TW202122737A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- TW202122737A TW202122737A TW108144299A TW108144299A TW202122737A TW 202122737 A TW202122737 A TW 202122737A TW 108144299 A TW108144299 A TW 108144299A TW 108144299 A TW108144299 A TW 108144299A TW 202122737 A TW202122737 A TW 202122737A
- Authority
- TW
- Taiwan
- Prior art keywords
- heat exchanger
- fins
- fluid
- long side
- fluid collection
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0015—Heat and mass exchangers, e.g. with permeable walls
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
本案係有關於一種熱交換器。This case is related to a heat exchanger.
現在工業的製程中,為了將工廠製程中所排放出的廢熱重新利用,通常會加裝熱交換器將熱能從廢氣中取出,並將熱能轉換至其他需要使用的地方。傳統所使用的熱交換器主要係以鋁擠(aluminum extrusion)的方式製造,並由熱管、複數個鰭片、中央隔板與殼體所組成。熱交換器的設計通常係將複數個鰭片及中央隔板等距設置,並在殼體之長邊面開設冷水口及出水口,以達到解熱的效果。In the current industrial process, in order to reuse the waste heat emitted from the factory process, a heat exchanger is usually installed to remove the heat energy from the exhaust gas and convert the heat energy to other places where it needs to be used. Traditionally used heat exchangers are mainly manufactured by aluminum extrusion, and are composed of heat pipes, a plurality of fins, a central partition and a shell. The design of the heat exchanger is usually to equidistantly arrange a plurality of fins and a central partition, and to open a cold water outlet and a water outlet on the long side of the shell to achieve the effect of heat dissipation.
第1a圖係傳統熱交換器之內部流場分析,由此圖可以看出,傳統熱交換器之流速較快的區域係集中在靠近冷水口及出水口的區域,再由第1b圖的傳統熱交換器的內部溫度分析可以知道,在遠離冷水口及出水口的區域與靠近冷水口及出水口的區域有明顯溫差變化,此表示傳統交換器的內部流體不均勻,進而會降低次系統內的模組的發電總量。Figure 1a is an analysis of the internal flow field of a traditional heat exchanger. From this figure, it can be seen that the area with a faster flow rate of the traditional heat exchanger is concentrated in the area near the cold water outlet and the water outlet. The internal temperature analysis of the heat exchanger shows that there is a significant temperature difference between the area far away from the cold water outlet and water outlet and the area near the cold water outlet and water outlet. This indicates that the internal fluid of the traditional exchanger is not uniform, which will reduce the temperature in the secondary system. The total power generation of the modules.
因此,本案提供一種可透過簡易加工程序製作之熱交換器,並且此熱交換器能夠使內部流場達到均溫化(homoeothermic)的效果。Therefore, the present application provides a heat exchanger that can be manufactured through a simple processing procedure, and the heat exchanger can achieve the homoeothermic effect of the internal flow field.
有鑑於此,本案係提供一種熱交換器,熱交換器包含:流體入口,其係設置在熱交換器之長側邊之一端;流體出口,其係設置在熱交換器之長側邊之另一端;複數個隔板,其係配置在熱交換器之長側邊、另一長側邊,以及長側邊與另一長側邊之間;複數個鰭片,係配置在複數個隔板之間;以及複數個流體匯集結構,其係沿著一流體的一流入方向以及流體的一流出方向形成在複數個鰭片上以及複數個隔板中配置在長側邊與該另一長側邊之間之該些隔板。In view of this, the present case provides a heat exchanger. The heat exchanger includes: a fluid inlet, which is arranged on one end of the long side of the heat exchanger; and a fluid outlet, which is arranged on the other of the long side of the heat exchanger. One end; a plurality of baffles, which are arranged on the long side of the heat exchanger, the other long side, and between the long side and the other long side; a plurality of fins are arranged on the plurality of baffles Between; and a plurality of fluid collection structures, which are formed on a plurality of fins along a fluid inflow direction and a fluid outflow direction, and a plurality of partitions are arranged on the long side and the other long side Between these partitions.
