TW202127047A - Semiconductor device and detecting method of needle mark offset - Google Patents
Semiconductor device and detecting method of needle mark offset Download PDFInfo
- Publication number
- TW202127047A TW202127047A TW109101035A TW109101035A TW202127047A TW 202127047 A TW202127047 A TW 202127047A TW 109101035 A TW109101035 A TW 109101035A TW 109101035 A TW109101035 A TW 109101035A TW 202127047 A TW202127047 A TW 202127047A
- Authority
- TW
- Taiwan
- Prior art keywords
- detection
- test
- probe
- semiconductor device
- test pad
- Prior art date
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本發明係關於檢測技術,特別是一種可即時監控探針組是否偏移的半導體裝置及針痕偏移檢測方法。The present invention relates to detection technology, in particular to a semiconductor device and a needle mark deviation detection method that can monitor whether the probe set is shifted in real time.
習知,單一晶圓上可製造出大量的積體電路晶片,並且晶圓可透過單一化(singulation)程序而分離出此些積體電路晶片,以用於後續之封裝與使用。一般而言,在晶圓完成半導體的所有製程後到出廠前的這段期間中,會對晶圓進行晶圓接受度測試(Wafer Acceptable Test,WAT),以瞭解晶圓內的電性特性,藉以掌握晶圓是否於製程中出現缺陷。如此一來,便得以確保晶圓在某個程度上的品質與穩定性。Conventionally, a large number of integrated circuit chips can be manufactured on a single wafer, and these integrated circuit chips can be separated from the wafer through a singulation process for subsequent packaging and use. Generally speaking, during the period from the completion of all semiconductor manufacturing processes on the wafer to the time it leaves the factory, the wafer is subjected to a Wafer Acceptable Test (WAT) to understand the electrical characteristics of the wafer. In order to grasp whether the wafer has defects in the manufacturing process. In this way, it is possible to ensure the quality and stability of the wafer to a certain extent.
在晶圓接受度測試中,通常是利用包含多個探針的探針組(可稱為探針卡)接觸於晶圓上的測試墊,以饋入測試訊號來瞭解晶圓內的電性特性。然而,探針組在與測試墊接觸時可能出現滑移,無論是探針組的針尖偏移出測試墊外或刮出測試墊外都是不樂見的測試情況。因此,極需要可即時監控探針組之下針位置的相關機制來降低測試風險。此外,由於晶圓上的可用面積有限,因此亦期盼盡可能地節省測試所需的佔用面積。In wafer acceptance testing, a probe set (may be called a probe card) containing multiple probes is usually used to contact test pads on the wafer to feed test signals to understand the electrical properties of the wafer. characteristic. However, the probe set may slip when it is in contact with the test pad. Whether the tip of the probe set shifts out of the test pad or scratches out of the test pad, it is an undesirable test situation. Therefore, there is a great need for a related mechanism that can monitor the position of the needle under the probe set in real time to reduce the test risk. In addition, due to the limited available area on the wafer, it is also hoped to save the occupied area required for testing as much as possible.
本發明之一實施例揭露一種半導體裝置。半導體裝置包含第一測試墊與複數第二測試墊。第一測試墊包含中央部與複數周邊部。複數周邊部鄰近於中央部的邊緣設置。複數周邊部彼此互不接觸且不接觸於中央部。第一測試墊具有複數偵測方位,且各偵測方位上至少設有一個周邊部。各第二測試墊透過第一連接走線與複數周邊部之一者電性連接。An embodiment of the present invention discloses a semiconductor device. The semiconductor device includes a first test pad and a plurality of second test pads. The first test pad includes a central part and a plurality of peripheral parts. The plurality of peripheral parts are arranged adjacent to the edge of the central part. The plural peripheral parts are not in contact with each other and are not in contact with the central part. The first test pad has a plurality of detection orientations, and each detection orientation is provided with at least one peripheral part. Each second test pad is electrically connected to one of the plurality of peripheral parts through the first connecting wire.
