TW202122927A - 判定圖案之像差靈敏度的方法 - Google Patents

判定圖案之像差靈敏度的方法 Download PDF

Info

Publication number
TW202122927A
TW202122927A TW109129096A TW109129096A TW202122927A TW 202122927 A TW202122927 A TW 202122927A TW 109129096 A TW109129096 A TW 109129096A TW 109129096 A TW109129096 A TW 109129096A TW 202122927 A TW202122927 A TW 202122927A
Authority
TW
Taiwan
Prior art keywords
aberration
zernike
pattern
image
order
Prior art date
Application number
TW109129096A
Other languages
English (en)
Other versions
TWI793443B (zh
Inventor
劉晶晶
端孚 徐
彭星月
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202122927A publication Critical patent/TW202122927A/zh
Application granted granted Critical
Publication of TWI793443B publication Critical patent/TWI793443B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70666Aerial image, i.e. measuring the image of the patterned exposure light at the image plane of the projection system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明描述一種用於基於與一圖案化設備相關聯之像差靈敏度判定製程窗限制圖案(PWLP)之方法。該方法包括:獲得(i)與該圖案化設備之一像差波前相關聯之一第一核心集合及一第二核心集合,及(ii)待經由該圖案化設備印刷於一基板上之一設計佈局;及經由使用該設計佈局之一製程模擬、該第一核心集合及該第二核心集合,判定與該像差波前相關聯之一像差靈敏度映圖,該像差靈敏度映圖指示該設計佈局之一或多個部分對一個別像差及不同像差之間的一相互作用之靈敏程度;基於該像差靈敏度映圖,判定與相較於該設計佈局之其他部分具有相對高靈敏度之該設計佈局相關聯之該PWLP。