為讓本案能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make this case more obvious and easy to understand, the following specific examples are given in conjunction with the accompanying drawings for detailed descriptions as follows.
以下藉由特定的具體實施例說明本案之實施方式,熟習此項技藝之人士可由本文所揭示之內容輕易地瞭解本案之其他優點及功效。須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本案可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本案所能產生之功效及所能達成之目的下,均應仍落在本案所揭示之技術內容得能涵蓋之範圍內。The following specific examples are used to illustrate the implementation of this case. Those who are familiar with this technique can easily understand the other advantages and effects of this case from the content disclosed in this article. It should be noted that the structure, proportion, size, etc. shown in the accompanying drawings in this manual are only used to match the contents disclosed in the manual for the understanding and reading of those familiar with the art, and are not used to limit the implementation of this case. Limited conditions, so it does not have technical substantive significance. Any structural modification, proportional relationship change or size adjustment, without affecting the effect and the purpose that can be achieved in this case, should still fall within the disclosure of this case The technical content must be able to cover the scope.
請參閱第2a圖及第2b圖,第2a圖及第2b圖分別為本案一實施例之熱交換器1之立體圖以及該立體圖之A-A’剖面圖。熱交換器1係與一熱源(未示於圖式)貼合。此處雖敘述為貼合,但不侷限於此,凡熱交換器及熱源間能夠達成熱量傳遞的連接方式皆適用於本案之熱交換器。為了能夠達成良好的熱傳導效應以及製造上簡便,本案之熱交換器選用的材質為鋁材,但不侷限於此材料。Please refer to Fig. 2a and Fig. 2b. Fig. 2a and Fig. 2b are respectively a perspective view of the heat exchanger 1 according to an embodiment of the present invention and a cross-sectional view A-A' of the perspective view. The heat exchanger 1 is attached to a heat source (not shown in the drawings). Although it is described as bonding here, it is not limited to this. Any connection method that can achieve heat transfer between the heat exchanger and the heat source is applicable to the heat exchanger in this case. In order to achieve a good heat conduction effect and ease of manufacture, the heat exchanger in this case is made of aluminum, but it is not limited to this material.
在一實施例中,本案之熱交換器1包含:流體入口11,其係設置在熱交換器1之長側邊10a之一端。流體出口12,其係設置在熱交換器1之長側邊10a之另一端。熱交換器1所使用的流體為冷水。熱交換器1更包含有複數個隔板13,其係配置在熱交換器1之該長側邊10a、另一長側邊10b,以及長側邊10a與另一長側邊10b之間。在一實施例中,複數個隔板13間的間距係相等。在一實施例中,流體入口11及流體出口12分別朝流體的流入方向L1以及流體的流出方向L2貫穿設置於長側邊10a之隔板13。In one embodiment, the heat exchanger 1 of this case includes: a
請參閱第2a圖及第2b圖,在一實施例中,熱交換器1包括複數個鰭片14,複數個鰭片14係配置在複數個隔板13之間。在一實施例中,隔板13與鰭片以及鰭片與鰭片之間的距離係相等,並且鰭片14沿著流體的流入方向L1(或流體的流出方向L2)設置。複數個隔板13之厚度係大於該複數個鰭片14之厚度。在一實施例中,複數個隔板13與複數個鰭片14係一體成形。Please refer to FIGS. 2a and 2b. In one embodiment, the heat exchanger 1 includes a plurality of
