Th1及細胞毒性T細胞,但不確定性的關鍵領域涉及確切的位置、涉及的細胞亞群及分子機制,因此發生了Th2-偏斜(Paul & Zhu,2010)。此外,尚未完全瞭解引起不良效果是否需要IgE抗體(Isola等人,2008)。然而,據推測,通過DC在免疫突觸中表現出的共刺激特性,DC參與其中並且Th2-偏斜與抗原呈遞相關。由於此等原因,DC的活體外細胞系統為檢定開發的候選目標。
基因組過敏原快速偵測(GARDTM)平台先前已展示了使用基於300多種生物標誌物的不同基因標記對呼吸道致敏物進行分類的能力(Forreryd等人,2015,WO 2013/160882;WO 2016/083604)。然而,仍然存在迫切及緊急的需求以建立準確及可靠的無動物活體外檢定,以特異性鑑定呼吸道致敏物。
發明人現已基於新的基因組生物標誌物標記產生了用於評估呼吸道致敏物的基於細胞的新穎測試策略,該策略令人驚訝地包括新的 少量基因組,其可以組合使用以替代動物測試。發明人通過提供從外部測試資料集中的樣本分類產生的分類資料,證明了檢定的功能,此後稱為「GARDair」。
因此,本發明之第一態樣提供了一種鑑定能夠在哺乳動物中誘導呼吸道致敏的試劑的方法,該方法包括以下步驟或由以下步驟組成:
(a)提供樹突狀細胞群或類樹突狀細胞群;
(b)將步驟(a)中提供之細胞暴露於測試劑;及
(c)在步驟(b)之該等細胞中量測選自表A中定義之群的兩種或更多種生物標誌物的表現;
其中步驟(c)中所量測之該兩種或更多種生物標誌物的表現指示步驟(b)之該測試劑的呼吸道致敏作用。
在另一個或替代實施例中,在步驟(c)中被量測表現的一或多種生物標誌物選自表A(i)中所定義之群。
在另一個或替代實施例中,步驟(c)包括量測選自表A(i)中定義之群的一或多種生物標誌物的表現或由其組成,例如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25種表A(i)中所列生物標誌物。例如,步驟(c)可包括量測表A(i)中所列的所有生物標誌物的表現或由其組成。
方法可包含或不包含量測CRLF2的表現。方法可包含或不包含量測FSCN1的表現。方法可包含或不包含量測AES的表現。方法可包含或不包含量測ALOX5AP的表現。方法可包含或不包含量測RAB27B的表現。方法可包含或不包含量測ZFP36L1的表現。方法可包含或不包含量測SLC44A2的表現。方法可包含或不包含量測ATL1的表現。方法可包含或不包含量測FAM30A的表現。方法可包含或不包含量測CTSH的表 現。方法可包含或不包含量測NINJ1的表現。方法可包含或不包含量測RALGAPA2的表現。方法可包含或不包含量測RNF220的表現。方法可包含或不包含量測OSBPL3的表現。方法可包含或不包含量測CACNA2D2的表現。方法可包含或不包含量測HNRNPC的表現。方法可包含或不包含量測PIK3C3的表現。方法可包含或不包含量測HOPX的表現。方法可包含或不包含量測VCAN的表現。方法可包含或不包含量測RUFY1的表現。方法可包含或不包含量測GNA15的表現。方法可包含或不包含量測ADAM8的表現。方法可包含或不包含量測NRIP1的表現。方法可包含或不包含量測CTCF的表現。方法可包含或不包含量測PLCXD1的表現。
方法可包含或不包含量測MYCN的表現。方法可以包含或不包含量測IL7R的表現。方法可以包含或不包含量測RALA的表現。
在另一個或替代實施例中,步驟(c)包括量測選自表A(ii)定義之群的一或多種生物標誌物之表現或由其組成,例如2或3種表A(ii)中所列生物標誌物。例如,步驟(c)可包括量測表A(ii)中所列之全部生物標誌物之表現或由其組成。
在另一個或替代實施例中,CRLF2被包含在表A(ii)中,且不包括在表A(i)中。
在另一個或替代實施例中,步驟(c)包括量測選自表A(i)中定義之群的一或多種生物標誌物之表現或由其組成,例如3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27或28種表A(i)中所列生物標誌物。例如,步驟(c)可包括量測表A(i)中所列的全部生物標誌物的表現或由其組成。
因此,可在步驟(c)中量測表A(i)中定義之全部生物標誌物及/或表A(ii)中定義之全部生物標誌物之表現。因此,方法可包括步驟(c) 中量測表A中定義之全部生物標誌物或由其組成。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、IL7R。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B、MYCN、ZFP36L1、SLC44A2、ATL1、FAM30A。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B、MYCN、ZFP36L1、SLC44A2、ATL1、FAM30A、CTSH、NINJ1、RALGAPA2、RNF220、OSBPL3,
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B、MYCN、ZFP36L1、SLC44A2、ATL1、FAM30A、CTSH、NINJ1、RALGAPA2、RNF220、OSBPL3、CACNA2D2、HNRNPC、PIK3C3、IL7R。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B、 MYCN、ZFP36L1、SLC44A2、ATL1、FAM30A、CTSH、NINJ1、RALGAPA2、RNF220、OSBPL3、CACNA2D2、HNRNPC、PIK3C3、IL7R、HOPX。
在另一個或替代實施例中,步驟(c)包括量測以下每個生物標誌物之表現或由其組成:CRLF2、FSCN1、AES、ALOX5AP、RAB27B、MYCN、ZFP36L1、SLC44A2、ATL1、FAM30A、CTSH、NINJ1、RALGAPA2、RNF220、OSBPL3、CACNA2D2、HNRNPC、PIK3C3、IL7R、HOPX、VCAN、RALA、RUFY1、GNA15、ADAM8、NRIP1、CTCF、PLCXD1。
「表現」是指生物標誌物的存在、水準及/或數量。
「生物標誌物」包含任何生物分子,或組分或其片段,其中量測可提供用於確定測試劑是否為呼吸道致敏物信息。因此,在表A的上下文中,生物標誌物可為核酸分子,例如mRNA或cDNA。可替代地,生物標誌物可為由核酸分子或其醣部分、抗原組分或其片段編碼的蛋白質。
在另一個或替代實施例中,方法包括以下其他步驟:
d)將另一個樹突狀細胞或類樹突狀細胞群暴露於一或多種陰性對照試劑中,該陰性對照試劑在哺乳動物中不為呼吸道致敏物;及
e)在步驟(d)之該等細胞中量測在步驟(c)中量測之該兩種或更多種生物標誌物之表現
其中,如果步驟(e)中所量測之該兩種或更多種生物標誌物之表現與步驟(c)中所量測之該兩種或更多種生物標誌物之表現不同,則將測試劑鑑定為呼吸道致敏物。
在另一個或替代實施例中DMSO可用作陰性對照。媒劑對照可用作陰性對照試劑。媒劑對照可包括DMSO。
在另一個或替代實施例中未刺激之細胞可用作陰性對照。「未刺激之細胞」包含或意指未暴露於任何測試劑的細胞。換句話說,步驟(d)中之單獨細胞群不暴露於測試劑。在另一個或替代實施例中,未刺激之細胞可以用作參照樣本,用於歸一化資料集的對準。
在另一個或替代實施例中,在暴露於測試劑之前及之後,在步驟(a)中提供的細胞中量測在步驟(c)中量測的兩種或更多種生物標誌物的表現,並且其中兩者之間的表現差異在暴露於測試劑之前及之後的一或多種生物標誌物指示步驟(b)的測試劑的致敏作用。因此,步驟(a)中提供的細胞可以同時提供陰性對照及測試結果。
「與步驟(c)中所量測之兩種或更多種生物標誌物的表現不同」及「表現差異」包含第一樣本(例如測試劑樣本)中的存在及/或數量與第二樣本(例如對照試劑樣本)的不同。
例如,測試樣本中的存在及/或數量可以以統計學上顯著的方式不同於一或多種陰性對照樣本的存在及/或含量。較佳地,兩種或更多種生物標誌物在暴露於測試劑的細胞群中之表現為:
小於或等於暴露於陰性對照試劑的細胞群之80%,例如不超過暴露於陰性對照或陰性對照試劑的細胞群之79%、78%、77%、76%、75%、74%、73%、72%、71%、70%、69%、68%、67%、66%、65%、64%、63%、62%、61%、60%、59%、58%、57%、56%、55%、54%、53%、52%、51%、50%、49%、48%、47%、46%、45%、44%、43%、42%、41%、40%、39%、38%、37%、36%、35%、34%、33%、32%、31%、30%、29%、28%、27%、26%、25%、24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或0%;或
暴露於陰性對照試劑的細胞群之至少120%,例如暴露於陰性對照或陰性對照試劑的細胞群之至少121%、122%、123%、124%、125%、126%、127%、128%、129%、130%、131%、132%、133%、134%、135%、136%、137%、138%、139%、140%、141%、142%、143%、144%、145%、146%、147%、148%、149%、150%、151%、152%、153%、154%、155%、156%、157%、158%、159%、160%、161%、162%、163%、164%、165%、166%、167%、168%、169%、170%、171%、172%、173%、174%、175%、176%、177%、178%、179%、180%、181%、182%、183%、184%、185%、186%、187%、188%、189%、190%、191%、192%、193%、194%、195%、196%、197%、198%、199%、200%、225%、250%、275%、300%、325%、350%、375%、400%、425%、450%、475%或至少500%。
「與在步驟(c)中量測的兩種或更多種生物標誌物的表現不同」可替代地或額外地包含將測試樣本分類為屬於一或多個陰性對照樣本的不同組。例如,在使用SVM的情況下,測試樣本位於決策值閾值的另一側,當一或多個陰性對照樣本(例如,若測試劑被分類為呼吸道致敏物,如果一或多種測試(或其複本)的SVM決策值
Figure 109102574-A0202-12-0009-16
0,則一或多個陽性對照樣本(或其多數)的SVM決策值也應
Figure 109102574-A0202-12-0009-17
0)。
在另一個或替代實施例中,步驟(d)中提供之一或多種陰性對照試劑選自由以下組成之群:DMSO;未刺激之細胞;細胞培養基;媒劑對照;蒸餾水。
