TW202114241A - 光接收元件、距離測量模組及電子儀器 - Google Patents

光接收元件、距離測量模組及電子儀器 Download PDF

Info

Publication number
TW202114241A
TW202114241A TW109116852A TW109116852A TW202114241A TW 202114241 A TW202114241 A TW 202114241A TW 109116852 A TW109116852 A TW 109116852A TW 109116852 A TW109116852 A TW 109116852A TW 202114241 A TW202114241 A TW 202114241A
Authority
TW
Taiwan
Prior art keywords
pixel
receiving element
light
light receiving
photodiode
Prior art date
Application number
TW109116852A
Other languages
English (en)
Inventor
蛯子芳樹
成瀬純次
橫川創造
Original Assignee
日商索尼半導體解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼半導體解決方案公司 filed Critical 日商索尼半導體解決方案公司
Publication of TW202114241A publication Critical patent/TW202114241A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本發明提供一種光接收元件,其包含:一晶片上透鏡;一互連層;及一半導體層,其經配置於該晶片上透鏡與該互連層之間,該半導體層包含:一光電二極體;一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分;及一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。

Description

光接收元件、距離測量模組及電子儀器
本技術係關於一種光接收元件、距離測量模組及電子儀器,且特定而言係關於一種可減少入射光洩漏至一相鄰像素中之光接收元件、距離測量模組及電子儀器。
習知上,使用一間接ToF (飛行時間)方法之距離測量系統係已知的。在此等距離測量系統中,需要具有能夠分配信號電荷之一感測器,該等信號電荷係藉由接收當使用一LED (發光二極體)或一雷射依一特定相位照射之作用光經施加至一目標物件以高速到達不同區時反射之光而獲得。
鑑於此,已提出一種其中將一電壓直接施加至一感測器之基板以在基板內部產生一電流使得可高速調變基板內部之一寬區之技術。 [引文清單] [專利文獻]
[PTL 1] 日本專利申請公開案第2011-86904號
[技術問題]
在諸多情況中使用具有約940 nm之一波長之近紅外線作為間接ToF方法中使用之一光接收元件之光源。由於用作一半導體層之矽相對於近紅外線具有一低吸收係數及低量子效率,故採用其中一光路徑長度經延伸以增加量子效率之一結構。然而,存在關於入射光洩漏至相鄰像素中之一擔憂。
本技術已鑑於上述境況而製作且具有減少入射光洩漏至一相鄰像素中之一目的。 [問題之解決方案]
一種根據本技術之一第一實施例之光接收元件,其包含: 一晶片上透鏡; 一互連層;及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
一種根據本技術之一第二實施例之距離測量模組,其包含: 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
一種根據本技術之一第三實施例之電子儀器,其包含: 一距離測量模組,其包含 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
在本技術之第一至第三實施例中,一種光接收元件具備:一晶片上透鏡;一互連層;及一半導體層,其經配置於該晶片上透鏡與該互連層之間,且該半導體層具備:一光電二極體;一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分;及一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
該光接收元件、該距離測量模組及該電子儀器可為獨立設備,或可為嵌入於其他設備中之模組。
相關申請案之交叉參考
本申請案主張2019年9月25日申請之日本優先權專利申請案JP 2019-174416及2020年2月3日申請之日本優先權專利申請案JP 2020-016233之權益,該等案之各者之全部內容以引用方式併入本文中。
在後文中,將描述用於實行本技術之模式(下文稱為實施例)。應注意,將依以下順序給出描述。 1. 光接收元件之組態實例 2. 與像素之第一組態實例相關之截面視圖 3. 像素之電路組態實例 4. 像素之平面視圖 5. 像素之另一電路組態實例 6. 像素之平面視圖 7. 與像素之第二組態實例相關之截面視圖 8. 與像素之第三組態實例相關之截面視圖 9. 與像素之第四組態實例相關之截面視圖 10. 與像素之第五組態實例相關之截面視圖 11. 與像素之第六組態實例相關之截面視圖 12. 與像素之第七組態實例相關之截面視圖 13. IR成像感測器之第一組態實例 14. IR成像感測器之第二組態實例 15. IR成像感測器之第三組態實例 16. IR成像感測器之第四組態實例 17. SPAD像素之第一組態實例 18. SPAD像素之第二組態實例 19. SPAD像素之第三組態實例 20. CAPD像素之組態實例 21. RGBIR成像感測器之組態實例 22. 距離測量模組之組態實例 23. 電子儀器之組態實例 24. 移動體之應用實例
應注意,在以下描述中將參考之圖式中,相同或類似部分將由相同或類似元件符號表示。然而,示意性地展示圖式,且厚度與平面大小之間的關係、各自層之厚度之比或類似者不同於實際情況。此外,即使在圖式當中,一些部分亦可具有彼此不同之大小關係或比。
此外,在以下描述中諸如一上側及一下側之一方向之定義僅為了繪示方便而給出且並非意欲於限制本發明之技術理念。例如,一上側及一下側分別在將一目標物件旋轉90°進行觀察時轉換成一右側及一左側,且在將該目標物件旋轉180°進行觀察時上下顛倒。
<1. 光接收元件之組態實例> 圖1係展示應用本技術之一光接收元件之一示意性組態實例之一方塊圖。
圖1中所展示之一光接收元件1係基於一間接ToF方法輸出距離測量資訊之一ToF感測器。
光接收元件1接收自一規定光源照射之光(照射光)經施加至一物件時反射之光(反射光)且接著輸出其中關於至該物件之一距離之資訊經儲存為一深度值之一深度影像。應注意,自光源照射之照射光係例如具有780 nm至1000 nm之一波長之紅外光且係依一規定循環重複地接通/關斷之脈衝光。
光接收元件1包含:一像素陣列單元21,其經形成於一半導體基板(未繪示)上;及一周邊電路單元,其與像素陣列單元21整合於相同半導體基板上。例如,該周邊電路單元包含一垂直驅動單元22、一行處理單元23、一水平驅動單元24、一系統控制單元25及類似者。
一信號處理單元26及一資料儲存單元27亦經設置於光接收元件1中。應注意,信號處理單元26及資料儲存單元27可與光接收元件1安裝於相同基板上或可經安置於不同於光接收元件1之一模組中之一基板上。
像素陣列單元21產生對應於經接收光量之電荷,且具有其中輸出對應於電荷之信號之像素10在一列方向及一行方向上以一矩陣形狀二維地配置之一組態。即,像素陣列單元21包含多個像素10,其等光電地轉換入射光且輸出對應於作為光電轉換之一結果而獲得之電荷之信號。在此,列方向表示像素10在一水平方向上之一配置方向,且行方向表示像素10在一垂直方向上之一配置方向。列方向係圖式中之水平方向且行方向係圖式中之垂直方向。下文將參考圖2及後續圖式描述像素10之細節。
在像素陣列單元21中,相對於一矩陣形像素配置,一像素驅動線28針對每個像素列在一列方向上佈線,且兩個垂直信號線29針對每個像素行沿著一行方向佈線。像素驅動線28傳送用於當自像素10讀出一信號時執行驅動之一驅動信號。應注意,在圖1中,像素驅動線28被繪示為一個互連件,但不限於一件。像素驅動線28之一端經連接至對應於垂直驅動單元22之各列之一輸出端。
垂直驅動單元22由一移位暫存器、一位址解碼器或類似者構成,且同時或以列為單位驅動像素陣列單元21之像素10。即,垂直驅動單元22構成結合控制垂直驅動單元22之系統控制單元25控制像素陣列單元21之像素10之各者之一操作之一驅動單元。
與垂直驅動單元22之驅動控制對應、自一像素列中之像素10之各者輸出之一偵測信號透過垂直信號線29輸入至行處理單元23。行處理單元23相對於透過垂直信號線29自像素10輸出之偵測信號執行預定信號處理,且在信號處理之後暫時儲存偵測信號。具體而言,行處理單元23執行雜訊移除處理、類比轉數位(AD)轉換處理或類似者作為信號處理。
水平驅動單元24由一移位暫存器、一位址解碼器或類似者構成,且循序地選擇對應於行處理單元23之一像素行之一單元電路。針對行處理單元23中之每個單元電路經受信號處理之一偵測信號歸因於水平驅動單元24之選擇性掃描而循序地輸出至信號處理單元26。
系統控制單元25由產生各種時序信號之一時序產生器或類似者構成,且基於該時序產生器中產生之各種時序信號執行垂直驅動單元22、行處理單元23、水平驅動單元24或類似者之驅動控制。
信號處理單元26具有至少一運算處理功能,且基於自行處理單元23輸出之偵測信號執行各種信號處理,諸如運算處理。在信號處理單元26中進行信號處理時,資料儲存單元27暫時儲存處理所需之資料。
如上文所描述般組態之光接收元件1輸出其中關於至一物件之一距離之資訊作為一深度值儲存於一像素值中之一深度影像。
