TW202115372A - 氣體偵測模組 - Google Patents

氣體偵測模組 Download PDF

Info

Publication number
TW202115372A
TW202115372A TW108140536A TW108140536A TW202115372A TW 202115372 A TW202115372 A TW 202115372A TW 108140536 A TW108140536 A TW 108140536A TW 108140536 A TW108140536 A TW 108140536A TW 202115372 A TW202115372 A TW 202115372A
Authority
TW
Taiwan
Prior art keywords
gas
area
air
hole
detection module
Prior art date
Application number
TW108140536A
Other languages
English (en)
Other versions
TWI710759B (zh
Inventor
莫皓然
林景松
楊文陽
韓永隆
黃啟峰
郭俊毅
謝錦文
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to US17/016,618 priority Critical patent/US11614385B2/en
Application granted granted Critical
Publication of TWI710759B publication Critical patent/TWI710759B/zh
Publication of TW202115372A publication Critical patent/TW202115372A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • G01N2001/2276Personal monitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2285Details of probe structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一種氣體偵測模組,透過基座的側壁面形成進氣凹面及出氣凹面,並於基座表面形成進氣槽區及出氣槽區,將進氣凹面與進氣槽區相通,出氣凹面與出氣槽區相通,再以薄膜封蓋進氣槽區與出氣槽區,得以實現利用側面進氣以及側面出氣的效果。