在另一個或替代實施例中,一或多種陰性對照試劑包括選自由以下組成之群之一或多種試劑或由其組成:DMSO;1-丁醇;2-胺基苯酚;丙烯酸2-羥乙酯;2-硝基-1,4-苯二胺;4-胺基苯甲酸;氯苯;二甲基甲醯胺;乙基香蘭素;甲醛;香草醇;己基肉桂醛;異丙醇;Kathon CG*;水 楊酸甲酯;青黴素G;丙二醇;重鉻酸鉀;高錳酸鉀;吐溫80(Tween 80);硫酸鋅;2-巰基苯并噻唑;4-羥基苯甲酸;苯甲醛;辛酸;肉桂醇;鄰苯二甲酸二乙酯;DNCB;丁香酚;甘油;乙二醛;異丁香酚;苯酚;PPD;間苯二酚;水楊酸;SDS;及氯苯。
在另一個或替代特定實施例中,一或多個陰性對照試劑可包括DMSO及/或氯苯或由其組成。
在另一個或替代實施例中,一或多種陰性對照試劑可以包括一或多種選自由表1及/或表3所列的非致敏物及/或非呼吸道致敏物組成之群的非致敏物及/或非呼吸道致敏物或由其組成。
陰性對照試劑可為與本發明之測試劑或對照試劑一起使用的溶劑。
方法可包括使用至少2種陰性對照試劑(即非致敏物)或由其組成,例如至少3、4、5、6、7、8、9、10、11、12、13,14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38,39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或至少100種陰性對照試劑。
替代地或另外地,在測試劑暴露之前,將在步驟(b)中所量測之樹突狀細胞或類樹突狀細胞的一或多種生物標誌物之表現用作陰性對照。
在另一個或替代實施例中,方法包括以下其他步驟:
f)將另一個樹突狀細胞或類樹突狀細胞群暴露於一或多種陽性對照試 劑中,該陽性對照試劑在哺乳動物中為呼吸道致敏物;及
g)在步驟(f)的細胞中量測在步驟(c)中所量測之該兩種或更多種生物標誌物之表現
其中,如果步驟(f)中所量測之該兩種或更多種生物標誌物之表現與步驟(c)中所量測之該兩種或更多種生物標誌物之表現一致,則將測試劑鑑定為呼吸道致敏物。
「對應於步驟(c)中所量測之兩種或更多種生物標誌物的表現」意指暴露於測試劑的細胞群中兩種或更多種生物標誌物的表現與暴露於一種以上陽性對照試劑的細胞群的表現相同或無顯著差異。較佳地,兩種或更多種生物標誌物在暴露於測試劑的細胞群中之表現為暴露於一種以上陽性對照試劑的細胞群的表現的81%與119%之間,例如大於或等於暴露於一種以上陽性對照試劑的細胞群之82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99,且小於或等於暴露於一種以上陽性對照試劑的細胞群的101%、102%、103%、104%、105%、106%、107%、108%、109%、110%、111%、112%、113%、114%、115%、116%、117%、118%或119%。
「與步驟(c)中所量測之兩種或多種生物標誌物的表現一致」,我們可替代地或另外地包含將測試樣本分類為與一或多種陽性對照樣本屬於同一組。例如,在使用SVM的情況下,測試樣本位於決策值閾值的同一側,當一或多個陰性對照樣本(例如,若測試劑被分類為呼吸道致敏物,如果一或多種測試(或其複本)的SVM決策值>0,則一或多個陽性對照樣本(或其多數)的SVM決策值也應>0)。
在另一個或替代實施例中,步驟(f)中提供之一或多種陽性對照試劑包括一或多種選自由以下組成的試劑或由其組成:六氯鉑酸銨; 過硫酸銨;乙二胺;戊二醛;六亞甲基二異氰酸酯;順丁烯二酸酐;亞甲基二酚二異氰酸酯;鄰苯二甲酸酐;甲異氰酸苯酯;偏苯三酸酐;氯胺-T水合物;異佛爾酮二異氰酸酯;哌嗪;活性橙16;順丁烯二酸酐;苯基異氰酸酯(MDI);鄰苯二甲酸酐;甲苯二異氰酸酯;及偏苯三酸酐
在另一個或替代實施例中,步驟(f)中提供之一或多種陽性對照試劑包括選自由以下組成之群的一或多種試劑或由其組成:活性橙16;哌嗪;氯胺T;及偏苯三酸酐。
在另一個或替代實施例中,步驟(f)中提供之一或多種陽性對照試劑包括選自由以下組成之群的一或多種試劑或由其組成:活性橙16;及哌嗪。
在另一個或替代實施例中,步驟(f)中提供之一或多種陽性對照試劑包括選自由表1及/或表3中所列的彼等呼吸道致敏物組成之群的一或多種試劑或由其組成。
在另一個或替代實施例中,一或多種陽性對照試劑可包括亞甲基二苯酚二異氰酸酯或由其組成。
方法可包括使用至少2種陽性對照(即致敏物)或由其組成,例如至少3、4、5、6、7、8、9、10、11、12、13、14,15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39,40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或至少100種陽性對照試劑。
在另一個或替代實施例中,方法指示待測試劑的致敏效能。 例如,方法可用於預測與陽性對照及/或與一或多種額外測試劑相比的測試劑的相對致敏效能。
在另一個或替代實施例中,方法包括以下其他步驟:
(h)鑑定測試劑是否為呼吸道致敏物。
因此,在一個實施例中,方法指示測試劑是否為呼吸道致敏物。在替代或額外的實施例中,方法指示測試劑的相對呼吸道致敏功效。
因此,在一個實施例中,方法指示測試劑的致敏效能(亦即,測試劑為非致敏物、弱致敏物、中致敏物、強致敏物或極致敏物)。較佳地,PCA中決策值及距離與致敏物的效能相關。
替代地或額外地,可通過在步驟(d)中設置以下來確定測試劑的效能:
(i)一或多種極端呼吸道致敏物陽性對照試劑;
(ii)一或多種強呼吸道致敏物陽性對照試劑;
(iii)一或多種中呼吸道致敏物陽性對照試劑;及/或
(iv)一或多種弱呼吸道致敏物陽性對照試劑,
其中步驟(c)中所量測之兩種或多種生物標誌物的測試樣本中之存在及/或數量與步驟(e)中所量測的兩種或多種生物標誌物的極陽性對照樣本(如果有的話)之存在及/或數量一致的情況下,將測試劑鑑定為極呼吸道致敏物;及/或不同於步驟(e)及/或(g)中所量測的兩種或多種生物標誌物在強、中、弱及/或陰性對照樣本(如果有的話)中的存在及/或數量,
其中步驟(c)中所量測之兩種或多種生物標誌物的測試樣本中之存在及/或數量與步驟(e)中所量測的兩種或多種生物標誌物的強陽性對照樣本(如果有的話)之存在及/或數量一致的情況下,將測試劑鑑定為強呼吸道致敏物;及/或不同於步驟(e)及/或(g)中所量測的兩種或多種生物標誌物在 極、中、弱及/或陰性對照樣本(如果有的話)中的存在及/或數量,
其中步驟(c)中所量測之兩種或多種生物標誌物的測試樣本中之存在及/或數量與步驟(e)中所量測的兩種或多種生物標誌物的中陽性對照樣本(如果有的話)之存在及/或數量一致的情況下,將測試劑鑑定為強中呼吸道致敏物;及/或不同於步驟(e)及/或(g)中所量測的兩種或多種生物標誌物在極、強、弱及/或陰性對照樣本(如果有的話)中的存在及/或數量,及
其中步驟(c)中所量測之兩種或多種生物標誌物的測試樣本中之存在及/或數量與步驟(e)中所量測的兩種或多種生物標誌物的弱陽性對照樣本(如果有的話)之存在及/或數量一致的情況下,將測試劑鑑定為弱中呼吸道致敏物;及/或不同於步驟(e)及/或(g)中所量測的兩種或多種生物標誌物在極、強、中及/或陰性對照樣本(如果有的話)中的存在及/或數量。
因此,步驟(d)可包括以下類別的呼吸道致敏物陽性對照或由其組成:
(a)極、強、中及弱;
(b)強、中、弱;
(c)極、中及弱;
(d)極、強及中;
(e)極及強;
(f)強及中;
(g)中及弱;
(h)強及弱;
(i)極及中;
(j)極及弱;
(k)極;
(l)強;
(m)中;
(n)弱。
基於人類的臨床觀察,陰性及陽性對照可分別分類為呼吸非致敏物或呼吸道致敏物。
替代地或額外地,方法可包括將步驟(c)中所量測之兩種或更多種生物標誌物之表現與代表步驟(e)及/或步驟(g)中所量測的兩種或更多種生物標誌物的表現的一或多個預定參考值進行比較。
通過適當地選擇表A中的一些或全部生物標誌物,視情況與一或多種其他生物標誌物結合,本發明之方法對於鑑定呼吸道致敏物表現出高的預測準確性。
大體而言,呼吸道致敏物的ROC AUC經測定為至少0.55,例如ROC AUC為至少0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、0.96、0.97、0.98、0.99或ROC AUC為1.00。較佳地,呼吸道致敏物的ROC AUC為至少0.85,且最佳ROC AUC為1。
可使用本領域已知的任何合適的統計方法或機器學習算法來進行鑑定,諸如隨機森林(Random Forest,RF)、支持向量機(Support Vector Machine,SVM)、主成分分析(Principal Component Analysis,PCA)、普通最小二乘法(ordinary least squares,OLS)、偏最小二乘回歸(partial least squares regression,PLS)、正交偏最小二乘回歸(orthogonal partial least squares regression,O-PLS)及其他多元統計分析(例如,後向逐步邏輯回歸模型)。有關多變量統計分析的綜述,參見例如Schervish,Mark J。(1987年11月)。「多變量分析之綜述」。統計科學(Statistical science) 2(4):396-413,其以引用方式併入本文。較佳地,使用支持向量 機(Support Vector Machine,SVM)。
通常,使用支持向量機(SVM)來識別呼吸道致敏物,例如可從http://cran.r-project.org/web/packages/e1071/index.html(例如e1071 1.5-24)獲得之彼等。然而也可使用任何其他合適的手段。SVM也可用於確定包括本文所定義之一或多種表A生物標誌物或由其組成的生物標誌物標記的ROC AUC。
支持向量機(SVM)是用於分類及回歸的一組相關監督學習方法。給定一組訓練實例,每個訓練實例都標記為屬於兩個類別中之一者,SVM訓練算法構建一個模型,該模型預測新實例是否屬於一個類別或另一個類別。直觀地講,SVM模型是將實例表示為空間中的點,並進行了映射,以使各個類別的實例被儘可能寬的明顯間隙分開。然後,將新實例映射到相同的空間中,並根據它們落在間隙的哪一側來預測屬於一類別。
更正式地講,支持向量機在高維或無限維空間中構建一個超平面或一組超平面,其可用於分類、回歸或其他任務。直觀地講,通過超平面可實現良好的分離,該超平面到任何類別的最近訓練資料點之間的距離最大(所謂的功能裕量),因為通常裕量越大,分類器的泛化誤差就越小。有關SVM的更多信息,參見例如Burges,1998,數據挖掘及知識發(Data Mining and Knowledge Discovery)2:121-167。
在本發明之一個實施例中,在進行本發明之方法之前,使用已知試劑(即已知的呼吸道致敏物或非致敏物)的生物標誌物圖譜對SVM進行「訓練」。通過運行此類訓練樣本,SVM能夠瞭解哪些生物標誌物圖譜與能夠誘導呼吸道致敏的試劑有關。一旦訓練過程完成,SVM就可以預測所測試的生物標誌物樣本是來自呼吸道致敏物還是非致敏物。
本領域技術人員可根據具體情況確定個別SVM之決策值。 在一個實施例中,如果一或多種測試(或其複本)之SVM決策值>0,則將測試劑分類為呼吸道致敏物。在一個實施例中,如果一或多種測試(或其複本)之SVM決策值