本發明之一實施例揭露一種針痕偏移檢測方法。針痕偏移檢測方法包含:利用探針組接觸半導體裝置,其中半導體裝置包含第一測試墊與複數第二測試墊,第一測試墊包含中央部與複數周邊部,複數周邊部鄰近於中央部的邊緣設置,複數周邊部彼此互不接觸且不接觸於中央部,中央部具有複數偵測方位,各偵測方位上設有至少一個周邊部,各第二測試墊透過第一連接走線與複數周邊部中之一者電性連接,其中探針組包含第一探針與複數第二探針,第一探針用以接觸第一測試墊,且複數第二探針用以接觸複數第二測試墊;透過第一探針輸出測試訊號;利用複數第二探針個別檢測是否接收到測試訊號以得到複數檢測狀態;以及根據複數檢測狀態判斷探針組的下針位置。An embodiment of the present invention discloses a needle mark offset detection method. The needle mark offset detection method includes: using a probe set to contact a semiconductor device, wherein the semiconductor device includes a first test pad and a plurality of second test pads, the first test pad includes a central part and a plurality of peripheral parts, and the plurality of peripheral parts are adjacent to the central part The plurality of peripheral parts do not touch each other and do not touch the central part. The central part has a plurality of detection orientations. Each detection orientation is provided with at least one peripheral part. Each second test pad is connected to each other through the first connection line. One of the plurality of peripheral parts is electrically connected, wherein the probe set includes a first probe and a plurality of second probes, the first probe is used to contact the first test pad, and the plurality of second probes are used to contact the plurality of second probes. Two test pads; output a test signal through the first probe; use a plurality of second probes to individually detect whether the test signal is received to obtain a plurality of detection states; and determine the needle position of the probe group according to the plurality of detection states.
為使本發明之實施例之上述目的、特徵和優點能更明顯易懂,下文配合所附圖式,作詳細說明如下。In order to make the above-mentioned objects, features and advantages of the embodiments of the present invention more obvious and understandable, the following detailed descriptions will be made in conjunction with the accompanying drawings.
請參閱第1圖與第2圖,半導體裝置100包含測試墊組。測試墊組可包含複數測試墊,且複數測試墊可分成第一測試墊110與複數第二測試墊。以下,以八個測試墊為例來進行說明,其中一個測試墊可為第一測試墊110,且七個測試墊為第二測試墊121~127。但測試墊的數量並非以此為限。在一實施例中,第二測試墊121~127所需之數量可視第一測試墊110的周邊部之數量而定。而在另一實施例中,第二測試墊121~127之數量亦可多於第一測試墊110的周邊部之數量。在一些實施例中,半導體裝置100可為包含了複數積體電路晶片的晶圓,且第一測試墊110與複數第二測試墊121~127可設置於晶圓的切割道中,但本發明並非以此為限。Please refer to FIG. 1 and FIG. 2. The
檢測系統200可用以對半導體裝置100執行電性檢測,例如執行晶圓接受度測試(Wafer Acceptable Test,WAT)。檢測系統200可包含探針組210,並且檢測系統200可透過探針組210接觸於半導體裝置100以執行電性檢測。在一實施例中,探針組210包含第一探針211與複數第二探針。以下,對應於第二測試墊121~127之數量,同樣以七個第二探針2121~2127為例來進行說明,但其數量亦非以此為限。The