<2. 與像素之第一組態實例相關之截面視圖> 圖2係展示配置於像素陣列單元21中之一像素10之一第一組態實例之一截面視圖。
光接收元件1包含一半導體基板41(其係一半導體層)及形成於其前表面側(圖中下側)上之一多層互連層42。
半導體基板41由例如矽(Si)製成且經形成為具有例如1 μm至6 μm之一厚度。在半導體基板41中,一N型(第二導電類型)半導體區52在逐像素基礎上形成於一P型(第一導電類型)半導體區51中,藉此在逐像素基礎上形成一光電二極體PD。設置於半導體基板41之前表面及後表面兩者處之P型半導體區51亦用作減小一暗電流之一電洞電荷累積區。
對應於圖2中之一上側之半導體基板41之上表面係半導體基板41之後表面且變為光入射於其上之一光入射表面。在半導體基板41之後表面側上之上表面上,形成一抗反射膜43。
抗反射膜43具有例如一層壓結構,其中一固定電荷膜及氧化物膜彼此層壓且可例如使用具有基於一ALD (原子層沈積)方法之一高介電常數(高k)之一絕緣薄膜。具體而言,可使用氧化鉿(HfO2 )、氧化鋁(Al2 O3 )、氧化鈦(TiO2 )、STO (氧化鍶鈦)或類似者。在圖2之實例中,抗反射膜43包含彼此層壓之氧化鉿膜53、氧化鋁膜54及氧化矽膜55。
在半導體基板41之後表面上及在光電二極體PD之形成區上方,形成具有週期性之微小不規則性之一蛾眼結構部分111。此外,形成於蛾眼結構部分111之上表面上之抗反射膜43亦經形成為具有一蛾眼結構以便對應於半導體基板41之蛾眼結構部分111。
半導體基板41之蛾眼結構部分111具有其中例如規則地(以一格子形圖案)提供具有實質上相同形狀及實質上相同大小之複數個四角錐區之一組態。
蛾眼結構部分111經形成為例如一倒錐結構,其中在光電二極體PD之側上具有頂點之複數個四角錐區經配置以便規則地放置成一直線。
替代地,蛾眼結構部分111可具有一正錐結構,其中在一晶片上透鏡47之側上具有頂點之複數個四角錐區經配置以便規則地放置成一直線。複數個四角錐可不規則地放置成一直線,但其等大小及配置可經隨機設定。此外,蛾眼結構部分111之各自四角錐之各自凹陷部分或各自突起部分可具有一特定程度之一曲率且具有一圓形形狀。蛾眼結構部分111可僅具有其中週期性地或隨機地重複不規則性結構且凹陷部分或突起部分具有任何形狀之一結構。
蛾眼結構部分111作為使入射光如上文所描述般繞射之一繞射結構形成於半導體基板41之光入射表面上,藉此可減少該基板之介面處之折射率之一急劇變化及降低由反射光引起之影響。
在抗反射膜43之上表面上及在一相鄰像素10之一邊界部分44 (下文亦稱為像素邊界部分44)處,形成防止入射光入射於相鄰像素上之一像素間遮光膜45。像素間遮光膜45之材料可僅為遮蔽光之一材料,且可例如使用一金屬材料,諸如鎢(W)、鋁(Al)及銅(Cu)。
在抗反射膜43之上表面上及在像素間遮光膜45之上表面上,一平坦化膜46例如由諸如氧化矽(SiO2 )、氮化矽(SiN)及氮氧化矽(SiON)之一絕緣膜或諸如樹脂之一有機材料形成。
此外,在平坦化膜46之上表面上,在逐像素基礎上形成晶片上透鏡47。晶片上透鏡47例如由諸如苯乙烯樹脂、丙烯酸樹脂、苯乙烯-丙烯酸共聚樹脂及矽氧烷樹脂之一樹脂材料製成。由晶片上透鏡47會聚之光有效地入射於光電二極體PD上。
此外,在半導體基板41之後表面側上之像素邊界部分44處,形成一像素間溝槽部分61。像素間溝槽部分61經形成為自半導體基板41之後表面側(在晶片上透鏡47之側上)雕刻直至一基板深度方向上之一規定深度且將相鄰像素彼此分離。包含像素間溝槽部分61之底表面及側壁之一外周邊部分由氧化鉿膜53(其為抗反射膜43之一部分)覆蓋。像素間溝槽部分61防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部,且防止入射光自相鄰像素10洩漏。
此外,在蛾眼結構部分11之中央部分處,形成一像素內溝槽部分112。像素內溝槽部分112經形成為自半導體基板41之後表面側直至在基板深度方向上像素內溝槽部分112未穿透光電二極體PD之一規定深度,且將N型半導體區52之一部分分離。包含像素內溝槽部分112之底表面及側壁之一外周邊部分由氧化鉿膜53(其為抗反射膜43之一部分)覆蓋。像素內溝槽部分112引起入射光經反射且限制於自身像素內以防止入射光穿透一相鄰像素10。
圖3A及圖3B係當自晶片上透鏡47之側查看時之像素間溝槽部分61及像素內溝槽部分112之平面視圖。
如圖3A中所展示,像素間溝槽部分61經形成於以一矩陣形圖案二維地配置之像素10之間的邊界部分處。另一方面,像素內溝槽部分112經形成為一十字形狀使得像素10之矩形平面區在一列方向及一行方向之各者上對半以劃分成四個區。像素內溝槽部分112經定位以便在一平面視圖中與光電二極體PD之區之一部分重疊但依像素內溝槽部分112未穿透光電二極體PD之一深度形成,如自圖2之截面視圖清楚所見。因此,光電二極體PD之區保持完整。
如圖3B中所展示,像素間溝槽部分61及像素內溝槽部分112之一或兩者可未經形成於該等溝槽部分彼此交叉之交叉點處。
再次參考圖2,像素間溝槽部分61及像素內溝槽部分112經形成使得氧化矽膜55 (其為抗反射膜43之最上層之材料)嵌入於自後表面側雕刻之一溝槽(凹槽)。因此,可同時形成氧化矽膜55 (其為抗反射膜43之最上層)、像素間溝槽部分61及像素內溝槽部分112,且像素間溝槽部分61及像素內溝槽部分112由相同材料製成。
然而,像素間溝槽部分61及像素內溝槽部分112可由不同材料製成。例如,像素間溝槽部分61及像素內溝槽部分112之一者可由諸如鎢(W)、鋁(Al)、鈦(Ti)及氮化鈦(TiN)之一金屬材料或多晶矽製成,且另一者可由氧化矽製成。
應注意,像素間溝槽部分61及像素內溝槽部分112在圖2中具有實質上相同深度但在基板厚度方向上可具有不同深度。若像素間溝槽部分61經形成為具有深於像素內溝槽部分112之深度之一深度,則可防止入射光穿透至一相鄰像素中。
同時,在其上形成多層互連層42之半導體基板41之前表面側上,相對於形成於各像素10中之一個光電二極體PD形成兩個傳送電晶體TRG1及TRG2。此外,在半導體基板41之前表面側上,用作暫時保留自光電二極體PD傳送之電荷之電荷累積單元之浮動擴散區FD1及FD2係由集中N型半導體區(N型擴散區)形成。
多層互連層42包含複數個金屬膜M及該等金屬膜M之間的一層間絕緣膜62。圖2展示其中多層互連層42包含一第一金屬膜M1至一第三金屬膜M3之三個層之一實例。
在定位於光電二極體PD之形成區下方之一區(即,在多層互連層42之複數個金屬膜M當中最靠近半導體基板41之第一金屬膜M1之平面視圖中至少部分地與光電二極體PD之形成區重疊之一區)中,諸如銅及鋁之一金屬互連件經形成為一遮光構件63。
遮光構件63遮蔽紅外光,該等紅外光已經由晶片上透鏡47自光入射表面入射於半導體基板41上且已穿過半導體基板41而未在半導體基板41內部進行光電轉換,其中第一金屬膜M1最靠近半導體基板41且防止紅外光穿過定位於第一金屬膜M1下方之第二金屬膜M2及第三金屬膜M3。利用遮光功能,可防止已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光被定位於第一金屬膜M1下方之金屬膜M散射及入射於一相鄰像素上。因此,可防止一相鄰像素對光之錯誤偵測。
此外,遮光構件63亦具有引起已經由晶片上透鏡47自光入射表面入射於半導體基板41上且已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上之功能。據此,可認為遮光構件63亦用作一反射構件。利用反射功能,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,像素10相對於紅外光之敏感度。
應注意,遮光構件63可經結構化以利用除一金屬材料之外的多晶矽、氧化物膜或類似者反射或遮蔽光。
此外,遮光構件63可不包含金屬膜M之一個層但可包含複數個金屬膜M,其中例如第一金屬膜M1及第二金屬膜M2經形成為一格子形狀。
藉由例如第二金屬膜M2(其為多層互連層42之複數個金屬膜M當中之一規定金屬膜M)中形成一梳齒形狀之圖案,形成一互連電容64。遮光構件63及互連電容64可經形成於相同層(金屬層M)中。然而,當遮光構件63及互連電容64經形成於不同層中時,互連電容64經形成於比遮光構件63更遠離半導體基板41之一層中。換言之,遮光構件63經形成為比互連電容64更靠近半導體基板41。
如上文所描述,光接收元件1具有一背照式結構,其中半導體基板41 (其為一半導體層)經配置於晶片上透鏡47與多層互連層42之間且引起入射光自其上形成晶片上透鏡47之後表面側入射於光電二極體PD上。
此外,像素10相對於設置於各像素中之光電二極體PD包含兩個傳送電晶體TRG1及TRG2且經組態以能夠將藉由光電二極體PD進行光電轉換而產生之電荷(電子)分配至浮動擴散區FD1或FD2。
另外,根據第一組態實例之像素10在像素邊界部分44處具有像素間溝槽部分61且在該像素之中央部分處具有像素內溝槽部分112以防止入射光穿透一相鄰像素10,同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
利用上述組態,可根據第一組態實例進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對像素10中之紅外光之敏感度。
<3. 像素之電路組態實例> 圖4展示二維地配置於像素陣列單元21中之像素10之電路組態。
像素10包含作為一光電轉換元件之一光電二極體PD。此外,像素10具有兩個傳送電晶體TRG、兩個浮動擴散區FD、兩個額外電容器FDL、切換電晶體FDG、兩個放大電晶體AMP、兩個重設電晶體RST及兩個選擇電晶體SEL。另外,像素10具有一電荷釋放電晶體OFG。
在此,為了彼此區分,像素10中之兩個傳送電晶體TRG、兩個浮動擴散區FD、兩個額外電容器FDL、兩個切換電晶體FDG、兩個放大電晶體AMP、兩個重設電晶體RST及兩個選擇電晶體SEL將分別稱為傳送電晶體TRG1及TRG2、浮動擴散區FDG1及FDG2、額外電容器FDL1及FDL2、切換電晶體FDG1及FDG2、放大電晶體AMP1及AMP2、重設電晶體RST1及RST2及選擇電晶體SEL1及SEL2,如圖4中所展示。