在一實施例中,複數個鰭片14與複數個隔板13係以等距排列設置。In one embodiment, the plurality of
請參照第2b圖,在一實施例中,複數個鰭片14包含複數個結構鰭片14a以及複數個散熱鰭片14b。複數個結構鰭片14a間隔設置在複數個隔板13之間,並且係等距設置。在另一實施例中,複數個結構鰭片14a係與熱交換器1之上表面10e以及下表面10f連接。複數個散熱鰭片14b中,有的散熱鰭片14b係設置於隔板13與結構鰭片14a之間,以及有的散熱鰭片14b係設置於兩相鄰結構鰭片14a之間。在另一實施例中,複數個散熱鰭片14b係與熱交換器1之上表面10e或下表面10f之一者連接。在一實施例中,單一結構鰭片14a之高度係大於單一散熱鰭片14b之高度。在另一實施例中,單一結構鰭片14a之高度係與單一隔板13之高度相同。也就是說,這些結構鰭片14a給予熱交換器1應有之高度及結構強度,這些散熱鰭片14b使熱交換器1之內部流場的內壓力平衡,提升流場均勻性。Please refer to FIG. 2b. In one embodiment, the plurality of
請參照第3a圖及第3b圖之本案熱交換器之B-B’橫切面圖,其中第3b圖是第3a圖之局部的一放大圖。在一實施例中,熱交換器包括複數個流體匯集結構15,複數個流體匯集結構15沿著一流體的流入方向L1以及該流體的流出方向L2形成在複數個鰭片14上並且配置在長側邊10a與另一長側邊10b之間的隔板13。在一實施例中,流體匯集結構15係貫穿複數個鰭片14並且配置在長側邊10a與另一長側邊10b之間的該些隔板13的孔洞。Please refer to Figure 3a and Figure 3b of the B-B' cross-sectional view of the heat exchanger of this case, where Figure 3b is an enlarged view of a part of Figure 3a. In one embodiment, the heat exchanger includes a plurality of
請參照第3b圖,在一實施例中,複數個流體匯集結構15包括複數個前半部流體匯集結構15a以及複數個後半部流體匯集結構15b。在一實施例中,複數個前半部流體匯集結構15a係形成於熱交換器1之配置在長側邊10a之隔板13以及中間位置之該些隔板13之間的複數個鰭片14。在一實施例中,複數個後半部流體匯集結構15b係形成於設置在熱交換器1之中間位置之該些隔板13以及配置在熱交換器1之另一長側邊10b之該些隔板13與配置在熱交換器1之中間位置之該些隔板13間的複數個鰭片14。在一實施例中,複數個流體匯集結構15係沿著流體流入方向L1以及流體流出方向L2形成。Referring to FIG. 3b, in one embodiment, the plurality of
在另一實施例中,複數個後半部流體匯集結構15b中的單一流體匯集結構15b之孔徑係大於複數個前半部流體匯集結構15a中的單一流體匯集結構15之孔徑。複數個流體匯集結構15係為圓形孔洞或是橢圓形孔洞。本案熱交換器1之流體匯集結構15並不侷限於圓形或橢圓形,亦可為其他形狀之通孔。本案中,後半部與前半部流體匯集結構之孔徑也可稱為寬度。In another embodiment, the pore size of the single
另一實施例中,複數個後半部流體匯集結構15b係根據複數個前半部流體匯集結構15a之孔洞以偏移擴孔(offset reaming)的方式形成。複數個前半部流體匯集結構15a中的單一流體匯集結構之孔徑係相同於流體入口11以及流體出口12之孔徑。In another embodiment, the plurality of rear-half
請參考第4a圖至第4e圖,第4a圖為本案之熱交換器之縱向切面圖,其中Y為散熱鰭片的高度。第4b-1圖及第4b-2圖為本案之不同高度之散熱鰭片14b之流場及溫度場模擬分析。當Y=16mm時,此時散熱鰭片14b之高度與結構鰭片14a以及隔板13之高度相同,意即,散熱鰭片14b係與熱交換器1之上表面10e以及下表面10f連接。此狀態可視為散熱鰭片將流道完全分隔。如第4b-1圖及第4b-2圖所示,流體進入熱交換器1後,由於鰭片14的高度一致而導致流體無法順暢地流入熱交換器1之後半部,流體在熱交換器1的前半部快速流通,因此熱交換器1後半部的熱量無法被有效地解除,高溫顯示在流體流入方向L1之深處;當Y=0mm時,此狀態可視為沒有設置散熱鰭片14b。如第4c-1圖及第4c-2圖所示,流體進入熱交換器1中後,由於沒有散熱鰭片14b,流體在熱交換1的前半段呈現均勻的,但從溫度圖來看,熱交換器1之後半部的熱量仍無法被有效解除;當Y=11mm時,如第4d-1圖及第4d-2圖所示,流體均勻地流入各鰭片14之間以及鰭片14與隔板13之間,由溫度分布圖亦可發現流體在熱交換器1中的溫度較趨近於一致,沒有過高之區域。在一實施例中,散熱鰭片的高度係至少高於結構鰭片的高度的一半。Please refer to Fig. 4a to Fig. 4e. Fig. 4a is a longitudinal section view of the heat exchanger in this case, where Y is the height of the fins. Fig. 4b-1 and Fig. 4b-2 show the simulation analysis of the flow field and temperature field of the