第一探針211用以接觸第一測試墊110,且各第二探針2121~2127用以接觸第二測試墊121~127中之一者。此外,探針組210的第一探針211與第二探針2121~2127是一起移動的,以使得第一探針211接觸於第一測試墊110時,第二探針2121~2127亦會接觸於第二測試墊121~127。於此,檢測系統200可以探針組210垂直下移或以半導體裝置100垂直上升之方式,來使得探針組210接觸於半導體裝置100。The
值得注意的是,為了清楚闡述本發明,第1圖與第2圖僅顯示出與本發明相關之元件。應理解檢測系統200和半導體裝置100亦可能包含其他元件,用以提供特定之功能。It is worth noting that, in order to clearly illustrate the present invention, Figures 1 and 2 only show elements related to the present invention. It should be understood that the
第一測試墊110包含中央部111與複數周邊部1121~1127。以下,主要以七個周邊部1121~1127為例來進行說明。以俯視來觀看第一測試墊110的接觸面時,中央部111大致上位於接觸面的中央處,並且中央部111具有一定的面積,以使得第一探針211於戳在中央部111之中央處時,第一探針211的針痕可涵蓋於中央部111之中。在一些實施態樣中,當第一探針211之針尖約為15微米(μm)時,第一探針211的針痕可能大約介於15微米至20微米之間,則中央部111的長及/或寬可分別介於20微米至30微米之間,但本發明並僅限於此。The
複數周邊部1121~1127鄰近於中央部111的邊緣設置,以共同將中央部111包圍。於此,複數周邊部1121~1127彼此互相間隔以不直接接觸,且彼此電性獨立。此外,各個周邊部1121~1127亦與中央部111間隔而不直接接觸於中央部111。The plurality of
請參閱第2圖與第3圖,第一測試墊110可具有複數個不同的偵測方位。在一些實施例中,偵測方位之數量可對應於第一測試墊110之中央部111的邊數而定。舉例而言,在一實施例中,第一測試墊110的中央部111可呈矩形而具有四個邊,且第一測試墊110可具有四個偵測方位V1~V4分別大致上對應於中央部111的四個邊之所在方位。在另一實施例中,第一測試墊110的中央部111亦可呈八邊形,且第一測試墊110可具有八個偵測方位V1~V8分別大致上對應於中央部111的八個邊之所在方位,如第3圖所示。但本發明並非以此為限,偵測方位之數量亦可不對應於第一測試墊110之中央部111的邊數。此外,中央部111的形狀亦非僅限於此,中央部111可呈現為任何合適的形狀。Please refer to FIGS. 2 and 3, the
以下,以八個偵測方位V1~V8為例來進行說明。於此,偵測方位V1~V8是平行於接觸面上的水平方位。此外,第一測試墊110在各個偵測方位V1~V8上,至少設置有一個周邊部,以使得檢測系統200在後述的檢測中可根據接收到訊號的周邊部是位在哪一個方位來判斷探針組210下針位置。In the following, the eight detection directions V1~V8 are taken as an example for description. Here, the detection orientations V1~V8 are parallel to the horizontal orientation of the contact surface. In addition, the
第二測試墊121~127鄰近於第一測試墊110設置。此外,半導體裝置100可更包含複數第一連接走線。以下,對應於第二測試墊121~127之數量,同樣以七個第一連接走線131~137為例來進行說明。各第二測試墊121~127可分別透過相應的第一連接走線131~137間接連接至周邊部1121~1127中之一者,進而使得各第二測試墊121~127可電性連接至相應的周邊部1121~1127,如第2圖所示。The
在一些實施例中,第一測試墊110之大小(即中央部111與周邊部1121~1127之整個最外圍的範圍,亦即接觸面之所佔範圍)可大致上相等於各第二測試墊121~127之接觸面的所佔範圍,但本發明並非以此為限。In some embodiments, the size of the first test pad 110 (that is, the entire outermost range of the
檢測系統200可透過第一探針211輸出測試訊號,並透過第二探針2121~2127檢測是否可接收到測試訊號,進而可根據複數第二探針2121~2127的複數檢測狀態判斷探針組210的下針位置。因此,在探針組210接觸於半導體裝置100時,倘若探針組210因滑移而使得第一探針211並未完全戳在第一測試墊110之中央部111時,例如第一探針211之針尖接觸到至少一個週邊部時,檢測系統200將可透過相應的至少一個第二探針接收到測試訊號,進而可據此判斷出探針組210的下針位置出現偏移。反之,倘若第一探針211完全戳在第一測試墊110之中央部111時,檢測系統200可因第二探針2121~2127皆未接收到測試訊號而判斷出探針組210並未偏移。The
請參閱第4圖至第6圖,在一些實施例中,半導體裝置100可更包含第二連接走線141。第二連接走線141連接於第一測試墊110的中央部111和複數周邊部1121~1127中之一者之間,以使得中央部111可透過第二連接走線141電性連接至相應的周邊部。舉例而言,如第4圖所示,第二連接走線141可連接於周邊部1124和中央部111之間。如此一來,在探針組210接觸於半導體裝置100時,倘若第一探針211完全戳在第一測試墊110之中央部111時,檢測系統200將僅會在第二探針2112上接收到測試訊號,藉此可更加確定出探針組210確實並未偏移,而並非是探針組210完全沒有接觸到第一測試墊110以及第二測試墊121~127。以下,主要以設置有第二連接走線141之第一連接墊110來進行說明。Please refer to FIG. 4 to FIG. 6. In some embodiments, the