Figure 109102574-A0202-12-0017-15
0,則將測試劑分類為呼吸非致敏物。此允許將測試劑分類為呼吸道致敏物或非致敏物。
然而可通過使用必要的訓練參數對SVM進行預編程來跳過此訓練過程。例如,基於對表A中所列之兩種或多種生物標誌物的量測,可使用實例中所描述的SVM算法,根據已知的SVM參數鑑定呼吸道致敏物。
本領域技術人員將理解,可通過訓練具有適當選擇資料的SVM機器來判定表A所列生物標誌物的任何組合的合適的SVM參數(亦即,來自暴露於已知呼吸道致敏物及/或非致敏物的細胞的生物標誌物量測)。替代地,根據本領域已知的任何其他合適的統計方法,表A生物標誌物可用於鑑定呼吸道致敏物。
替代地,根據本領域已知的任何其他合適的統計方法(例如ANOVA、ANCOVA、MANOVA、MANCOVA、多元回歸分析、主成分分析(PCA)、因子分析、典範相關分析(Canonical correlation analysis)、典範相關分析、冗餘分析對應分析(Redundancy analysis Correspondence analysis,CA;倒數平均)、多維標度、判別分析、線性判別分析(LDA)、聚類系統(Clustering system)、遞歸分區(Recursive partitioning)及人工神經網路),表A資料可用於鑑定能夠誘導呼吸道致敏之試劑。
較佳地,本發明之方法具有至少60%的準確性,例如61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、 98%、99%或100%準確性。在一較佳實施例中,本發明之方法具有至少89%準確性。
較佳地,本發明之方法具有至少60%的敏感性,例如61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%敏感性。在一較佳實施例中,本發明之方法具有至少89%的敏感性。
較佳地,本發明之方法具有至少60%的特異性,例如61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%特異性。在一較佳實施例中,本發明之方法具有89%特異性。
「準確性」意指方法正確結果的比例,「敏感性」意指被正確分類為陽性的全部陽性試劑的比例,「特異性」意指被正確分類為陰性的全部陰性試劑的比例。
在一較佳實施例中,步驟(c)包括量測一或多種生物標誌物的核酸分子之表現或由其組成。核酸分子可為DNA分子或cDNA分子或mRNA分子。較佳地,核酸分子為mRNA分子。然而核酸分子可為cDNA分子。
在一個實施例中,步驟(c)中一或多種生物標誌物的表現的量測使用選自由以下組成之群的方法進行:南方雜交、北方雜交、聚合酶鏈反應(PCR)、逆轉錄酶PCR(RT-PCR)、定量實時PCR(qRT-PCR)、奈米 陣列、微陣列、宏陣列、放射自顯影及原位雜交。較佳地,使用DNA微陣列量測一或多種生物標誌物的表現。
在另一個或替代實施例中,使用陣列(例如DNA陣列)量測步驟(c)中所量測之一或多個生物標誌物。在另一個或替代實施例中,使用全基因組陣列(例如昂飛人基因1.0 ST陣列(Affymetrix Human Gene 1.0 ST array)或昂飛人基因2.0 ST陣列)量測步驟(c)中所量測之一或多種生物標誌物。在另一個或替代實施例中,使用Nanostring nCounter®系統(例如,基於從整個基因組陣列(例如,昂飛人基因1.0 ST陣列或昂飛人基因2.0 ST陣列)中選擇的定製Nanostring nCounter®代碼集)。根據製造商的說明可使用推薦的套組及試劑來使用此類系統。在另一個或替代實施例中,代碼集包含用於表A中所定義之28個基因中的一或多個基因的探針。
方法可包括使用一或多種結合部分來量測步驟(c)中一或多種生物標誌物的表現,每個結合部分能夠選擇性地與編碼表A中鑑定的一種生物標誌物的核酸分子結合。較佳地,方法包括使用兩個或多個結合部分量測步驟(c)中兩個或多個生物標誌物的表現,每個結合部分能夠選擇性地與編碼表A中鑑定的一種生物標誌物的核酸分子結合。例如,可使用能夠選擇性地與每一個彼等生物標誌物結合的結合部分的當量組合來量測上述生物標誌物的任何特定組合的表現。
在一實施例中,一或多個結合部分各自包括核酸分子或由核酸分子組成。在另一個實施例中,一或多個結合部分各自包括DNA、RNA、PNA、LNA、GNA、TNA或PMO或由其組成。較佳地,一或多個結合部分各自包括DNA或由DNA組成。在一實施例中,一或多個結合部分的長度為5至100個核苷酸。然而在另一個實施例中,它們的長度為15至35個核苷酸。
一或多個結合部分可包括來自人基因1.0 ST陣列(昂飛,美國,加利福尼亞,聖克拉拉)的一或多種探針或由其組成。探針識別號碼在本文的表A中提供。
如下所述,基於它們結合既定核酸、蛋白質或胺基酸基元的能力,可以從文庫中選擇或篩選合適的結合劑(也稱為結合分子或結合部分)。
在一較佳實施例中,結合部分包含可偵測部分。
「可偵測部分」包含允許直接或間接確定其存在及/或相對數量及/或位置(例如,陣列上的位置)的部分。
合適的可偵測部分為本領域所熟知的。
例如,可偵測部分可為螢光及/或發光及/或化學發光的部分,當暴露於特定條件下時可被偵測。此類螢光部分可能需要暴露於特定波長及強度的輻射(亦即光)以引起螢光部分的激發,從而使其能夠在可偵測到的特定波長下發射可偵測的螢光。
替代地,可偵測部分可為能夠將(較佳不可偵測)底物轉化為可見及/或偵測的可偵測產物的酶。合適的酶之實例在以下例如關於ELISA檢定更詳細地討論。
可偵測部分可為放射性部分,且包括放射性原子或由放射性原子組成。放射性原子可選自鎝-99m、碘-123、碘-125、碘-131、銦-111、氟-19、碳-13、氮-15、氧-17、磷-32、硫-35、氘、氚、錸-186、錸-188及釔90。
因此,可偵測部分可選自由以下組成之群:螢光部分;發光部分;化學發光部分;放射性部分(例如,放射性原子);或酶部分。
顯然,待偵測的試劑(例如,本文所描述的測試樣本及/或對 照樣本中的一或多種生物標誌物及/或用於偵測所選蛋白質的抗體分子)必須具有足夠的適當原子同位素以使可偵測部分易於被偵測到。
在另一個較佳的實施例中,結合部分的可偵測部分為螢光部分。
可以以已知方式將放射性或其他標誌記併入存在於本發明方法的樣本及/或本發明結合部分中的生物標誌物中。例如,若結合劑為多肽,則其可以被生物合成,或者可使用包括例如氟-19的合適的胺基酸前體代替氫通過化學胺基酸合成來合成。諸如99mTc、123I、186Rh、188Rh及111In的標記可例如經由結合部分中的半胱胺酸殘基連接。釔-90可通過離胺酸殘基連接。IODOGEN方法(Fraker等人(1978)《生物化學與生物物理研究通訊(Biochem.Biophys.Res.Comm.)》 80,49-57)可用於併入123I。參考文獻(「免疫閃爍掃描中的單株抗體(Monoclonal Antibodies in Immunoscintigraphy)」,JF Chatal,CRC出版社,1989)詳細描述了其他方法。將其他可偵測部分(例如酶、螢光、發光、化學發光或放射性部分)結合到蛋白質的方法是本領域所熟知的。
本領域技術人員將理解,待測試的樣本中的生物標誌物可用間接輔助確定該等蛋白質的存在、數量及/或位置的部分標記。因此,部分可構成多組分可偵測部分的一種組分。例如,待測樣本中的生物標誌物可以用生物素標記,此使得它們使用以融合或以其他方式與可偵測標記結合的抗生蛋白鏈菌素進行隨後偵測。
在步驟(c)中,本發明之第一態樣中提供的方法可包括以下或由以下組成:判定表A中所定義之一或多種生物標誌物的蛋白質表現。方法可包括量測能夠選擇性地與表A中鑑定的生物標誌物之一者結合的一或多種生物標誌物的表現。一或多個結合部分可包括抗體抗體或其抗原結 合片段或由其組成,例如單株抗體或其片段。
術語「抗體」包含任何合成抗體、重組抗體或抗體雜合物,例如但不限於通過噬菌體顯示免疫球蛋白輕鏈及/或重鏈可變區及/或恆定區產生的單鏈抗體分子,或能夠以本領域技術人員已知的免疫檢定形式與抗原結合的其他免疫相互作用分子。
吾人還使用包含類抗體結合劑,例如親和體及適體。
在保留其特異性結合位點之抗體片段之合成中涉及的技術的一般性綜述發現於Winter & Milstein(1991)《自然(Nature)349,293-299。
額外地或替代地,一或多個第一結合分子可為適體(參見Collett等人2005,《方法(Methods)》37:4-15)。
分子文庫如抗體文庫(Clackson等人,1991,《自然(Nature)352,624-628;Marks等人,1991,《分子生物學雜誌(J Mol Biol)222(3):581-97)肽文庫(Smith,1985,《科學(Science)》228(4705):1315-7),表現cDNA文庫(Santi等人(2000)《分子生物學雜誌(J Mol Biol)》296(2):497-508),除抗體框架以外的其他支架上的文庫例如親和體(Gunneriusson等人,1999,《應用環境微生物學(Appl Environ Microbiol)》65(9):4134-40)或基於適體之文庫(Kenan等人,1999,《方法分子生物學(Methods Mol Biol)118,217-31)可被用作源,自該源特異於給定基元之結合分子被選擇用於本發明之方法。
分子文庫可在活體內在原核細胞中表現(Clackson等人,1991,同前;Marks等人,1991,同前)或真核細胞(Kiek等人,1999,《美國科學院院報(Proc Natl Acad Sci USA)》96(10):5651-6)或可在體外表現而無需細胞參與(Hanes & Pluckthun,1997,《美國科學院院報(Proc Natl Acad Sci USA)》 94(10):4937-42;He & Taussig,1997,Nucleic Acids Res 25(24):5132-4;Nemoto等人,1997,FEBS Lett,414(2):405-8)。
在使用基於蛋白質的文庫的情況下,編碼潛在結合分子文庫的基因通常包裝在病毒中,且潛在結合分子在病毒表面顯示(Clackson等人,1991,同上;Marks等人,1991,同上;Smith,1985,同上)。
也許最常用的顯示系統為在其表面顯示抗體片段之絲狀噬菌體,該等抗體片段表現為與噬菌體次要外殼蛋白的融合體(Clackson等人,1991,同上;Marks等人,1991,同上)。然而用於顯示的其他合適的系統包含使用其他病毒(EP 39578)、細菌(Gunneriusson等人,1999,同上;Daugherty等人,1998,《蛋白質工程(Protein Eng)》11(9):825-32;Daugherty等人,1999,《蛋白質工程(Protein Eng)》12(7):613-21)及酵母菌(Shusta等人,1999,《分子生物學雜誌(J Mol Biol)292(5):949-56)。