請參考第4e圖,第4e圖為散熱鰭片高度與解熱量之關係圖。綜上所述,當散熱鰭片隨高度增加時,其解熱量也會跟著上升,均溫的效果也會更明顯;然而,在未裝設散熱鰭片以及完全分隔流道的狀態下,解熱量將明顯地下降,且無法達到均溫的效果。Please refer to Figure 4e. Figure 4e shows the relationship between the height of the cooling fins and the amount of heat. In summary, when the heat dissipation fins increase in height, their heat dissipation will also increase, and the effect of uniform temperature will be more obvious; however, when the heat dissipation fins are not installed and the flow channel is completely separated, the solution The heat will drop significantly, and the effect of uniform temperature cannot be achieved.
請參考第5a圖至第5e圖,第5a圖為第3b圖之上視圖,X1為前半部流體匯集結構之寬度,X2為後半部流體匯集結構之寬度,當散熱鰭片的高度在11mm時,根據不同的流體匯集結構的寬度差,即X2-X1,其解熱效果也會有差異。請參考第5b-1圖及第5b-2圖,第5b-1圖及第5b-2圖係在寬度差為0 mm時,分別為熱交換器1之流場分布圖以及溫度分布圖。在寬度差為0 mm的情況下,意即,前半部流體匯集結構之寬度與後半部流體匯集結構之寬度相同,由流場分布圖可以發現,流體無法有效地進入到熱交換器1後半部之深處,由溫度分布圖亦可以發現相對高溫集中在流體的流入方向之深處;請參照第5c-1圖及第5c-2圖,在寬度差為19.05 mm的情況下,由於孔徑差過大,可以發現流體進入後可以直接流通至熱交換器1之後半部,但在熱交換器1之中段出現相對較低的流速,由溫度分布圖也可得知在熱交換器1中段的溫度偏高;請參照第5d-1圖及第5d-2圖,在寬度差為6.35 mm的情況下,從流場分布圖中,可以發現流場在整體熱交換器1的分布更為均勻,而在溫度的分布上也趨為均勻。Please refer to Figures 5a to 5e, Figure 5a is the top view of Figure 3b, X1 is the width of the front half of the fluid collection structure, X2 is the width of the back half of the fluid collection structure, when the height of the fins is 11mm , According to the width difference of different fluid collection structure, namely X2-X1, its antipyretic effect will also be different. Please refer to Figures 5b-1 and 5b-2. Figures 5b-1 and 5b-2 are the flow field distribution diagram and temperature distribution diagram of heat exchanger 1 when the width difference is 0 mm. When the width difference is 0 mm, it means that the width of the front half of the fluid collection structure is the same as the width of the second half of the fluid collection structure. From the flow field distribution diagram, it can be found that the fluid cannot effectively enter the back half of the heat exchanger 1 From the temperature distribution diagram, it can also be found that the relatively high temperature is concentrated in the depth of the inflow direction of the fluid; please refer to Figure 5c-1 and Figure 5c-2. When the width difference is 19.05 mm, due to the difference in aperture If it is too large, it can be found that the fluid can directly circulate to the back half of heat exchanger 1 after entering, but a relatively low flow rate appears in the middle section of heat exchanger 1. The temperature distribution chart also shows that the temperature in the middle section of heat exchanger 1 Too high; please refer to Figure 5d-1 and Figure 5d-2. When the width difference is 6.35 mm, from the flow field distribution diagram, it can be found that the flow field is more evenly distributed in the overall heat exchanger 1. And the temperature distribution also tends to be uniform.