傳送電晶體TRG、切換電晶體FDG、放大電晶體AMP、選擇電晶體SEL、重設電晶體RST及電荷釋放電晶體OFG包含例如N型MOS電晶體。
當使供應至傳送電晶體TRG1之閘極電極之一傳送驅動信號TRG1進入一作用狀態時,對應地使傳送電晶體TRG1進入一導電狀態且將累積於光電二極體PD中之電荷傳送至浮動擴散區FD1。當使供應至傳送電晶體TRG2之閘極電極之一傳送驅動信號TRG2g進入一作用狀態時,對應地使傳送電晶體TRG2進入一導電狀態且將累積於光電二極體PD中之電荷傳送至浮動擴散區FD2。
浮動擴散區FD1及FD2係暫時保留自光電二極體PD傳送之電荷之電荷累積單元。
當使供應至切換電晶體FDG1之閘極電極之一FD驅動信號FDG1g進入一作用狀態時,對應地使切換電晶體FDG1進入一導電狀態且將額外電容器FDL1連接至浮動擴散區FD1。當使供應至切換電晶體FDG2之閘極電極之一FD驅動信號FDG2g進入一作用狀態時,對應地使切換電晶體FDG2進入一導電狀態且將額外電容器FDL2連接至浮動擴散區FD2。額外電容器FDL1及FDL2係由圖2之互連電容64形成。
當使供應至重設電晶體RST1之閘極電極之一重設驅動信號RSTg進入一作用狀態時,對應地使重設電晶體RST1進入一導電狀態且重設浮動擴散區FD1之電位。當使供應至重設電晶體RST2之閘極電極之重設驅動信號RSTg進入一作用狀態時,對應地使重設電晶體RST2進入一導電狀態且重設浮動擴散區FD2之電位。應注意,當使重設電晶體RST1及RST2進入一作用狀態時,亦使切換電晶體FDG1及FDG2同時進入一作用狀態且亦重設額外電容器FDL1及FDL2。
例如,在其中入射光量為大之一高照度狀態中,垂直驅動單元22使切換電晶體FDG1及FDG2進入一作用狀態以將浮動擴散區FD1及額外電容器FDL1彼此連接且將浮動擴散區FD2及額外電容器FDL2彼此連接。因此,可在一高照度狀態中累積更多電荷。
另一方面,在其中入射光量為小之一低照度狀態中,垂直驅動單元22使切換電晶體FDG1及FDG2進入一非作用狀態以將額外電容器FDL1及FDL2分別與浮動擴散區FD1及FD2分離。因此,可增加轉換效率。
當使供應至電荷釋放電晶體OFG之閘極電極之一釋放驅動信號OFG1g進入一作用狀態時,對應地使電荷釋放電晶體OFG進入一導電狀態且釋放累積於光電二極體PD中之電荷。
當放大電晶體AMP1之源極電極經由選擇電晶體SEL1連接至一垂直信號線29A時,放大電晶體AMP1連接至一恆定電流源(未展示)以構成一源極隨耦器電路。當放大電晶體AMP2之源極電極經由選擇電晶體SEL1連接至一垂直信號線29B時,放大電晶體AMP2連接至一恆定電流源(未展示)以構成一源極隨耦器電路。
選擇電晶體SEL1經連接於放大電晶體AMP1之源極電極與垂直信號線29A之間。當使供應至選擇電晶體SEL1之閘極電極之一選擇信號SEL1g進入一作用狀態時,對應地使選擇電晶體SEL1進入一導電狀態且將自放大電晶體AMP1輸出之一偵測信號VSL1輸出至垂直信號線29A。
選擇電晶體SEL2經連接於放大電晶體AMP2之源極電極與垂直信號線29B之間。當使供應至選擇電晶體SEL2之閘極電極之一選擇信號SEL2g進入一作用狀態時,對應地使選擇電晶體SEL2進入一導電狀態且將自放大電晶體AMP2輸出之一偵測信號VSL2輸出至垂直信號線29B。
像素10之傳送電晶體TRG1及TRG2、切換電晶體FDG1及FDG2、放大電晶體AMP1及AMP2、選擇電晶體SEL1及SEL2以及電荷釋放電晶體OFG係由垂直驅動單元22控制。
在圖4之像素電路中,可省略額外電容器FDL1及FDL2以及控制額外電容器FDL1及FDL2之連接之切換電晶體FDG1及FDG2。然而,當提供額外電容器FDL且根據一入射光量適當地使用時,可保全一高動態範圍。
將簡要地描述像素10之操作。
首先,在開始光接收之前,所有像素執行一重設操作以重設像素10之電荷。即,接通電荷釋放電晶體OFG、重設電晶體RTS1及RST2以及切換電晶體FDG1及FDG2,且釋放光電二極體PD、浮動擴散區FD1及FD2以及額外電容器FDL1及FDL2之經累積電荷。
在釋放經累積電荷之後,所有像素開始光接收。
在一光接收週期中,交替地驅動傳送電晶體TRG1及TRG2。即,在一第一週期中,將傳送電晶體TRG1控制為接通,且將傳送電晶體TRG2控制為關斷。在第一週期中,將由光電二極體PD產生之電荷傳送至浮動擴散區FD1。在第一週期之後的一第二週期中,將傳送電晶體TRG1控制為關斷,且將傳送電晶體TRG2控制為接通。在第二週期中,將由光電二極體PD產生之電荷傳送至浮動擴散區FD2。因此,將由光電二極體PD產生之電荷分配至浮動擴散區FD1及FD2且累積於浮動擴散區FD1及FD2中。
接著,在光接收週期結束之後,線序地選擇像素陣列單元21之各自像素10。在選定像素10中,接通選擇電晶體SEL1及SEL2。因此,累積於浮動擴散區FD1中之電荷經由垂直信號線29A作為偵測信號VSL1輸出至行處理單元23。累積於浮動擴散區FD2中之電荷經由垂直信號線29B作為偵測信號VSL2輸出至行處理單元23。
一個光接收操作以上文所描述之方式結束,且執行自一重設操作開始之下一光接收操作。
由像素10接收之反射光基於自光源照射反射光之一時序根據至一目標物件之一距離而延遲。累積於兩個浮動擴散區FD1及FD2中之電荷之分配比取決於對應於至目標物件之距離之一延遲時間而變化。因此,可基於累積於兩個浮動擴散區FD1及FD2中之電荷之分配比計算至該物件之距離。
<4. 像素之平面視圖> 圖5係展示圖4中所展示之像素電路之一配置實例之一平面視圖。
在圖5中,一水平方向對應於圖1中之列方向(水平方向),且一垂直方向對應於圖1中之行方向(垂直方向)。
如圖5中所展示,光電二極體PD在矩形像素10之中央部分之區中形成為N型半導體區52。
在光電二極體PD之外部且沿著矩形像素10之四側之一個規定側,線性地並排配置傳送電晶體TRG1、切換電晶體FDG1、重設電晶體RST1、放大電晶體AMP1及選擇電晶體SEL1。此外,在光電二極體PD之外部且沿著矩形像素10之四側之另一側,線性地並排配置傳送電晶體TRG2、切換電晶體FDG2、重設電晶體RST2、放大電晶體AMP2及選擇電晶體SEL2。
在不同於其上形成傳送電晶體TRG、切換電晶體FDG、重設電晶體RST、放大電晶體AMP及選擇電晶體SEL之兩側之另一側上,配置電荷釋放電晶體OFG。
應注意,像素電路之配置不限於圖4中所展示之實例但可包含其他配置。
<5. 像素之另一電路組態實例> 圖6展示像素10之另一電路組態實例。
在圖6中,對應於圖4中所展示之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
像素10包含作為一光電轉換元件之一光電二極體PD。此外,像素10具有兩個第一傳送電晶體TRGa、兩個第二傳送電晶體TRGb、兩個記憶體MEM、兩個浮動擴散區FD、兩個重設電晶體RST、兩個放大電晶體AMP及兩個選擇電晶體SEL。
在此,為了彼此區分,像素10中之兩個第一傳送電晶體TRGa、兩個第二傳送電晶體TRGb、兩個記憶體MEM、兩個浮動擴散區FD、兩個重設電晶體RST、兩個放大電晶體AMP及兩個選擇電晶體SEL將分別稱為第一傳送電晶體TRGa1及TRGa2、第二傳送電晶體TRGb1及TRGb2、傳送電晶體TRG1及TRG2、記憶體MEM1及MEM2、浮動擴散區FD1及FD2、放大電晶體AMP1及AMP2以及選擇電晶體SEL1及SEL2,如圖6中所展示。
據此,圖4之像素電路與圖6之像素電路之間的比較展示傳送電晶體TRG經改變成兩種類型之第一傳送電晶體TRGa及第二傳送電晶體TRGb,且添加記憶體MEM。此外,省略額外電容器FDL及切換電晶體FDG。
第一傳送電晶體TRGa、第二傳送電晶體TRGb、重設電晶體RST、放大電晶體AMP及選擇電晶體SEL包含例如N型MOS電晶體。
在圖4中所展示之像素電路中,由光電二極體PD產生之電荷經傳送至浮動擴散區FD1及FD2且由浮動擴散區FD1及FD2保留。然而,在圖6之像素電路中,電荷經傳送至作為電荷累積單元提供之記憶體MEM1及MEM2且由記憶體MEM1及MEM2保留。
即,當使供應至第一傳送電晶體TRGa1之閘極電極之一第一傳送驅動信號TRGa1g進入一作用狀態時,對應地使第一傳送電晶體TRGa1進入一導電狀態且將累積於光電二極體PF中之電荷傳送至記憶體MEM1。當使供應至第一傳送電晶體TRGa2之閘極電極之一第一傳送驅動信號TRGa2g進入一作用狀態時,對應地使第一傳送電晶體TRGa2進入一導電狀態且將累積於光電二極體PF中之電荷傳送至記憶體MEM2。
此外,當使供應至第二傳送電晶體TRGb1之閘極電極之一第二傳送驅動信號TRGb1g進入一作用狀態時,對應地使第二傳送電晶體TRGb1進入一導電狀態且將累積於記憶體MEM1中之電荷傳送至浮動擴散區FD1。當使供應至第二傳送電晶體TRGb2之閘極電極之一第二傳送驅動信號TRGb2g進入一作用狀態時,對應地使第二傳送電晶體TRGb2進入一導電狀態且將累積於記憶體MEM2中之電荷傳送至浮動擴散區FD2。
當使供應至重設電晶體RST1之閘極電極之一重設驅動信號RST1g進入一作用狀態時,對應地使重設電晶體RST1進入一導電狀態且重設浮動擴散區FD1之電位。當使供應至重設電晶體RST2之閘極電極之一重設驅動信號RST2g進入一作用狀態時,對應地使重設電晶體RST2進入一導電狀態且重設浮動擴散區FD2之電位。應注意,當使重設電晶體RST1及RST2進入一作用狀態時,亦使第二傳送電晶體TRGb1及TRGb2同時進入一作用狀態且亦重設記憶體MEM1及MEM2。
在圖6之像素電路中,將由光電二極體PD產生之電荷分配至記憶體MEM1及MEM2且累積於記憶體MEM1及MEM2中。接著,將由記憶體MEM1及MEM2保留之電荷分別傳送至浮動擴散區FD1及FD2,且依讀取電荷之一時序自像素10輸出。