Description

氣體偵測模組
本案關於一種氣體偵測模組,尤指一種極薄型,且用以與可攜式電子裝置或行動裝置結合的氣體偵測模組。
近年來人們對於生活環境的要求逐漸提升,出門前,除了確認氣象資訊之外,空氣品質的好壞也越來越受到重視,然而目前的空氣品質資訊皆必須仰賴行政院環保署所設置的監測站,但僅能提供大地區的空氣品質資訊,無法詳細提供小範圍的空氣品質資訊。
有鑑於此,如何提供一種氣體偵測模組,並且能夠將氣體偵測模組得以與現在人必備的可攜式電子裝置結合,讓只需要可攜式電子裝置在手,就可以獲取空氣品質資訊,實乃目前需要解決之問題。
本案之主要目的係提供一種氣體偵測模組,包含基座、微型泵、驅動電路板及氣體傳感器以構成一模組,使其輕易的嵌設於行動裝置或可攜式電子裝置實施應用。
本案之一廣義實施態樣為一種氣體偵測模組,包含:一基座,包含:一第一表面;一第二表面,相對於該第一表面;複數個側壁面,自該第一表面側邊縱向延伸至該第二表面側邊所形成,其中一該側壁面凹陷一進氣凹面及一出氣凹面,該進氣凹面及該出氣凹面之間為間隔設置;一容置空間,自該第二表面朝該第一表面凹陷在該側壁面之內區域空間所形成,該容置空間並區隔出一微型泵承載區、一偵測區及一導氣通路區,且該微型泵承載區與該導氣通路區透過一通氣缺口相互連通,以及該偵測區與該導氣通路區透過一連通開口相互連通;一進氣槽區,自該第一表面凹陷形成,並設置一進氣通孔,與該導氣通路區連通,以及設置有一通氣凹槽,連通到該側壁面之該進氣凹面;以及一出氣槽區,自該第一表面凹陷形成,並設置一出氣通孔,與該微型泵承載區連通,以及設置有一出氣凹槽,連通到該側壁面之該出氣凹面;一微型泵,容設於該微型泵承載區,而封蓋該出氣通孔;一驅動電路板,封蓋貼合該基座之該第二表面上,以構成該容置空間之該微型泵承載區、該偵測區及該導氣通路區,形成氣體得由該進氣槽區之該進氣通孔進入,再由該出氣槽區之該出氣通孔排出之一導氣路徑;一氣體傳感器,電性連接該驅動電路板上,並對應容設於該偵測區,以對通過氣體做偵測;以及一薄膜,貼附封蓋該進氣槽區及該出氣槽區,使氣體得由該側壁面之該進氣凹面進氣,並經該通氣凹槽進入該進氣槽區,再由該進氣通孔進入該導氣路徑,再由該出氣槽區之該出氣通孔排出,並透過該出氣凹槽與該側壁面之該出氣凹面連通而形成側面排氣;其中,該基座、該微型泵、該驅動電路板、該氣體傳感器以及該薄膜以一微小材料製出之模組結構,且該模組結構具有一長度、一寬度及一高度,其中該微型泵驅動加速導送外部氣體由該側壁面之該進氣凹面形成側面進氣導入該導氣通路區,並通過該偵測區之內該氣體傳感器做偵測,導入氣體再透過該微型泵導送,再由該出氣槽區之該出氣通孔排出,並透過該出氣凹槽與該側壁面之該出氣凹面連通形成側面排氣。
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。
請參閱第1A圖至第1C圖所示,本案提供一種氣體偵測模組,包含一基座1、一微型泵2、一驅動電路板3、一氣體傳感器4以及一薄膜5;其中基座1、微型泵2、驅動電路板3、氣體傳感器4以及薄膜5以微小材料製出之模組結構,且該模組結構具有一長度、一寬度及一高度,其中模組結構之長度、寬度及高度介於1厘米(mm)至999釐米(mm)之間,或者介於1微米(μm)至999微米(μm),或者介於1奈米(nm)至999奈米(nm)之間,但不以此為限。於本實施例中,模組結構之長度介於1微米至999微米、寬度介於1微米至999微米以及高度介於1微米至999微米所構成的體積,或者模組結構之長度介於1奈米至999奈米、寬度介於1奈米至999奈米以及高度介於1奈米至999奈米所構成的體積,但此不以此為限,其體積可依據實際需求任施變化。
上述之基座1包含有一第一表面11、一第二表面12、四向側壁面13、一容置空間14、一進氣槽區15及一出氣槽區16,第一表面11與第二表面12為相對的兩表面,四向側壁面13為第一表面11的側邊縱向延伸至第二表面12側邊所形成,四向側壁面13其中之一向側壁面13凹陷一進氣凹面13a及一出氣凹面13b,進氣凹面13a與出氣凹面13b間隔設置;容置空間14自第二表面12朝向第一表面11凹陷在側壁面13之內區域空間所形成,容置空間14區隔出一微型泵承載區14a、一偵測區14b及一導氣通路區14c,而微型泵承載區14a與導氣通路區14c透過一通氣缺口14d相互連通,偵測區14b與導氣通路區14c透過一連通開口14e相互連通。