在一些實施例中,第一測試墊110(即中央部111與周邊部1121~1127)、第二測試墊121~127、第一連接走線131~137與第二連接走線141可透過同一金屬層(例如M0層、TV層等)利用晶圓製造程序,例如黃光、蝕刻等製程一起製作而成,因此本發明任一實施例之半導體裝置100相較於傳統於製作上顯得更加簡單與方便。In some embodiments, the first test pad 110 (that is, the
半導體裝置100的第一測試墊110以及第二測試墊121~127可沿著同一個設置方向D1間隔設置而大致上排列於同一直線方向上。在一些實施例中,第一測試墊110可位於第二測試墊121~127間,以利於周邊部的設置及/或節省連接至周邊部的連接走線之面積。舉例而言,第一測試墊110可大致上位於此些第二測試墊121~127之中間。但本發明並非以此為限,在另一些實施例中,第一測試墊110與第二測試墊121~127亦可任意排序,只要第一連接走線131~137可連接到第一測試墊110的周邊部1121~1127以及第二測試墊121~127即可。此外,探針組210的第一探針211與第二探針2121~2127亦可沿著設置方向D1間隔設置而大致上排列於同一直線上。The
在一些實施例中,第一測試墊110的各周邊部1121~1127可沿著中央部111的邊緣延伸以涵蓋至少兩個偵測方位。舉例而言,如第4圖所示,周邊部1121可涵蓋偵測方位V1、V2,周邊部1122可涵蓋偵測方位V2、V3,依此類推。In some embodiments, the
在另一些實施例中,如第5圖所示,第一測試墊110的各周邊部更可以依序涵蓋之方式涵蓋至少兩個偵測方位。於此,第一測試墊110可配置出八個周邊部1121~1128,並且半導體裝置100亦可對應配置出八個第二測試墊121~128。如圖中所示,周邊部1121可涵蓋偵測方位V1、V2,周邊部1122可涵蓋偵測方位V2、V3,並且依此順序類推,周邊部1128可涵蓋偵測方位V8、V1。In other embodiments, as shown in FIG. 5, each peripheral portion of the
在周邊部1121~1128依序涵蓋三個偵測方位之另一實施例中,如第6圖所示,周邊部1121可涵蓋偵測方位V8、V1、V2,周邊部1122可涵蓋偵測方位V1~V3,依此類推。In another embodiment where the
需注意的是,無論各周邊部1121~1128依序涵蓋到兩個或三個偵測方位,甚至是依序涵蓋到八個偵測方位時,第一測試墊110依舊只需要分割出八個周邊部1121~1128,且半導體裝置100仍然僅需要配置八個第二測試墊121~128。因此可大幅降低進行偏移檢測時所需的配置面積。It should be noted that regardless of whether each
在一些實施例中,請參閱第6圖,涵蓋至少兩個偵測方位的各個周邊部1121~1128可包含第一配置段。周邊部1121~1128的第一配置段A1~A8分別設置在偵測方位V1~V8中之一者上,且各第一配置段A1~A8與中央部111之間不具有另一個周邊部。如此一來,周邊部1121~1128可以交錯環繞之方式將中央部111包圍起來。In some embodiments, referring to FIG. 6, each of the
在一些實施例中,第一測試墊110的複數偵測方位V1~V8可分成高機率偵測方位以及低機率偵測方位。其中,高機率偵測方位是指探針組210滑移時較常偏移的方位。並且,第一測試墊110在高機率偵測方位上可配置有至少兩個周邊部,以使得檢測系統200可更細分出探針組210於高機率偵測方位上的偏移程度。In some embodiments, the multiple detection positions V1 to V8 of the
請參閱第3圖,舉例而言,由於探針組210在下針時較少往下方向(如第3圖中的偵測方位V5)偏移,因此,在一些實施例中,偵測方位V4、V5上可分別僅設置一個周邊部1123、1124,而在其他偵測方位上則均設置二個周邊部。Please refer to Fig. 3, for example, since the probe set 210 is less shifted in the downward direction (such as the detection position V5 in Fig. 3) when the needle is lowered, therefore, in some embodiments, the detection position V4 , V5 can be provided with only one
檢測系統200可執行本發明任一實施例之針痕偏移檢測方法,以即時監控探針組210於半導體裝置100上的下針位置。The