請參考第5e圖,第5e圖為流體匯集口的寬度差與解熱量之關係圖。在一實施例中,複數個後半部流體匯集結構之孔徑係大於等於複數個前半部流體匯集結構之孔徑的兩倍,且小於等於複數個前半部流體匯集結構之孔徑的三倍。綜上所述,前半部流體匯集結構之寬度與後半部流體匯集結構之寬度相同或是在寬度差過大的情況下,以本實施例來說,在寬度差為15.87 mm以上時,流場及溫度場的分布分別在熱交換器1之後半部及中段處較為不均勻,而在寬度差在上述兩者之間時,流場及溫度場的分布趨勢也呈現更均勻,也因此可以得到較佳之解熱量。Please refer to Figure 5e. Figure 5e shows the relationship between the width difference of the fluid collection port and the amount of heat removal. In one embodiment, the pore size of the plurality of back-half fluid collection structures is greater than or equal to twice the pore size of the plurality of front-half fluid collection structures, and less than or equal to three times the pore size of the plurality of front-half fluid collection structures. In summary, the width of the front half of the fluid collection structure is the same as the width of the second half of the fluid collection structure or when the width difference is too large. In this embodiment, when the width difference is 15.87 mm or more, the flow field and The distribution of the temperature field is relatively uneven in the back half and the middle section of the heat exchanger 1, and when the width difference is between the above two, the distribution trend of the flow field and temperature field is also more uniform, so it can be more uniform. The best solution for calories.
本案之熱交換器藉由散熱鰭片與結構鰭片具有高度差的設計,並且搭配前半部流體匯集結構之寬度與後半部流體匯集結構之寬度具有寬度差的設計,來達成熱交換器在操作時使內部流場以及溫度場能夠達成均勻的功效,因而使熱交換器之內部的流體解熱量提升。The heat exchanger in this case is designed with a height difference between the heat dissipation fins and the structural fins, and the width of the front half of the fluid collection structure and the width of the second half of the fluid collection structure have a width difference to achieve the operation of the heat exchanger. At this time, the internal flow field and temperature field can achieve a uniform effect, thereby increasing the amount of fluid decomposing inside the heat exchanger.
然本案以實施例已揭露如上,然其並非用以限定本案,任何所屬技術領域中具有通常知識者,在不脫離本案之精神和範圍內,當可作些許之更動與潤飾,故本案之保護範圍當視後附之申請專利範圍所界定者為準。Although this case has been disclosed as above by the example, it is not used to limit the case. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the case. Therefore, the protection of this case The scope shall be subject to the definition of the attached patent application scope.