Description

判定圖案之像差靈敏度的方法
本說明書大體係關於圖案之像差靈敏度且最佳化圖案化製程之設備及方法,或關於基於像差靈敏度之圖案化製程的態樣。
微影投影設備可用於(例如)積體電路(IC)之製造中。在此情況下,圖案化器件(例如,遮罩)可含有或提供對應於IC之個別層的圖案(「設計佈局」),且此圖案可藉由諸如穿過圖案化器件上之圖案照射目標部分的方法經轉印至基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)上,該目標部分已塗佈有一層輻射敏感材料(「抗蝕劑」)。一般而言,單一基板含有複數個相鄰目標部分,圖案藉由微影投影設備依次地轉印至該複數個相鄰目標部分,一次一個目標部分。在一種類型之微影投影設備中,將整個圖案化器件上之圖案一次性轉印至一個目標部分上;此設備通常稱為步進器。在通常稱為步進掃描設備之替代設備中,投影光束在給定參考方向(「掃描」方向)上在圖案化器件上進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之圖案之不同部分逐漸地轉印至一個目標部分。一般而言,由於微影投影設備將具有縮小比率M (例如4),故基板移動之速度F將為投影光束掃描圖案化器件之速度的1/M倍。可例如自以引用方式併入本文中之US 6,046,792搜集到關於如本文中所描述之微影器件的更多資訊。
在將圖案自圖案化器件轉印至基板之前,基板可經歷各種過程,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他過程(「後曝光過程」),諸如後曝光烘烤(PEB)、顯影、硬烘烤及對經轉印圖案之量測/檢測。此過程陣列係用作製造器件(例如,IC)之個別層之基礎。基板接著可經歷諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等各種製程,該等製程皆意欲精整(finish off)器件之個別層。若在器件中需要若干層,則針對每一層來重複整個過程或其變體。最終,器件將存在於基板上之每一目標部分中。接著藉由諸如切割或鋸切之技術來使此等器件彼此分離,由此可將個別器件安裝於載體上、連接至銷釘等。
因此,製造器件(諸如半導體器件)通常涉及使用多個製造製程來處理基板(例如,半導體晶圓)以形成器件之各種特徵及多個層。通常使用例如沈積、微影、蝕刻、化學機械拋光及離子植入來製造及處理此類層及特徵。可在基板上之複數個晶粒上製作多個器件,且接著將該等器件分離成個別器件。此器件製造製程可視為圖案化製程。圖案化製程涉及圖案化步驟,諸如在微影設備中使用圖案化器件之光學及/或奈米壓印微影,以將圖案化器件上的圖案轉印至基板,且通常但視情況涉及一或多個相關圖案處理步驟,諸如藉由顯影設備進行之抗蝕劑顯影、使用烘烤工具來烘烤基板、使用蝕刻設備使用圖案進行蝕刻等。
如所提及,微影為在諸如IC之器件之製造中的中心步驟,其中形成於基板上之圖案限定器件之功能元件,諸如微處理器、記憶體晶片等。類似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造製程持續進步,功能元件之尺寸已不斷減小,而每器件的諸如電晶體之功能元件之量在幾十年中已穩定增加,此遵循通常稱為「莫耳定律(Moore's law)」之趨勢。在當前技術狀態下,使用微影投影設備來製造器件之層,該等微影投影設備使用來自深紫外照明源之照明將設計佈局投射至基板上,從而產生尺寸遠低於100 nm (亦即小於來自照明源(例如,193 nm照明源)之輻射的波長之一半)的個別功能元件。
根據解析度公式CD = k1 ×λ/NA,其中λ為所使用輻射之波長(當前在大多數情況下為248nm或193nm),NA為微影投影設備中之投影光學器件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k1 為經驗解析度因數,印刷尺寸小於微影投影設備之經典解析度限制之特徵的此製程通常稱為低k1 微影。大體而言,k1 愈小,則在基板上再現類似於由設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影設備、設計佈局或圖案化器件。此等步驟包括(例如,但不限於)NA及光學同調設定之最佳化、定製照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦稱為「光學及製程校正」),或一般定義為「解析度增強技術」(RET)之其他方法。如本文所使用之術語「投影光學器件」應廣泛地解釋為涵蓋各種類型之光學系統,包括例如折射光學器件、反射光學器件、孔徑及反射折射光學器件。術語「投影光學器件」亦可包括根據此等設計類型中之任一者操作的用於共同地或單獨地引導、塑形或控制投影輻射光束之組件。術語「投影光學器件」可包括微影投影設備中之任何光學組件,而不管光學組件定位於微影投影設備之光學路徑上之何處。投影光學器件可包括用於在輻射穿過圖案化器件之前塑形、調整及/或投射來自源之輻射之光學組件,及/或用於在輻射穿過圖案化器件之後塑形、調整及/或投射該輻射之光學組件。投影光學器件一般不包括源及圖案化器件。
根據實施例,提供一種基於與一圖案化設備相關聯之像差靈敏度判定製程窗限制圖案(PWLP)之方法。該方法包括:獲得(i)與該圖案化設備之一像差波前相關聯之一第一核心集合及一第二核心集合,及(ii)待經由該圖案化設備印刷於一基板上之一設計佈局;及經由使用該設計佈局之一製程模擬、該第一核心集合及該第二核心集合,判定與該像差波前相關聯之一像差靈敏度映圖,該像差靈敏度映圖指示該設計佈局之一或多個部分對一個別像差及不同像差之間的一相互作用之靈敏程度;及基於該像差靈敏度映圖,判定與相較於該設計佈局之其他部分具有相對高靈敏度之該設計佈局相關聯之該PWLP。
在詳細描述實施例之前,呈現可實施實施例之實例環境係具指導性的。
圖1示意性地描繪微影設備LA之實施例。設備包含: -  照明系統(照明器) IL,其經組態以調節輻射光束B (例如UV輻射或DUV輻射); -  支撐結構(例如,遮罩台) MT,其經建構以支撐圖案化器件(例如,遮罩) MA,且連接至經組態以根據某些參數而準確地定位圖案化器件之第一定位器PM; -  基板台(例如,晶圓台) WT (例如,WTa、WTb或兩者),其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數而準確地定位基板之第二定位器PW;及 -  投影系統(例如,折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投射至基板W之目標部分C (例如,包含一或多個晶粒且常常稱為場)上,該投影系統支撐於參考框架(RF)上。
如此處所描繪,設備係透射型(例如,使用透射遮罩)。替代地,該設備可屬於反射型(例如,採用如上文所提及之類型的可程式化鏡面陣列,或採用反射遮罩)。
照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射器時,源與微影設備可為單獨實體。在此類情況下,不認為源形成該微影設備之部分,且輻射光束藉助於包含(例如)合適引導鏡面及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他情況下,舉例而言,在源為水銀燈時,源可為設備之整體部分。源SO及照明器IL連同光束遞送系統BD一起在必要時可稱為輻射系統。
照明器IL可改變光束之強度分佈。照明器可經配置以限制輻射光束之徑向範圍,使得在照明器IL之光瞳平面中之環形區內的強度分佈係非零的。另外或可替代地,照明器IL可操作以限制光束在光瞳平面中之分佈,以使得在光瞳平面中之複數個等間隔扇區中的強度分佈係非零的。輻射光束在照明器IL之光瞳平面中之強度分佈可稱為照明模式。
因此,照明器IL可包含經組態以調整光束之(角度/空間)強度分佈的調整器AM。一般而言,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱為σ外部及σ內部)。照明器IL可操作以改變光束之角度分佈。舉例而言,照明器可操作以改變強度分佈為非零的光瞳平面中之扇區之數目及角度範圍。藉由調整光束在照明器之光瞳平面中之強度分佈,可達成不同照明模式。舉例而言,藉由限制照明器IL之光瞳平面中之強度分佈的徑向及角度範圍,強度分佈可具有多極分佈,諸如(例如)偶極、四極或六極分佈。可例如藉由將提供所要照明模式之光學器件插入至照明器IL中或使用空間光調變器來獲得彼照明模式。
照明器IL可操作以改變光束之偏振且可操作以使用調整器AM來調整偏振。跨照明器IL之光瞳平面之輻射光束的偏振狀態可稱為偏振模式。使用不同偏振模式可允許在形成於基板W上之影像中達成較大對比度。輻射光束可為非偏振的。替代地,照明器可經配置以使輻射光束線性地偏振。輻射光束之偏振方向可跨照明器IL之光瞳平面而變化。輻射之偏振方向在照明器IL之光瞳平面中之不同區中可不同。可取決於照明模式來選擇輻射之偏振狀態。對於多極照明模式,輻射光束之每一極之偏振可大體上垂直於彼極在照明器IL的光瞳平面中之位置向量。舉例而言,對於偶極照明模式,輻射可在實質上垂直於平分偶極之兩個相對扇區之線的方向上線性地偏振。輻射光束可在兩個不同正交方向中之一者上偏振,其可稱為X偏振狀態及Y偏振狀態。對於四極照明模式,每一極之扇區中之輻射可在實質上垂直於平分彼扇區的線之方向上線性地偏振。此偏振模式可稱為XY偏振。類似地,對於六極照明模式,每一極之扇區中之輻射可在實質上垂直於平分彼扇區的線之方向上線性地偏振。此偏振模式可稱為TE偏振。
此外,照明器IL通常包含各種其他組件,諸如積分器IN及聚光器CO。照明系統可包括用於引導、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
因此,照明器提供在其橫截面中具有所要均一性及強度分佈之經調節輻射光束B。
支撐結構MT以取決於圖案化器件之定向、微影設備之設計及其他條件(諸如(例如)圖案化器件是否經固持於真空環境中)之方式來支撐圖案化器件。支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化器件。支撐結構可為例如框架或台,其可視需要而為固定或可移動的。支撐結構可確保圖案化器件例如相對於投影系統處於所要位置。可認為本文中之術語「倍縮光罩」或「遮罩」之任何使用與更一般術語「圖案化器件」同義。
本文中所使用之術語「圖案化器件」應廣泛地解釋為係指可用於在基板的目標部分中賦予圖案之任何器件。在實施例中,圖案化器件為可用於在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案之任何器件。應注意,例如,若賦予至輻射光束之圖案包括相移特徵或所謂的輔助特徵,則該圖案可能不確切地對應於基板之目標部分中之所要圖案。一般而言,賦予至輻射光束之圖案將對應於目標部分中產生之器件中之特定功能層,諸如積體電路。
圖案化器件可為透射的或反射的。圖案化器件之實例包括遮罩、可程式化鏡面陣列,或可程式化LCD面板。遮罩在微影中已為人所熟知,且包括諸如二元、交替相移及衰減相移之遮罩類型,以及各種混合遮罩類型。可程式化鏡面陣列之實例採用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
本文中所使用之術語「投影系統」應經廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因數的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用與更一般術語「投影系統」同義。
投影系統PS具有可為非均一之光學傳遞函數,且可影響成像於基板W上之圖案。對於非偏振輻射,此類效應可由兩個純量映圖極佳地描述,該等兩個純量映圖將離開投影系統PS之輻射的透射率(變跡)及相對相位(像差)描述為其光瞳平面中之位置的函數。可將可稱為透射映圖及相對相位映圖之此等純量映圖表達為基底函數之完整集合之線性組合。特別方便的集合為澤爾尼克多項式,其形成在單位圓上所定義之正交多項式集合。每一純量映圖之判定可涉及判定此展開式中之係數。由於澤爾尼克多項式在單位圓上正交,故可藉由依次計算經量測純量映圖與每一澤爾尼克多項式之內積且將此內積除以彼澤爾尼克多項式之範數之平方來判定澤爾尼克係數。
透射映圖及相對相位映圖取決於場及系統。亦即,一般而言,每一投影系統PS將針對每一場點(亦即針對其影像平面中之每一空間位置)具有不同澤爾尼克展開式。可藉由將例如來自投影系統PS之物件平面(亦即,圖案化器件MA之平面)中之類點源之輻射投射穿過投影系統PS且使用剪切干涉計以量測波前(亦即,具有相同相位之點之軌跡)來判定投影系統PS在其光瞳平面中之相對相位。剪切干涉計為共同路徑干涉計,且因此有利地,無需次級參考光束來量測波前。剪切干涉計可包含投影系統(亦即,基板台WT)之影像平面中的繞射光柵(例如二維柵格)及經配置以偵測與投影系統PS之光瞳平面共軛之平面中之干涉圖案的偵測器。干涉圖案係與輻射之相位相對於光瞳平面中在剪切方向上之座標的導數相關。偵測器可包含感測元件陣列,諸如,電荷耦合器件(CCD)。
微影設備之投影系統PS可能不產生可見邊緣,且因此,可使用相位步進技術(諸如移動繞射光柵)來增強波前判定之準確度。可在繞射光柵之平面中及在垂直於量測之掃描方向之方向上進行步進。步進範圍可為一個光柵週期,且可使用至少三個(均一地分佈之)相位步進。因此,例如,可在y方向上進行三個掃描量測,每一掃描量測係針對在x方向上之一不同位置進行。繞射光柵之此步進將相位變化有效地變換成強度變化,從而允許判定相位資訊。光柵可在垂直於繞射光柵之方向(z方向)上步進以校準偵測器。
可在兩個垂直方向上依序地掃描繞射光柵,該等兩個垂直方向可與投影系統PS之座標系統之軸線(x及y)重合或可與此等軸線成諸如45度的角度。可在整數個光柵週期(例如,一個光柵週期)上進行掃描。掃描使一個方向上之相位變化平均,從而允許重新建構在另一方向上之相位變化。此允許將波前判定為兩個方向之函數。
可藉由將(例如)來自投影系統PS之物件平面(亦即,圖案化器件MA之平面)中之類點源之輻射投射穿過投影系統PS且使用偵測器來量測與投影系統PS之光瞳平面共軛的平面中之輻射強度來判定投影系統PS在其光瞳平面中之透射(變跡)。可使用與用以量測波前以判定像差之偵測器相同之偵測器。
投影系統PS可包含複數個光學(例如透鏡)元件且可進一步包含調整機構AM,該調整機構經組態以調整光學元件中之一或多者以便校正像差(跨整個場之光瞳平面之相位變化)。為達成此,調整機構可操作來以一或多種不同方式操控投影系統PS內之一或多個光學(例如透鏡)元件。投影系統可具有座標系統,其中其光軸在z方向上延伸。調整機構可操作以進行以下各者之任何組合:使一或多個光學元件位移;使一或多個光學元件傾斜;及/或使一或多個光學元件變形。光學元件之位移可在任何方向(x、y、z或其組合)上進行。光學元件之傾斜通常藉由圍繞在x及/或y方向上之軸旋轉而離開垂直於光軸之平面,但圍繞z軸之旋轉可用於非旋轉對稱之非球面光學元件。光學元件之變形可包括低頻形狀(例如像散)及/或高頻形狀(例如自由形式非球面)。可例如藉由使用一或多個致動器以對光學元件之一或多個側施加力及/或藉由使用一或多個加熱元件以對光學元件之一或多個選定區進行加熱來進行光學元件之變形。一般而言,可能不可能調整投影系統PS以校正變跡(跨光瞳平面之投射變化)。當設計用於微影設備LA之圖案化器件(例如,遮罩) MA時,可使用投影系統PS之透射映圖。使用運算微影技術,該圖案化器件MA可經設計以至少部分地校正變跡。
微影設備可為具有兩個(雙載物台)或多於兩個台(例如,兩個或多於兩個基板台WTa、WTb、兩個或多於兩個圖案化器件台、基板台WTa及在無專用於(例如)促進量測及/或清潔等之基板的情況下在投影系統下方之台WTb)之類型在此類「多載物台」機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,可進行使用對準感測器AS之對準量測及/或使用水平感測器LS之位準(高度、傾斜等)量測。
該微影設備亦可為以下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影設備中之其他空間,例如圖案化器件與投影系統之間。浸潤技術在此項技術中已熟知用於增大投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