第7圖為本發明一實施例之針痕偏移檢測方法的流程圖。請參閱第7圖,在針痕偏移檢測方法之一實施例中,檢測系統200可先利用探針組210接觸於半導體裝置100的第一測試墊110與第二測試墊121`127(步驟S10)。接續,檢測系統200再透過探針組210中的第一探針211輸出測試訊號(步驟S20),並且利用探針組210中的第二探針2121~2127進行檢測以得到第二探針2121~2127的複數檢測狀態(步驟S30)。之後,檢測系統200便可根據步驟S30中所得到的複數檢測狀態快速判斷出探針組210的的下針位置(步驟S40)。其中,下針位置包含下針方向(又可稱為偏移方向)及/或偏移量。Fig. 7 is a flowchart of a needle mark offset detection method according to an embodiment of the present invention. Referring to FIG. 7, in an embodiment of the needle mark offset detection method, the
在步驟S40之一實施例中,檢測系統200可根據表示為接收到測試訊號的至少一個檢測狀態來決定出探針組210的下針位置。In an embodiment of step S40, the
以下,以數個範例來說明檢測系統200是如何進行判斷。在一範例中,當第一探針211接觸到第4圖中所示的中央部111以及周邊部1121時,接觸於第二測試墊122的第二探針2122以及接觸於第二測試墊125的第二探針2125將接收到測試訊號。因此,檢測系統200可判斷出探針組210往偵測方位V1偏移。並且,由於接觸於第二測試墊126的第二探針2126並未接收到測試訊號,表示探針組210雖往偵測方位V1偏移但尚未超出第一測試墊110的接觸面,因此檢測系統200可據此判斷出探針組210只是些微往偵測方位V1偏移。此外,檢測系統200甚至可根據已知的間距(例如此處是指周邊部1121和中央部111之間的距離)和周邊部1121的寬度等推算出探針組210的偏移量,並對應地進行修正。例如,將探針組210往相反於偵測方位V1的偵測方位V5移動推算出的偏移量。Hereinafter, several examples are used to illustrate how the
在一範例中,當第一探針211接觸到第4圖中所示的中央部111、周邊部1121以及周邊部1127時,接觸於第二測試墊122的第二探針2122、接觸於第二測試墊125的第二探針2125以及接觸於第二測試墊126的第二探針2126將接收到測試訊號。因此,檢測系統200可判斷出探針組210往偵測方位V1偏移。並且,由於耦接於位在偵測方位V1上之周邊部1121、1127的第二探針2125、2126以及耦接於中央部111的第二探針2122皆可接收到測試訊號,表示探針組210往偵測方位V1偏移至測試墊(即第一測試墊110與第二測試墊121~127)的邊緣,因此檢測系統200可據此判斷出探針組210往偵測方位V1偏移至測試墊的邊緣。同樣地,檢測系統200可根據已知的間距(例如此處是指周邊部1121和中央部111之間的距離以及周邊部1121和周邊部1127之間的距離)和周邊部1121、周邊部1127的寬度等推算出探針組210的偏移量,並對應地進行修正。In an example, when the
在一範例中,當第一探針211接觸到第4圖中所示的周邊部1121以及周邊部1127時,接觸於第二測試墊125的第二探針2125以及接觸於第二測試墊126的第二探針2126將接收到測試訊號。因此,檢測系統200可判斷出探針組210往偵測方位V1偏移。並且,由於耦接於中央部111的第二探針2122並未接收到測試訊號,表示探針組210往偵測方位V1嚴重偏移(又或者當僅有耦接於第二測試墊126的第二探針2126測試訊號時亦代表探針組210往偵測方位V1嚴重偏移),因此檢測系統200可據此判斷出探針組210往偵測方位V1偏移並且快整個戳出測試墊之外。同樣地,檢測系統200可推算出探針組210的偏移量,並對應地進行修正。In an example, when the
由於檢測系統200於其他偵測方位V2~V8上之偏移的判斷方式大致上和於偵測方位V1上之偏移的判斷方式相同,本技術領域中具有通常知識者應能理解並知曉如何進行相應變化,故於此不再贅述。Since the
第8圖為一範例之複數第二探針之檢測狀態和判斷結果之間的概要關係示意圖。請參閱第2圖與第8圖,檢測系統200於檢測第2圖中所示之一實施例的半導體裝置100後,可能得到的複數檢測狀態以及其相應之判斷結果的一範例可如第8圖的關係圖所示。其中,符號◎表示此第二探針的檢測狀態為有接收到測試訊號。FIG. 8 is a schematic diagram of the schematic relationship between the detection state and the judgment result of a plurality of second probes in an example. Please refer to FIG. 2 and FIG. 8. After the
綜上所述,本發明之實施例提供一種半導體裝置及針痕偏移檢測方法,其第一測試墊所分割出的中央部以及交錯環繞於中央部的複數周邊部,使得於檢測時得以利用第一探針輸出測試訊號並根據複數第二探針的複數檢測狀態之組合結果來快速檢測出探針組的下針位置。再者此外,本發明之一實施例的半導體裝置及針痕偏移檢測方法可於線上即時監測,故可更確保量測品質並降低重測率。此外,本發明之一實施例的半導體裝置及針痕偏移檢測方法可大幅減少所需拉線的第二測試墊之數目及佔用面積,並同時簡化了製程複雜度。