<6. 像素之平面視圖> 圖7係展示圖6中所展示之像素電路之一配置實例之一平面視圖。
在圖7中,一水平方向對應於圖1中之列方向(水平方向),且一垂直方向對應於圖1中之行方向(垂直方向)。
如圖7中所展示,光電二極體PD在矩形像素10之中央部分之區中形成為N型半導體區52。
在光電二極體PD之外部且沿著矩形像素10之四側之一個規定側,線性地並排配置第一傳送電晶體TRGa1、第二傳送電晶體TRGb1、重設電晶體RST1、放大電晶體AMP1及選擇電晶體SEL1。此外,在光電二極體PD之外部且沿著矩形像素10之四側之另一側,線性地並排配置第一傳送電晶體TRGa2、第二傳送電晶體TRGb2、重設電晶體RST2、放大電晶體AMP2及選擇電晶體SEL2。記憶體MEM1及MEM2例如由嵌入式N型擴散區形成。
應注意,像素電路之配置不限於圖7中所展示之實例但可包含其他配置。
<7. 與像素之第二組態實例相關之截面視圖> 圖8係展示像素10之一第二組態實例之一截面視圖。
在圖8中,對應於圖2中所展示之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
圖8之第二組態實例不同於圖2之第一組態實例之處在於,形成為自半導體基板41之後表面側(晶片上透鏡47之側)雕刻直至像素間溝槽部分61未穿透半導體基板41之一規定深度之像素間溝槽部分61由穿透半導體基板41之一像素間溝槽部分121取代。第二組態實例在其他方面類似於第一組態實例。
像素間溝槽部分121經形成使得形成一溝槽以便穿透與半導體基板41之後表面側(晶片上透鏡47之側)或前表面側相對之一側上之一基板表面且接著將氧化矽膜55 (其為抗反射膜43之最上層之材料)嵌入該溝槽中。除諸如氧化矽膜55之一絕緣膜之外,嵌入於該溝槽中作為像素間溝槽部分121之材料可為例如諸如鎢(W)、鋁(Al)、鈦(Ti)及氮化鈦(TiN)之一金屬材料或多晶矽。此外,如同第一組態實例,像素間溝槽部分121及像素內溝槽部分112可並非由相同材料製成但可由不同材料製成。
在形成此一像素間溝槽部分121之情況下,可將相鄰像素彼此完全電分離。因此,像素間溝槽部分121防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。
此外,在一像素之中央部分處形成像素內溝槽部分112之情況下,可增加將入射光限制於自身像素內部之概率。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第二組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<8. 與像素之第三組態實例相關之截面視圖> 圖9係展示像素10之一第三組態實例之一截面視圖。
在圖9中,對應於圖2中所展示之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
圖9之第三組態實例不同於圖2之第一組態實例之處在於,形成為自半導體基板41之後表面側(晶片上透鏡47之側)雕刻直至像素間溝槽部分61未穿透半導體基板41之一規定深度之像素內溝槽部分112由形成為自半導體基板41之前表面側雕刻直至一規定深度之一像素內溝槽部分141取代。第三組態實例在其他方面共同於第一組態實例。
像素內溝槽部分141經形成使得一溝槽經形成為自半導體基板41之前表面側(多層互連層42之側)直至一規定深度且接著將氧化矽膜嵌入於該溝槽中。除諸如氧化矽膜之一絕緣膜之外,嵌入於該溝槽中作為像素內溝槽部分141之材料可為例如諸如鎢(W)、鋁(Al)、鈦(Ti)及氮化鈦(TiN)之一金屬材料或多晶矽。此外,如同第一組態實例,像素間溝槽部分61及像素內溝槽部分141可並非由相同材料製成但可由不同材料製成。
如圖3A及圖3B中所展示,像素內溝槽部分141經形成為一十字形狀使得像素10之矩形平面區在列方向及行方向之各者上對半以在一平面視圖中劃分成四個區。
在形成此一像素內溝槽部分141之情況下,可增加將入射光限制於一自身像素內部之概率。此外,像素間溝槽部分61亦經形成於像素邊界部分44處以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。
此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第三組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,上文所描述之第一組態實例至第三組態實例中之像素內溝槽部分112或像素內溝槽部分141經形成為一十字平面形狀,其中像素10之矩形平面區在平面視圖中在列方向及行方向之各者上劃分成兩個區。然而,像素內溝槽部分112或像素內溝槽部分141可經形成為一平面形狀,其中像素10之矩形平面區在列方向及行方向之各者上劃分成三個區。
圖10係展示根據第三組態實例之像素10之一修改實例之一截面視圖。
圖10之修改實例不同於圖9之第三組態實例之處在於像素內溝槽部分141之形狀及配置。該修改實例在其他方面共同於圖9之第三組態實例。
在圖10之修改實例中,像素內溝槽部分141經形成為在像素10之矩形平面區在一平面視圖中在列方向及行方向之各者上劃分成三個區之一平面位置處自半導體基板41之前表面側(多層互連層42之側)雕刻直至一規定深度。
圖11係當自半導體基板41之前表面側查看時之像素間溝槽部分61及像素內溝槽部分141之一平面視圖。
像素內溝槽部分141經形成於像素10之矩形平面區在一平面視圖中在列方向及行方向之各者上劃分成三個區之一平面位置處。然而,如自圖10之截面視圖清楚所見,像素內溝槽部分141經形成僅直至像素內溝槽部分141未穿透光電二極體PD之一深度。因此,光電二極體PD之區保持完整。
應注意,當像素10之矩形平面區在列方向及行方向之各者上劃分成三個區時,像素間溝槽部分61及像素內溝槽部分141可未經形成於其等之交叉點處,在該等交叉點處該等溝槽部分如圖3B中所展示般彼此交叉。
當自半導體基板41之前表面側(多層互連層42之側)形成像素內溝槽部分141時,存在像素內溝槽部分141無法如圖3或圖11中所展示般形成之一可能性,因為諸如傳送電晶體TRG、重設電晶體RST、放大電晶體AMP及選擇電晶體SEL之像素電晶體如圖5及圖7中所展示般形成於半導體基板41之前表面側上。
圖12係展示根據像素電晶體之配置之像素內溝槽部分141之一配置實例之一平面視圖。
當將優先權指派給像素電晶體之配置時,像素內溝槽部分141可經形成於線性地並排配置之傳送電晶體TRG、切換電晶體FDG、重設電晶體RST、放大電晶體AMP及選擇電晶體SEL與構成如圖12中所展示之光電二極體PD之N型半導體區52之間。
當像素內溝槽部分141如上文所描述般形成於構成光電二極體PD之N型半導體區52與線性地並排配置之複數個像素電晶體之間時,像素內溝槽部分141之配置在逐像素基礎上具有各向異性。因此,可如圖12中所展示般對稱地配置四個(2×2)像素。
<9. 與像素之第四組態實例相關之截面視圖> 圖13係展示像素10之一第四組態實例之一截面視圖。
在圖13中,對應於圖2中所展示之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
圖13中所展示之像素10之第四組態實例與圖2中所展示之第一組態實例之共同之處在於,像素間溝槽部分61經形成於像素邊界部分44處,且像素內溝槽部分112經形成於像素之中央部分處。
另一方面,圖13中所展示之第四組態實例不同於圖2中所展示之第一組態實例之處在於,未形成蛾眼結構部分111 (其為具有週期性之一不規則性結構),但一平坦部分113經形成於半導體基板41之後表面側之光入射表面上。在平坦部分113中,其中氧化鉿膜53、氧化鋁膜54及氧化矽膜55彼此層壓之抗反射膜43經形成為平坦。
如同此第四組態實例,像素10可具有其中半導體基板41之後表面側上之蛾眼結構部分111被省略且由平坦部分113取代之一組態。
亦在其中基板之後表面上之蛾眼結構部分111由平坦部分113取代之第四組態實例中,像素10具有像素間溝槽部分61及像素內溝槽部分112以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第四組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,儘管圖13之第四組態實例具有其中圖2中所展示之第一組態實例之蛾眼結構部分111被省略且由平坦部分113取代之一組態,但上文所描述之第二組態實例及第三組態實例之各者亦可類似地具有其中基板之後表面上之蛾眼結構部分111由平坦部分113取代之一組態。
<10. 與像素之第五組態實例相關之截面視圖> 圖14係展示像素10之一第五組態實例之一截面視圖。
在圖14中,對應於圖2中所展示之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
圖14中所展示之像素10之第五組態實例不同於圖2中所展示之第一組態實例之處在於,第一組態實例之晶片上透鏡47由形成於半導體基板41之光入射表面側上之上表面上之晶片上透鏡161取代。第五組態實例在其他方面共同於第一組態實例。
更具體而言,在圖2中所展示之第一組態實例中,一個晶片上透鏡47經形成於一個光電二極體PD之光入射表面側上之半導體基板41之上表面上。
另一方面,在圖14之第五組態實例中,四個晶片上透鏡161經形成於一個光電二極體PD之光入射表面側上之半導體基板41之上表面上。
圖15係展示根據第五組態實例之像素10之晶片上透鏡161之配置之一平面視圖。
在第五組態實例中,以一十字形狀配置之像素內溝槽部分112在一規定深度處將用作光電二極體PD之N型半導體區52分成四個區,且晶片上透鏡161經配置成對應於各自分離區。因此,相對於一個像素配置四個(2×2)晶片上透鏡161。
如上文所描述,像素10可具有其中相對於一個光電二極體PD配置複數個晶片上透鏡161之一組態。例如,當如同圖10中所展示之第三組態實例之修改實例般在一規定深度處將用作光電二極體PD之N型半導體區52分成九個區時,九個(3×3)晶片上透鏡161可經形成於半導體基板41之上表面上。