因此,在微影設備之操作中,輻射光束由照明系統IL調節及提供。輻射光束B入射於固持於支撐結構(例如,遮罩台) MT上之圖案化器件(例如,遮罩) MA上,且由該圖案化器件圖案化。在已橫穿圖案化器件MA之情況下,輻射光束B穿過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器IF (例如,干涉量測器件、線性編碼器、2-D編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射光束B之路徑中。類似地,第一定位器PM及另一位置感測器(其未在圖1中明確地描繪)可用以例如在自遮罩庫之機械取回之後或在掃描期間相對於輻射光束B之路徑來準確地定位圖案化器件MA。一般而言,可藉助於形成第一定位器PM之部分的長衝程模組(粗略定位)及短衝程模組(精細定位)來實現支撐結構MT之移動。類似地,可使用形成第二定位器PW之部分之長衝程模組及短衝程模組來實現基板台WT之移動。在步進器(與掃描器相反)之情況下,支撐結構MT可僅連接至短衝程致動器,或可係固定的。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等基板對準標記稱為切割道對準標記)。類似地,在多於一個晶粒設置於圖案化器件MA上之情形中,圖案化器件對準標記可位於該等晶粒之間。
所描繪設備可用於以下模式中之至少一者中: 1. 在步進模式中,支撐結構MT及基板台WT保持基本上靜止,同時將賦予至輻射束之整個圖案一次性投射至目標部分C上(亦即單次靜態曝光)。接著,基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像之目標部分C的大小。 2. 在掃描模式中,同步地掃描支撐結構MT及基板台WT,同時將賦予至輻射光束之圖案投射至目標部分C上(即,單次動態曝光)。可藉由投影系統PS之(縮小)放大率及影像反轉特性來判定基板台WT相對於支撐結構MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。 3. 在另一模式中,支撐結構MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT,同時將賦予至輻射束之圖案投射至目標部分C上。在此模式中,一般採用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之連續輻射脈衝之間視需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,如上文所提及之類型之可程式化鏡面陣列)之無遮罩微影。
亦可採用對上文所描述之使用模式之組合及/或變化或完全不同的使用模式。
儘管在本文中可特定地參考微影設備在IC製造中之使用,但應理解,本文中所描述之微影設備可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體、液晶顯示器(LCD)、薄膜磁頭之導引及偵測圖案等等。熟習此項技術者應瞭解,在此類替代性應用之上下文中,可認為本文中對術語「晶圓」或「晶粒」之任何使用分別與更一般術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)或度量衡或檢測工具中處理本文中所提及之基板。在適用的情況下,可將本文中之揭示內容應用於此類及其他基板處理工具。另外,可將基板處理多於一次,例如以便產生多層IC,使得本文所使用之術語基板亦可指已經含有多個經處理層之基板。
本文中所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外(UV)輻射(例如,具有365、248、193、157或126 nm之波長)及極紫外(EUV)輻射(例如,具有在5至20 nm之範圍內的波長)以及粒子束,諸如離子束或電子束。
圖案化器件上或由圖案化器件提供之各種圖案可具有不同製程窗。亦即,將在規格內產生圖案之處理變數的空間。與潛在系統性缺陷相關之圖案規格之實例包括對頸縮、線拉回、線薄化、CD、邊緣置放、重疊、抗蝕劑頂部損失、抗蝕劑底切及/或橋接之檢查。可藉由合併(例如,重疊)每一個別圖案之製程窗來獲得圖案化器件或其區域上之所有圖案之製程窗。所有圖案之製程窗之邊界含有個別圖案中之一些之製程窗之邊界。換言之,此等個別圖案限制所有圖案之製程窗。此等圖案可稱為「熱點」或「製程窗限制圖案(PWLP)」,「熱點」與「製程窗限制圖案(PWLP)」在本文中可互換地使用。當控制圖案化製程之一部分時,聚焦於熱點係可能且經濟的。當熱點無缺陷時,最有可能的係所有圖案均無缺陷。
如圖2所展示,微影設備LA可形成微影單元(lithographic cell) LC (有時亦稱為微影單元(lithocell)或叢集)之部分,微影單元LC亦包括用以對基板執行預曝光製程及後曝光製程之設備。習知地,此等設備包括用以沈積一或多個抗蝕劑層之一或多個旋塗器SC、用以顯影經曝光抗蝕劑之一或多個顯影器DE、一或多個冷卻板CH及/或一或多個烘烤板BK。基板處置器或機器人RO自輸入埠I/O1/輸出埠I/O2拾取一或多個基板,在不同製程設備之間移動基板且將基板遞送至微影設備之裝載區LB。通常統稱為塗佈顯影系統之此等設備處於塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU控制微影設備。因此,不同設備可經操作以最大化產出量及處理效率。
為了正確且一致地曝光由該微影設備曝光之基板及/或為了監視圖案化製程(例如,器件製造製程)之包括至少一個圖案轉印步驟(例如,光學微影步驟)的一部分,需要檢測基板或其他物件以量測或判定一或多個性質,諸如對準、疊對(其可例如介於上覆層中之結構之間或已由例如雙重圖案化製程個別地提供至層之同一層中之結構之間)、線厚度、臨界尺寸(CD)、焦點偏移、材料性質等。因此,微影單元LC所處之製造設施通常亦包括度量衡系統MET,該度量衡系統MET量測已在微影單元或該微影單元中之其他物件中處理的基板W中之一些或所有。度量衡系統MET可為微影單元LC之部分,例如其可為微影設備LA之部分(諸如對準感測器AS)。
一或多個經量測參數可包括:例如形成於經圖案化基板中或上之連續層之間的疊對、例如形成於經圖案化基板中或上之特徵之臨界尺寸(CD) (例如,臨界線寬)、光學微影步驟的聚焦或聚焦誤差、光學微影步驟之劑量或劑量誤差、光學微影步驟之光學像差等。可對產品基板自身之目標及/或對設置於基板上之專用度量衡目標進行此量測。可在抗蝕劑顯影後但在蝕刻前進行量測,或可在蝕刻之後進行量測。
存在用於對在圖案化製程中形成之結構進行量測的各種技術,包括使用掃描電子顯微鏡、基於影像之量測工具及/或各種專用工具。如上文所論述,專用度量衡工具之快速且非侵入性形式為輻射光束經引導至基板之表面上之目標上且量測經散射(經繞射/經反射)光束之性質的度量衡工具。藉由評估由基板散射之輻射之一或多個性質,可判定基板之一或多個性質。此可稱為基於繞射之度量衡。此基於繞射之度量衡之一個此類應用在目標內的特徵不對稱性之量測中。此可用作(例如)疊對之量測,但其他應用亦為已知的。舉例而言,可藉由比較繞射光譜之相對部分(例如,比較週期性光柵之繞射光譜中之-1階與+1階)量測不對稱性。此可如以上所描述且如例如以全文引用方式併入本文中之美國專利申請公開案US2006-066855中所描述來完成。基於繞射之度量衡之另一應用在目標內之特徵寬度(CD)之量測中。此類技術可使用下文所描述之設備及方法。
因此,在器件製造製程(例如,圖案化製程或微影製程)中,基板或其他物件可在製程期間或之後經受各種類型之量測。該量測可判定特定基板是否有缺陷、可建立對製程及用於製程中之設備的調整(例如將基板上之兩個層對準或將圖案化器件對準至基板)、可量測製程及設備之效能或可用於其他目的。量測之實例包括光學成像(例如光學顯微鏡)、非成像光學量測(例如,基於繞射之量測,諸如ASML YieldStar度量衡工具、ASML SMASH度量衡系統)、機械量測(例如,使用觸控筆之剖面探測、原子力顯微法(AFM)),及/或非光學成像(例如掃描電子顯微法(SEM))。如以全文引用方式併入本文中之美國專利第6,961,116號中所描述之智慧型對準感測器混合式(SMASH)系統採用自參考干涉計,該自參考干涉計產生對準標記之兩個重疊且相對旋轉影像、偵測在使影像之傅立葉變換進行干涉之光瞳平面中之強度,且自兩個影像之繞射階之間的相位差萃取位置資訊,其表現為經干涉階中之強度變化。
可將度量衡結果直接或間接地提供至監督控制系統SCS。若偵測到誤差,則可對後續基板之曝光(尤其在可足夠迅速且快速地完成檢測使得該批次之一或多個其他基板仍待曝光的情況下)及/或經曝光之基板之後續曝光進行調整。此外,已經曝光之基板可剝離及重工以改良良率,或丟棄,藉此避免對已知有瑕疵之基板進行進一步處理。在基板之僅一些目標部分有瑕疵之情況下,可僅對良好的彼等目標部分進行進一步曝光。
在度量衡系統MET內,度量衡設備用以判定基板之一或多個性質,且尤其判定不同基板之一或多個性質如何變化或同一基板之不同層在不同層間如何變化。如上文所提及,度量衡設備可整合至該微影設備LA或微影單元LC中,或可為獨立器件。
為了實現度量衡,可在基板上提供一或多個目標。在實施例中,目標經專門設計且可包含週期性結構。在實施例中,目標為器件圖案之一部分,例如為器件圖案之週期性結構。在實施例中,器件圖案為記憶體器件之週期性結構(例如,雙極電晶體(BPT)、位元線接點(BLC)等結構)。
在實施例中,基板上之目標可包含一或多個1-D週期性結構(例如,光柵),其經印刷使得在顯影之後,週期性結構特徵由固體抗蝕劑線形成。在實施例中,目標可包含一或多個2-D週期性結構(例如,光柵),其經印刷使得在顯影之後,該一或多個週期性結構由抗蝕劑中之固體抗蝕劑柱或通孔形成。條、柱或通孔可替代地經蝕刻至基板中(例如至基板上之一或多個層中)。
製作製程(例如圖2)包括呈現不同效能(例如就印刷於基板上之圖案而言)之多於一個掃描器(亦即微影設備)。為在不同掃描器之間或相對於參考效能提供一致效能(例如一致輪廓或CD),可根據本發明之方法來進行波前最佳化。
在實施例中,可使用例如目標函數來執行最佳化,諸如
Figure 02_image001
其中
Figure 02_image003
N 個設計變數或其值;
Figure 02_image005
可為
Figure 02_image003
之設計變數之值的集合之第p評估點處的特性之實際值與預期值之間的差的函數。w p 為指派至第p評估點之權重常數。可向比其他評估點或圖案更關鍵之評估點或圖案指派更高w p 值。亦可向具有更大出現次數之圖案及/或評估點指派更高w p 值。評估點之實例可為基板上之任何實體點或圖案,或圖案化器件圖案上之任何點,或抗蝕劑影像,或空中影像。
目標函數可表示諸如微影投影設備或基板之圖案化製程之任何合適的特性,例如焦點、CD、影像移位、影像失真、影像旋轉等。舉例而言,目標函數可為以下微影度量中之一或多者的函數:邊緣置放誤差、臨界尺寸、抗蝕劑輪廓距離、最差缺陷大小、圖案移位、隨機效應、圖案化器件之三維效應、抗蝕劑之三維效應、最佳焦點移位、光瞳填充因數、曝光時間及/或產出量。由於抗蝕劑影像常常規定基板上之圖案,故目標函數常常包括表示抗蝕劑影像之一些特性之函數。舉例而言,此評估點之
Figure 02_image005
可僅為抗蝕劑影像中之點與彼點之預期位置之間的距離(即邊緣置放誤差
Figure 02_image009
)。設計變數可為任何可調整參數,諸如波前之可調整參數。
微影設備可包括可用以調整波前之形狀、輻射光束之強度分佈及/或相移的一或多個組件,統稱為「波前操控器」。可沿微影投影設備之光學路徑在任何位置處調整波前,諸如在圖案化器件之前、接近光瞳平面、接近影像平面或接近聚焦平面。投影光學器件可用以校正或補償由例如照明、圖案化器件、微影投影設備中之溫度變化及/或微影投影設備之組件之熱膨脹引起之波前之某些失真。調整波前可改變評估點及目標函數之值。可自模型模擬此等變化或實際上量測此類變化。
應注意,
Figure 02_image005
之正態加權均方根(RMS)定義為
Figure 02_image011
,因此,例如,最小化
Figure 02_image005
之加權RMS等效於最小化方程式1中所定義之目標函數
Figure 02_image014
Figure 02_image016
。因此,出於本文中之記法簡單性,可互換地利用
Figure 02_image005
之加權RMS及方程式1。
最佳化製程為在約束條件
Figure 02_image019
下尋找例如最小化目標函數之設計變數的值集合,亦即尋找
Figure 02_image021
最佳化未必產生設計變數(例如波前參數)之單一值集合。另外,可存在由諸如光瞳填充因數、抗蝕劑化學物質、產出量等因數所引起之物理約束。最佳化可提供用於設計變數及相關聯效能特性(例如產出量)之多個值集合,且允許微影設備之使用者選取一或多個集合。
在實施例中,可應用諸如高斯-牛頓(Gauss-Newton)演算法、雷文柏格-馬括特(Levenberg-Marquardt)演算法、梯度下降演算法、模擬退火、基因演算法等之演算法來評估且求解目標函數。
判定(例如設計佈局之)圖案之像差靈敏度的現有方法基於例如針對CD之澤爾尼克靈敏度分析或圖案之圖案置放誤差(PPE)。此基於CD或PPE之分析包括在評估點(例如在跨圖案之切線上,參見圖12)處判定CD及/或PPE。此CD及/或PPE判定需要關於像差熱點之先驗知識。舉例而言,基於微影可製造性檢查(LMC)之熱點判定包括分類、排序及排名所有熱點。隨後,由像差引起之熱點必須經識別。
在實例現有方法中,熱點偵測係基於例如0.05 nm誤差預算內之追蹤影像輪廓。舉例而言,獲得基板上之圖案之經模擬影像或經量測影像(例如SEM影像)。自該影像,使用例如諸如邊緣偵測或其他邊緣追蹤演算法之圖像處理演算法追蹤圖案輪廓。隨後,使用經追蹤輪廓運算相對於所要輪廓之差。此外,進行該差是否超出誤差預算(例如0.05 nm)之檢查。
此外,判定熱點需要獲得圖案之準確輪廓。因此,圖案之輪廓追蹤(或圖案之模擬)之運算應儘可能準確。因此,現有模型可需要48個透射交叉係數(TCC)核心,其係運算昂貴的。舉例而言,空中影像可使用具有用於表示影像強度之48個透射交叉係數(TCC)之霍普金(Hopkin)的公式判定。TCC為照明光瞳乘以投影光瞳(例如透鏡光瞳)之自相關。
因此,現有方法需要大量預處理以識別熱點且隨後判定此類熱點之像差靈敏度。
除運算限制性外,現有方法具有若干其他限制性。舉例而言,基於LMC之熱點係根據澤爾尼克項偵測且並不考慮高估熱點之經組合澤爾尼克項之構造性/破壞性效應。舉例而言,當澤爾尼克相互作用時,一些相互作用放大圖案上之像差效應而一些相互作用抵消像差效應。在現有方法中此類相互作用可能不考慮。此外,經由像差空中影像與無像差空中影像之間的有限差之當前運算可需要48個或更高階TCC核心,其對於全晶片應用係運算密集型的。
本發明之方法可使用例如澤爾尼克交叉係數(ZCC)核心來識別像差引起之熱點偵測。ZCC核心之數目與用於晶圓輪廓追蹤及CD計算之TCC核心之數目相比顯著更少(例如4個ZCC核心)。因此,本方法相較於現有方法大大減少運算負擔。此外,本方法並不需要輪廓追蹤、CD及/或PPE判定。因此,本方法相較於現有方法在運算上更快及/或在運算上更少資源密集。
圖3為基於與圖案化設備相關聯之像差靈敏度而判定圖案窗限制圖案(PWLP)之方法300的流程圖。圖案化器件上或由圖案化器件提供之各種圖案可具有不同製程窗。亦即,將在規格內產生圖案之處理變數的空間。與潛在系統性缺陷相關之圖案規格之實例包括對頸縮、線拉回、線薄化、CD、邊緣置放、重疊、抗蝕劑頂部損失、抗蝕劑底切及/或橋接之檢查。此為缺陷的非詳盡清單,且可定義額外缺陷類型及對應缺陷偵測器。可藉由合併(例如,重疊)每一個別圖案之製程窗來獲得圖案化器件或其區域上之所有圖案之製程窗。所有圖案之製程窗之邊界含有個別圖案中之一些之製程窗之邊界。換言之,此等個別圖案限制所有圖案之製程窗。此等圖案可稱為「熱點」或「製程窗限制圖案(PWLP)」,「熱點」與「製程窗限制圖案(PWLP)」在本文中可互換地使用。當控制圖案化製程之一部分時,聚焦於熱點係可能且經濟的。當熱點無缺陷時,最有可能的係所有圖案均無缺陷。
此類熱點可歸因於製程參數(例如劑量、焦點等)、設備之特性(例如微影設備之透鏡光瞳之像差)或與熱點相關之其他變數中之一或多者引起。根據本發明,描述用於判定像差引起之熱點的方法。
本方法300具有若干優勢。如先前所提及,本方法與用於追蹤影像輪廓及基於輪廓之熱點偵測之彼等核心相比,需要顯著更少數目的核心以運算像差靈敏度映圖。在實施例中,藉由電場(例如遮罩影像)與ZCC核心之間的廻旋計算澤爾尼克影像。運算可在粗糙柵格大小(例如對於>4nm的EUV模型像素大小)上進行而無密集運算負擔。基於影像之快速像差靈敏度計算方法能夠進行全晶片運算。
此外,方法300適用於波前之任何多項展開式,包括澤爾尼克多項式、貝塞爾(Bessel)函數及勒讓德(Legendre)多項式等。方法300不受特定製程模型限制,且適用於用以模型化圖案化製程之任何(例如)光學模型及抗蝕劑模型。方法300適用於任何NA及波長。方法300適用於包括全晶片設計之任何晶片設計(記憶體、邏輯及微處理器)。方法300之步驟或過程詳細描述如下。
過程P301包括:獲得(i)與圖案化設備之像差波前相關聯之第一核心集合301及第二核心集合302,及(ii)待經由圖案化設備印刷於基板上之設計佈局303。
在實施例中,像差波前由任何正常且完整之函數集表示,諸如澤爾尼克、貝塞爾函數或正交之使用者定義函數。作為非限制性實例,像差波前由澤爾尼克多項式集合或位元映像影像表示。本方法提出以下實例公式從而獲得圖案之像差靈敏度。舉例而言,像差波前W(ρ) 可藉由澤爾尼克多項式展開:
Figure 02_image023
在實施例中,可擾動像差波前以判定像差靈敏度。舉例而言,對於W( ρ ) 之波前擾動,泰勒(Taylor)展開式可如以下進行:
Figure 02_image025
在上述公式中,W為像差波前,k0 為波向量(nm-1 ),ρ為正規化波向量(無單位),Zm 表示澤爾尼克多項式,cm 表示表徵由相關聯澤爾尼克多項式Zm 解釋之像差量(nm)的澤爾尼克係數。上述實例泰勒級數展開式為多達2階項。然而,本發明不限於此展開式且亦可包括其他更高階項。
在實施例中,藉由與包含像差波前之線性像差項之一階空中影像相關聯之第一向量之本徵分解獲得第一核心集合301。在實施例中,藉由源函數、光瞳函數及一階像差之廻旋運算第一空中影像,該一階像差表徵線性像差項之影響。在實施例中,源函數為表徵圖案化設備之照明源的數學表示,且光瞳函數為表徵圖案化設備之透鏡光瞳的另一數學表示。照明源及光瞳之此類數學表示為已知的且並不限制本發明之範疇。
在實施例中,可使用以下判定一階空中影像:
Figure 02_image027
在上述方程式中,I1 為澤爾尼克m (nm-1) 之一階像差靈敏度,x 表示空中影像之任何位置(例如圖案上之評估點),S為照明源之數學表示,H為每一源點ρ0 處之空中影像,M(ρ)為遮罩繞射圖案且P為光瞳函數。在實施例中,源函數表示為供圖案化設備使用之照明源之像素化影像。上述公式中之第一向量
Figure 02_image029
可運算如下:
Figure 02_image031
在判定特定澤爾尼克(例如圖4A及4B中所說明之Z7)之
Figure 02_image029
之後,進行
Figure 02_image034
之本徵分解以獲得第一澤爾尼克核心(亦稱為第一澤爾尼克交叉係數(ZCC)核心)。在實施例中,第一ZCC核心可視為用於特定澤爾尼克項m 之一階像差靈敏度濾波器。
圖4A說明影像格式之實例澤爾尼克多項式Z7且圖4B說明針對澤爾尼克Z7所獲得之實例一階核心(第一核心集合之實例)。應用方程式
Figure 02_image036
方程式,其中m = 7且給定源函數(例如源影像)及給定光瞳函數(例如透鏡光瞳影像),可運算第一向量
Figure 02_image038
。另外,可對
Figure 02_image036
進行本徵分解以產生一階核心之元素。在圖4B中,第一核心之前三個元素為ZCC1、ZCC2及ZCC3。在本實例中,ZCC1、ZCC2及ZCC3表示為影像。然而,在實施例中,核心可以向量或矩陣格式表示以用於運算目的。
進一步使用一階核心,可產生用於任何遮罩(例如M)之一階空中影像500A (例如在圖5A中)。
Figure 02_image041
圖5A說明使用上述方程式
Figure 02_image043
獲得之實例一階空中影像500A,其中遮罩或設計佈局(M)包含豎直線。
在實施例中,藉由與包含像差波前之二階像差項之第二空中影像相關聯之二階向量之本徵分解獲得第二核心集合302。在實施例中,藉由源函數、光瞳函數及二階像差之廻旋運算二階空中影像,該二階像差表徵個別像差之間的相互作用之效應。源函數為表徵圖案化設備之照明源的數學表示,且光瞳函數為表徵圖案化設備之透鏡光瞳的另一數學表示。
在實施例中,二階空中影像可使用以下來判定:
Figure 02_image045
在上述方程式中,
Figure 02_image047
為澤爾尼克m,n (nm-2 )之二階像差靈敏度,S為照明源之數學表示,H為每一源點ρ0 處之空中影像,M(ρ)為遮罩繞射圖案且P為光瞳函數。在實施例中,源函數表示為供圖案化設備使用之照明源之像素化影像。上述公式中之第二向量
Figure 02_image049
可運算如下:
Figure 02_image051
在判定特定澤爾尼克相互作用(例如Z5及Z7)的
Figure 02_image053
之後,進行
Figure 02_image055
之本徵分解以獲得第二澤爾尼克核心(亦稱為第二澤爾尼克交叉係數(ZCC)核心)。在實施例中,第一ZCC核心可視為用於特定澤爾尼克項m,n 之二階像差靈敏度濾波器。
在實施例中,第一核心集合301及第二核心集合302取決於與圖案化設備之照明源、圖案化設備之透鏡光瞳相關聯之參數,及描述與圖案化設備相關聯的像差波前的澤爾尼克項,但獨立於設計佈局303之形狀。
在實施例中,設計佈局303為以下各者中之至少一者:預OPC遮罩佈局(例如在應用光學近接校正(OPC)之前的設計佈局);後OPC遮罩佈局(例如在應用光學近接校正(OPC)之後的設計佈局);或自後OPC遮罩佈局產生之遮罩影像,其中遮罩影像表示藉由用照明源照明後OPC遮罩佈局而獲得之遮罩繞射圖案。通常,設計佈局303將包括一或多個圖案,其中圖案可進一步包括複數個特徵(例如線、接觸孔等)。
在本方法中,任何形狀之圖案可使用於設計佈局中。舉例而言,在實施例中,一或多個圖案中之圖案包含複數個特徵且圖案之一部分為複數個特徵中之特徵。在實施例中,一或多個圖案包含直線遮罩圖案;線及間隔;接觸孔;及/或曲線遮罩圖案。
過程P303包括:經由製程模擬(例如在圖13中)且使用設計佈局303、第一核心集合301及第二核心集合302判定與像差波前相關聯之像差靈敏度映圖310。在實施例中,像差靈敏度映圖310指示設計佈局303之一或多個部分對個別像差(例如特定澤爾尼克)及不同像差之間(例如諸如Z5及Z7之兩個澤爾尼克之間)的相互作用之靈敏程度。
在實施例中,像差靈敏度映圖310為澤爾尼克多項式集合及與其相關聯之澤爾尼克係數集合之函數,每一澤爾尼克係數指示由相關聯澤爾尼克多項式解釋之像差量。在實施例中,像差靈敏度映圖310為像素化影像,其中像素值指示該像差靈敏度。
在實施例中,判定像差靈敏度映圖310包括:藉由將第一核心集合301應用於設計佈局303來判定一階像差靈敏度映圖(例如在圖4B中展示);藉由將第二核心集合302應用於設計佈局303來判定二階像差靈敏度映圖(未展示);且將像差靈敏度映圖310判定為一階像差靈敏度映圖與二階像差靈敏度映圖之總和。此外,像差靈敏度映圖包括無像差空中影像。因此,像差靈敏度映圖可稱為差量影像,其中差量影像表徵無像差空中影像與像差空中影像之間的差。
圖4B說明第一核心集合301之實例,進一步基於核心301獲得一階空中影像(參見圖5A)。類似地,第二核心集合302可用以判定二階空中影像。在實施例中,可例如使用霍普金斯公式獲得圖5B中展示之無像差空中影像500B (例如理想空中影像)。隨後,可將像差靈敏度映圖判定為無像差空中影像、一階影像及二階影像之總和。在實施例中,像差靈敏度映圖310使用以下公式來判定:
Figure 02_image057
在上述方程式中,預先闡述項。舉例而言,Zm 係指澤爾尼克多項式,cm 為澤爾尼克係數,
Figure 02_image059
為無像差空中影像,
Figure 02_image061
為一階空中影像,
Figure 02_image063
為二階空中影像,且
Figure 02_image065
為根據本發明之總空中影像或像差靈敏度映圖。在實施例中,像差靈敏度映圖
Figure 02_image067
用作映圖310以識別熱點。另外,可進行波前最佳化以判定波前參數(例如光瞳之鏡面之傾斜、定向等),使得降低熱點之像差靈敏度。
在實施例中,第一核心集合301可視為用於澤爾尼克多項式集合中之給定澤爾尼克的一階像差靈敏度濾波器。在實施例中,第二核心集合302可視為用於澤爾尼克多項式集合中之給定澤爾尼克的二階像差靈敏度濾波器。換言之,可使用第一核心集合301及第二核心集合302分別濾除像差靈敏度映圖之一階及二階分量。
過程P305包括基於該像差靈敏度映圖310判定與相較於設計佈局303之其他部分具有相對高靈敏度之設計佈局303相關聯之PWLP 315。在實施例中,判定PWLP 315包括判定像差靈敏度映圖310之像素之強度是否超出熱點臨限值。熱點臨限值係指相較於與像差靈敏度映圖相關聯之正常強度值範圍(例如在影像之平均強度值之3標準差內)可相對高或相對低的強度值。
隨後,回應於強度違反臨限值,識別設計佈局303內與違反臨限值之像素相關聯之一或多個圖案。基於經識別圖案,方法將經識別圖案或經識別圖案周圍之位置分類為PWLP 315。
在實施例中,在不追蹤經印刷圖案或經模擬圖案之輪廓,或運算與經印刷基板相關聯之臨界尺寸或邊緣置放誤差或缺陷資料的情況下,PWLP 315基於像差靈敏度映圖310而判定。因此,與現有方法相關聯之若干運算步驟並不由本發明方法進行。因此熱點判定之運算效率大大改良。在現有技術中,正確運算及識別熱點所需之輪廓準確性需要大量核心,例如多於48個TCC核心。另一方面,像差靈敏度映圖可在可充當效能指示符之顯著較少數目個核心(例如4個ZCC核心)中達成此熱點偵測。
此外,本方法包括改良像差校正之二階像差靈敏度分析。換言之,若組合(例如抵消)某些澤爾尼克效應,則可基於其他澤爾尼克應用適當校正。因此,可對像差波前進行更準確校正。當用以對熱點圖案進行成像時,此經改良像差波前產生滿足設計規格之印刷圖案,因而減小缺陷出現之機遇。
在實施例中,方法進一步包括用於基於像差靈敏度映圖判定源參數、遮罩參數及/或波前參數317之過程P307。舉例而言,過程P307包括:基於無像差空中影像及像差空中影像判定澤爾尼克影像,其中所述像差空中影像基於一階、二階及更高階(階>2)靈敏度映圖而判定;經由澤爾尼克影像之主分量分析,判定澤爾尼克影像之一或多個主分量,主分量為澤爾尼克多項式與相關聯澤爾尼克係數之線性組合,其中澤爾尼克係數的值指示由相關聯澤爾尼克多項式解釋之澤爾尼克影像中之變化量;基於主分量中之至少一者,選擇與對特定澤爾尼克多項式之相對高靈敏度值相關聯之圖案;及經由使用選定圖案執行源遮罩最佳化或波前最佳化製程,判定源參數、遮罩參數及/或波前參數,使得改良效能度量。
在實施例中,源遮罩最佳化修改用於設計佈局之選定圖案(例如熱點315)之源參數(例如照明強度、焦點、形狀等)、遮罩參數(例如OPC)或源參數及遮罩參數兩者。此修改產生圖案化設備之像差透鏡之經改良成像效能(例如較少缺陷)。在實施例中,所使用之效能度量可為CD或與選定圖案相關聯之邊緣置放誤差之函數。
在實施例中,可經由與圖案化設備之投影系統相關聯之致動器修改波前參數。舉例而言,波前參數與澤爾尼克多項式之係數相關。在實施例中,波前參數可為用於圖案化設備之透鏡之鏡面的傾斜、偏移及/或定向。當調整此類波前參數時,產生新波前。在實施例中,判定波前參數以最小化選定圖案之像差靈敏度。一旦判定用於調諧圖案化設備之最佳化波前,方法即可進一步涉及經由透鏡模型將波前參數轉換為致動器移動,及基於致動器移動來致動調諧設備之光學系統。
圖6A至圖6H、7及8說明基於一階核心獲得一階澤爾尼克影像之主分量之實例。圖6A至6H說明與實例一階ZCC核心相關聯之實例一階影像,該等實例一階ZCC核心與澤爾尼克Z5至Z36集合中的澤爾尼克Z5至Z10及Z35至Z36相關聯。在本實例中,可使用Z5之一階核心獲得Z5之一階影像605。類似地,可分別針對澤爾尼克Z6至Z36中之每一者獲得一階空中影像606、607、608、609、610……635及636。在本實例中,空中影像(亦稱為一階澤爾尼克影像) 605至636用於含有兩條豎直線之設計佈局之一部分。
圖7說明使用澤爾尼克影像中之每一者之像素強度而產生之實例影像矩陣700。舉例而言,如所說明,影像
Figure 02_image069
具有像素,隨後針對每一澤爾尼克所獲得之一階澤爾尼克影像可表示為
Figure 02_image071
矩陣之行。進一步使用澤爾尼克影像矩陣,可進行主分量分析。舉例而言,可如下計算第一主分量:
Figure 02_image073
使得
Figure 02_image075
在上述方程式中,PC1 為第一主分量,
Figure 02_image077
為與特定澤爾尼克
Figure 02_image079
相關聯之PCA係數。PCA係數指示由特定澤爾尼克多項式解釋澤爾尼克影像矩陣中之多少變化。
圖8為實例PCA分量PC1 之圖形表示,該PC1 指示澤爾尼克Z7及Z23解釋澤爾尼克影像(例如圖6A至6H中之605至636)中之大部分變化。此PCA為澤爾尼克多項式及相關聯係數之線性組合。因此,在像差靈敏度分析中考慮澤爾尼克之組合效應。另外,此PCA可用以判定熱點圖案,如相對於實例圖9至11所論述。
圖9至11說明基於用於波前最佳化(例如相位控制最佳化)之ZCC核心自設計佈局獲得選定圖案之實例。舉例而言,如方法300中所論述,ZCC核心可應用於設計佈局900 (圖9中)以獲得像差靈敏度映圖950 (參見圖10A)。
在圖10A中,像差靈敏度映圖950展示各種部分(或位置),其中像素之強度相較於其他位置實質上更高。舉例而言,在映圖950內標記6個位置1、2、3、4、5及6。在實施例中,可藉由像素強度之臨限值選擇此類位置。舉例而言,影像950中之像素強度值可自-10至10變化。臨限值可選擇為8及-8。因此,若像素強度值違反像素之臨限值,則將像素分類為待針對熱點分析之位置。另外,基於經識別之6個位置,可選擇設計佈局900中之對應位置。在實施例中,可圍繞選定之6個位置選擇設計佈局900之剪輯或一部分。
圖10B為展示設計佈局900之4個選定剪輯(例如cDL1、cDL2、cDL3及cDL4)及像差映圖950之對應像差映圖剪輯(例如cASM1、cASM2、cASM3及cASM4)之表。在像差剪輯cASM1中,位置P1、P2、P3及P4具有實質上高靈敏度值。位置P3及P4可具有最高靈敏度值,此等位置可用以識別設計佈局中之圖案。舉例而言,基於位置P3及P4而識別剪輯cDL1之設計圖案CL5及CL9。類似地,基於像差映圖剪輯cASM2、cASM3及cASM4,可將位置P5至P9識別為相較於其他位置具有實質上高靈敏度。隨後,基於P5至P9之位置,可分別自設計佈局剪輯cDL2、cDL3及cDL4識別對應設計圖案。在實施例中,對應於P1至P9或其子集之經識別設計圖案可分類為熱點。
另外,對於經識別熱點(例如圖10B中的剪輯cDL1及cDL4中之CL5、CL7及CL9),可進行波前最佳化,使得減小或最小化經識別設計圖案之像差靈敏度。在實施例中,可針對經識別設計圖案進行源及/或遮罩最佳化,使得減小或最小化像差靈敏度。
舉例而言,圖11說明在應用波前最佳化之後對應於剪輯cDL1及cDL4中之設計圖案之實例像差靈敏度剪輯cASM1'及cASM4'。在實施例中,可經由模擬圖案化製程(例如在圖13中)進行波前最佳化以判定剪輯cDL1及cDL2之經模擬基板圖案。在模擬期間,可判定與波前相關聯之一或多個波前參數(例如澤爾尼克係數),使得在印刷於基板上之後(例如在抗蝕劑之後或在蝕刻製程之後)例如cDL1及cDL4中之設計圖案未變得有缺陷。舉例而言,可針對設計圖案cDL1及cDL4使用經模擬基板圖案最小化效能度量CD/PPE或EPE。
此外,在實施例中,可對cDL1及cDL4之經模擬基板圖案進行LMC檢查及/或CD分析以判定圖案是否有缺陷(例如不滿足設計規格)。
在本實例中,澤爾尼克影像用以選擇6個熱點用於波前最佳化。在波前最佳化之後,觀測到LMC缺陷之顯著減少。另外,識別到2個熱點及1個弱點用於差量CD分析(例如基於像差靈敏度值)。對於兩個熱點,應用相位控制最佳化製程(波前最佳化製程之實例)導致負狹縫位置之顯著差量CD改良。此外,亦觀測到Z8分量在負狹縫位置中之偏移移動。對於弱點,在與弱澤爾尼克影像對準之波前最佳化之前及之後存在極小CD不對稱性。因此,實驗結果表明顯著改進圖案化製程,例如減少LMC缺陷。因此,使用本發明之方法判定之像差靈敏度映圖之使用改進技術之現有狀態。
因此,在實施例中,基於像差靈敏度映圖且在不進行CD/PPE或EPE計算的情況下,可識別熱點圖案。因此,在一實例中,本發明改良判定熱點之運算時間。更快運算允許判定全晶片之熱點,該全晶片包括百萬或甚至數十億個圖案。現有方法涉及CD/PPE及EPE (例如圖12)計算,其需要妨礙此類全晶片模擬以判定熱點的大量運算工作量及時間。獲得熱點圖案之另一實例方法論述於圖14中。
圖12說明判定進一步用以判定熱點之EPE的現有實例方式。在圖12中,自經模擬圖案萃取輪廓,其中針對7個不同製程窗條件進行模擬。另外,對於每一輪廓,在輪廓上之不同位置(標記為點,亦稱為評估點)處將EPE運算為給定輪廓上之評估點與目標輪廓之間的差(或距離)。
在實施例中,方法300可用於各種應用中。舉例而言,方法300可進一步包括基於像差靈敏度映圖310判定圖案化製程之參數,使得減小PWLP 315之靈敏度。舉例而言,可調整劑量、焦點、透鏡調諧及其他製程參數之值。
在實施例中,方法300可進一步包括:基於像差靈敏度映圖310之靈敏度值或像差靈敏度映圖310之效能指示符,對設計佈局303之一或多個圖案進行排名,其中與相對高靈敏度值相關之一或多個圖案中之圖案相較於其他圖案排名更高;基於該排名選擇具有相對高排名之一或多個圖案;及使用像差靈敏度映圖310及遮罩最佳化製程,修改設計佈局303之選定圖案,使得降低選定圖案之靈敏度。在實施例中,效能指示符可為如由例如圖11中所展示之兩條圖案之澤爾尼克影像之正值及負值指示之CD/PPE不對稱性。