上述進氣槽區15自第一表面11凹陷形成,包含有一進氣通孔15a及一進氣凹槽15b,進氣通孔15a連通至導氣通路區14c,進氣凹槽15b連接於進氣通孔15a與進氣凹面13a之間,並使進氣通孔15a與進氣凹面13a相互連通。
上述出氣槽區16自第一表面11凹陷形成,包含有一出氣通孔16a及一出氣凹槽16b,出氣通孔16a連通至微型泵承載區14a,出氣凹槽16b連接於出氣通孔16a與出氣凹面13b之間,並使出氣通孔16a與出氣凹面13b相互連通。
請同時參閱第1C圖及第2圖所示,微型泵2容設於容置空間14的微型泵承載區14a內,並且封蓋住出氣通孔16a,此外,微型泵2與驅動電路板3電性連接,微型泵2作動受驅動電路板3所提供的驅動訊號控制,微型泵2的驅動訊號(未圖示)由驅動電路板3上提供。
請繼續參閱第1C圖所示,驅動電路板3封蓋貼合基座1的第二表面12,以構成容置空間14的微型泵承載區14a、偵測區14b及導氣通路區14c,促使氣體得由進氣槽區15的進氣通孔15a再由出氣槽區16的出氣通孔16a排出之一導氣路徑。
上述氣體傳感器4定位設置於驅動電路板3上,且與驅動電路板3電性連接,當驅動電路板3貼合至基座1的第二表面12時,氣體傳感器4對應容設於容置空間14的偵測區14b,並檢測偵測區14b內的氣體資訊。
上述薄膜5貼附於基座1的第一表面上,且封蓋進氣槽區15及出氣槽區16,促使氣體得由側壁面的進氣凹面13a側面進氣,並通過進氣凹槽15b連通進入進氣槽區15,再由進氣通孔15a進入導氣路徑,再由出氣槽區16的出氣通孔16a排出,並透過出氣凹槽16b與側壁面13的出氣凹面13b連通而形成側面排氣。
由上述說明可知,可以藉由驅動微型泵2來加速導送氣體偵測模組外部氣體,並由側壁面13形成側面進氣再導入至導氣通路區14c,通過位於偵測區14b內的氣體傳感器4偵測出氣體資訊,而導入氣體再透過微型泵2導送,可以由出氣槽區16的出氣通孔16a排出,並透過出氣凹槽16b與側壁面13的出氣凹面13b連通形成側面排氣;其中,前述之氣體傳感器4為揮發性有機物傳感器,但不以此限。當然,薄膜5不貼附於基座1的第一表面上,促使氣體得直接由進氣通孔15a進入導氣路徑,再由出氣槽區16的出氣通孔16a排出,形成垂直面進氣與排氣,本案提供氣體偵測模組可是實際需求來選擇側面進氣側面排氣或者垂直面進氣與排氣之應用。
請同時參閱第3圖及第4圖所示,驅動電路板3提供驅動訊號控制微型泵2作動,微型泵2開始吸取微型泵承載區14a內的氣體,並由出氣通孔16a排出,此時,微型泵承載區14a呈現負壓狀態,使得透過通氣缺口14d與其相通之導氣通路區14c的氣體由通氣缺口14d進入微型泵承載區14a,並且開始由進氣槽區15的進氣通孔15a汲取氣體進入導氣通路區14c,而進入導氣通路區14c的氣體除了進入微型泵承載區14a之外,亦有部分氣體由連通開口14e進入偵測區14b,供位於偵測區14b內的氣體傳感器4檢測出氣體資訊。
請參閱第5A圖及第5B圖所示,微型泵2包含有包括一進氣板21、一共振片22、一壓電致動器23、一第一絕緣片24、一導電片25及第二絕緣片26等結構,其中壓電致動器23對應於共振片22而設置,並使進氣板21、共振片22、壓電致動器23、第一絕緣片24、導電片25及第二絕緣片26等依序堆疊設置。
如第5A圖、第5B圖及第6C圖所示,上述進氣板21具有至少一進氣孔211、至少一匯流排槽212及一匯流腔室213,於本實施例中,進氣孔211之數量以4個為較佳,但不以此為限。進氣孔211係貫穿進氣板21,用以供氣體順應大氣壓力之作用而自進氣孔211流入微型泵2內。進氣板21上具有至少一匯流排槽212,其數量與位置與進氣板21另一表面之進氣孔211對應設置,本實施例之進氣孔211其數量為4個,與其對應之匯流排槽212其數量亦為4個;匯流腔室213位於進氣板21的中心處,前述之4個匯流排槽212的一端連通於對應之進氣孔211,其另一端則連通於進氣板21的中心處之匯流腔室213,藉此可將自進氣孔211進入匯流排槽212之氣體引導並匯流集中至匯流腔室213。於本實施例中,進氣板21具有一體成型的進氣孔211、匯流排槽212及匯流腔室213。於一些實施例中,進氣板21之材質可為不鏽鋼材質所構成,但不以此為限。於另一些實施例中,匯流腔室213之深度與匯流排槽212之深度相同,但不以此為限。