亦在其中複數個晶片上透鏡161經形成於一個像素中之第五組態實例中,像素10具有像素間溝槽部分61及像素內溝槽部分112以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第五組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,儘管圖14之第五組態實例具有其中圖2中所展示之第一組態實例之晶片上透鏡47由複數個晶片上透鏡161取代之一組態,但上文所描述之第二組態實例至第四組態實例之各者亦可類似地具有其中晶片上透鏡47由複數個晶片上透鏡161取代之一組態。
<11. 與像素之第六組態實例相關之截面視圖> 圖16係展示像素10之一第六組態實例之一截面視圖。
在圖16中,對應於圖2中所展示之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在圖16中所展示之像素10之第六組態實例中,具有不同於圖2中所展示之第一組態實例之蛾眼結構部分111之不規則性結構之一不規則性結構之一蛾眼結構部分114經形成於光電二極體PD之形成區上方。
具體而言,在圖2中所展示之第一組態實例中,蛾眼結構部分111之形狀具有其中規則地並排配置四角錐形狀之錐結構。
另一方面,在圖16之第六組態實例中,蛾眼結構部分114之形狀具有其中依一恆定循環並排地配置具有平行於半導體基板41且在一基板深度方向上雕刻達一規定量之一表面之凹陷部分之一不規則性結構。應注意,抗反射膜43包含圖16中之氧化鉿膜53及氧化矽膜55之兩個層。然而,抗反射膜43可如同其他組態實例包含三個層,或可包含單個層。
圖17係展示第六組態實例中之蛾眼結構部分114及像素間溝槽部分61及像素內溝槽部分112之凹陷部分之配置之一平面視圖。
在圖17中,像素間溝槽部分61經形成於像素10之邊界部分處,且像素內溝槽部分112經形成為一十字形狀使得像素10之矩形平面區在列方向及行方向之各者上對半以劃分成四個區。
具有依蛾眼結構部分114之一循環T配置之不規則性結構之一寬度D之凹陷部分之區係由小於像素間溝槽部分61及像素內溝槽部分112之節距之一節距之一圖案展示。
如圖17中所展示,在不干擾蛾眼結構部分114之不規則性結構之週期性之情況下配置像素內溝槽部分112。換言之,像素內溝槽部分112經形成於蛾眼結構部分114 (其為具有週期性之一不規則性結構)之凹陷部分之一部分中。
亦在其中像素內溝槽部分112經配置於週期性地配置有不規則性結構之凹陷部分之一部分中之第六組態實例中,像素10具有像素間溝槽部分61及像素內溝槽部分112以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第六組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,儘管圖16之第六組態實例具有其中具有不同於第一組態實例之蛾眼結構部分111之形狀之一形狀之蛾眼結構部分114經形成於光入射表面(其為半導體基板41之後表面側)上之一組態,但上文所描述之第二組態實例至第五組態實例之各者亦可類似地具有其中配置蛾眼結構部分114之一組態。
<12. 與像素之第七組態實例相關之截面視圖> 圖18係展示像素10之一第七組態實例之一截面視圖。
在圖18中,對應於上文所描述之第一至第六組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在上文所描述之第一至第六組態實例中,光接收元件1包含一個半導體基板,即,僅包含半導體基板41。然而,在圖18之第七組態實例中,光接收元件1包含半導體基板41及一半導體基板301之兩個半導體基板。在後文中,為了促進理解,半導體基板41及半導體基板301亦將分別稱為第一基板41及第二基板301。
圖18之第七組態實例類似於圖2之第一組態實例之處在於,像素間遮光膜45、平坦化膜46及晶片上透鏡47經形成於第一基板41之光入射表面側上。第七組態實例亦類似於圖2之第一組態在於,像素間溝槽部分61及像素內溝槽部分112經形成為自半導體基板41之後表面側直至基板深度方向上之一規定深度,且蛾眼結構部分111經形成於半導體基板41之光入射表面上。
此外,第七組態實例亦類似於第一組態實例在於光電二極體PD (其為一光電轉換單元)係在逐像素基礎上形成,且兩個傳送電晶體TRG1及TRG2以及浮動擴散區FD1及FD2 (其為電荷累積單元)經形成於第一基板41之前表面側上。
另一方面,第七組態實例不同於圖2之第一組態實例之處在於,第一基板41之前表面側上之一互連層311之一絕緣層313經接合至第二基板301之一絕緣層312。
在第一基板41之互連層311中,包含金屬膜M之至少一個層,且遮光構件63由定位於光電二極體PD之形成區下方之一區中之金屬膜M形成。
在與絕緣層312之側(其為第二基板301之接合表面側)相對之一側上之介面上,形成像素電晶體Tr1及Tr2。像素電晶體Tr1及Tr2係例如放大電晶體AMP及選擇電晶體SEL。
即,在第一至第六組態實例中僅包含一個半導體基板41 (第一基板41),傳送電晶體TRG、切換電晶體FDG、放大電晶體AMP及選擇電晶體SEL之所有像素電晶體經形成於半導體基板41上。然而,在包含兩個半導體基板之層壓式結構之第七組態實例之光接收元件1中,除傳送電晶體TRG之外的像素電晶體(即,切換電晶體FDG、放大電晶體AMP)及選擇電晶體SEL經形成於第二基板301上。
在與第一基板41之側相對之第二基板301之側上,形成具有金屬膜M之至少兩個層之一多層互連層321。多層互連層321包含一第一金屬膜M11、一第二金屬膜M12及一層間絕緣膜333。
藉由穿透第二基板301之一TSV (矽穿孔) 331-1將控制傳送電晶體TRG1之傳送驅動信號TRG1g自第二基板301之第一金屬膜M11供應至第一基板41之傳送電晶體TRG1之閘極電極。藉由穿透第二基板301之一TSV 331-2將控制傳送電晶體TRG2之傳送驅動信號TRG2g自第二基板301之第一金屬膜M11供應至第一基板41之傳送電晶體TRG2之閘極電極。
類似地,藉由穿透第二基板301之一TSV 332-1將累積於浮動擴散區FD1中之電荷自第一基板41之側傳輸至第二基板301之第一金屬膜M11。藉由穿透第二基板301之一TSV 332-2將累積於浮動擴散區FD2中之電荷自第一基板41之側傳輸至第二基板301之第一金屬膜M11。
互連電容64經形成於第一金屬膜M11或第二金屬膜M12之區(未展示)中。其中形成互連電容64之金屬膜M經形成為具有高互連密度以形成一電容。連接至傳送電晶體TRG、切換電晶體FDG或類似者之閘極電極之金屬膜M經形成為具有低互連密度以減小一感應電流。連接至閘極電極之互連層(金屬膜M)可經組態以取決於像素電晶體而不同。
如上文所描述,根據第七組態實例之像素10可包含彼此層壓之第一基板41及第二基板301之兩個半導體基板,且除傳送電晶體TRG之外的像素電晶體經形成於不同於具有光電轉換部分之第一基板41之第二基板301上。此外,控制像素10之驅動之垂直驅動單元22及像素驅動線28、傳輸一偵測信號之垂直信號線29或類似者亦經形成於第二基板301上。因此,可達成像素之小型化,且亦增強BEOL (後段製程)設計之自由度。
亦在第七組態實例中,像素10具有像素間溝槽部分61及像素內溝槽部分112以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
以上文所描述之方式,在第七組態實例中亦可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,儘管圖18之第七組態實例具有其中圖2中所展示之第一組態實例由其中兩個半導體基板彼此層壓之一層壓式結構取代之一組態,但上文所描述之第二組態實例至第六組態實例之各者亦可類似地具有其中圖2中所展示之第一組態實例由其中兩個半導體基板彼此層壓之一層壓式結構取代之一組態。
<13. IR成像感測器之第一組態實例> 具有上文所描述之像素間溝槽部分61及像素內溝槽部分112之像素結構不僅可應用於基於一間接ToF方法輸出距離測量資訊之一光接收元件,而且可應用於產生一IR影像之一IR成像感測器。
圖19展示在其中光接收元件1包含產生且輸出一IR影像之一IR成像感測器之一情況中之像素10之電路組態。
在其中光接收元件1係一TOF感測器之一情況中,將由光電二極體PD產生之電荷分配至兩個浮動擴散區FD1及FD2且累積於兩個浮動擴散區FD1及FD2中。因此,像素10具有兩個傳送電晶體TRG、兩個浮動擴散區FD、兩個額外電容器FDL、兩個切換電晶體FDG、兩個放大電晶體AMP、兩個重設電晶體RST及兩個選擇電晶體SEL。
在其中光接收元件1係一IR成像感測器之一情況中,可單獨提供暫時保留由光電二極體PD產生之電荷之一電荷累積單元。因此,亦單獨提供傳送電晶體TRG、浮動擴散區FD、額外電容器FDL、切換電晶體FDG、放大電晶體AMP、重設電晶體RST及選擇電晶體SEL之各者。
換言之,在其中光接收元件1係一IR成像感測器之一情況中,像素10之組態等於其中自圖4中所展示之電路組態省略傳送電晶體TRG2、切換電晶體FDG2、重設電晶體RST2、放大電晶體AMP2及選擇電晶體SEL2之一組態。亦省略浮動擴散區FD2及垂直信號線29B。
圖20係展示在其中光接收元件1包含一IR成像感測器之一情況中之像素10之一第一組態實例之一截面視圖。
在其中光接收元件1包含一IR成像感測器之一情況與其中光接收元件1包含一ToF感測器之一情況之間的差異在於,形成於如圖19中所描述之半導體基板41之前表面側上之浮動擴散區FD2及像素電晶體之存在及不存在。因此,半導體基板41之前表面側上之多層互連層42之組態不同於圖2之組態,但像素間溝槽部分61、像素內溝槽部分112及蛾眼結構部分111之組態類似於圖2之組態。