此外,顯示系統已經被開發的多肽產物的利用聯動其編碼mRNA在所謂的核糖體顯示系統(Hanes & Pluckthun,1997,同上;He & Taussig,1997,同上;Nemoto等人,1997,同上),或替代地多肽產物連接至編碼DNA(參見美國專利號5,856,090及WO 98/37186)。
抗體之可變重(VH)及可變輕(VL)結構域參與抗原識別,此為早期蛋白酶消化實驗首先識別的事實。通過囓齒動物抗體的「人類化」發現了進一步的證實。囓齒動物來源的可變結構域可融合於人類來源,使得所得抗體保留父代囓齒動物抗體的抗原特異性(Morrison等人(1984)《美國科學院院報(Proc.Natl.Acad.Sci.USA)》81,6851-6855)。
從涉及抗體片段的細菌表現的實驗中已知抗原特異性由可變結構域賦予並且獨立於恆定結構域,所有抗體片段均含有一或多個可變結構域。此類分子包含Fab樣分子(Better等人(1988)《科學(Science)》 240,1041);Fv分子(Skerra等人(1988)《科學(Science)》240,1038);在VH及VL伴侶結構域通過柔性寡肽連接的單鏈Fv(scFv)分子(Bird等人(1988)科學(Science)》 242,423;Huston 等人(1988)美國科學院院報(Proc.Natl.Acad.Sci.USA)》85,5879)及單結構域抗體(dAbs)包括分離的V結構域(Ward等人(1989)《自然(Nature)》341,544)。在保留其特異性結合位點之抗體片段之合成中涉及的技術的一般性綜述發現於Winter & Milstein(1991)《自然(Nature)349,293-299。
抗體或抗原結合片段可從由完整抗體、Fv片段(例如單鏈Fv及二硫鍵連接之Fv)、類Fab片段(例如Fab片段、Fab'片段及F(ab)2片段)、單個可變域(例如VH及VL域)及結構域抗體(dAb,包含單一及雙重形式[亦dAb-連接子-dAb])。較佳地,抗體或抗原結合片段為單鏈Fv(scFv)。
一或多個結合部分可替代地包括類抗體結合劑或由其組成,例如親和體或適體。
「scFv分子」意指其中VH及VL伴侶結構域通過柔性寡肽連接的分子。
使用抗體片段而不是完整抗體的優勢為多重的。片段的較小尺寸可導致改善的藥理性質,諸如更好地穿透實體組織。移除了完整抗體的效應子功能,例如補體結合。Fab、Fv、ScFv及dAb抗體片段均可在大腸桿菌中表現並從大腸桿菌中分泌出來,因此可輕鬆生產大量該等片段。
完整抗體及F(ab')2片段為「二價」。「二價」意指該等抗體及F(ab')2片段具有兩個抗原結合位點。相反,Fab、Fv、ScFv及dAb片段為單價,其僅具有一個抗原結合位點。
抗體可為單株的或多株的。合適的單株抗體可通過已知技術 來製備,例如在「單株抗體:技術手冊(Monoclonal Antibodies:A manual of techniques)」、H Zola(CRC出版社,1988)及在「單株雜交瘤抗體:技術及應用(Monoclonal Hybridoma Antibodies:Techniques and applications)」、J G R Hurrell(CRC出版社,1982)中公開之彼等,兩者均通過引用併入本文。
當從文庫中選擇潛在的結合分子時,通常使用一或多種具有確定的基元的選擇肽。提供結構、肽中降低之柔韌性之胺基酸殘基或允許與結合分子相互作用的帶電、極性或疏水性側鏈之胺基酸殘基可用於設計選擇肽的基元。例如:
(i)脯胺酸可穩定肽結構,因為其側鏈既與α碳亦與氮結合;
(ii)苯丙胺酸、酪胺酸及色胺酸具有芳香族側鏈,且高度疏水,而白胺酸及異白胺酸具有脂肪族側鏈,且亦具有疏水性。
(iii)離胺酸、精胺酸及組胺酸具有鹼性側鏈,且在中性pH下帶正電,而天門冬胺酸及麩胺酸具有酸性側鏈,且在中性pH下帶負電。
(iv)天冬醯胺及麩醯胺酸在中性pH下呈中性,但含有一個醯胺基,其可參與氫鍵。
(v)絲胺酸、蘇胺酸及酪胺酸側鏈含有羥基,該等羥基可參與氫鍵。
通常結合分子的選擇可涉及使用陣列技術及系統來分析與對應於結合分子類型的點的結合。
一或多個蛋白質結合部分可包括可偵測部分。可偵測部分可選自由以下組成之群:螢光部分、發光部分、化學發光部分、放射性部分及酶促部分。
在本發明方法的另一個實施例中,步驟(c)可以使用包含能夠結合一或多種蛋白質的第二結合劑的測定法進行,該第二結合劑還包括 可偵測的部分。上文詳細描述與第一結合劑相關的合適之第二結合劑。
因此,可首先使用第一結合劑分離及/或固定待測試樣本中的相關蛋白質,然後可使用第二結合劑判定生物標誌物的存在及/或相對數量。
在一個實施例中,第二結合劑為抗體或其抗原結合片段;通常為重組抗體或其片段。方便地,抗體或其片段選自由以下組成之群:scFv;Fab;免疫球蛋白分子之結合結構域。上文詳細描述了合適的抗體及片段及其製備方法。
替代地,第二結合劑可為類抗體結合劑,諸如親和體或適體。
替代地,當待測試樣本中的蛋白質上可偵測部分包括特異性結合對的成員(例如生物素)或由其組成,第二結合劑可包括特異性結合對的互補構件(例如抗生蛋白鏈菌素)或由其組成。
當使用偵測檢定,較佳地,可偵測部分選自由以下組成之群:螢光部分;發光部分;化學發光部分;放射性部分;酶部分。上文描述了用於本發明之方法的合適的可偵測部分的實例。
用於偵測血清或血漿蛋白質的較佳檢定包含酶聯免疫吸附檢定(ELISA)、放射免疫檢定(RIA)、免疫放射檢定(IRMA)及免疫酶檢定(IEMA),包括使用單株及/或多株抗體的夾心檢定。David等人在美國專利號4,376,110及4,486,530中描述了例示性夾心檢定,在此引入作為參考。如本領域技術人員所熟知,載玻片上的細胞的抗體染色可用於細胞學實驗室診斷測試中所熟知的方法。
因此,在一個實施例中,檢定為ELISA(酶聯免疫吸附檢定),其通常涉及通常在固相檢定中使用產生有色反應產物的酶。諸如辣根過氧化物酶及磷酸酶的酶已被廣泛使用。擴增磷酸酶反應的一種方法是使用 NADP作為底物生成NAD,NAD現在可作為第二種酶系統的輔酶。來自大腸桿菌的焦磷酸酶提供了良好的結合物,因為酶不存在於組織中,為穩定的且具有良好的反應顏色。也可使用基於諸如螢光素酶的酶的化學發光系統。
頻繁使用與維生素生物素的結合,因為此可通過其與酶聯親及素或抗生蛋白鏈菌素的反應容易地偵測到,其可以很高的特異性及親及力與之結合。
在替代實施例中,用於蛋白質偵測的檢定方便地為螢光檢定。因此,第二結合劑的可偵測部分可為螢光部分,例如Alexa螢光團(例如Alexa-647)。
較佳地,第一方面中所描述之方法的步驟(c)、(e)及/或(g)使用陣列來進行。陣列可為基於珠的陣列或基於表面的陣列。陣列可選自由以下組成之群:宏陣列;微陣列;奈米陣列。
陣列本身在本領域中為熟知的。通常,它們由線性或二維結構形成,該線性或二維結構具有在固體支持物的表面上形成的間隔開的(亦離散的)區域(「點」),每個區域具有有限的面積。陣列也可為珠結構,其中每個珠可以通過分子代碼或顏色代碼識別或以連續流方式識別。也可按順序進行分析,其中使樣本通過一系列點,每個點都自溶液中吸收一類分子。固體支持物通常為玻璃或聚合物,最常用的聚合物為纖維素、聚丙烯醯胺、尼龍、聚苯乙烯、聚氯乙烯或聚丙烯。固體支持物可為管、珠、盤、矽片、微孔板、聚偏二氟乙烯(PVDF)膜、硝化纖維素膜、尼龍膜、其他多孔膜、無孔膜(尤其例如塑料、聚合物、有機玻璃、矽)的形式,多個聚合物夾或多個微量滴定孔,或適合固定蛋白質、多核苷酸及其他合適分子及/或進行免疫檢定的任何其他表面。結合過程是本領域所熟知的,並且通 常由將蛋白質分子、多核苷酸等與固體支持物共價結合或物理吸附的交聯組成。替代地,可採用經由親及標籤或類似構築體的探針的親和偶聯。通過使用熟知的技術,例如接觸式或非接觸式印刷、掩模或光刻可定義每個點的位置。有關綜述參見Jenkins,R.E.,Pennington,S.R(2001,《蛋白質組學(Proteomics)》,2,13-29)及Lal等人(2002,《今日藥物發現(Drug Discov Today)》15;7(18增刊):S143-9)。
通常,陣列為微陣列。「微陣列」包含具有至少約100/cm2,較佳至少約1000/cm2的離散區域密度的區域陣列的含義。微陣列中的區域具有典型的尺寸,例如直徑,在約10-250μm之間的範圍內,並且與陣列中的其他區域隔開大約相同的距離。陣列可替代地為宏陣列或奈米陣列。
一旦已經鑑定並分離出合適的結合分子(如上所述),本領域技術人員可以使用分子生物學領域所熟知的方法製造陣列。
在另一個或替代實施例中,在步驟(c)中量測的一或多種生物標誌物包括由人類細胞表現的一或多種同源基因產物或由其組成。在另一個或替代實施例中,在步驟(c)中量測的一或多種生物標誌物為蛋白質或多肽。在另一個或替代實施例中,在步驟(c)中量測的一或多種生物標誌物為核酸(例如DNA、mRNA或cDNA等)。
在另一個或替代實施例中,方法在活體外、活體內、離體或計算機上進行。例如,方法可尤其在活體外進行。
「測試劑」包含要確定其呼吸道致敏狀態的任何物質、化合物、成分及/或實體(或其混合物)。
「致敏狀態」包含或意指測試劑(或測試劑的混合物)是否為致敏物(例如,呼吸道致敏物)。
在一個實施例中,方法用於鑑定能夠誘導呼吸過敏反應的試 劑。較佳地,過敏反應為體液過敏反應,例如I型過敏反應。在一個實施例中,方法為用於鑑定能夠引發呼吸道過敏的藥劑。
「指示測試劑的呼吸道致敏作用」包含確定測試劑是否為呼吸道致敏物及/或確定測試劑作為呼吸道致敏物的效能。
「能夠誘導呼吸道致敏」的試劑意指能夠在哺乳動物的呼吸道中誘導及觸發I型立即過敏反應的任何試劑。較佳地,哺乳動物為人。較佳地,I型立即過敏反應為DC介導的及/或涉及T細胞向Th2細胞的分化。較佳地,I型立即過敏反應導致體液免疫及/或呼吸道過敏。
哺乳動物肺的傳導區含有氣管、支氣管、細支氣管及末端細支氣管。呼吸區含有呼吸細支氣管、肺泡管及肺泡。傳導區由氣道組成,與血液之間沒有氣體交換,並通過軟骨加固以保持氣道暢通。傳導區將吸入的空氣加濕並將其加熱到37℃(99℉)。它還通過經由位於所有通道壁上的纖毛移除顆粒來淨化空氣。呼吸區為與血液進行氣體交換的場所。
在一個實施例中,「能夠誘導呼吸道致敏」的試劑為能夠在哺乳動物的肺上皮部位誘導及觸發I型立即過敏反應的試劑。較佳地,肺上皮的位置在肺的呼吸區中,但是可替代地或額外地在肺的傳導區中。
哺乳動物可為任何家畜或農畜。較佳地,哺乳動物為大鼠、小鼠、豚鼠、貓、犬、馬或靈長動物。最佳地,哺乳動物為人類。
樹突狀細胞(DC)為構成哺乳動物免疫系統部分的免疫細胞。它們的主要功能為加工抗原物質並將其在表面上呈現給免疫系統的其他細胞(亦即,它們起抗原呈遞細胞的作用)、橋接先天性及應變性免疫系統。
樹突狀細胞存在於與外部環境接觸的組織中,例如皮膚(其中存在一種特殊的樹突狀細胞類型,稱為朗格漢斯細胞(Langerhans cell)) 以及鼻子、肺、胃及腸的內層。在血液中亦可發現它們的未成熟狀態。一旦激活,它們就會遷移到淋巴結,在淋巴結中與T細胞及B細胞相互作用,從而啟動並塑造應變性免疫反應。在特定發育階段,它們會生長出樹枝狀的突起物,即樹突。雖然外觀相似,但它們是與神經元樹突不同的結構。未成熟的樹突狀細胞也稱為面紗細胞,因為它們具有較大的胞質「面紗」而不是樹狀突。