In summary, the embodiments of the present invention provide a semiconductor device and a needle mark offset detection method, in which the central part divided by the first test pad and the plural peripheral parts staggered around the central part can be used for detection. The first probe outputs a test signal and quickly detects the lower needle position of the probe group according to the combined result of the plurality of detection states of the plurality of second probes. Furthermore, the semiconductor device and needle mark offset detection method of an embodiment of the present invention can be monitored online in real time, so the measurement quality can be more ensured and the retest rate can be reduced. In addition, the semiconductor device and the needle mark offset detection method of an embodiment of the present invention can greatly reduce the number and occupied area of the second test pads required to be pulled, and at the same time simplify the process complexity.
本發明之實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明實施例之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The embodiments of the present invention are disclosed as above, but they are not intended to limit the scope of the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the embodiments of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.
100:半導體裝置
110:第一測試墊
111:中央部
1121~1128:周邊部
121~128:第二測試墊
131~137:第一連接走線
141:第二連接走線
200:檢測系統
210:探針組
211:第一探針
2121~2127:第二探針
A1~A8:第一配置段
D1:設置方向
V1~V8:偵測方位
S10~S40:步驟100: Semiconductor device
110: The first test pad
111:
第1圖為本發明一實施例之檢測系統與半導體裝置的示意圖。 第2圖為本發明一實施例之半導體裝置與探針組的概要示意圖。 第3圖為第一測試墊與偵測方位之一實施例的概要示意圖。 第4圖為本發明一實施例之半導體裝置的概要示意圖。 第5圖為本發明一實施例之半導體裝置的概要示意圖。 第6圖為本發明一實施例之第一測試墊的概要示意圖。 第7圖為本發明一實施例之針痕偏移檢測方法的流程圖。 第8圖為一範例之複數第二探針之檢測狀態和判斷結果之間的概要關係示意圖。FIG. 1 is a schematic diagram of a detection system and a semiconductor device according to an embodiment of the invention. FIG. 2 is a schematic diagram of a semiconductor device and a probe set according to an embodiment of the present invention. FIG. 3 is a schematic diagram of an embodiment of the first test pad and the detection position. FIG. 4 is a schematic diagram of a semiconductor device according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a semiconductor device according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a first test pad according to an embodiment of the present invention. Fig. 7 is a flowchart of a needle mark offset detection method according to an embodiment of the present invention. FIG. 8 is a schematic diagram of the schematic relationship between the detection state and the judgment result of a plurality of second probes in an example.