上述共振片22係由一可撓性材質所構成,但不以此為限,且於共振片22上具有一中空孔221,係對應於進氣板21之匯流腔室213而設置,供氣體通過。於另一些實施例中,共振片22係可由一銅材質所構成,但不以此為限。
上述壓電致動器23係由一懸浮板231、一外框232、至少一支架233以及一壓電元件234所共同組裝而成;懸浮板231為一正方形型態,並可彎曲振動,外框232環繞懸浮板231設置,至少一支架233連接於懸浮板231與外框232之間,提供彈性支撐的效果,壓電元件234亦為正方形型態,貼附於懸浮板231的一表面,用以施加電壓產生形變以驅動懸浮板231彎曲振動,且壓電元件234的邊長小於或等於懸浮板231的邊長;其中,懸浮板231、外框232及支架233之間具有複數個空隙235,空隙235供氣體通過;此外,壓電致動器23更包含一凸部236,凸部236設置於懸浮板231的另一表面,並與壓電元件234相對設置於懸浮板231的兩表面。
如第6A圖所示,進氣板21、共振片22、壓電致動器23、第一絕緣片24、導電片25、第二絕緣片26依序推疊設置,壓電致動器23的懸浮板231其厚度小於外框232的厚度,當共振片22堆疊於壓電致動器23時,壓電致動器23的懸浮板231、外框232與共振片22之間可形成一腔室空間27。
請再參閱第6B圖,微型泵2的另一實施例,其元件與前一實施例(第6A圖)相同,故不加以贅述,其差異在於,壓電致動器23的懸浮板231以沖壓成型以遠離共振片22的方向延伸,並未與外框232位於同一水平;進氣板21、共振片22、壓電致動器23、第一絕緣片24、導電片25、第二絕緣片26依序堆疊結合後,其中懸浮板231一表面與共振片22之間形成一腔室間距,腔室間距將會影響微型泵2的傳輸效果,故維持一固定的腔室間距對於微型泵2提供穩定的傳輸效率是十分重要,如此微型泵2對懸浮板231採用沖壓方式成型,使其凹陷,讓懸浮板231一表面與外框232一表面兩者為非共平面,亦即懸浮板231一表面與外框232一表面不同平面,形成落差,且懸浮板231一表面遠離外框232一表面,使得壓電致動器23之懸浮板231凹陷形成一空間得與共振片22構成一可調整之腔室間距,直接透過將上述壓電致動器23之懸浮板231採以成形凹陷構成一腔室空間的結構改良,如此一來,所需的腔室間距得以透過調整壓電致動器23之懸浮板231成形凹陷距離來完成,有效地簡化了調整腔室間距的結構設計,同時也達成簡化製程,縮短製程時間等優點。
為了瞭解上述微型泵2提供氣體傳輸之輸出作動方式,請繼續參閱第6C圖至第6E圖所示,請先參閱第6C圖,壓電致動器23的壓電元件234被施加驅動電壓後產生形變帶動懸浮板231向上位移,此時腔室空間27的容積提升,於腔室空間27內形成了負壓,便汲取匯流腔室213內的氣體進入腔室空間27內,同時共振片22受到共振原理的影響被同步向上帶動,連帶增加了匯流腔室213的容積,且因匯流腔室213內的氣體進入腔室空間27的關係,造成匯流腔室213內同樣為負壓狀態,進而通過進氣孔211及匯流排槽212來吸取氣體進入匯流腔室213內;請再參閱第6D圖,壓電元件234帶動懸浮板231向下位移,壓縮腔室空間27,同樣的,共振片22被懸浮板231因共振而向下位移,同步推擠腔室空間27內的氣體往下通過空隙235向上輸送,將氣體由微型泵2排出;最後請參閱第6E圖,當懸浮板231回復原位時,共振片22仍因慣性而向下位移,此時的共振片22將使壓縮腔室空間27內的氣體向空隙235移動,並且提升匯流腔室213內的容積,讓氣體能夠持續地通過進氣孔211、匯流排槽212來匯聚於匯流腔室213內,透過不斷地重複上述第6C圖至第6E圖所示之微型泵提供氣體傳輸作動步驟,使微型泵能夠使氣體連續自進氣孔211進入進氣板21及共振片22所構成流道產生壓力梯度,再由空隙235向上輸送,使氣體高速流動,達到微型泵2傳輸氣體的效果。
本案的微型泵2的另一實施例可為一微機電泵浦2a,請參閱第7A圖及第7B圖,微機電泵浦2a包含有一第一基板21a、一第一氧化層22a、一第二基板23a以及一壓電組件24a;補充說明,本實施例的微機電泵浦2a是透過半導體製程中的磊晶、沉積、微影及蝕刻等製程,理應無法拆解,為了詳述其內部結構,特以分解圖詳述。