「類樹突狀細胞」意指非樹突狀細胞,其顯示出特定於樹突狀細胞的功能及表型特徵,諸如形態特徵,共刺激分子及MHC II類分子的表現,以及胞飲大分子及激活靜止T細胞的能力。
在另一個或替代實施例中,樹突狀細胞群或類樹突狀細胞群包括永生細胞或由其組成。「永生」意指細胞不再受其不再繼續分裂之點的限制,否則可由於DNA損傷或端粒縮短所致。
在另一個或替代實施例中,樹突狀細胞群或類樹突狀細胞群包括非天然存在的細胞或由其組成。「非天然存在」的細胞意指該等細胞不同於自然界中發現的細胞,或對其進行了修飾或變異;換句話說,它們不為自然界中通常會出現的細胞。例如,細胞不同於天然存在的人類髓性白血病細胞或天然存在的樹突狀細胞,或對其進行了修飾及/或變異。
在另一個或替代實施例中,樹突狀細胞群或類樹突狀細胞群為類樹突狀細胞群。在另一個或替代實施例中,類樹突狀細胞為髓樣類樹突狀細胞。在另一個或替代實施例中,髓樣類樹突狀細胞衍生自髓樣樹突狀細胞。在另一個或替代實施例中,衍生自髓樣樹突狀細胞的細胞為髓性白血病衍生之細胞。在另一個或替代實施例中,髓性白血病衍生之細胞選自由以下組成之群:KG-1、THP-1、U-937、HL-60、Monomac-6、AML-193、MUTZ-3及SenzaCell。
在另一個或替代實施例中,類樹突狀細胞為MUTZ-3細胞。MUTZ-3細胞為人類急性骨髓單核細胞白血病細胞,可從德國不倫瑞克的德國微生物菌種寄存中心(Deutsche SammlungfürMikroorganismen und Zellkulturen GmbH,DSMZ)(www.dsmz.de;DMSZ編號ACC 295)獲得。
在另一個或替代實施例中,根據ATCC專利寄存號(Patent Deposit Designation)PTA-123875,樹突狀細胞為非天然存在的類樹突狀髓性白血病細胞。此類細胞亦稱為「SenzaCell」。SenzaCell(ATCC專利寄存號PTA-123875)寄存在美國模式培養物集存庫(American Type Culture Collection,ATCC),美國,弗吉尼亞州20110,馬納薩斯,大學大道,10801。
在另一個或替代實施例中,髓性白血病衍生之細胞為MUTZ-3或SenzaCell。
在一個實施例中,在用細胞因子刺激後,樹突狀細胞通過CD1d、MHC I及II類呈遞抗原及/或誘導特異性T細胞增殖。
在一個實施例中,類樹突狀細胞為CD34+樹突狀細胞祖細胞。視情況,在細胞因子刺激下,CD34+樹突狀細胞祖細胞可通過CD1d、I及II類MHC獲得呈遞抗原的表型,誘導特異性T細胞增殖,及/或在炎症介質刺激下顯現出成熟的轉錄及表型特徵(亦即與未成熟樹突狀細胞或類朗格漢斯樹突狀細胞相似的表型)。
在一個實施例中,類樹突狀細胞表現選自由以下組成之群的至少一種標誌物:CD54、CD86、CD80、HLA-DR、CD14、CD34及CD1a,例如2、3、4、5、6或7個標誌物。在另一個實施例中,類樹突狀細胞表現標誌物CD54、CD86、CD80、HLA-DR、CD14、CD34及CD1a。
在一個實施例中,樹突狀細胞群或類樹突狀細胞群為樹突狀 細胞群。較佳地,樹突狀細胞為原代樹突狀細胞。較佳地,樹突狀細胞為髓樣樹突狀細胞。
樹突狀細胞可通過功能、表型及/或基因表現模式,尤其是通過細胞表面表型來識別。此類細胞的特徵在於其獨特的形態,高水準之II類MHC表面表現及向CD4+及/或CD8+ T細胞,尤其是向幼稚T細胞呈遞抗原的能力(Steinman等人(1991)《免疫學年鑒(Ann.Rev.Immunol.)》9:271)。
樹突狀細胞的細胞表面為不尋常的,具有典型的面紗狀突起,並以細胞表面標誌物CD11c及II類MHC的表現為特徵。大多數DC對其他白細胞譜系(包含T細胞、B細胞、單核細胞/巨噬細胞及粒細胞)的標誌物均為陰性。樹突狀細胞的亞群也可表現其他標誌物,包含33D1、CCR1、CCR2、CCR4、CCR5、CCR6、CCR7、CD1a-d、CD4、CD5、CD8alpha、CD9、CD11b、CD24、CD40、CD48、CD54、CD58、CD80、CD83、CD86、CD91、CD117、CD123(IL3Ra)、CD134、CD137、CD150、CD153、CD162、CXCR1、CXCR2、CXCR4、DCIR、DC-LAMP、DC-SIGN、DEC205、上皮鈣黏素(E-cadherin)、胰島素(Langerin)、甘露糖受體(Mannose receptor)、MARCO、TLR2、TLR3、TLR4、TLR5、TLR6、TLR9及幾種凝集素。
此等細胞表面標誌物的表現模式可隨樹突狀細胞的成熟度、其起源組織及/或其起源物種而變化。未成熟的樹突狀細胞表現低水準的II類MHC,但能夠內吞抗原蛋白質並對其進行加工,使其與II類MHC分子複合。活化的樹突狀細胞表現高水平的II類MHC、ICAM-1及CD86,且能夠刺激幼稚同種T細胞的增殖,例如在混合白細胞反應(MLR)中。
在功能上,樹突狀細胞或類樹突狀細胞可通過任何方便的檢 定來判定抗原呈遞。此類檢定可包含通過呈遞測試抗原來測試刺激抗原引發的及/或幼稚T細胞的能力,隨後判定T細胞增殖、IL-2的釋放等。
在一個實施例中,樹突狀細胞包含上皮細胞及/或類上皮細胞,諸如BEAS-2B[28]、WT9-7及A549[29]。較佳地,上皮細胞為肺上皮細胞。較佳地,上皮樣細胞為肺類上皮細胞。在一替代實施例中,類樹突狀細胞包含上皮細胞及/或類上皮細胞。
偵測及/或量測蛋白質及/或核酸的濃度的方法為本領域技術人員所熟知,參見例如Sambrook及Russell,2001,冷泉港實驗室出版社。
用於偵測及/或量測蛋白質的較佳方法包含西方墨點,北方-西方墨點、免疫吸附檢定(ELISA)、抗體微陣列、組織微陣列(TMA)、免疫沈澱、原位雜交及其他免疫組織化學技術、放射免疫檢定(RIA)、免疫放射檢定偵測(IRMA)及免疫酶偵測(IEMA),包括使用單株及/或多株抗體的夾心檢定。David等人在美國專利號4,376,110及4,486,530中描述了例示性夾心檢定,在此引入作為參考。如本領域技術人員所熟知,載玻片上的細胞的抗體染色可用於細胞學實驗室診斷測試中所熟知的方法。
通常,ELISA涉及使用通常在固相檢定中產生有色反應產物之酶。諸如辣根過氧化物酶及磷酸酶的酶已被廣泛使用。擴增磷酸酶反應的一種方法是使用NADP作為底物生成NAD,NAD現在可作為第二種酶系統的輔酶。來自大腸桿菌的焦磷酸酶提供了良好的結合物,因為酶不存在於組織中,為穩定的且具有良好的反應顏色。亦可使用基於諸如螢光素酶的酶的化學發光系統。
頻繁使用與維生素生物素的結合,因為此可通過其與酶聯親及素或抗生蛋白鏈菌素的反應容易地偵測到,其可以很高的特異性及親及 力與之結合。
在另一個或替代實施例中,方法包括以下一或多個步驟:
(i)培養樹突狀或類樹突狀細胞;
(ii)將(i)之細胞接種於一或多個孔中,較佳地在穩定狀態生長階段,例如一或多個多孔分析盤之孔中;
(iii)將待測試之試劑添加至(ii)的一或多個孔中;
(iv)將(ii)陽性對照添加至一或多個單獨孔中,例如活性橙16、哌嗪、氯胺T及/或偏苯三酸酐;
(v)將(ii)陰性對照添加至一或多個單獨孔中,例如DMSO;及/或留下(ii)不刺激的一或多個單獨的孔以獲得培養基對照及/或用於歸一化目的;
(vi)在(iii)-(v)之孔中培育細胞,較佳約24小時;及,視情況從(iii)-(v)的孔中收穫細胞;進一步視情況移除上清液並儲存在TRIzol試劑中;
(vii)從(vi)的細胞中分離經純化的總RNA,並視情況將mRNA轉化為cDNA;
(viii)量化(vii)中個別mRNA轉錄物的表現水準,例如使用陣列,諸如昂飛人基因1.0 ST陣列,或使用定製的基因表現分析探針,諸如Nanostring代碼集;
(ix)從(viii)中導出及歸一化數據,例如使用適當的算法,諸如在表4中描述;
(x)從(ix)中分離出源自GARD呼吸預測標記的生物標誌物(即表A的生物標誌物)的資料;
(xi)將預測模型應用於(x)的資料,例如先前在歷史資料(例如在示例1中獲得的資料)上建立及訓練的凍結SVM模型,亦參見表4中的編碼,以預測一或多種所測試之藥劑及一或多種陰性/陽性對照之呼吸道致敏狀態;
(xii)鑑定所測試劑是否為能夠在哺乳動物中誘導呼吸道致敏的試劑。
本發明之第二態樣提供了用於根據本發明之第一態樣的方法中之陣列,該陣列包括如本發明之第一態樣中所定義之一或多個結合部分。
在另一個或替代實施例中,陣列包括如本發明之第一態樣中所定義之每個生物標誌物的一或多個結合部分。在另一個或替代實施例中,一或多個結合部分被固定。
在另一個或替代實施例中,陣列為基於珠之陣列。在另一個或替代實施例中,陣列為基於表面之陣列。在另一個或替代實施例中,陣列選自由以下組成之群:宏陣列;微陣列;奈米陣列。
本發明之第二態樣之陣列可包括一或多個,較佳兩個或更多個結合部分,其中結合部分各自能夠選擇性地與第一態樣中所定義之生物標誌物結合。因此,陣列可包括與生物標誌物特異性結合部分的特定選擇或由其組成,其與如第一態樣中所定義之生物標誌物的任何特定選擇相關。
例如,在另一個或替代實施例中,陣列包括2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、或28種不同的結合部分,其中不同結合部分各自能夠選擇性地與表A中所列之不同結合部分結合。例如陣列可包括28種不同生物標誌物或由其組成,其各自能夠選擇性地與表A中所列之不同生物標誌物結合。在另一個或替代實施例中,陣列包括2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個不同結合部分,其中不同結合部分各自能夠選擇性地與表A(i)中所列之不同生物標誌物結合。例如,陣列可包括25種不同結合部分或由其組成,其各自能夠選擇性地與表A(i)中所列之不同生物標誌物結合。
本發明之第三態樣提供了在本發明之第一態樣中定義之兩種或更多種生物標誌物在判定測試劑的呼吸道致敏作用中的用途。
在另一個或替代實施例中,提供了使用選自表A中定義之群的兩種或更多種生物標誌物來判定測試劑的呼吸道致敏作用,較佳地,其中一或多種生物標誌物選自表A(i)中定義之群。
在另一個或替代實施例中,提供了使用兩個或更多個結合部分,每個結合部分對選自表A中定義之生物標誌物具有特異性,用於判定測試劑的呼吸道致敏作用,較佳地,其中一或多個結合部分部分對選自表A(i)中定義之群的生物標誌物具有特異性。
本發明之第四態樣提供了一種用於根據本發明之第一態樣的方法中之分析套組,其包括:
(a)根據本發明之第二態樣的陣列;及
(b)用於進行本發明之第一態樣中定義的方法之說明書(可選)。
在另一個或替代實施例中,分析套組還包括一或多種如本發明之第一態樣中定義之對照試劑。
本發明之第五態樣提供了一種在患者中治療或預防呼吸I型過敏反應(例如呼吸道哮喘)的方法,該方法包括以下步驟:
(a)提供患者正在接觸或曾經接觸過的一或多種測試劑;
(b)使用本發明之第一態樣中提供的方法判定步驟(a)中提供的一或多種測試劑是否為呼吸道致敏物;及
(c)當一或多種測試劑被鑑定為呼吸道致敏物時,減少或預防患者暴露於一或多種測試劑及/或提供適當的致敏症狀治療。
較佳地,患者正在接觸或曾經接觸過的一或多種測試劑為患者目前每月至少接觸一次的試劑,例如,至少每兩週一次,至少每週一次 或每天至少一次。
致敏症狀的治療可包含短效β2腎上腺素受體激動劑(SABA),諸如沙丁胺醇;抗膽鹼藥,諸如異丙托溴銨;其他腎上腺素能激動劑,諸如吸入腎上腺素;皮質類固醇,例如倍氯米松;長效β-腎上腺素受體激動劑(LABA),諸如沙美特羅(salmeterol)及福莫特羅(formoterol);白三烯拮抗劑,諸如孟魯司特(montelukast)及紮魯司特(zafirlukast);及/或肥大細胞穩定劑(如色甘酸鈉)為皮質類固醇之另一非首選替代物。
較佳地,治療方法與在本發明之第一態樣中描述之方法及其中描述之一或多個實施例一致。
本發明之第六態樣提供了一種計算機程式,該計算機程式用於操作本發明之方法,例如,用於解釋步驟(c)之表現資料(及隨後的表現量測步驟),從而確定一或多種測試劑是否為過敏性的。計算機程式可為程式化SVM。計算機程式可被記錄在本領域技術人員已知的合適的計算機可讀載體上。合適的計算機可讀載體可包含光碟(包含CD-ROM、DVD、藍光等)、軟碟、閃存驅動器、ROM或硬碟驅動器。計算機程式可被安裝於適合於執行計算機程式的計算機上。
技術人員將理解,可將所有非衝突之實施例組合使用。因此,來自本發明之一個方面的實施例可等同地應用於本發明之第二方面。在本說明書中對明顯先前已出版文獻之列舉或論述不一定應視為承認該文獻為目前先前技術之一部分或為公共常識。
現將參照以下附圖描述體現本發明某些態樣的較佳非限制性實例:
圖1.訓練資料集之PCA位於28個變量的壓縮空間中,源於優化的生物標誌物標記。
圖2.使用最終的GARDair預測模型可視化測試集1的分類結果。
若平均SVM決策值(n=3)大於0,則將測試物質分類為呼吸道致敏物。
圖3.使用最終的GARDair預測模型可視化測試集2的分類結果。
若平均SVM決策值(n=3)大於0,則將測試物質分類為呼吸道致敏物。
實例1
結果
預測模型基本原理
GARDTM為用於評估化學致敏物的最先進之方法學平台。它基於類樹突狀細胞(DC)細胞系,因此模仿了導致致敏反應的啟動所涉及的細胞類型。所培養的DC暴露於目標測試物質中。培育後,量測暴露誘導的轉錄變化以研究細胞的活化狀態。此等變化與先天性及應變性免疫反應的橋接及體內DC的決策作用有關,例如共刺激分子的上調、細胞及氧化應激路徑的誘導及與遷徙有關的表型改變及細胞間通信功能。通過使用最先進之基因表現技術,可以產生高信息含量的資料,從而使使用者可全面瞭解由測試物質誘導的細胞反應。簡化地,所描述之技術允許評估測試物質為致敏物或為非致敏物。
GARD被認為是一個測試策略平台,該平台基於許多應用程式。術語「平台」此處指示所有應用程式都基於相同的實驗策略及相似的實驗協議。術語「應用」此處指示針對不同生物學端點的不同檢定。
本文所描述之「GARDair」檢定為基於GARD平台的新穎檢定,其在此證明具有對呼吸道致敏物進行準確分類的能力。因此,GARDair有能力成為將化學品具體分類為呼吸道致敏物的較佳測試方法,目前尚沒有經過驗證的,甚至被廣泛接受及使用的預測模型的端點。
GARDair生物標誌物發現
將SenzaCells(ATCC寄存#PTA-123875)暴露於化學品之參考組中,該等化學品包括10種經過充分表徵的呼吸道致敏物及20種非呼吸道致敏物(根據現有文獻及專家共識定義)(Chan-Yeung & Malo,1994,Dearman等人,1997,Dearman等人,2012,Lalko等人,2012)。值得注意的是,此組非呼吸道致敏物包含沒有任何記錄之誘導呼吸道致敏能力的皮膚致敏物。此組參考化學品用於創建通常稱為訓練資料集的資料,且在表1中列出。全部暴露均在受控條件下進行重複三次重複實驗,從而生成了具有高統計能力的連貫資料集,該資料集針對隨後的生物標誌物發現進行了優化。
從化學暴露的細胞培養物中分離純化的RNA,並使用昂飛微陣列進行基因表現分析,從而生成用於信息挖掘的全基因組表現資料集,稱為訓練資料集。訓練資料集的統計能力通過使用替代變量分析(SVA)算法進一步提高,該算法可識別並隨後消除源自替代變量的噪聲信號,該替代信號在統計上與目標生物學端點無關。接下來,應用方差分析(ANOVA)來鑑定差異表現基因(DEG)。使用<0.05之調整後p值(亦即q值,使用Benjamini-Hochberg方法針對多個假設測試校正之p值)作為統計顯著性定義,則28個DEGS滿足選擇標準。28個DEG的特徵,此後統稱為GARD 呼吸預測標記(GRPS),其呈現於表2中。此外,使用圖1中主成分分析(PCA)可視化訓練資料集。
表5列出了SVM模型中28個基因的權重。SVM為定義預測模型之算法。一旦定義(即訓練)了模型,實際的預測模型就可由線性方程表示,如下所示:
DV=K1*X2+K2*X3+...+KN*XN+M
其中DV為決策值(應用時模型的輸出),Ks為常數,Xs為自變量,M為代表截距的常數。在此種情況下,N為28。測量28個基因(即Xs)的表現水平,並使用定義方程式及28個固定Ks及M來計算DV。
所提供之權重為Ks,亦即與每個基因表現水平相乘的常數。 因此,K越大,相應的基因X對DV的影響就越大。作為簡化實例,考慮N=1的情況。此將給出一條直線的公知方程,亦即Y=KX+M。
技術平台轉移與預測模型定義
建立GRPS之後,設計了雜交探針,用於使用Nanostring nCounter系統對GRPS進行歸一化量測(Geiss等人,2008)。此項工作與GARDskin的技術轉讓非常相似,該進展先前已公佈(Forreryd等人,2016)。使用與前述檢定相同的細胞方案有助於進行強大、簡單及資源有效的檢定。基於支持向量機(SVM),使用具有二進制「研究功能」(呼吸道致敏物/非呼吸道致敏物)作為因變量的訓練資料集的樣本,對預測模型進行了訓練及凍結。GRPS之基因表現值作為自變量(亦即預測變量),亦參見表4。
概念驗證-外部測試資料之分類
建立了優化的預測模型及相關協議後,該檢定受到了兩組外部樣本(稱為測試資料集)的激惹。表3中列出了測試集中所包含之樣本的化學特徵,其真實的組別(呼吸道致敏物或非呼吸道致敏物)及GARDair分類結果。由 所生成之GARDair決策值定義之分類的圖形表示分別在圖2及3中顯示,分別用於測試集1及2。
基於可用資料估計GARDair之預測性能,預測準確性計算為89%,在敏感性及特異性之間取得了很好的平衡。此外,基於獨立實驗提供的少量重複暴露,可重複性為100%,表明偵測可靠。
討論
基於此處呈現的數據,可以得出結論,利用GARD平台,例如將類DC細胞暴露於測試物質並詢問所誘導之轉錄模式以進行機器學習輔助分類之概念為評估化學呼吸道致敏物的功能性策略。
迄今為止,GARDair已完成一項最終檢定,該檢定基於藉由最先進平台對基因組讀數進行活體外化學暴露的類DC細胞之量測。該檢定已被證明為功能的且強大的。提出該檢定以監測DC的轉錄變化,其由呼吸道致敏物特異性誘導,與先天及應變性免疫功能的橋接及偏向Th2型免疫反應有關。首先,此由資料驅動之IL7R及CRLF2基因鑑定所證明的,該等基因作為翻譯蛋白質一起形成胸腺基質淋巴細胞生成素(TSLP)之受體。先前已經證明TSLP配體與抗原呈遞細胞的TSLP受體的結合可驅動Th2分化(Paul & Zhu,2010,Soumelis等人,2002)。然而,以前沒有關於誘導對化學物質呼吸道致敏的描述。
材料及方法
細胞系維持及接種細胞以進行刺激
作為人類樹突狀細胞(DC)體外模型的人類髓性白血病衍生之℃細胞系SenzaCell(可通過ATCC獲得)保存在補充有20%(體積/體積)胎牛血清(Life Technologies,Carlsbad,CA)及40ng/ml重組人粒細胞巨噬細胞集落刺激因子(rhGM-CSF)(美天旎生物科技公司,德國)的α-MEM(賽默飛 世爾,洛根,猶他州)中。擴展期間每3-4天進行一次介質更換。解凍後最多可培養16代或兩個月的標準儲備培養液。為了化學刺激細胞,將所暴露之細胞在37℃、5% CO2及95%濕度下培育24小時。
測試物質處理及細胞毒性評估
全部測試物質均按照供應商的說明進行了存儲,以確保測試物質的穩定性。基於物理性質,將測試物質溶解在DMSO或水中。由於許多測試物質都會對細胞產生毒性作用,因此需要監測測試物質的細胞毒性作用。一些測試物質很難溶解在細胞培養基中。因此,還評估了最大可溶濃度。將待測試之測試物質滴定至1μM至細胞培養基中最大可溶濃度範圍。對於易溶的測試物質,將500μM設置為滴定範圍的上限。對於溶於DMSO的測試物質,DMSO的孔內濃度為0.1%。在37℃、5%CO2及95%濕度下培育24小時後,將收穫的細胞用生存力標記碘化丙啶(PI)(BD Bioscience,美國)染色,並通過流式細胞儀進行分析。PI陰性細胞被定義為有活力,在滴定範圍內每種濃度刺激的細胞的相對活力計算為
相對存活率=(有活力的受刺激細胞的分數)/(有活力的未受刺激的細胞的分數)‧100
對於有毒的測試物質,將產生90%相對生存力(Rv90)的濃度用於GARD分析,原因為此濃度證明了用於刺激的測試物質的生物利用度,而不損害免疫反應。對於無毒的測試物質,如果可能,使用500μM的濃度。對於在細胞培養基中不溶於500μM的無毒測試物質,使用最高可溶濃度。滿足此等三個標準中的任何一個,僅一種濃度將用於基因表現分析。用於任何給定化學物質的濃度稱為「GARD輸入濃度」。
GARD主要刺激
一旦確定了待測定的測試物質的GARD輸入濃度,就如上文所描述再次刺激細胞,此次僅使用GARD輸入濃度。測試物質及基準對照的所有評估均一式三份進行,在不同的時間點及使用不同的細胞培養物進行。在37℃、5% CO2及95%濕度下培育24小時後,將細胞培養物溶解在TRIzol試劑(Life Technologies)中,並保存在-20℃下直至提取RNA。同時,取少量受刺激細胞樣本進行PI染色,且用流式細胞儀進行分析,以確保達到受刺激細胞預期的相對生存力。
RNA的分離
使用市售套組(Direct-Zol RNA MiniPrep,Zymo Research,Irvine,CA)從裂解的細胞中分離RNA。使用BioAnalyzer設備(Agilent,Santa Clara,CA)對總RNA進行定量及質量控制。
使用微陣列進行基因表現分析
cDNA之製備及與HuGene ST 1.0微陣列的雜交由隆德大學的Swegene整合生物學中心(SCIBLU,瑞典隆德)根據製造商推薦的方案、套組及試劑(昂飛,聖克拉拉,加利福尼亞)進行。
微陣列資料採集及歸一化
洗滌雜交的微陣列並根據推薦的方案進行掃描。將原始資料.cell文件導入R環境進行統計計算(www.r-project.org)。原始數據被歸一化,並使用R-package SCAN轉換為基因表現信號。
數據分析-GARDair致敏生物標誌物標記的特徵選擇