在實施例中,一種電腦程式產品(例如圖15)包含其上記錄有指令之非暫時性電腦可讀媒體,該等指令在由電腦執行時實施本文所述之方法之過程中之任一者。
根據本發明,所揭示元件之組合及子組合構成個別實施例。舉例而言,第一組合可為基於像差靈敏度判定製程窗限制圖案(PWLP)。另一實例組合可為判定像差靈敏度映圖自身。
圖13中說明用於模型化及/或模擬圖案化製程之部分(例如微影設備中之微影)的例示性流程圖。如將瞭解,模型可表示不同圖案化製程且不必包含以下所描述之所有模型。源模型1300表示圖案化器件之照明之光學特性(包括輻射強度分佈、頻寬及/或相位分佈)。源模型1300可表示照明之光學特性,包括但不限於數值孔徑設定、照明標準差(σ)設定以及任何特定照明形狀(例如離軸輻射形狀,諸如環形、四極、偶極等),其中σ (或標準差)為照明器之外部徑向範圍。
投影光學器件模型1310表示投影光學器件之光學特性(包括由投影光學器件引起之輻射強度分佈及/或相位分佈之改變)。投影光學器件模型1310可表示投影光學器件之光學特性,該等光學特性包括像差、失真、一或多個折射率、一或多個物理大小、一或多個物理尺寸等。
圖案化器件模型模組120捕捉設計特徵如何佈置於圖案化器件之圖案中,且可包括對圖案化器件之詳細物理性質之表示,如例如在美國專利第7,587,704號中所描述。模擬之目標為準確地預測例如邊緣置放及CD,接著可將其與器件設計進行比較。器件設計一般定義為預OPC圖案化器件佈局,且將以諸如GDSII或OASIS之正規化數位檔案格式提供。
設計佈局模型1320表示設計佈局(例如對應於積體電路、記憶體、電子器件等之特徵的器件設計佈局)之光學特性(包括由給定設計佈局引起之輻射強度分佈及/或相位分佈之改變),其為圖案化器件上或由圖案化器件形成之特徵的配置的表示。設計佈局模型1320可表示物理圖案化器件之一或多個物理性質,如(例如)在美國專利第7,587,704號中所描述,該美國專利以全文引用的方式併入本文中。由於可改變用於微影投影設備中之圖案化器件,因此合乎需要的係將圖案化器件之光學性質與微影投影設備的至少包括照明及投影光學器件之其餘部分之光學性質分離。
可根據源模型1300、投影光學器件模型1310及設計佈局模型1320模擬空中影像1330。空中影像(AI)為在基板水平處之輻射強度分佈。微影投影設備之光學性質(例如,照明、圖案化器件及投影光學器件之性質)規定空中影像。
基板上之抗蝕劑層藉由空中影像曝光,且將空中影像作為其中的潛在「抗蝕劑影像」(RI)轉印至抗蝕劑層。可將抗蝕劑影像(RI)定義為抗蝕劑在抗蝕劑層中之溶解度的空間分佈。可使用抗蝕劑模型1340自空中影像1330模擬抗蝕劑影像1350。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在美國專利申請公開案第US 2009-0157360號中找到此之實例,該公開案之揭示內容特此以全文引用之方式併入本文中。抗蝕劑模型通常描述在抗蝕劑曝光、後曝光烘烤(PEB)及顯影期間發生之化學製程之影響,以便預測例如形成於基板上之抗蝕劑特徵之輪廓,且因此其通常僅與抗蝕劑層之此類性質(例如在曝光、後曝光烘烤及顯影期間發生之化學製程之影響)相關。在實施例中,抗蝕劑層之光學性質(例如折射率、膜厚度、傳播及偏振效應)可作為投影光學器件模型化1310之部分經捕捉。
因此,一般而言,光學模型與抗蝕劑模型之間的連接為抗蝕劑層內之經模擬空中影像強度,其起因於輻射至基板上之投影、抗蝕劑界面處之折射及抗蝕劑膜堆疊中之多次反射。輻射強度分佈(空中影像強度)藉由入射能量之吸收而變為潛在「抗蝕劑影像」,其藉由擴散製程及各種負載效應來進一步修改。對於全晶片應用足夠快之高效模擬方法藉由2維空中(及抗蝕劑)影像近似抗蝕劑堆疊中之實際3維強度分佈。
在實施例中,可將抗蝕劑影像用作後圖案轉印製程模型模組150之輸入。後圖案轉印製程模型150限定一或多個後抗蝕劑顯影製程(例如蝕刻、顯影等)之效能。
圖案化製程之模擬可例如預測抗蝕劑及/或經蝕刻影像中之輪廓、CD、邊緣置放(例如邊緣置放誤差)等。因此,模擬之目標為準確地預測例如印刷圖案之邊緣置放,及/或空中影像強度斜率,及/或CD等。可比較此等值與預期設計以例如校正圖案化製程、識別預測何處出現缺陷等。預期設計一般定義為可以諸如GDSII或OASIS之正規化數位檔案格式或其他檔案格式提供之預OPC設計佈局。
因此,模型公式描述總體製程中之大多數(若非全部)已知物理及化學方法,且模型參數中之每一者理想地對應於相異物理或化學效應。模型公式因此設定關於模型可用以模擬總體製造製程之良好程度之上限。
常常利用基於光學器件之次解析度工具(亮場檢測)進行例如半導體晶圓之檢測。但,在一些情況下,待量測之某些特徵過小而不能有效地使用亮場檢測加以量測。舉例而言,半導體器件之特徵中之缺陷的亮場檢測可係具有挑戰性的。此外,隨著時間推移,使用圖案化製程產生之特徵(例如,使用微影產生之半導體特徵)變得更小,且在許多情況下,特徵之密度亦逐漸增加。因此,使用且需要更高解析度之檢測技術。實例檢測技術為電子束檢測。電子束檢測涉及將電子束聚焦於待檢測基板上之較小光點上。影像藉由以下操作形成:在所檢測基板之區域上提供光束與基板之間的相對移動(在下文中稱為掃描電子束)且利用電子偵測器收集次級散射電子及/或反向散射電子。接著處理影像資料以(例如)識別缺陷。
因此,在實施例中,檢測設備可為產生曝光或轉印於基板上之結構(例如諸如積體電路之器件之一些或全部結構)之影像的電子束檢測設備(例如與掃描電子顯微鏡(SEM)相同或相似)。
圖14展示根據實施例之判定微影製程中之缺陷之存在的方法之流程圖。在製程P411中,使用任何適合之方法自圖案(例如圖案化器件上之圖案)來識別熱點或其位置。舉例而言,可藉由使用經驗模型或運算模型來分析圖案上之圖案而識別熱點。在經驗模型中,不模擬圖案之影像(例如抗蝕劑影像、光學影像、蝕刻影像);替代地,經驗模型基於處理參數、圖案之參數與缺陷之間的相關性來預測缺陷或缺陷之機率。舉例而言,經驗模型可為分類模型或有缺陷傾向之圖案之資料庫。在運算模型中,計算或模擬影像之一部分或特性,且基於該部分或該特性識別缺陷。舉例而言,可藉由尋找太遠離其所要位置之線端來識別線拉回缺陷;可藉由尋找兩條線不理想地接合之位置來識別橋接缺陷;可藉由尋找單獨層上不理想地重疊或不理想地未重疊之兩個特徵來識別重疊缺陷。經驗模型相比於運算模型一般在運算上較不昂貴。有可能基於個別熱點之熱點位置及製程窗而判定熱點之製程窗及/或將熱點之製程窗編譯成映圖—亦即,判定作為位置之函數之製程窗。此製程窗映圖可表徵圖案之佈局特定靈敏度且處理裕度。在另一實例中,可諸如藉由FEM晶圓檢測或合適度量衡工具在實驗上判定熱點、其位置及/或其製程窗。缺陷可包括在顯影後檢測(ADI) (一般為光學檢測)中無法偵測之彼等缺陷,諸如,抗蝕劑頂部損失、抗蝕劑底切等。習知檢測僅在不可逆地處理(例如,蝕刻)基板之後揭露此等缺陷,此時無法重工晶圓。因此,在草擬此文件時無法使用當前光學技術來偵測此類抗蝕劑頂部損失缺陷。然而,可使用模擬來判定可能在何處發生抗蝕劑頂部損失且嚴重性將達何種程度。基於此資訊,可決定使用更準確檢測方法(且通常更耗時)來檢測特定可能缺陷以判定缺陷是否需要重工,或可決定在進行不可逆處理(例如,蝕刻)之前重工特定抗蝕劑層之成像(移除具有抗蝕劑頂部損失缺陷之抗蝕劑層且重新塗佈晶圓以重新進行特定層之成像)。
在製程P412中,判定處理(例如成像或蝕刻至基板上)熱點之處理參數。處理參數可為區域的—取決於熱點、晶粒或兩者之位置。處理參數可為全域的—獨立於熱點及晶粒之位置。用以判定處理參數之一種例示性方式為判定該微影設備之狀態。舉例而言,可自微影設備量測雷射頻寬、焦點、劑量、源參數、投影光學器件參數及此等參數之空間或時間變化。另一例示性方式為自對基板執行之度量衡或自處理設備之操作者獲得的資料推斷處理參數。舉例而言,度量衡可包括使用繞射工具(例如ASML YieldStar)、電子顯微鏡或其他合適的檢測工具來檢測基板。有可能獲得關於經處理基板上之任何位置之處理參數,包括經識別熱點。可將處理參數編譯成作為位置之函數之映圖—微影參數或製程條件。當然,其他處理參數可表示為位置之函數,亦即映圖。在實施例中,可在處理每一熱點之前且較佳地緊接在處理每一熱點之前判定處理參數。
在製程P413中,使用處理熱點之處理參數來判定熱點處之缺陷的存在、存在機率、特性或其組合。此判定可為簡單地比較處理參數及熱點之製程窗—若處理參數落在製程窗內,則不存在缺陷;若處理參數落在製程窗外部,則預期存在至少一個缺陷。亦可使用合適經驗模型(包括統計模型)來進行此判定。舉例而言,分類模型可用以提供缺陷之存在機率。用以進行此判定之另一方式為使用運算模型以依據處理參數來模擬熱點之影像或所預期圖案化輪廓,且量測影像或輪廓參數。在實施例中,可在處理圖案或基板之後立即(亦即,在處理圖案或下一基板之前)判定處理參數。缺陷之經判定存在及/或特性可充當用於處置:重工或接受之決策的基礎。在實施例中,處理參數可用以計算微影參數之移動平均值。移動平均值對於捕捉微影參數之長期漂移係有用的,而不受短期波動擾亂。
在實施例中,基於基板上之圖案之經模擬影像來偵測熱點。一旦完成對圖案化製程(例如包括諸如OPC及可製造性檢查的製程模型)之模擬,則可根據一或多個定義(例如某些規則、臨限值或度量)來運算在設計中作為製程條件之函數的潛在弱點,亦即熱點。熱點可基於以下各者來判定:絕對CD值、CD對在模擬中變化之參數中之一或多者的變化率(「CD靈敏度」)、空中影像強度之斜率或NILS (亦即「邊緣斜率」或「正規化影像對數斜率」,常常縮寫為「NILS.」,指示銳度之缺失或影像模糊),其中抗蝕劑特徵之邊緣為預期的(根據單一臨限值/偏置模型或較完整之抗蝕劑模型來運算)。替代地,可基於預定規則集合(諸如用於設計規則檢查系統中之彼等預定規則)判定熱點,該等預定規則包括但不限於線端拉回、圓角、與相鄰特徵之接近度、圖案頸縮或夾捏及相對於所要圖案之圖案變形的其他度量。對遮罩CD之較小改變的CD靈敏度為尤其重要之微影參數,稱為遮罩誤差因數(MEF)或遮罩誤差增強因數(MEEF)。對MEF對聚焦及曝光之運算提供與晶圓製程變化廻旋之遮罩製程變化將導致特定圖案元件之不可接受的圖案劣化之機率的臨界度量。亦可基於疊對誤差相對於底層或後續製程層之變化及CD變化,或藉由對多曝光製程中之曝光之間的疊對及/或CD之變化的靈敏度來識別熱點。
圖15為說明可輔助實施本文中所揭示之方法、流程或設備之電腦系統100的方塊圖。電腦系統100包括匯流排102或用於傳達資訊之其他通信機構,及與匯流排102耦接以用於處理資訊之處理器104 (或多個處理器104及105)。電腦系統100亦包括耦接至匯流排102以用於儲存資訊及待由處理器104執行之指令的主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存靜態資訊及處理器104之指令的唯讀記憶體(ROM) 108或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件110,且該儲存器件110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如,滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸(第一軸(例如,x)及第二軸(例如,y))上之兩個自由度,從而允許該器件指定平面中之位置。觸控面板(螢幕)顯示器亦可用作輸入器件。
根據一個實施例,本文中所描述之一或多種方法的部分可藉由電腦系統100回應於處理器104執行主記憶體106中所含有之一或多個指令的一或多個序列而進行。可將此類指令自另一電腦可讀媒體(諸如儲存器件110)讀取至主記憶體106中。主記憶體106中所含有之指令序列的執行使得處理器104進行本文中所描述之製程步驟。亦可採用呈多處理配置中之一或多個處理器以執行主記憶體106中所含有之指令序列。在替代性實施例中,可代替或結合軟體指令而使用硬連線電路。因此,本文中之描述不限於硬體電路系統與軟體之任何特定組合。
如本文所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此類媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如,儲存器件110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如在射頻(RF)及紅外(IR)資料通信期間所產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
各種形式之電腦可讀媒體可涉及將一或多個指令之一或多個序列攜載至處理器104以供執行。舉例而言,初始地可將指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線來發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外傳輸器將資料轉換為紅外信號。耦接至匯流排102之紅外偵測器可接收紅外信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體106檢索及執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存器件110上。
電腦系統100亦可包括耦接至匯流排102之通信介面118。通信介面118提供耦接至網路鏈路120之雙向資料通信,該網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供與對應類型之電話線的資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供至相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面118發送及接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。
網路鏈路120通常經由一或多個網路將資料通信提供至其他資料器件。舉例而言,網路鏈路120可經由區域網路122向主機電腦124或向由網際網路服務提供者(ISP) 126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常稱為「網際網路」128)而提供資料通信服務。區域網路122及網際網路128兩者皆使用攜載數位資料流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號為輸送資訊的載波之例示性形式,該等信號攜載去往及來自電腦系統100的數位資料。
電腦系統100可經由網路、網路鏈路120及通信介面118(自資料庫152)發送訊息且接收包括程式碼之資料。在網際網路實例中,伺服器130可經由網際網路128、ISP 126、區域網路122及通信介面118傳輸用於應用程式之所請求程式碼。舉例而言,一個此類經下載應用程式可提供本文中所描述之方法的全部或部分。所接收程式碼可在其經接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。
參考圖16,照明器IL自源收集器模組SO接收極紫外輻射光束。產生EUV輻射之方法包括但不一定限於將材料轉換成具有至少一種元素(例如,氙、鋰或錫)之電漿狀態,其中一或多個發射譜線在EUV範圍內。在一種此類方法(常常稱為雷射產生電漿(「LPP」))中,可藉由用雷射光束照射燃料(諸如,具有譜線發射元素之材料小滴、流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖16中未展示)之EUV輻射系統之部分,用於提供激發燃料之雷射光束。所得電漿發射輸出輻射(例如EUV輻射),該輸出輻射使用安置於源收集器模組中之輻射收集器來收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射器及源收集器模組可為單獨實體。
在此類情況下,雷射不視為形成微影設備之部分,且輻射光束係藉助於包含(例如)合適的引導鏡面及/或光束擴展器之光束遞送系統而自雷射器傳遞至源收集器模組。在其他情況下,舉例而言,當源為放電產生電漿EUV產生器(常常稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。一般而言,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱為σ外部及σ內部)。此外,照明器IL可包含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用以調節輻射光束,以在其橫截面中具有期望均一性及強度分佈。