第一基板21a為一矽晶片(Si wafer),其厚度介於150至400微米(μm)之間,第一基板21a具有複數個流入孔211a、一第一表面212a、一第二表面213a,於本實施例中,該些流入孔211a的數量為4個,但不以此為限,且每個流入孔211a皆由第二表面213a貫穿至第一表面212a,而流入孔211a為了提升流入效果,將流入孔211a自第二表面213a至第一表面212a呈現漸縮的錐形。
第一氧化層22a為一二氧化矽(SiO2)薄膜,其厚度介於10至20微米(μm)之間,第一氧化層22a疊設於第一基板21a的第一表面212a上,第一氧化層22a具有複數個匯流通道221a以及一匯流腔室222a,匯流通道221a與第一基板21a的流入孔211a其數量及位置相互對應。於本實施例中,匯流通道221a的數量同樣為4個,4個匯流通道222a的一端分別連通至第一基板21a的4個流入孔211a,而4個匯流通道221a的另一端則連通於匯流腔室222a,讓氣體分別由流入孔211a進入之後,通過其對應相連之匯流通道221a後匯聚至匯流腔室222a內。
第二氧化層232a為一氧化矽層其厚度介於0.5至2微米(μm)之間,形成於矽晶片層231a上,呈中空環狀,並與矽晶片層231a定義一振動腔室2321a。矽材層233a呈圓形,位於第二氧化層232a且結合至第一氧化層22a,矽材層233a為二氧化矽(SiO2)薄膜,厚度介於2至5微米(μm)之間,具有一穿孔2331a、一振動部2332a、一固定部2333a、一第三表面2334a及一第四表面2335a。穿孔2331a形成於矽材層233a的中心,振動部2332a位於穿孔2331a的周邊區域,且垂直對應於振動腔室2321a,固定部2333a則為矽材層233a的周緣區域,由固定部2333a固定於第二氧化層232a,第三表面2334a與第二氧化層232a接合,第四表面2335a與第一氧化層22a接合;壓電組件24a疊設於矽晶片層231a的致動部2311a。
壓電組件24a包含有一下電極層241a、壓電層242a、絕緣層243a及上電極層244a,下電極層241a疊置於矽晶片層231a的致動部2311a,而壓電層242a疊置於下電極層241a,兩者透過其接觸的區域做電性連接,此外,壓電層242a的寬度小於下電極層241a的寬度,使得壓電層242a無法完全遮蔽住下電極層241a,在於壓電層242a的部分區域以及下電極層241a未被壓電層242a所遮蔽的區域上疊置絕緣層243a,最後在於絕緣層243a以及未被絕緣層243a遮蔽的壓電層242a的區域上疊置上電極層244a,讓上電極層244a得以與壓電層242a接觸來電性連接,同時利用絕緣層243a阻隔於上電極層244a及下電極層241a之間,避免兩者直接接觸造成短路。
請參考第8A至第8C圖,第8A至8C圖為微機電泵浦2a其作動示意圖。請先參考第8A圖,當壓電組件24a的下電極層241a及上電極層244a接收驅動電路板3所傳遞之驅動電壓及驅動訊號(未圖示)後,將其傳導至壓電層242a,壓電層242a接受驅動電壓及驅動訊號後,因逆壓電效應的影響開始產生形變,會帶動矽晶片層231a的致動部2311a開始位移,當壓電組件24a帶動致動部2311a向上位移拉開與第二氧化層232a之間的距離,此時,第二氧化層232a的振動腔室2321a的容積將提升,讓振動腔室2321a內形成負壓,用於將第一氧化層22a的匯流腔室222a內的氣體通過穿孔2331a吸入其中。請繼續參閱第8B圖,當致動部2311a受到壓電組件24a的牽引向上位移時,矽材層233a的振動部2332a會因共振原理的影響向上位移,當振動部2332a向上位移時,會壓縮振動腔室2321a的空間並且推動振動腔室2321a內的氣體往矽晶片層231a的流體通道2314a移動,讓氣體能夠通過流體通道2314a向上排出,在振動部2332a向上位移來壓縮振動腔室2321a的同時,匯流腔室222a的容積因振動部2332a位移而提升,其內部形成負壓,將吸取微機電泵浦2a外的氣體由流入孔211a進入其中,最後如第8C圖所示,壓電組件24a帶動矽晶片層231a的致動部2311a向下位移時,將振動腔室2321a的氣體往流體通道2314a推動,並將氣體排出,而矽材層233a的振動部2332a亦受致動部2311a的帶動向下位移,同步壓縮匯流腔室222a的氣體通過穿孔2331a向振動腔室2321a移動,後續再將壓電組件24a帶動致動部2311a向上位移時,其振動腔室2321a的容積會大幅提升,進而有較高的汲取力將氣體吸入振動腔室2321a,再重複以上的動作,以至於透過壓電組件24a持續帶動致動部2311a上下位移且來連動振動部2332a上下位移,透過改變微機電泵浦2a的內部壓力,使其不斷地汲取及排出氣體,藉此以完成微機電泵浦2a的動作。