1:熱交換器
10a:長側邊
10b:另一長側邊
10e:上表面
10f:下表面
11:流體入口
12:流體出口
13:隔板
14:鰭片
14a:結構鰭片
14b:散熱鰭片
15:流體匯集結構
15a:前半部流體匯集結構
15b:後半部流體匯集結構
L1:流體的流入方向
L2:流體的流出方向
X1:前半部流體匯集結構之寬度
X2:後半部流體匯集結構之寬度
Y:散熱鰭片的高度1:
第1a圖係傳統熱交換器的內部流場分布圖。 第1b圖係傳統熱交換器的內部溫度分布圖。 第2a圖係本案一實施例之熱交換器之立體圖。 第2b圖係本案一實施例之熱交換器之立體圖之A-A’剖面圖。 第3a圖係本案熱交換器之B-B’橫切面圖。 第3b圖係本案熱交換器之B-B’橫切面圖之局部放大圖。 第4a圖係本案另一實施例之熱交換器之A-A’剖面圖。 第4b-1圖及第4b-2圖係分別為散熱鰭片高度Y=16 mm之流場分布圖以及溫度場分布圖。 第4c-1圖及第4c-2圖係分別為散熱鰭片高度Y=0 mm之流場分布圖以及溫度場分布圖。 第4d-1圖及第4d-2圖係分別為散熱鰭片高度Y=11 mm之流場分布圖以及溫度場分布圖。 第4e圖為散熱鰭片高度與解熱量之關係圖。 第5a圖係第3b圖之上視圖。 第5b-1圖及第5b-2圖係分別為寬度差為0 mm時的熱交換器之流場分布圖以及溫度分布圖。 第5c-1圖及第5c-2圖係分別為寬度差為19.05 mm時的熱交換器之流場分布圖以及溫度分布圖。 第5d-1圖及第5d-2圖係分別為寬度差為6.35 mm時的熱交換器流場分布圖以及溫度分布圖。 第5e圖為匯集口寬度差與解熱量之關係圖。Figure 1a is the internal flow field distribution diagram of a conventional heat exchanger. Figure 1b shows the internal temperature distribution of a conventional heat exchanger. Figure 2a is a perspective view of the heat exchanger of an embodiment of the present invention. Figure 2b is an A-A' cross-sectional view of a perspective view of the heat exchanger according to an embodiment of the present invention. Figure 3a is a B-B' cross-sectional view of the heat exchanger in this case. Figure 3b is a partial enlarged view of the B-B' cross-sectional view of the heat exchanger in this case. Figure 4a is a cross-sectional view of the heat exchanger A-A' of another embodiment of the present invention. Figure 4b-1 and Figure 4b-2 are the flow field distribution diagram and the temperature field distribution diagram with the height of the fins Y=16 mm, respectively. Figure 4c-1 and Figure 4c-2 are respectively the flow field distribution diagram and the temperature field distribution diagram with the height of the fins Y=0 mm. Figure 4d-1 and Figure 4d-2 are the flow field distribution diagram and the temperature field distribution diagram with the fin height Y=11 mm, respectively. Figure 4e shows the relationship between the height of the cooling fins and the amount of heat. Figure 5a is a top view of Figure 3b. Figure 5b-1 and Figure 5b-2 are the flow field distribution diagram and temperature distribution diagram of the heat exchanger when the width difference is 0 mm, respectively. Figure 5c-1 and Figure 5c-2 are respectively the flow field distribution diagram and temperature distribution diagram of the heat exchanger when the width difference is 19.05 mm. Figure 5d-1 and Figure 5d-2 are the flow field distribution diagram and temperature distribution diagram of the heat exchanger when the width difference is 6.35 mm, respectively. Figure 5e is a graph showing the relationship between the difference in the width of the collection port and the amount of heat.