輻射光束B入射於固持在支撐結構(例如圖案化器件台) MT上之圖案化器件(例如遮罩) MA上,且由圖案化器件圖案化。在自圖案化器件(例如遮罩) MA反射之後,輻射光束B穿過投影系統PS,該投影系統PS將光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器PS2 (例如干涉器件、線性編碼器或電容式感測器),可準確地移動基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。類似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確定位圖案化器件(例如遮罩) MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,遮罩) MA及基板W。
可在以下模式中之至少一者中使用所描繪設備1000: 1. 在步進模式中,支撐結構(例如,圖案化器件台) MT及基板台WT保持基本上靜止,同時將經賦予至輻射光束之整個圖案一次性投射至目標部分C上(亦即,單次靜態曝光)。接著,基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。 2. 在掃描模式中,同步地掃描支撐結構(例如,圖案化器件台) MT及基板台WT,同時將賦予至輻射光束之圖案投射至目標部分C上(亦即,單次動態曝光)。可藉由投影系統PS之(縮小)放大率及影像反轉特性來判定基板台WT相對於支撐結構(例如圖案化器件台) MT之速度及方向。 3. 在另一模式中,支撐結構(例如圖案化器件台) MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT,同時將賦予至輻射光束之圖案投射至目標部分C上。在此模式中,一般採用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之連續輻射脈衝之間視需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,如上文所提及之類型之可程式化鏡面陣列)之無遮罩微影。
圖17更詳細地展示設備1000,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置以使得可在源收集器模組SO之封閉結構220中維持真空環境。可由放電產生之電漿源形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜的EUV範圍內之輻射。舉例而言,藉由引起至少部分離子化電漿之放電而產生極熱電漿210。為了高效產生輻射,可需要例如10 Pa之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽之分壓。在實施例中,提供受激發錫(Sn)之電漿以產生EUV輻射。
由熱電漿210發射之輻射經由定位於源腔室211中之開口中或開口後方的視情況存在之氣體障壁或污染物阱230 (在一些情況下,亦稱為污染物障壁或箔片阱)自源腔室211傳遞至收集器腔室212中。污染物阱230可包括通道結構。污染物阱230亦可包括氣體障壁或氣體障壁與通道結構之組合。如此項技術中已知,本文中所進一步指示之污染物阱或污染物障壁230至少包括通道結構。
收集器腔室211可包括可為所謂之掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾波器240反射,以沿著由點虛線『O』指示之光軸聚焦於虛擬源點IF中。虛擬源點IF通常稱為中間焦點,且源收集器模組經配置以使得中間焦點IF位於封閉結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,該照明系統IL可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,琢面化場鏡面器件22及琢面化光瞳鏡面器件24經配置以在該圖案化器件MA處提供輻射光束21之所要角度分佈,以及在圖案化器件MA處提供輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處反射輻射光束21時,即形成經圖案化光束26,且經圖案化光束26藉由投影系統PS經由反射元件28、30成像至由基板台WT固持之基板W上。
比所展示元件更多之元件一般可存在於照明光學器件單元IL及投影系統PS中。取決於微影設備之類型,光柵光譜濾波器240可視情況存在。另外,可存在比諸圖中所展示之鏡面多的鏡面,例如在投影系統PS中可存在比圖17中所展示更多之1至6個額外反射元件。
如圖17所說明之收集器光學器件CO經描繪為具有掠入射反射器253、254及255之巢套收集器,僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255圍繞光軸O軸向對稱安置,且此類型之收集器光學器件CO可與常常稱為DPP源之放電產生之電漿源組合使用。
替代地,源收集器模組SO可為如圖18中所展示之LPP輻射系統之部分。雷射器LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十eV的電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射自電漿發射,由近正入射收集器光學器件CO收集,且聚焦至封閉結構220中的開口221上。
可使用以下條項進一步描述實施例: 1. 一種基於與一圖案化設備相關聯之像差靈敏度判定製程窗限制圖案(PWLP)之方法,該方法包含: 獲得(i)與該圖案化設備之一像差波前相關聯之一第一核心集合及一第二核心集合,及(ii)待經由該圖案化設備印刷於一基板上之一設計佈局; 經由使用該設計佈局之一製程模擬、該第一核心集合及該第二核心集合,判定與該像差波前相關聯之一像差靈敏度映圖,該像差靈敏度映圖指示該設計佈局之一或多個部分對一特定像差及不同像差之間的一相互作用之靈敏程度;及 基於該像差靈敏度映圖,判定與相較於該設計佈局之其他部分具有相對高靈敏度之該設計佈局相關聯之該PWLP。 2. 如條項1之方法,其中該像差波前由澤爾尼克多項式集合、貝塞爾函數、正規且完備函數集或一位元映像影像表示。 3. 如條項1至2中任一項之方法,其中該像差靈敏度映圖為像素化影像,其中一像素值指示該像差靈敏度。 4. 如條項1至3中任一項之方法,其中藉由與包含該像差波前之線性像差項之一一階空中影像相關聯之一第一向量之本徵分解獲得該第一核心集合,其中: 藉由一源函數、一光瞳函數及一階像差之一廻旋運算該第一空中影像,該一階像差表徵線性像差項之效應, 該源函數為表徵該圖案化設備之一照明源之一數學表示,且 該光瞳函數為表徵該圖案化設備之一透鏡光瞳之另一數學表示。 5. 如條項1至3中任一項之方法,其中藉由與包含該像差波前之二階像差項之一第二空中影像相關聯之一二階向量之本徵分解獲得該第二核心集合,其中: 藉由該源函數、該光瞳函數及二階像差之一廻旋運算該二階空中影像,該二階像差表徵不同像差之間的相互作用之效應, 該源函數為表徵該圖案化設備之該照明源之該數學表示,且 該光瞳函數為表徵該圖案化設備之該透鏡光瞳之該另一數學表示。 6. 如條項2至5中任一項之方法,其中該像差靈敏度映圖為該澤爾尼克多項式集合及與其相關聯之一澤爾尼克係數集合之一函數,每一澤爾尼克係數指示由該相關聯澤爾尼克多項式解釋的一像差量。 7. 如條項1至6中任一項之方法,其中該像差靈敏度映圖之該判定包含: 藉由將該第一核心集合應用於該設計佈局來判定一一階像差靈敏度映圖; 藉由將該第二核心集合應用於該設計佈局來判定一二階像差靈敏度映圖;及 將該等像差靈敏度映圖判定為該一階像差靈敏度映圖與該二階像差靈敏度映圖之一總和。 8. 如條項中1至7任一項之方法,其中該第一核心集合及該第二核心集合取決於與該圖案化設備之該照明源相關聯之參數、該圖案化設備之該透鏡光瞳,及描述與該圖案化設備相關聯之該像差波前的澤爾尼克項,但獨立於該設計佈局之一形狀。 9. 如條項1至8中任一項之方法,其中該PWLP之該判定包含: 判定該像差靈敏度映圖之一像素之一強度是否超出一熱點臨限值; 回應於該強度違反該臨限值,識別該設計佈局內的與違反該臨限值之該等像素相關聯之一或多個圖案;及 將其周圍之經識別圖案或位置分類為該PWLP。 10.    如條項9之方法,其中該一或多個圖案中之一圖案包含複數個特徵,且該圖案之一部分為該複數個特徵中之一特徵。 11.    如條項9至10中任一項之方法,其中該一或多個圖案包含: 直線遮罩圖案; 線及間隔; 接觸孔;及/或 曲線遮罩圖案。 12.    如條項1至11中任一項之方法,其中在不追蹤一經印刷圖案或一經模擬圖案之一輪廓或運算與一經印刷基板相關聯之一臨界尺寸或邊緣置放誤差或缺陷資料的情況下,基於該像差靈敏度映圖判定該PWLP。 13.    如條項1至12中任一項之方法,其進一步包含: 基於一無像差空中影像及像差空中影像判定一澤爾尼克影像,其中該像差空中影像係基於該一階、該二階或更高階(階>2)靈敏度映圖判定; 經由該澤爾尼克影像之主分量分析,判定該澤爾尼克影像之一或多個主分量,一主分量為澤爾尼克多項式之一線性組合及相關聯澤爾尼克係數,其中一澤爾尼克係數之一值指示由該相關聯澤爾尼克多項式解釋之澤爾尼克影像中之一變化量; 基於該等主分量中之至少一者,選擇與一特定澤爾尼克多項式之一相對高靈敏度值相關聯之圖案;及 經由使用選定圖案執行一源遮罩最佳化或一波前最佳化製程,判定源參數、遮罩參數及/或波前參數,使得改良一效能度量。 14.    如條項13之方法,其中該效能度量為CD或與該等選定圖案相關聯之一邊緣置放誤差之一函數。 15.    如條項1至14中任一項之方法,其中該第一核心集合為用於該澤爾尼克多項式集合中之一給定澤爾尼克的一一階像差靈敏度濾波器。 16.    如條項1至14中任一項之方法,其中該第二核心集合為用於該澤爾尼克多項式集合中之一給定澤爾尼克的一二階像差靈敏度濾波器。 17.    如條項1至16中任一項之方法,其中該源函數表示為供該圖案化設備使用之該照明源之一像素化影像。 18.    如條項1至17中任一項之方法,其中該設計佈局為以下中之至少一者: 一預OPC遮罩佈局; 一後OPC遮罩佈局;或 一遮罩影像,其自該後OPC遮罩佈局產生,其中該遮罩影像表示藉由用該照明源照明該後OPC遮罩佈局獲得之一遮罩繞射圖案。 19.    如條項1至18中任一項之方法,其進一步包含: 基於該像差靈敏度映圖判定該圖案化製程之參數,使得該PWLP之該靈敏度減小。 20.    如條項1至18中任一項之方法,其進一步包含: 基於該像差靈敏度映圖之該等靈敏度值或該像差靈敏度映圖之一效能指示符,對該設計佈局之一或多個圖案進行排名,其中與相對高靈敏度值相關之一或多個圖案中之一圖案相較於其他圖案排名更高; 基於該排名選擇具有相對高排名之一或多個圖案;及 使用該像差靈敏度映圖及一遮罩最佳化製程來修改該設計佈局之該等選定圖案,使得該等選定圖案之該靈敏度減小。 21.    一種電腦程式產品,其包含其上記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施以上條項中任一項之方法。
本文中所揭示之概念可模擬或數學上模型化用於對子波長特徵進行成像之任何通用成像系統,且可尤其適用於能夠產生愈來愈短波長之新興成像技術。已經在使用中之新興技術包括極紫外(EUV)、能夠使用ArF雷射來產生193nm波長且甚至能夠使用氟雷射來產生157nm波長之DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由利用高能電子撞擊材料(固體或電漿)來產生在20至5nm範圍內的波長,以便產生在此範圍內之光子。
雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上成像,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如,用於在除矽晶圓以外的基板上成像的微影成像系統。
以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
21:輻射光束 22:琢面化場鏡面器件 24:琢面化光瞳鏡面器件 26:經圖案化光束 28:反射元件 30:反射元件 100:電腦系統 102:匯流排 104:處理器 105:處理器 106:主記憶體 108:唯讀記憶體 110:儲存器件 112:顯示器 114:輸入器件 116:游標控制件 118:通信介面 120:網路鏈路 122:區域網路 124:主機電腦 126:網際網路服務提供者 128:網際網路 130:伺服器 150:後圖案轉印製程模型模組 152:資料庫 210:極熱電漿 211:源腔室 212:收集器腔室 220:封閉結構 221:開口 230:污染物阱 240:光柵光譜濾波器 251:上游輻射收集器側 252:下游輻射收集器側 253:掠入射反射器 254:掠入射反射器 255:掠入射反射器 300:方法 301:第一核心集合 302:第二核心集合 303:設計佈局 310:像差靈敏度映圖 315:PWLP 317:參數 500A:一階空中影像 500B:無像差空中影像 605:一階影像 606:一階空中影像 607:一階空中影像 608:一階空中影像 609:一階空中影像 610:一階空中影像 635:一階空中影像 636:一階空中影像 700:影像矩陣 900:設計佈局 950:像差靈敏度映圖 1000:設備 1300:源模型 1310:投影光學器件模型 1320:設計佈局模型 1330:空中影像 1340:抗蝕劑模型 1350:抗蝕劑影像 AM:調整器 AS:對準感測器 B:輻射光束 BD:光束遞送系統 BK:烘烤板 cASM1:像差映圖剪輯 cASM1':像差靈敏度剪輯 cASM2:像差映圖剪輯 cASM3:像差映圖剪輯 cASM4:像差映圖剪輯 cASM4':像差靈敏度剪輯 cDL1:剪輯 cDL2:剪輯 cDL3:剪輯 cDL4:剪輯 C:目標部分 CH:冷卻板 CL5:設計圖案 CL7:設計圖案 CL9:設計圖案 CO:聚光器/收集器 DE:顯影器 IF:虛擬源點 IL:照明系統 IN:積分器 I/O1:輸入埠 I/O2:輸出埠 LA:微影設備 LACU:微影控制單元 LB:裝載區 LC:微影單元 LS:水平感測器 M1:圖案化器件對準標記 M2:圖案化器件對準標記 MA:圖案化器件 MET:度量衡系統 MT:支撐結構 O:點虛線 P1:基板對準標記 P2:基板對準標記 P3:位置 P4:位置 P5:位置 P6:位置 P7:位置 P8:位置 P9:位置 P301:過程 P303:過程 P305:過程 P307:過程 P411:製程 P412:製程 P413:製程 PC1 :PCA分量 PM:第一定位器 PS:投影系統 PS1:位置感測器 PS2:位置感測器 PW:第二定位器 RF:參考框架 RO:機器人 SC:旋塗器 SCS:監督控制系統 SO:輻射源 TCU:塗佈顯影系統控制單元 W:基板 WT:基板台 WTa:基板台 WTb:基板台 X:方向 Y:方向 ZCC1:元素 ZCC2:元素 ZCC3:元素
現將參考隨附圖式而僅作為實例來描述實施例,在該等圖式中:
圖1示意性地描繪根據實施例之微影設備;
圖2示意性地描繪根據實施例之微影單元或叢集之實施例;
圖3為根據實施例之基於與圖案化設備相關聯之像差靈敏度判定圖案窗限制圖案(PWLP)之方法300的流程圖;
圖4A說明根據實施例之呈影像格式之實例澤爾尼克多項式Z7;
圖4B說明根據實施例之針對澤爾尼克Z7所獲得之實例一階核心;
圖5A說明根據實施例之使用用於設計圖案之第一核心集合獲得之實例一階空中影像;
圖5B說明根據實施例之用於設計圖案之無像差空中影像;
圖6A至6H說明根據實施例之與實例一階ZCC核心相關聯之實例一階影像,該等實例一階ZCC核心與澤爾尼克Z5至Z36集合中之澤爾尼克Z5至Z10及Z35至Z36相關聯;
圖7說明根據實施例之使用澤爾尼克影像中之每一者之像素強度所產生之實例矩陣;
圖8為根據實施例之澤爾尼克影像(例如圖6A至6H中)之實例PCA分量PC1 之圖形表示;
圖9為根據實施例之實例設計佈局;
圖10A為根據實施例之用於圖9中之設計佈局之像差靈敏度映圖的實例;
圖10B展示根據實施例之圖9之設計佈局之4個選定剪輯及圖10A之像差映圖之對應像差映圖剪輯之實例;
圖11說明根據實施例之對應於在應用波前最佳化之後設計圖案之2個選定剪輯的實例像差靈敏度剪輯;
圖12說明根據實施例之判定用以判定熱點之EPE、CD、PPE的實例方式;
圖13為根據實施例之圖案化製程之模擬的流程圖;
圖14為根據實施例之判定熱點圖案之流程圖;
圖15為根據實施例之實例電腦系統的方塊圖;
圖16為根據實施例之另一微影投影設備的示意圖;
圖17為根據實施例之用於極紫外掃描器之圖1中之設備的視圖;
圖18為根據實施例之圖16及圖17之設備之源收集器模組SO的更詳細視圖。
300:方法
301:第一核心集合
302:第二核心集合
303:設計佈局
310:像差靈敏度映圖
315:PWLP
317:參數
P301:過程
P303:過程
P305:過程
P307:過程