挖掘歸一化資料,該歸一化資料含有用表1列出的一組化學物質刺激的SenzaCell樣本的三份生物學資料,以獲取差異調節的基因,從而能夠區分呼吸道致敏物及呼吸非致敏物。使用R-package SVA提供的替代變量分析可消除來自不確定來源的不必要變異。使用來自R-package Limma的 ANOVA鑑定調節基因。假發現率(亦即q值,使用Benjamini-Hochberg方法進行多重假設測試校正的p值)<0.05的基因被認為具有統計學意義。表2中列出了28個符合選擇標準的獨特基因。
技術平台轉讓
獨特的Nanostring nCounter系統轉錄探針由Nanostring生物信息學團隊(Nanostring,西雅圖,華盛頓)合成。按照供應商(Nanostring)的協議,從為生物標誌物發現而生產的RNA樣本中產生了Nanostring基因表現資料,亦即訓練資料集的完整複製(表1),涵蓋了相關28個基因。
外部測試化學品的預測模型建立及測試
對支持向量機(SVM)進行了訓練資料集(表1)產生的Nanostring表現資料的訓練,使用「研究功能」作為因變量(亦即待預測的參數),並將生物標誌物標記的28個基因用作自變量(亦即預測變量),使用R統計環境(R核心團隊)及額外包(參見表4)。為了測試外部測試化學品,根據上文所描述方案產生了基因表現資料。通過平均SVM決策值(n=3)確定,將受過訓練之SVM模型應用於將每個樣本分類為呼吸道致敏物或非呼吸道致敏物。 正決策值表示正分類。
參考文獻
Chan-Yeung & Malo, 1994.Aetiological agents in occupational asthma.European Respiratory Journal.
Dearman等人,1997.Classification of chemical allergens according to cytokine secretion profiles of murine local lymph node cells.Journal of Applied Toxicology.
Dearman等人,2011.Inter-relationships between different classes of chemical allergens.Journal of Applied Toxicology.
Dearman等人,2012.Inter-relationships between different classes of chemical allergens.Journal of Applied Toxicology.
Forreryd等人,2015.Prediction of chemical Respiratory sensitizers using GARD, a novel in vitro assay based on a genomic biomarker signature.PLoS One 10(3).
Forreryd等人,2016.From genome-wide arrays to tailor-made biomarker readout-Progress towards routine analysis of skin sensitizing chemicals with GARD.Toxicology in vitro.
Geiss等人,2008.Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology.
Isola等人,2008.Chemical respiratory allergy and occupational asthma: what are the key areas of uncertainty?Journal of Applied Toxicology.
Johansson等人,2011.A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests.BMC Genomics.
Kimber等人,2002.Chemical respiratory allergy: role of IgE antibody and relevance of route of exposure. Toxicology.
Kimber等人,2011.Chemical allergy: translating biology into hazard characterization. Toxicological Sciences.
Kimber等人,2014.Chemical respiratory allergy: reverse engineering an adverse outcome pathway. Toxicology.
Lalko等人,2012.The direct peptide reactivity assay: selectivity of chemical respiratory allergens. Toxicological Sciences.
Paul & Zhu, 2010.How are Th2-type immune responses initiated and amplified. Nature Reviews Immunology.
Soumelis等人,2002.Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat Immunol.
Sullivan等人,2017.An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals: Building Evidence to Support the Utility of In Vitro and In Silico Methods in a Regulatory Context.Applied in vitro Toxicology.
[表A]
Figure 109102574-A0202-12-0047-1
Figure 109102574-A0202-12-0048-2
[表1]訓練資料集之化學成分
Figure 109102574-A0202-12-0049-3
[表2]GRPS之28個基因之特徵。
Figure 109102574-A0202-12-0050-18
[表3]使用最終的GARDair預測模型預測外部測試資料集之結果。
Figure 109102574-A0202-12-0051-19
[表4]
Figure 109102574-A0202-12-0052-9
Figure 109102574-A0202-12-0053-6
[表5]權重
Figure 109102574-A0202-12-0054-10
Figure 109102574-A0202-12-0055-11

Claims (57)

  1. 一種鑑定能夠在哺乳動物中誘導呼吸道致敏的試劑的方法,該方法包括以下步驟或由以下步驟組成:
    (a)提供樹突狀細胞群或類樹突狀細胞群;
    (b)將步驟(a)中提供之細胞暴露於測試劑;及
    (c)在步驟(b)之該等細胞中量測選自表A中定義之群的兩種或更多種生物標誌物的表現;
    其中步驟(c)中所量測之該兩種或更多種生物標誌物的表現指示步驟(b)之該測試劑的呼吸道致敏作用。
  2. 如請求項1之方法,其中在步驟(c)中被量測表現的該等生物標誌物中的一或多者係選自表A(i)中定義之群。
  3. 如請求項1或2之方法,其中步驟(c)包括量測選自表A(i)中定義之群的兩種或更多種生物標誌物之表現或由其組成,例如3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25種表A(i)中所列之該等生物標誌物。
  4. 如前述請求項中任一項之方法,其中步驟(c)包括量測表A(i)中所列之全部該等生物標誌物之表現或由其組成。
  5. 如前述請求項中任一項之方法,其中步驟(c)包括量測選自表A(ii)定義之群的一或多種生物標誌物之表現或由其組成,例如2或3種表A(ii)中所列之該等生物標誌物。
  6. 如前述請求項中任一項之方法,其中步驟(c)包括量測表A(ii)中所列之全部該等生物標誌物之表現或由其組成。
  7. 如前述請求項中任一項之方法,其中步驟(c)包括量測選自表A定義之群的三種或更多種該等生物標誌物之表現或由其組成,例如3、 4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27或28種表A中所列之該等生物標誌物。
  8. 如前述請求項中任一項之方法,其中步驟(c)包括量測表A中所列之全部該等生物標誌物之表現或由其組成。
  9. 如前述請求項中任一項之方法,其進一步包括:
    d)將另一個樹突狀細胞或類樹突狀細胞群暴露於一或多種陰性對照試劑中,該陰性對照試劑在哺乳動物中不為呼吸道致敏物;及
    e)在步驟(d)之該等細胞中量測在步驟(c)中量測之該兩種或更多種生物標誌物之表現
    其中,如果步驟(e)中所量測之該兩種或更多種生物標誌物之表現與步驟(c)中所量測之該兩種或更多種生物標誌物之表現不同,則將該測試劑鑑定為呼吸道致敏物。
  10. 如前述請求項中任一項之方法,其進一步包括:
    f)將另一個樹突狀細胞或類樹突狀細胞群暴露於一或多種陽性對照試劑中,該陽性對照試劑在哺乳動物中為呼吸道致敏物;及
    g)在步驟(f)的細胞中量測在步驟(c)中所量測之該兩種或更多種生物標誌物之表現
    其中,如果步驟(f)中所量測之該兩種或更多種生物標誌物之表現與步驟(c)中所量測之該兩種或更多種生物標誌物之表現一致,則將該測試劑鑑定為呼吸道致敏物。
  11. 如前述請求項中任一項之方法,其中步驟(c)包括量測該等生物標誌物中之一或多者的核酸分子的表現。
  12. 如請求項11之方法,其中該核酸分子為cDNA分子或mRNA分子。
  13. 如請求項12之方法,其中該核酸分子為mRNA分子。
  14. 如請求項12之方法,其中該核酸分子為cDNA分子。
  15. 如請求項11至14中任一項之方法,其中使用選自由南方雜交(Southern hybridisation)、北方雜交(Northern hybridisation)、聚合酶鏈反應(PCR)、逆轉錄酶PCR(RT-PCR)、定量即時PCR(qRT-PCR)、奈米陣列、微陣列、宏陣列、放射自顯影及原位雜交組成之群的方法量測步驟(c)中之該等生物標誌物中之一或多者之表現。
  16. 如請求項11至15中任一項之方法,其中使用DNA微陣列量測步驟(c)中所量測之該等生物標誌物中之一或多者的表現。
  17. 如前述請求項中任一項之方法,其中使用一或多種結合部分來量測步驟(c)中之該等生物標誌物中之一或多者之表現,該等結合部分各自能夠選擇性地結合至編碼表A中所鑑定之該等生物標誌物中之一者的核酸分子。