最後請參閱第1A圖及第9圖,本案的氣體偵測模組氣體路徑之設計為側面進氣及側面出氣,如此可以將氣體偵測模組嵌設於一行動裝置7內應用,而氣體偵測模組整體結構設計也可以達成薄型化,其較佳的長度L可介於20mm至30mm之間,較佳的寬度W可介於10mm至20mm之間,較佳的厚度H可介於1mm至6mm之間,搭配於行動裝置7上使用,並與行動裝置7側壁上的進氣入口7a及出氣出口7b對應形成側面進氣及側面出氣,使本案的氣體偵測模組可輕易地嵌設於行動裝置7內實施應用,其中,行動裝置7可為智慧型手機、智慧型手錶等裝置;此外,請參閱第10圖,本案的氣體偵測模組之較佳的長度介於20mm至30mm、較佳的寬度介於10mm至20mm、較佳的厚度介於1mm至6mm之間時,亦可組裝於可攜式電子裝置6內,可攜式電子裝置6可為行動電源、空氣品質偵測裝置、空氣清淨器等裝置。
綜上所述,本案所提供之氣體偵測模組,透過基座的側壁面形成進氣凹面及出氣凹面,並於基座表面形成進氣槽區及出氣槽區,將進氣凹面氣槽區相通,出氣凹面與出氣槽區相通,再以薄膜封蓋進氣槽區與出氣槽區,得以實現利用側面進氣以及側面出氣的效果,再輔以微型泵來傳輸氣體,且讓本案之基座、微型泵、驅動電路板及氣體傳感器構成一氣體偵測模組,且能夠輕易的嵌設於行動裝置或可攜式電子裝置,與其搭配,極具產業利用性及進步性。
1:基座 11:第一表面 12:第二表面 13:側壁面 13a:進氣凹面 13b:出氣凹面 14:容置空間 14a:微型泵承載區 14b:偵測區 14c:導氣通路區 14d:通氣缺口 14e:連通開口 15:進氣槽區 15a:進氣通孔 15b:進氣凹槽 16:出氣槽區 16a:出氣通孔 16b:出氣凹槽 2:微型泵 21:進氣板 211:進氣孔 212:匯流排槽 213:匯流腔室 22:共振片 221:中空孔 23:壓電致動器 231:懸浮板 232:外框 233:支架 234:壓電元件 235:空隙 236:凸部 24:第一絕緣片 25:導電片 26:第二絕緣片 27:腔室空間 2a:微機電泵浦 21a:第一基板 211a:流入孔 212a:第一表面 213a:第二表面 22a:第一氧化層 221a:匯流通道 222a:匯流腔室 23a:第二基板 231a:矽晶片層 2311a:致動部 2312a:外周部 2313a:連接部 2314a:流體通道 232a:第二氧化層 2321a:振動腔室 233a:矽材層 2331a:穿孔 2332a:振動部 2333a:固定部 2334a:第三表面 2335a:第四表面 24a:壓電組件 241a:下電極層 242a:壓電層 243a:絕緣層 244a:上電極層 3:驅動電路板 4:氣體傳感器 5:薄膜 6:可攜式電子裝置 7:行動裝置 7a:進氣入口 7b:出氣出口 L:長度 W:寬度 H:厚度
第1A圖為本案氣體偵測模組之外觀示意圖。 第1B圖為本案氣體偵測模組之薄膜在基座上封蓋位置之分解示意圖。 第1C圖為本案氣體偵測模組之相關構件分解示意圖。 第2圖為本案氣體偵測模組之基座上組裝結合微型泵示意圖。 第3圖為本案氣體偵測模組之氣體路徑剖面示意圖。 第4圖為本案氣體偵測模組之另一角度視得氣體路徑剖面示意圖。 第5A圖為本案氣體偵測模組之微型泵分解示意圖。 第5B圖為本案氣體偵測模組之微型泵另一角度視得分解示意圖。 第6A圖為本案氣體偵測模組之微型泵剖面示意圖。 第6B圖為本案氣體偵測模組之微型泵另一實施例剖面示意圖。 第6C圖至第6E圖為第6A圖之微型泵作動示意圖。 第7A圖為微機電泵浦剖面示意圖。 第7B圖為微機電泵浦分解示意圖。 第8A圖至第8C圖為微機電泵浦作動示意圖。 第9圖為本案氣體偵測模組嵌設配置在行動裝置示意圖。 第10圖為本案氣體偵測模組組合配置在可攜式電子裝置之剖面示意圖。
1:基座
11:第一表面
12:第二表面
13:側壁面
13a:進氣凹面
13b:出氣凹面
15:進氣槽區
15a:進氣通孔
15b:進氣凹槽
16:出氣槽區
16a:出氣通孔
16b:出氣凹槽
5:薄膜