Claims (15)

  1. 一種基於與一圖案化設備相關聯之像差靈敏度判定製程窗限制圖案(PWLP)之方法,該方法包含: 獲得(i)與該圖案化設備之一像差波前相關聯之一第一核心集合及一第二核心集合,及(ii)待經由該圖案化設備印刷於一基板上之一設計佈局; 經由使用該設計佈局之一製程模擬、該第一核心集合及該第二核心集合,判定與該像差波前相關聯之一像差靈敏度映圖,該像差靈敏度映圖指示該設計佈局之一或多個部分對一特定像差及不同像差之間的一相互作用之靈敏程度;及 基於該像差靈敏度映圖,判定與相較於該設計佈局之其他部分具有相對高靈敏度之該設計佈局相關聯之該PWLP。
  2. 如請求項1之方法,其中該像差波前由一澤爾尼克(Zernike)多項式集合、貝塞爾(Bessel)函數、正規且完備函數集或一位元映像影像表示。
  3. 如請求項1之方法,其中該像差靈敏度映圖為像素化影像,其中一像素值指示該像差靈敏度。
  4. 如請求項1之方法,其中藉由與包含該像差波前之線性像差項之一一階空中影像相關聯之一第一向量之本徵分解獲得該第一核心集合,其中: 藉由一源函數、一光瞳函數及一階像差之一廻旋運算該第一空中影像,該一階像差表徵線性像差項之效應, 該源函數為表徵該圖案化設備之一照明源之一數學表示,且 該光瞳函數為表徵該圖案化設備之一透鏡光瞳之另一數學表示。
  5. 如請求項1之方法,其中藉由與包含該像差波前之二階像差項之一第二空中影像相關聯之一二階向量之本徵分解獲得該第二核心集合,其中: 藉由該源函數、該光瞳函數及二階像差之一廻旋運算該二階空中影像,該二階像差表徵不同像差之間的相互作用之效應, 該源函數為表徵該圖案化設備之該照明源之該數學表示,且 該光瞳函數為表徵該圖案化設備之該透鏡光瞳之該另一數學表示。
  6. 如請求項2之方法,其中該像差靈敏度映圖為該澤爾尼克多項式集合及與其相關聯之一澤爾尼克係數集合之一函數,每一澤爾尼克係數指示由該相關聯澤爾尼克多項式解釋的一像差量。
  7. 如請求項1之方法,其中該像差靈敏度映圖之該判定包含: 藉由將該第一核心集合應用於該設計佈局來判定一一階像差靈敏度映圖; 藉由將該第二核心集合應用於該設計佈局來判定一二階像差靈敏度映圖;及 將該等像差靈敏度映圖判定為該一階像差靈敏度映圖與該二階像差靈敏度映圖之一總和。
  8. 如請求項1之方法,其中該第一核心集合及該第二核心集合取決於與該圖案化設備之該照明源相關聯之參數、該圖案化設備之該透鏡光瞳,及描述與該圖案化設備相關聯之該像差波前的澤爾尼克項,但獨立於該設計佈局之一形狀。
  9. 如請求項1之方法,其中該PWLP之該判定包含: 判定該像差靈敏度映圖之一像素之一強度是否超出一熱點臨限值; 回應於該強度違反該臨限值,識別該設計佈局內的與違反該臨限值之該等像素相關聯之一或多個圖案;及 將其周圍之經識別圖案或位置分類為該PWLP。
  10. 如請求項9之方法,其中該一或多個圖案中之一圖案包含複數個特徵,且該圖案之一部分為該複數個特徵中之一特徵,及/或 其中該一或多個圖案包含: 直線遮罩圖案; 線及間隔; 接觸孔;及/或 曲線遮罩圖案。
  11. 如請求項1之方法,其中在不追蹤一經印刷圖案或一經模擬圖案之一輪廓或運算與一經印刷基板相關聯之一臨界尺寸或邊緣置放誤差或缺陷資料的情況下,基於該像差靈敏度映圖判定該PWLP。
  12. 如請求項1之方法,其進一步包含: 基於一無像差空中影像及像差空中影像判定一澤爾尼克影像,其中該像差空中影像係基於該一階、該二階或更高階(階>2)靈敏度映圖判定; 經由該澤爾尼克影像之主分量分析,判定該澤爾尼克影像之一或多個主分量,一主分量為澤爾尼克多項式之一線性組合及相關聯澤爾尼克係數,其中一澤爾尼克係數之一值指示由該相關聯澤爾尼克多項式解釋之澤爾尼克影像中之一變化量; 基於該等主分量中之至少一者,選擇與一特定澤爾尼克多項式之一相對高靈敏度值相關聯之圖案;及 經由使用選定圖案執行一源遮罩最佳化或一波前最佳化製程,判定源參數、遮罩參數及/或波前參數,使得改良一效能度量。
  13. 如請求項12之方法,其中該效能度量為CD或與該等選定圖案相關聯之一邊緣置放誤差之一函數。
  14. 如請求項1之方法,其中該第一核心集合為用於該澤爾尼克多項式集合中之一給定澤爾尼克的一一階像差靈敏度濾波器。
  15. 一種電腦程式產品,其包含其上記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如請求項1之方法。
TW109129096A 2019-09-03 2020-08-26 判定圖案之像差靈敏度的方法 TWI793443B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962895372P 2019-09-03 2019-09-03
US62/895,372 2019-09-03