  18. 如請求項17之方法,其中該一或多種結合部分各自包括核酸分子或由其組成。
  19. 如請求項17之方法,其中該一或多種結合部分各自包括DNA、RNA、PNA、LNA、GNA、TNA或PMO或由其組成。
  20. 如請求項18或19之方法,其中該一或多種結合部分各自包括DNA或由其組成。
  21. 如請求項17至20中任一項之方法,其中該一或多種結合部分之長度為5至100個核苷酸。
  22. 如請求項17至21中任一項之方法,其中該一或多種結合部分之長度為15至35個核苷酸。
  23. 如請求項17至22中任一項之方法,其中該結合部分包括 可偵測部分。
  24. 如請求項23之方法,其中該可偵測部分選自由以下組成之群:螢光部分;發光部分;化學發光部分;放射性部分(例如,放射性原子);或酶部分。
  25. 如請求項24之方法,其中該可偵測部分包括放射性原子或由其組成。
  26. 如請求項25之方法,其中該放射性原子選自由以下組成之群:鎝-99m、碘-123、碘-125、碘-131、銦-111、氟-19、碳-13、氮-15、氧-17、磷-32、硫-35、氘、氚、錸-186、錸-188及釔-90。
  27. 如請求項24之方法,其中該結合部分之該可偵測部分為螢光部分。
  28. 如請求項1至10中任一項之方法,其中步驟(c)包括量測該等生物標誌物中之一或多者之蛋白質之表現或由其組成。
  29. 如請求項28之方法,其中使用一或多種結合部分來量測步驟(c)中之該等生物標誌物中一或多者之表現,該等結合部分各自能夠選擇性地結合至表A中所鑑定之該等生物標誌物中之一者。
  30. 如請求項29之方法,其中該一或多種結合部分包括抗體或其抗原結合片段或由其組成。
  31. 如請求項29至30中任一項之方法,其中該一或多種結合部分包括可偵測部分。
  32. 如請求項31之方法,其中該可偵測部分選自由以下組成之群:螢光部分、發光部分、化學發光部分、放射性部分及酶部分。
  33. 如前述請求項中任一項之方法,其中步驟(c)係使用陣列進行。
  34. 如請求項33之方法,其中該陣列係基於珠之陣列。
  35. 如請求項34之方法,其中該陣列係基於表面之陣列。
  36. 如請求項33至35中任一項之方法,其中該陣列選自由以下組成之群:宏陣列;微陣列;奈米陣列。
  37. 如前述請求項中任一項之方法,其中該方法係活體外、活體內、離體或計算機上進行。
  38. 如請求項37之方法,其中該方法係活體外進行。
  39. 如前述請求項中任一項之方法,其中該樹突狀細胞群或類樹突狀細胞群包括永生及/或非天然存在的細胞或由其組成。
  40. 如前述請求項中任一項之方法,其中該樹突狀細胞群或類樹突狀細胞群為類樹突狀細胞群。
  41. 如請求項40之方法,其中該等類樹突狀細胞為髓樣類樹突狀細胞。
  42. 如請求項41之方法,其中該等髓樣類樹突狀細胞衍生自髓樣樹突狀細胞。
  43. 如請求項42之方法,其中衍生自髓樣樹突狀細胞之該等細胞為髓性白血病衍生之細胞,諸如選自由以下組成之群之彼等:KG-1、THP-1、U-937、HL-60、Monomac-6、AML-193、MUTZ-3及SenzaCell。
  44. 如前述請求項中任一項之方法,用於鑑定能夠誘導呼吸過敏反應之試劑。
  45. 如前述請求項中任一項之方法,其中該過敏反應為體液過敏反應。
  46. 如前述請求項中任一項之方法,用於鑑定能夠在哺乳動物中誘導I型過敏反應之試劑。
  47. 如前述請求項中任一項之方法,用於鑑定能夠誘導呼吸道過敏之試劑。
  48. 如請求項9至47中任一項之方法,其中步驟(d)中提供之一或多種陰性對照試劑選自由以下組成之群:未刺激之細胞;細胞介質;媒劑對照;DMSO;1-丁醇;2-胺基苯酚;丙烯酸2-羥乙酯;2-硝基-1,4-苯二胺;4-胺基苯甲酸;氯苯;二甲基甲醯胺;乙基香蘭素;甲醛;香草醇;己基肉桂醛;異丙醇;Kathon CG*;水楊酸甲酯;青黴素G;丙二醇;重鉻酸鉀;高錳酸鉀;吐溫80(Tween 80);硫酸鋅;2-巰基苯并噻唑;4-羥基苯甲酸;苯甲醛;辛酸;肉桂醇;鄰苯二甲酸二乙酯;DNCB;丁香酚;甘油;乙二醛;異丁香酚;苯酚;PPD;間苯二酚;水楊酸;SDS;及氯苯。
  49. 如請求項10至48中任一項之方法,其中步驟(f)中提供之一或多種陽性對照試劑包括一或多種選自由以下組成之群的試劑或由其組成:六氯鉑酸銨、過硫酸銨、戊二醛、六亞甲基二異氰酸酯、順丁烯二酸酐、亞甲基二酚二異氰酸酯、鄰苯二甲酸酐、甲苯二異氰酸酯;偏苯三酸酐;氯胺-T水合物;異佛爾酮二異氰酸酯;哌嗪;活性橙16;順丁烯二酸酐;異氰酸苯酯(MDI);鄰苯二甲酸酐;甲苯二異氰酸酯;及偏苯三酸酐。
  50. 如前述請求項中任一項之方法,其中該方法指示待測試之樣本之相對致敏功效。
  51. 如前述請求項中任一項之方法,其中該方法包括一或多個以下步驟:
    (i)培養樹突狀或類樹突狀細胞;
    (ii)將(i)之細胞接種於一或多個孔中,例如一或多個多孔分析盤之孔中;
    (iii)將待測試的試劑添加至(ii)的一或多個孔中;
    (iv)將一或多個陽性對照添加至(ii)的一或多個單獨的孔中;
    (v)將一或多個陰性對照添加至(ii)的一或多個單獨的孔中;
    (vi)在(iii)-(v)的孔中培養細胞,較佳約24小時;
    (vii)從(vi)的細胞中分離純化的總RNA,且視情況將mRNA轉化為cDNA;
    (viii)例如,使用諸如昂飛人基因1.0 ST陣列(Affymetrix Human Gene 1.0 ST array)及/或Nanostring代碼集之陣列,量化(vii)中單獨mRNA轉錄物之表現量;
    (ix)從(viii)導出表現資料並將其歸一化;
    (x)從(ix)中分離出來自GARD預測標記(GARD Prediction Signature)的生物標誌物(即表A之該等生物標誌物)的資料;
    (xi)將預測模型應用於來自(x)的資料,例如先前基於歷史資料(例如,實例1中獲得的資料)建立及訓練的凍結SVM模型,以預測一或多種測試劑及一或多種陰性/陽性對照之呼吸道致敏作用。
  52. 一種如前述請求項1至51中任一項之方法中所使用之陣列,該陣列包括如請求項17至27及29至32中任一項所定義之一或多個結合部分。
  53. 如請求項52之陣列,其中該陣列包括針對前述請求項中任一項所定義之各生物標誌物的一或多個結合部分。
  54. 一種選自表A中定義之群的兩種或更多種生物標誌物用於鑑定呼吸道致敏試劑之用途,較佳其中該等生物標誌物中之一或多者選自表A(i)中所定義之群。
  55. 一種對選自表A中定義之群的生物標誌物各自具有特異性之兩個或更多個結合部分用於鑑定呼吸道致敏試劑的用途,較佳地其中該 等結合部分中之一或多者對選自表A(i)中所定義之群的生物標誌物具有特異性。
  56. 一種用於如請求項1至55中任一項之方法之分析套組,該分析套組包括:
    (a)如請求項52至53中任一項之陣列;及
    (b)(視情況)一或多種對照試劑;
    (c)(視情況)用於進行如請求項1至51中任一項之方法之說明書。
  57. 一種實質上如本文所描述之方法用途、陣列或套組。
TW109102574A 2020-01-22 2020-01-22 分析方法及用於其中的陣列 TW202129009A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109102574A TW202129009A (zh) 2020-01-22 2020-01-22 分析方法及用於其中的陣列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109102574A TW202129009A (zh) 2020-01-22 2020-01-22 分析方法及用於其中的陣列

Publications (1)

Publication Number Publication Date
TW202129009A true TW202129009A (zh) 2021-08-01

Family

ID=78282690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102574A TW202129009A (zh) 2020-01-22 2020-01-22 分析方法及用於其中的陣列

Country Status (1)

Country Link
TW (1) TW202129009A (zh)

Similar Documents

Publication Publication Date Title
CN109777872B (zh) 肺癌中的t细胞亚群及其特征基因
US20170283874A1 (en) Analytical Methods and Arrays for Use in the Same
Oslund et al. Detection of cell–cell interactions via photocatalytic cell tagging
CN103429756B (zh) 用于鉴定诱使人皮肤致敏的试剂的分析方法和阵列
KR20170102874A (ko) 분석 방법 및 이 분석 방법에서 사용하기 위한 어레이
Kahounová et al. Slug-expressing mouse prostate epithelial cells have increased stem cell potential
US20110229889A1 (en) DOPAMINERGIC NEURON PROLIFERATIVE PROGENITOR CELL MARKER Msx1/2
Freuchet et al. Identification of human exTreg cells as CD16+ CD56+ cytotoxic CD4+ T cells
US20220002814A1 (en) Gene expression profiles for b-cell lymphoma and uses thereof
CN111295441B (zh) 新颖细胞系和其用途
TW202129009A (zh) 分析方法及用於其中的陣列
Lee et al. Comparison of [3H]-Thymidine, carboxyfluorescein diacetate succinimidyl ester and ki-67 in lymphocyte proliferation
ES2913755T3 (es) Métodos analíticos y matrices para uso en los mismos
JP2022515843A (ja) 分析方法およびそれにおいて使用するためのアレイ
Williams et al. PINK1 is a target of T cell responses in Parkinson's disease