Claims (12)

  1. 一種氣體偵測模組,包含: 一基座,包含: 一第一表面; 一第二表面,相對於該第一表面; 複數個側壁面,自該第一表面側邊縱向延伸至該第二表面側邊所形成,其中一該側壁面凹陷一進氣凹面及一出氣凹面,該進氣凹面及該出氣凹面之間為間隔設置; 一容置空間,自該第二表面朝該第一表面凹陷在該側壁面之內區域空間所形成,該容置空間並區隔出一微型泵承載區、一偵測區及一導氣通路區,且該微型泵承載區與該導氣通路區透過一通氣缺口相互連通,以及該偵測區與該導氣通路區透過一連通開口相互連通; 一進氣槽區,自該第一表面凹陷形成,並設置一進氣通孔,與該導氣通路區連通,以及設置有一通氣凹槽,連通到該側壁面之該進氣凹面;以及 一出氣槽區,自該第一表面凹陷形成,並設置一出氣通孔,與該微型泵承載區連通,以及設置有一出氣凹槽,連通到該側壁面之該出氣凹面; 一微型泵,容設於該微型泵承載區,而封蓋該出氣通孔; 一驅動電路板,封蓋貼合該基座之該第二表面上,以構成該容置空間之該微型泵承載區、該偵測區及該導氣通路區,形成氣體得由該進氣槽區之該進氣通孔進入,再由該出氣槽區之該出氣通孔排出之一導氣路徑; 一氣體傳感器,電性連接該驅動電路板上,並對應容設於該偵測區,以對通過氣體做偵測;以及 一薄膜,貼附封蓋該進氣槽區及該出氣槽區,使氣體得由該側壁面之該進氣凹面進氣,並經該通氣凹槽進入該進氣槽區,再由該進氣通孔進入該導氣路徑,再由該出氣槽區之該出氣通孔排出,並透過該出氣凹槽與該側壁面之該出氣凹面連通而形成側面排氣; 其中,該基座、該微型泵、該驅動電路板、該氣體傳感器以及該薄膜以微小材料製出之模組結構,且該模組結構具有一長度、一寬度及一高度,其中該微型泵驅動加速導送外部氣體由該側壁面之該進氣凹面形成側面進氣導入該導氣通路區,並通過該偵測區之內該氣體傳感器做偵測,導入氣體再透過該微型泵導送,再由該出氣槽區之該出氣通孔排出,並透過該出氣凹槽與該側壁面之該出氣凹面連通形成側面排氣。
  2. 如申請專利範圍第1項所述之氣體偵測模組,其中該模組結構之該長度介於1微米至999微米、該寬度介於1微米至999微米以及該高度介於1微米至999微米所構成的體積。
  3. 如申請專利範圍第1項所述之氣體偵測模組,其中該該模組結構之該長度介於1奈米至999奈米、該寬度介於1奈米至999奈米以及該高度介於1奈米至999奈米所構成的體積。
  4. 如申請專利範圍第1項所述之氣體偵測模組,其中該氣體偵測模組長度介於2mm至30mm之間,寬度介於2mm至20mm之間,厚度介於1mm至6mm之間。
  5. 如申請專利範圍第1項所述之氣體偵測模組,其中該氣體傳感器為一揮發性有機物傳感器。
  6. 如申請專利範圍第1項所述之氣體偵測模組,其中該微型泵包含有: 一進氣板,具有至少一進氣孔、至少一對應該進氣孔位置之匯流排槽以及一匯流腔室,該進氣孔用以導入氣體,該匯流排槽用以引導自該進氣孔導入之氣體至該匯流腔室; 一共振片,具有一中央孔,該中央孔對應該匯流腔室的位置,且周圍為一可動部;以及 一壓電致動器,與該共振片在位置上相對應設置; 其中,該進氣板、該共振片以及該壓電致動器係依序堆疊設置,且該共振片與該壓電致動器之間形成一腔室空間,用以使該壓電致動器受驅動時,使該氣體由該進氣板之該進氣孔導入,經該匯流排槽匯集至該匯流腔室,再通過該共振片之該中央孔,使得該壓電致動器與該共振片之該可動部產生共振以傳輸該氣體。
  7. 如申請專利範圍第6項所述之氣體偵測模組,其中,該壓電致動器包括: 一懸浮板,具有一正方形形態,並且可彎曲振動; 一外框,環繞設置於該懸浮板之外側; 至少一支架,連接於該懸浮板與該外框之間,以提供彈性支撐;以及 一壓電元件,具有一邊長,該邊長係小於或等於該懸浮板之一邊長,且該壓電元件貼附於該懸浮板之一表面上,用以接受電壓以驅動該懸浮板彎曲振動。
  8. 如申請專利範圍第6項所述之氣體偵測模組,其中該壓電致動器包含: 一懸浮板,具有一凸部; 一外框,環繞設置於該懸浮板之外側; 至少一支架,連接於該懸浮板與該外框之間,以提供彈性支撐該懸浮板;以及 一壓電元件,貼附於該懸浮板之一表面上,用以施加電壓以驅動該懸浮板彎曲振動; 其中,該至少一支架成形於該懸浮板與該外框之間,並使該懸浮板之一表面與該外框之一表面形成為非共平面結構,且使該懸浮板之一表面與該共振片保持一腔室間距。
  9. 如申請專利範圍第6項所述之氣體偵測模組,其中該微型泵進一步包括一第一絕緣片、一導電片以及一第二絕緣片,其中該進氣板、該共振片、該壓電致動器、該第一絕緣片、該導電片及該第二絕緣片係依序堆疊設置。
  10. 如申請專利第1項所述之氣體偵測模組,其中該氣體偵測模組長度介於20mm至30mm之間,寬度介於10mm至20mm之間,厚度介於1mm至6mm之間。
  11. 如申請專利範圍第1項所述之氣體偵測模組,其中該微型泵為一微機電泵浦,包含有: 一第一基板,具有複數個流入孔,該些流入孔呈錐形; 一第一氧化層,疊設該第一基板,該第一氧化層具有複數個匯流腔室及一匯流腔室,該些匯流腔室連通於該匯流腔室及該些流入孔之間; 一第二基板,結合至該第一基板,包含: 一矽晶片層,具有: 一致動部,呈圓形; 一外周部,呈中空環狀,環繞於該致動部的外圍; 複數個連接部,分別連接於該致動部與該外周部之間;以及 複數個流體通道,環繞於該致動部的外圍,且分別位於該些連接部之間; 一第二氧化層,形成於該矽晶片層上,呈中空環狀,並與該矽晶片層定義一振動腔室; 一矽材層,呈圓形,位於該第二氧化層且結合至該第一氧化層,具有: 一穿孔,形成於該矽材層的中心; 一振動部,位於該穿孔的周邊區域;以及 一固定部,位於該矽材層的周緣區域;以及 一壓電組件,呈圓形,疊設於該矽晶片層的該致動部。
  12. 如申請專利範圍第11項所述之氣體偵測模組,其中該壓電組件包含有: 一下電極層; 一壓電層,疊置於該下電極層; 一絕緣層,鋪設於該壓電層之部分表面及該下電極層之部分表面;以及 一上電極層,疊置於該絕緣層及該壓電層未設有該絕緣層之其餘表面,用以與該壓電層電性連接。
TW108140536A 2019-10-09 2019-11-07 氣體偵測模組 TWI710759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/016,618 US11614385B2 (en) 2019-10-09 2020-09-10 Gas detecting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108136740 2019-10-09
TW108136740 2019-10-09