Publications (2)

Publication Number Publication Date
TW202122927A true TW202122927A (zh) 2021-06-16
TWI793443B TWI793443B (zh) 2023-02-21

Family

ID=72290998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129096A TWI793443B (zh) 2019-09-03 2020-08-26 判定圖案之像差靈敏度的方法

Country Status (5)

Country Link
US (1) US20220334493A1 (zh)
KR (1) KR20220039802A (zh)
CN (1) CN114341742A (zh)
TW (1) TWI793443B (zh)
WO (1) WO2021043596A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075966B2 (ja) 1996-03-06 2008-04-16 エーエスエムエル ネザーランズ ビー.ブイ. 差分干渉計システム及びこのシステムを具えたリソグラフステップアンドスキャン装置
DE60319462T2 (de) 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7617477B2 (en) 2005-09-09 2009-11-10 Brion Technologies, Inc. Method for selecting and optimizing exposure tool using an individual mask error model
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
NL2003696A (en) * 2008-11-10 2010-05-11 Brion Tech Inc Scanner model representation with transmission cross coefficients.
NL2008957A (en) * 2011-07-08 2013-01-09 Asml Netherlands Bv Methods and systems for pattern design with tailored response to wavefront aberration.
CN112530828A (zh) * 2014-06-10 2021-03-19 Asml荷兰有限公司 计算机可读介质
KR20170096004A (ko) * 2014-12-17 2017-08-23 에이에스엠엘 네델란즈 비.브이. 패터닝 디바이스 토포그래피 유도 위상을 이용하는 장치 및 방법
WO2018050432A1 (en) * 2016-09-13 2018-03-22 Asml Netherlands B.V. Optimization of a lithography apparatus or patterning process based on selected aberration
WO2018228820A1 (en) * 2017-06-14 2018-12-20 Asml Netherlands B.V. Lithographic apparatus and method

Also Published As

Publication number Publication date
US20220334493A1 (en) 2022-10-20
CN114341742A (zh) 2022-04-12
WO2021043596A1 (en) 2021-03-11
TWI793443B (zh) 2023-02-21
KR20220039802A (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
CN113196173A (zh) 用于对图像图案分组以确定图案化过程中晶片行为的设备和方法
TWI808901B (zh) 用於訓練圖案化製程之機器學習模型之方法及電腦程式產品
KR102529085B1 (ko) 성능 매칭에 기초하는 튜닝 스캐너에 대한 파면 최적화
TW202232248A (zh) 用於判定圖案化製程之製程窗的方法
TWI749355B (zh) 用於校正圖案化程序之度量衡資料之方法及相關的電腦程式產品
TW202117454A (zh) 用於在半導體製造程序中應用沉積模型之方法
TWI749386B (zh) 用於判定經組態以預測經受圖案化程序之基板上之圖案的特性的機率模型之方法及電腦程式產品
TWI750648B (zh) 用於判定與期望圖案相關聯之隨機變異之方法
TW202113500A (zh) 用於改善圖案化製程之訓練機器學習模型的方法
TW202020577A (zh) 基於晶圓量測判定熱點排序
CN115735162A (zh) 基于失效率的过程窗口
TWI749333B (zh) 基於光學特性之調諧圖案化裝置
TWI793443B (zh) 判定圖案之像差靈敏度的方法