圖20展示其中在圖2中所展示之第一組態實例應用於一IR成像感測器之一情況中之一截面組態。類似地,上文所描述之第二組態實例至第六組態實例亦可以使得省略形成於半導體基板41之前表面側上之浮動擴散區FD2及其對應像素電晶體之方式應用於一IR成像感測器。
在其中光接收元件1包含一IR成像感測器之一情況中,像素10具有像素間溝槽部分61及像素內溝槽部分112以防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
據此,在像素10之第一組態實例中以及在其中光接收元件1包含一IR成像感測器之一情況中,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<14. IR成像感測器之第二組態實例> 圖21係展示在其中光接收元件1包含一IR成像感測器之一情況中之像素10之一第二組態實例之一截面視圖。
在圖21中,對應於上文所描述之其他組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在圖21之IR成像感測器之第二組態實例中,在圖20中所展示之IR成像感測器之第一組態實例中形成於半導體基板41之像素邊界部分44處之像素間溝槽部分61由像素間溝槽部分121取代。像素間溝槽部分121係穿透半導體基板41且類似於圖8中所展示之ToF感測器之像素10之第二組態實例之溝槽部分之一溝槽部分。
在形成此一像素間溝槽部分121之情況下,可將相鄰像素彼此完全電分離。因此,像素間溝槽部分121防止入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。
另外,依一規定間隔規則地配置之一擴散膜351例如經形成於半導體基板41之前表面側(即,其上形成多層互連層42之一側)上之介面上。擴散膜351在相同於傳送電晶體TRG1之閘極之基板深度位置之基板深度位置處由相同於傳送電晶體TRG1之閘極之材料之材料(例如,多晶矽)製成。由於擴散膜351在相同於傳送電晶體TRG1之閘極之基板深度位置之基板深度位置處由相同材料製成,故擴散膜351可與傳送電晶體TRG1之閘極同時形成。因此,可標準化步驟且減少步驟之數目。擴散膜351具有例如100 nm或更大及500 nm或更小之一厚度。應注意,擴散膜351可由多晶矽及矽化物膜製成且可由具有多晶矽作為其主要成分之一材料製成。此外,儘管在圖中省略,但一絕緣膜(閘極絕緣膜);如擴散膜351與半導體基板41之介面之間的傳送電晶體TRG1之閘極般形成。
圖22係展示圖21中所展示之擴散膜351之平面配置之像素10之一平面視圖。應注意,圖22亦展示像素10之像素電晶體之配置。
在圖22中,一水平方向對應於圖1之列方向(水平方向),且一垂直方向對應於圖1之行方向(垂直方向)。
如圖22中所展示,擴散膜351具有一二維週期性結構,其中在列方向及行方向之各者上依一規定循環LP重複地形成突起部分(其等係具有一規定線寬度之一膜之部分)及凹陷部分(其等係不具有膜之部分)。對應於形成擴散膜351之一節距之循環LP經設定為例如200 nm或更大及1000 nm或更小。擴散膜351在矩形像素10之中央部分之區中形成為一島形狀且進入其中擴散膜351未經連接至其他電極之一浮動狀態。應注意,擴散膜351可經連接至一規定電極以具有例如一接地電位(GND)或一負偏壓而非進入一浮動狀態。
根據圖21及圖22之第二組態實例,像素間溝槽部分121及像素內溝槽部分112分別經形成於像素邊界部分44及像素之中央部分處以防止入射於半導體基板41上之入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。
此外,遮光構件63經設置於定位於光電二極體PD之形成區下方之金屬膜M中以引起已穿過半導體基板41而未在半導體基板41內部進行光電轉換之紅外光由遮光構件63反射且再次入射於半導體基板41上。
然而,存在當遮光構件63具有高反射比時由遮光構件63反射之光穿透至半導體基板41之外部(晶片上透鏡47之側)之一可能性。為了解決此問題,具有一二維不規則性結構之擴散膜351經形成於半導體基板41之前表面上之介面上。以此方式,自半導體基板41穿透至多層互連層42之光及由遮光構件63反射之光藉由擴散膜351擴散以防止穿透至半導體基板41之晶片上透鏡47之側。
據此,根據IR成像感測器之第二組態實例,可高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
應注意,當光令人滿意地反射且藉由擴散膜351擴散至半導體基板41時,不必提供但可省略遮光構件63。
<15. IR成像感測器之第三組態實例> 圖23係展示在其中光接收元件1包含一IR成像感測器之情況中之像素10之一第三組態實例之一截面視圖。
在圖23中,對應於上文所描述之其他組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在圖23之第三組態實例中,在圖21之第二組態實例中形成於蛾眼結構部分111之像素之中央部分處之像素內溝槽部分112由形成為自半導體基板41之前表面側雕刻直至一規定深度之像素內溝槽部分141取代。此外,由於像素內溝槽部分141經形成於半導體基板41之前表面側上,故擴散膜351經形成於擴散膜351不與像素內溝槽部分141重疊之一位置處。像素內溝槽部分141類似於圖9中所展示之ToF感測器之像素10之第三組態實例之像素內溝槽部分。
圖24係展示圖23中所展示之擴散膜351之平面配置之像素10之一平面視圖。
如圖24中所展示,擴散膜351經形成於擴散膜351不與像素內溝槽部分141重疊之一位置處。
除上文所描述之方面之外,IR成像感測器之第三組態實例類似於圖21之第二組態實例。
如上文參考圖9所描述,當提供像素內溝槽部分141而非像素內溝槽部分112時,可增加將入射光限制於自身像素內部之概率。此外,像素間溝槽部分121亦經形成於像素邊界部分44處以防止入射於半導體基板41上之入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。另外,藉由擴散膜351之擴散效應防止紅外光穿透至半導體基板41之晶片上透鏡47之側。
據此,根據IR成像感測器之第三組態實例,可高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<16. IR成像感測器之第四組態實例> 圖25係展示在其中光接收元件1包含一IR成像感測器之一情況中之像素10之一第四組態實例之一截面視圖。
在圖25中,對應於上文所描述之其他組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在圖25之IR成像感測器之第四組態實例中,在圖20中所展示之IR成像感測器之第一組態實例中形成於半導體基板41之像素之中央部分處之像素內溝槽部分112由穿透半導體基板41之一像素內溝槽部分352取代。像素內溝槽部分352類似於像素內溝槽部分112,惟一溝槽部分經形成以便自半導體基板41之後表面側穿透至前表面側除外。此外,由於像素內溝槽部分352經形成為穿透半導體基板41之前表面側,故擴散膜351經形成於擴散膜351不與像素內溝槽部分352重疊之一位置處。
圖26A係根據圖25之第四組態實例之像素10之像素間溝槽部分121及像素內溝槽部分352之一平面視圖。
像素內溝槽部分352在光電二極體PD之區內部之像素之中央部分處形成為一十字形狀。
在圖25之截面視圖中,光電二極體PD藉由像素內溝槽部分352劃分。然而,如圖26A中所展示,像素內溝槽部分352在一平面方向上未延伸至像素之邊界。因此,光電二極體PD係由一個區形成。
應注意,像素內溝槽部分352可經形成為一十字形狀,其中像素內溝槽部分352並非如圖26B中所展示般在像素之中央部分處交叉。亦在此情況中,光電二極體PD係由一個區形成。
除上文所描述之方面之外,IR成像感測器之第四組態實例類似於圖21之第二組態實例。
當提供像素內溝槽部分352而非像素內溝槽部分112時,亦可增加將入射於半導體基板41上之入射光限制於自身像素內部之概率。此外,像素間溝槽部分121亦經形成於像素邊界部分44處以防止入射於半導體基板41上之入射光穿透一相鄰像素10同時將入射光限制於自身像素內部且防止入射光自相鄰像素10洩漏。另外,藉由擴散膜351之擴散效應防止紅外光穿透至半導體基板41之晶片上透鏡47之側。
據此,根據IR成像感測器之第四組態實例,可高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<擴散膜351之修改實例> 圖22中所展示之擴散膜351或類似者具有其中具有一規定線寬度之一膜之線性突起部分彼此交叉之一格子平面形狀。然而,如圖27中所展示,擴散膜351之突起部分及凹陷部分可顛倒。在圖27之擴散膜351中,藉由顛倒圖22之擴散膜351來形成用作膜部分之突起部分及不具有膜之凹陷部分。因此,不具有膜之凹陷部分係以一格子形圖案配置且矩形突起部分係依一規定間隔配置。在列方向及行方向之各者上之矩形突起部分之間的間隔係依一規定循環LP設定。
此外,類似於半導體基板41之後表面側上之蛾眼結構部分111之一蛾眼結構可經形成於前表面側上之介面上,且擴散膜351可經形成於該蛾眼結構上。在此情況中,擴散膜351不具有其中在列方向及行方向之各者上依規定循環LP重複地形成突起部分及凹陷部分之一間隙圖案,但亦可為其中未形成凹陷部分(僅形成突起部分)之具有一規定膜厚度之一膜。
<SPAD像素之第一組態實例> 在上文所描述之實施例中,在其中光接收元件1係一ToF感測器之一情況中光接收元件1係基於一間接ToF方法輸出距離測量資訊之一ToF感測器。
除間接ToF方法之外,ToF感測器亦採用一直接ToF方法。間接ToF方法係一種其中將在照射光之發射之後直至接收反射光為止之一飛行時間偵測為一相位差以計算至一物件之一距離之方法。另一方面,直接ToF方法係一種其中直接測量在照射光之發射之後直至接收反射光為止之一飛行時間以計算至一物件之一距離之方法。
在基於直接ToF方法之光接收元件1中,SPAD (單光子雪崩二極體)或類似者例如用作各自像素10之光電轉換元件。