Publications (2)

Publication Number Publication Date
TWI710759B TWI710759B (zh) 2020-11-21
TW202115372A true TW202115372A (zh) 2021-04-16

Family

ID=74202511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140536A TWI710759B (zh) 2019-10-09 2019-11-07 氣體偵測模組

Country Status (2)

Country Link
US (1) US11614385B2 (zh)
TW (1) TWI710759B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114081246B (zh) * 2021-11-19 2024-04-26 广东汉卫检测科技有限公司 一种空气采集手环

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522916B (zh) * 2006-08-02 2012-09-05 三星电子株式会社 薄膜化学分析设备和使用该设备的分析方法
KR101722103B1 (ko) 2009-06-05 2017-03-31 엑스트랄리스 테크놀로지 리미티드 가스 탐지기 장치
TWM391652U (en) 2010-06-14 2010-11-01 Faxsonde Inc Switching device of multi-channel sampling gas
EP2706838B1 (en) * 2011-05-10 2016-11-09 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Controllable scent sample dispenser
JP6256933B2 (ja) * 2013-05-23 2018-01-10 木村 光照 濃縮機能を有する水素ガスセンサとこれに用いる水素ガスセンサプローブ
CN103411864B (zh) * 2013-08-05 2015-12-30 深迪半导体(上海)有限公司 基于结构共振测量气体悬浮颗粒浓度的mems传感器
US9726579B2 (en) * 2014-12-02 2017-08-08 Tsi, Incorporated System and method of conducting particle monitoring using low cost particle sensors
CN105093018A (zh) 2015-08-05 2015-11-25 国网浙江省电力公司湖州供电公司 一种应用于电力系统中的气体可视化监测平台
CN205374412U (zh) 2016-01-15 2016-07-06 深圳市艾姆生电气有限公司 一种气体传感器模块盒
WO2018024984A1 (fr) * 2016-08-02 2018-02-08 Finsecur Détecteur de fumée, de gaz ou de particules, système et procédé de détection de fumée, de gaz ou de particules
JP6740949B2 (ja) * 2017-03-31 2020-08-19 日立金属株式会社 ガスセンサ
CN207571103U (zh) 2017-11-27 2018-07-03 上海大族富创得科技有限公司 多点气体监测装置
US10837891B2 (en) * 2017-12-11 2020-11-17 Honeywell International Inc. Miniature optical particulate matter sensor module
TWI651467B (zh) * 2018-03-30 2019-02-21 研能科技股份有限公司 致動傳感模組
CN208921676U (zh) 2018-04-28 2019-05-31 西安智慧能源科技有限公司 一种空气环境分析装置
CN208780679U (zh) 2018-08-27 2019-04-23 山东泰诺检测科技有限公司 一种移动式室内空气检测装置
CN209264499U (zh) 2018-08-30 2019-08-16 研能科技股份有限公司 微粒检测模块
TWM581637U (zh) 2019-03-29 2019-08-01 研能科技股份有限公司 Microelectromechanical pump

Also Published As

Publication number Publication date
TWI710759B (zh) 2020-11-21
US11614385B2 (en) 2023-03-28
US20210108993A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
TWI708934B (zh) 微粒偵測模組
TWM581637U (zh) Microelectromechanical pump
TW202035871A (zh) 微機電泵浦
TWI710759B (zh) 氣體偵測模組
TWI724598B (zh) 血壓量測模組
CN211576880U (zh) 微粒检测模块
TWI735044B (zh) 微粒偵測模組
TWM574228U (zh) 具微粒偵測模組之行動裝置
CN211603081U (zh) 气体检测模块
CN112649561B (zh) 气体检测模块
TWI681117B (zh) 微機電泵浦
TWI720649B (zh) 氣體偵測模組
CN210775142U (zh) 微粒检测模块
TWI728870B (zh) 微粒偵測裝置
TWM575864U (zh) Particle monitoring module
CN211825897U (zh) 气体检测模块
TWI697173B (zh) 具氣體偵測之行動電源裝置
CN112649559B (zh) 气体检测模块
TWI722812B (zh) 血壓量測模組
CN112649558B (zh) 气体检测模块
CN211955369U (zh) 气体检测模块
TW202118445A (zh) 血壓量測模組
TWI747414B (zh) 微粒偵測裝置
CN110873685A (zh) 微粒检测模块
CN110873681A (zh) 具有微粒检测模块的行动装置