無none
100:半導體裝置100: Semiconductor device
111:中央部111: Central
1121~1127:周邊部1121~1127: Peripheral part
121~127:第二測試墊121~127: The second test pad
132~137:第一連接走線132~137: The first connection line
141:第二連接走線141: The second connection line
D1:設置方向D1: Set direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109101035A TWI745829B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and detecting method of needle mark offset |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109101035A TWI745829B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and detecting method of needle mark offset |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202127047A true TW202127047A (en) | 2021-07-16 |
TWI745829B TWI745829B (en) | 2021-11-11 |
Family
ID=77908813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109101035A TWI745829B (en) | 2020-01-13 | 2020-01-13 | Semiconductor device and detecting method of needle mark offset |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI745829B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002082130A (en) * | 2000-09-06 | 2002-03-22 | Hitachi Ltd | Apparatus and method for inspecting semiconductor device |
TW513574B (en) * | 2001-06-06 | 2002-12-11 | Compeq Mfg Co Ltd | Inspection method for circuit mis-soldering of circuit board |
US6724205B1 (en) * | 2002-11-13 | 2004-04-20 | Cascade Microtech, Inc. | Probe for combined signals |
JP2008164292A (en) * | 2006-12-26 | 2008-07-17 | Tokyo Electron Ltd | Probe inspection apparatus, position displacement correction method, information processing apparatus and method, and program |
TWM489202U (en) * | 2014-05-15 | 2014-11-01 | Cheng-Yan Gao | Shallow-layer ground thermal cycling power generation system |
CN106783804B (en) * | 2016-12-21 | 2019-07-26 | 武汉新芯集成电路制造有限公司 | Test structure and the method using the test structure monitoring probe probe mark shift |
TWI614824B (en) * | 2017-09-12 | 2018-02-11 | Probe card needle adjustment system, needle adjustment mechanism module and needle adjustment method | |
CN110208672A (en) * | 2019-07-01 | 2019-09-06 | 德淮半导体有限公司 | Probe card and probe station |
-
2020
- 2020-01-13 TW TW109101035A patent/TWI745829B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI745829B (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4774071B2 (en) | Probe resistance measurement method and semiconductor device having probe resistance measurement pad | |
JP4898139B2 (en) | Probe pad, substrate on which semiconductor element is mounted, and semiconductor element inspection method | |
JP4585327B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4519571B2 (en) | Semiconductor device, inspection method thereof, inspection device, and semiconductor device manufacturing method | |
JP2007305763A (en) | Semiconductor device | |
US7573278B2 (en) | Semiconductor device | |
JP4570446B2 (en) | Semiconductor wafer and inspection method thereof | |
JPH06168991A (en) | Inspecting method for multi-probing semiconductor | |
TWI745829B (en) | Semiconductor device and detecting method of needle mark offset | |
JP4746609B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2010182932A (en) | Semiconductor device, and method for analyzing defect of semiconductor device | |
JP2008028274A (en) | Manufacturing method for semiconductor device | |
US6426516B1 (en) | Kerf contact to silicon redesign for defect isolation and analysis | |
US11099235B1 (en) | Semiconductor device and method for detecting needle mark shifting | |
CN113284815B (en) | Semiconductor device and trace misalignment detection method | |
JP5781819B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2007067008A (en) | Probing method for semiconductor inspection | |
JP2008047643A (en) | Semiconductor device | |
JP4995495B2 (en) | Semiconductor device | |
JP2014140019A (en) | Method of inspecting semiconductor device | |
CN216288433U (en) | Test structure and test system | |
KR20130016765A (en) | Electric connecting apparatus for testing electric characteristic of a semiconductor device having thin film resistor and manufacturing method thereof | |
JP4877465B2 (en) | Semiconductor device, semiconductor device inspection method, semiconductor wafer | |
KR100683385B1 (en) | Composite pattern for monitoring defects of semiconductor device | |
CN113851456A (en) | Test structure, test system and test method |