圖28展示在其中像素10係使用一SPAD作為一光電轉換元件之一SPAD像素之一情況中之一電路組態實例。
圖28之像素10包含一SPAD 371以及包含一電晶體381及一反相器382之一讀取電路372。此外,像素10亦包含一開關383。電晶體381包含一P型MOS電晶體。
SPAD 371之陰極經連接至電晶體381之汲極且經連接至反相器382之輸入端子及開關383之一端。SPAD 371之陽極經連接至一電力供應器電壓VA (下文亦稱為陽極電壓VA)。
SPAD 371係當入射光入射於SPAD 371上時雪崩倍增經產生電子且輸出一陰極電壓VS之信號之一光電二極體(單光子雪崩光電二極體)。供應至SPAD 371之陽極之電力供應電壓VA例如係約-20 V之一負偏壓(負電位)。
電晶體381係在一飽和區中操作且用作一淬滅電阻器以執行被動淬滅之一恆定電流源。電晶體381之源極經連接至一電力供應電壓VE且其汲極經連接至SPAD 371之陰極、反相器382之輸入端及開關383之一端。據此,電力供應電壓VE亦經供應至SPAD 371之陰極。亦可使用一上拉電阻器而非串聯連接至SPAD 371之電晶體381。
大於SPAD 371之一崩潰電壓VBD之一電壓(過量偏壓)經施加至SPAD 371以便足夠效率地偵測光(光子)。例如,當SPAD 371之崩潰電壓VBD係20 V且大於崩潰電壓VBD達3V之一電壓經施加至SPAD 371時,供應至電晶體381之源極之電力供應電壓VE係3 V。
應注意,SPAD 371之崩潰電壓VBD隨溫度或類似者變化很大。因此,根據崩潰電壓VBD之一變化控制(調整)施加至SPAD 371之電壓。例如,當電力供應電壓VE係一固定電壓時,控制(調整)陽極電壓VA。
開關383之兩端之一者經連接至SPAD 371之陰極、反相器382之輸入端子及電晶體381之汲極,且其另一端經連接至一接地(GND)。開關383可包含一N型MOS電晶體且根據自垂直驅動單元22供應之一閘控控制信號VG來接通/關斷。
垂直驅動單元22將一高或低閘控控制信號VG供應至各像素10之開關383且引起開關383接通或關斷以將像素陣列單元21之各像素10設定為一作用像素或一非作用像素。作用像素係偵測一光子之入射之一像素,且非作用像素係不偵測一光子之入射之一像素。當根據閘控控制信號VG接通開關383且將SPAD 371之陰極控制為連接至接地時,像素10變為一非作用像素。
將參考圖29描述在其中將圖28之像素10設定為一作用像素之一情況中之像素10之操作。
圖29係展示SPAD 371之陰極電壓VS及一偵測信號PFout根據一光子之入射之一變化之一曲線圖。
首先,當像素10係一作用像素時,如上文所描述般將開關383設定為關斷。
電力供應電壓VE (例如,3 V)經供應至SPAD 371之陰極,且電力供應電壓VA (例如,-20 V)經供應至SPAD 371之陽極。因此,大於崩潰電壓VBD (=20 V)之一反向電壓經施加至SPAD 371。因此,將SPAD 371設定為一蓋格模式。在此狀態中,SPAD 371之陰極電壓VS相同於電力供應電壓VE,如例如在圖29之時間t0中所見。
當一光子入射於設定為蓋格模式之SPAD 371上時,一電流在雪崩倍增發生之情況下流動至SPAD 371中。
當一電流在圖29之時間t1發生雪崩倍增之情況下流動至SPAD 371中時,該電流在時間t1之後流動至SPAD 371中。據此,該電流亦流動至電晶體381中,且歸因於電晶體381之電阻組件而發生一電壓降。
當SPAD 371之陰極電壓VS在時間t2變得小於0 V時,SPAD 371之陽極與陰極之間的電壓變得小於崩潰電壓VBD。因此,雪崩倍增停止。在此,其中藉由雪崩倍增產生之電流流動至電晶體381中以引起電壓降之發生且陰極電壓VS在電壓降發生之情況下變得小於崩潰電壓VBD以引起雪崩倍增停止之一操作係一淬滅操作。
當雪崩倍增停止時,流動至電晶體381之電阻器中之電流逐漸減小。因此,陰極電壓VS在時間t4恢復至初始電力供應電壓VE,此產生其中可偵測下一新光子(再充電操作)之一狀態。
反相器382在陰極電壓VS (其為一輸入電壓)係一規定臨限電壓Vth或更大時輸出一Lo偵測信號PFout,且在陰極電壓VS小於規定臨限電壓Vth時輸出一Hi偵測信號PFout。據此,當一光子入射於SPAD 371上且陰極電壓VS在雪崩倍增發生之情況下減小並變得小於臨限電壓Vth時,偵測信號PFout自一低位準改變成一高位準。另一方面,當SPAD 371之雪崩倍增收斂且陰極電壓VS增加並變為臨限電壓Vth或更大時,偵測信號PFout自一高位準改變成一低位準。
應注意,當像素10係一非作用像素時,接通開關383。當接通開關383時,SPAD 371之陰極電壓變為0 V。因此,SPAD 371之陽極與陰極之間的電壓變為崩潰電壓VBD或更小。因此,即使在一光子進入SPAD 371時,SPAD 371亦不會做出反應。
圖30係展示在其中像素10係一SPAD像素之一情況中之一第一組態實例之一截面視圖。
在圖30中,對應於上文所描述之其他組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
半導體基板41之像素間溝槽部分121內部之一像素區包含一N井區401、一P型擴散層402、一N型擴散層403、一電洞累積層404及一集中P型擴散層405。此外,一雪崩倍增區406係由形成於其中P型擴散層402及N型擴散層403彼此連接之一區中之一空乏層形成。
N井區401在將半導體基板41之雜質濃度控制為n型時形成,且形成一電場以將藉由像素10之光電轉換產生之電子傳送至雪崩倍增區406。
P型擴散層402係形成為在一像素區之幾乎整個表面上方在一平面方向上延伸之一集中P型擴散層(P+)。N型擴散層403係定位於半導體基板41之前表面附近且如同P型擴散層402般形成為在像素區之幾乎整個表面上方延伸之一集中N型擴散層(N+)。N型擴散層403係一接觸層,其經連接至用作一陰極電極之一接觸電極411以供應用於形成雪崩倍增區406之一負電壓,且具有一突起形狀以便形成為部分地延伸至半導體基板41之前表面之接觸電極411。電力供應電壓VE自接觸電極411施加至N型擴散層403。
電洞累積層404係形成為包圍N井區401之側表面及底表面之一P型擴散層(P),且累積電洞。此外,電洞累積層404經連接至電連接至用作SPAD 371之陽極電極之一接觸電極412之集中P型擴散層405。
集中P型擴散層405係形成為在半導體基板41之前表面附近在N井區401之平面方向上包圍外周邊之一集中P型擴散層(P++),且構成用於將SPAD 371之電洞累積層404及接觸電極412彼此電連接之一接觸層。電力供應電壓VA自接觸電極412施加至集中P型擴散層405。
應注意,可形成其中將半導體基板41之雜質濃度控制為P型之一P井區而非N井區401。應注意,當形成P井區而非N井區401,將電力供應電壓VA及電力供應電壓VE分別施加至N型擴散層403及集中P型擴散層405。
在多層互連層42中,形成接觸電極411及412、金屬互連件413及414、接觸電極415及416、金屬墊417及418以及一擴散膜419。
擴散膜419類似於形成於圖21之像素10或類似者中之擴散膜351。即,擴散膜419依例如一規定間隔規則地配置於半導體基板41之前表面側(即,其上形成多層互連層42之一側)之介面上,且自半導體基板41穿透至多層互連層42之光及由金屬互連件413反射之光藉由擴散膜419擴散以防止進一步穿透至半導體基板41之外部(晶片上透鏡47之側)。
此外,多層互連層42經接合至其中形成邏輯電路之一邏輯電路板之一互連層410 (下文稱為邏輯互連層410)。在邏輯電路板中,形成上文所描述之讀取電路372、用作開關383之一MOS電晶體及類似者。
接觸電極411將N型擴散層403及金屬互連件413彼此連接,且接觸電極412將集中P型擴散層405及金屬互連件414彼此連接。
如圖30中所展示,金屬互連件413經形成為寬於雪崩倍增區406以便在平面方向上至少覆蓋雪崩倍增區406。此外,金屬互連件413引起已穿過半導體基板41之光反射至半導體基板41。
如圖30中所展示,金屬互連件414經形成為定位於金屬互連件413之外周邊上且在平面方向上與集中P型擴散層405重疊。
接觸電極415將金屬互連件413及金屬墊417彼此連接,且接觸電極416將金屬互連件414及金屬墊418彼此連接。
形成於邏輯互連層410中之金屬墊417及418以及金屬墊431及432藉由金屬接合透過其等金屬(Cu)彼此電連接及機械連接。
在邏輯互連層410中,形成電極墊421及422、接觸電極423至426、一絕緣層429以及金屬墊431及432。
電極墊421及433之各者用來連接至一邏輯電路板(未展示),且絕緣層429使電極墊421及422彼此絕緣。
接觸電極423及424將電極墊421及金屬墊431彼此連接,且接觸電極425及426將電極墊422及金屬墊432彼此連接。
金屬墊431經接合至金屬墊417,且金屬墊432經接合至金屬墊418。
藉由此一互連結構,電極墊421例如經由接觸電極423及424、金屬墊431、金屬墊417、接觸電極415、金屬互連件413及接觸電極411連接至N型擴散層403。據此,在圖30之像素10中,可自邏輯電路板之電極墊421供應施加至N型擴散層403之電力供應電壓VE。
此外,電極墊422經由接觸電極425及426、金屬墊432、金屬墊418、接觸電極416、金屬互連件414及接觸電極412連接至集中P型擴散層405。據此,在圖30之像素10中,可自邏輯電路板之電極墊422供應施加至電洞累積層404之陽極電壓VA。
圖31係展示圖30中所展示之擴散膜419之平面配置之一SPAD像素之一平面視圖。
如圖31中所展示,擴散膜419經形成於其中擴散膜419與雪崩倍增區406 (圖31中未展示)重疊之一區中及擴散膜419不與用作一陰極電極之接觸電極411重疊之一位置處。