11:流體入口11: fluid inlet
13:隔板13: partition
14:鰭片14: Fins
14a:結構鰭片14a: Structural fins
14b:散熱鰭片14b: cooling fins
15:流體匯集結構15: Fluid collection structure
15a:前半部流體匯集結構15a: Front half fluid collection structure
15b:後半部流體匯集結構15b: The fluid collection structure of the second half
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144299A TWI727533B (en) | 2019-12-04 | 2019-12-04 | Heat exchanger |
CN201911288358.8A CN112902725A (en) | 2019-12-04 | 2019-12-13 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144299A TWI727533B (en) | 2019-12-04 | 2019-12-04 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI727533B TWI727533B (en) | 2021-05-11 |
TW202122737A true TW202122737A (en) | 2021-06-16 |
Family
ID=76111246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144299A TWI727533B (en) | 2019-12-04 | 2019-12-04 | Heat exchanger |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112902725A (en) |
TW (1) | TWI727533B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59119193A (en) * | 1982-12-27 | 1984-07-10 | Hitachi Ltd | Laminated heat exchanger |
US20060237166A1 (en) * | 2005-04-22 | 2006-10-26 | Otey Robert W | High Efficiency Fluid Heat Exchanger and Method of Manufacture |
FR2891901B1 (en) * | 2005-10-06 | 2014-03-14 | Air Liquide | METHOD FOR VAPORIZATION AND / OR CONDENSATION IN A HEAT EXCHANGER |
JP2008202846A (en) * | 2007-02-20 | 2008-09-04 | Usui Kokusai Sangyo Kaisha Ltd | Heat transfer tube for heat exchanger and egr gas cooling device using the same |
US20080223565A1 (en) * | 2007-03-13 | 2008-09-18 | Kaori Heat Treatment Co., Ltd. | Flow distributor for heat transfer device |
TWI482244B (en) * | 2012-11-19 | 2015-04-21 | Ind Tech Res Inst | Heat exchanger and semiconductor module |
CN103644749B (en) * | 2013-12-19 | 2015-09-02 | 刘小江 | A kind of flat tube counter-flow heat exchanger |
US9837956B2 (en) * | 2014-04-01 | 2017-12-05 | King Fahd University Of Petroleum And Minerals | Heat exchanger for photovoltaic panels |
CN204761941U (en) * | 2015-06-30 | 2015-11-11 | 株洲南车时代电气股份有限公司 | Liquid cooling radiator with mix runner |
-
2019
- 2019-12-04 TW TW108144299A patent/TWI727533B/en active
- 2019-12-13 CN CN201911288358.8A patent/CN112902725A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN112902725A (en) | 2021-06-04 |
TWI727533B (en) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7578337B2 (en) | Heat dissipating device | |
US10299406B2 (en) | Liquid cooling heat sink device | |
US10342159B2 (en) | Liquid heat-dissipating assembly | |
WO2017114089A1 (en) | Heat dissipation device | |
CN208045481U (en) | A kind of central processing unit liquid cooling plate | |
CN105823360A (en) | Plate heat exchanger comprising staggered-arrangement heat pipe arrays | |
CN106601703B (en) | Using the micro-channel heat sink of secondary back refrigerating mode | |
WO2018161614A1 (en) | Finned radiator with special-shaped oil channel | |
TWI727533B (en) | Heat exchanger | |
CN214316082U (en) | Radiator suitable for liquid cooling | |
CN215810395U (en) | Improved liquid collecting tank and multi-runner liquid cooling bar | |
CN210579840U (en) | Turbulent flow type radiator, air conditioner frequency converter with same and electronic equipment | |
CN110779371B (en) | Water-cooling tube-plate heat exchanger with optimally distributed fluid inlet and outlet | |
CN109612307B (en) | Structure optimization method for shell-and-tube heat exchanger of liquid medicine for fumigation | |
CN220858746U (en) | Composite liquid cooling plate based on pulsation channel | |
CN221099447U (en) | Microchannel heat exchanger | |
CN208462270U (en) | Water-cooling plate | |
CN109346444A (en) | A kind of micro- radiator of the trapezoidal ridge rib array of band | |
CN214676301U (en) | Uniform temperature plate radiator with independent porous parallel shrinkage reduction water inlet hole design | |
CN216980549U (en) | Corrugated wall tree-shaped channel radiator | |
CN110617725B (en) | Shell-and-tube heat exchanger with variable power length | |
CN111336839B (en) | Shell-and-tube heat exchanger with variable kernel spacing | |
CN221510105U (en) | Heat exchange structure and power electronic equipment | |
CN214676302U (en) | Temperature equalizing plate radiator with design of gradually-reduced water inlet hole | |
CN210512768U (en) | Cooling pipe for water-cooling radiator |