圖31之擴散膜419展示其中如同圖27中所展示之擴散膜351般依一規定間隔配置矩形突起部分之一平面形狀之一實例。然而,擴散膜419當然可具有如同圖22之擴散膜351之一格子平面形狀。
在如上文所描述般組態之SPAD像素之第一組態實例中,像素間溝槽部分121經形成於像素邊界部分44處,且擴散膜419經形成於半導體基板41之前表面側(其係其上形成多層互連層42之一側)上之介面上。
據此,根據SPAD像素之第一組態實例,可高效地將自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<18. SPAD像素之第二組態實例> 圖32係展示在其中像素10係一SPAD像素之一情況中之一第二組態實例之一截面視圖。
在圖32中,對應於圖30中所展示之SPAD像素之第一組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在圖30中所展示之SPAD像素之第一組態實例中,P型擴散層402、N型擴散層403及雪崩倍增區406經形成於在平面方向上幾乎相同於金屬互連件413之平面區之像素10之中央部分處,且接觸電極411亦經形成於像素10之中央部分處。
另一方面,在圖32之SPAD像素之第二組態實例中,P型擴散層402、N型擴散層403及雪崩倍增區406經形成於在平面方向上靠近金屬互連件413之外周邊部分之一周邊區中。根據N型擴散層403之位置,接觸電極411亦經配置於像素10之周邊附近。
擴散膜419依一規定間隔規則地配置於半導體基板41之前表面側上之介面上且在平面方向上配置於P型擴散層402、N型擴散層403及雪崩倍增區406之一內側上。擴散膜419亦可由諸如具有多晶矽作為其主要成分之多晶矽之一材料製成。
在如上文所描述般組態之SPAD像素之第二組態實例中,可利用像素間溝槽部分121及擴散膜419高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41之內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<19. SPAD像素之第三組態實例> 圖33係展示在其中像素10係一SPAD像素之一情況中之一第三組態實例之一截面視圖。
在圖33中,對應於圖32中所展示之SPAD像素之第二組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
圖33之SPAD像素之第三組態實例類似於圖32中所展示之SPAD像素之第二組態實例,惟圖32中所展示之SPAD像素之第二組態實例中之擴散膜419由一擴散膜451取代除外。
在圖32中所展示之SPAD像素之第二組態實例中,擴散膜419使用例如多晶矽或類似者作為一材料經由如同像素電晶體之閘極電極之一閘極絕緣膜(未展示)形成於半導體基板41之前表面側上之表面上。
另一方面,擴散膜451藉由STI (淺溝槽隔離) (其為一CMOS電晶體分離結構)而形成為嵌入於半導體基板41中。作為擴散膜451嵌入之一材料例如係一絕緣膜,諸如SiO2 。如同擴散膜351,擴散膜451具有例如100 nm或更大及500 nm或更小之一深度(厚度)。此外,擴散膜451可具有類似於圖22及圖27中所展示之擴散膜351之平面形狀之一平面形狀。
在如上文所描述般組態之SPAD像素之第三組態實例中,可利用像素間溝槽部分121及擴散膜451高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41之內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。
<20. CAPD像素之組態實例> 在上文所描述之實施例中,在其中光接收元件1係一間接ToF感測器之一情況中根據圖1至圖18中所展示之第一至第七組態實例之像素10係稱為基於一閘極方法之感測器之ToF感測器,其中光電二極體PD之電荷作為脈衝交替地施加至兩個閘極(傳送電晶體TRG)。
另一方面,存在稱為基於一CAPD (電流輔助光子解調變器)方法之一感測器之一ToF感測器,其中將一電壓直接施加至ToF感測器之半導體基板41以在基板內部產生一電流且高速調變基板內部之一寬區以分配光電轉換之電荷。
圖34展示在其中像素10係採用CAPD方法之一CAPD像素之一情況中之一電路組態實例。
圖34之像素10在半導體基板41內部具有信號提取單元765-1及765-2。信號提取單元765-1至少包含之一N+半導體區77 (其為一N型半導體區)及一P+半導體區773-1 (其為一P型半導體區)。信號提取單元765-2至少包含一N+半導體區771-2 (其為一N型半導體區)及一P+半導體區773-2 (其為一P型半導體區)。
像素10相對於信號提取單元765-1具有一傳送電晶體721A、一FD 722A、一重設電晶體723A、一放大電晶體724A及一選擇電晶體725A。
此外,像素10相對於信號提取單元765-2具有一傳送電晶體721B、一FD 722B、一重設電晶體723B、一放大電晶體724B及一選擇電晶體725B。
垂直驅動單元22將一規定電壓MIX0 (第一電壓)施加至P+半導體區773-1且將一規定電壓MIX1 (第二電壓)施加至P+半導體區773-2。例如,電壓MIX0及MIX1之一者經設定為1.5 V,且電壓MIX0及MIX1之另一者經設定為0 V。P+半導體區773-1及773-2係第一電壓或第二電壓所施加至之電壓施加單元。
N+半導體區771-1及771-2係偵測且累積當光電地轉換入射於半導體基板41上之光時產生之電荷之電荷偵測單元。
當使供應至傳送電晶體721A之閘極電極之一傳送驅動信號TRG進入一作用狀態時,對應地使傳送電晶體721A進入一導電狀態且將累積於N+半導體區771-1中之電荷傳送至FD 722A。當使供應至傳送電晶體721B之閘極電極之傳送驅動信號TRG進入一作用狀態時,對應地使傳送電晶體721B進入一導電狀態且將累積於N+半導體區771-2中之電荷傳送至FD 722B。
FD 722A暫時保留自N+半導體區771-1供應之電荷。FD 722B暫時保留自N+半導體區771-2供應之電荷。
當使供應至重設電晶體723A之閘極電極之一重設驅動信號RST進入一作用狀態時,對應地使重設電晶體723A進入一導電狀態且將FD 722A之電位重設為一規定位準(重設電壓VDD)。當使供應至重設電晶體723B之閘極電極之重設驅動信號RST進入一作用狀態時,對應地使重設電晶體723B進入一導電狀態且將FD 722B之電位重設為一規定位準(重設電壓VDD)。應注意,當使重設電晶體723A及723B進入一作用狀態時,亦使傳送電晶體721A及721B同時進入一作用狀態。
當放大電晶體724A之源極電極經由選擇電晶體725A連接至一垂直信號線29A時,放大電晶體724A構成一源極隨耦器電路,其中一恆定電流源電路單元726A之一負載MOS經連接至垂直信號線29A之一端。當放大電晶體724B之源極電極經由選擇電晶體725B連接至一垂直信號線29B時,放大電晶體724B構成一源極隨耦器電路,其中一恆定電流源電路單元726B之一負載MOS經連接至垂直信號線29B之一端。
選擇電晶體725A經連接於放大電晶體724A之源極電極與垂直信號線29A之間。當使供應至選擇電晶體725A之閘極電極之一選擇驅動信號SEL進入一作用狀態時,對應地使選擇電晶體725A進入一導電狀態且將自放大電晶體724A輸出之一像素信號輸出至垂直信號線29A。
選擇電晶體725B經連接於放大電晶體724B之源極電極與垂直信號線29B之間。當使供應至選擇電晶體725B之閘極電極之選擇驅動信號SEL進入一作用狀態時,對應地使選擇電晶體725B進入一導電狀態且將自放大電晶體724B輸出之一像素信號輸出至垂直信號線29B。
像素10之傳送電晶體721A及721B、重設電晶體723A及723B、放大電晶體724A及724B以及選擇電晶體725A及725B例如由垂直驅動單元22控制。
圖35係在其中像素10係一CAPD像素之一情況中之一截面視圖。
在圖35中,對應於上文所描述之其他組態實例之部分之部分將由相同元件符號表示,且其等描述將適當地省略。
在其中像素10係一CAPD像素之一情況中,氧化物膜764經形成於與其上形成晶片上透鏡47之半導體基板41之光入射表面之側相對之一側上之一表面附近之像素10之中央部分處,且信號提取單元765-1及765-2分別經形成於氧化物膜764之兩端處。
信號提取單元765-1具有N+半導體區771-1 (其為一N型半導體區)、其中供體雜質之濃度低於N+半導體區771-1之濃度之一N-半導體區772-1、P+半導體區773-1 (其為一P型半導體區)及其中受體雜質之濃度低於P+半導體區773-1之濃度之一P-半導體區774-1。相對於Si,供體雜質之實例包含元素週期表中屬於第5族之元素,諸如磷(P)及砷(As)。相對於Si,受體雜質之實例包含元素週期表中屬於第3族之元素,諸如硼(B)。變為一供體雜質之一元素稱為供體元素,且變為一受體雜質之一元素稱為受體元素。
在信號提取單元765-1中,N+半導體區771-1及N-半導體區772-1經形成於P+半導體區773-1及P-半導體區774-1周圍以便包圍P+半導體區773-1及P-半導體區774-1之周邊。P+半導體區773-1及N+半導體區771-1與多層互連層42接觸。P-半導體區774-1經配置於P+半導體區773-1上(在晶片上透鏡47之側上)以便覆蓋P+半導體區773-1,且N-半導體區772-1經配置於N+半導體區771-1上(在晶片上透鏡47之側上)以便覆蓋N+半導體區771-1。換言之,P+半導體區773-1及N+半導體區771-1經配置於半導體基板41內部之多層互連層42之側上,且N-半導體區772-1及P-半導體區774-1經配置於半導體基板41內部之晶片上透鏡47之側上。此外,由氧化物膜或類似者製成之一隔離部分775-1經形成於N+半導體區771-1與P+半導體區773-1之間以將該等區彼此隔離。
類似地,信號提取單元765-2具有N+半導體區771-2 (其係一N型半導體區)、其中供體雜質之濃度低於N+半導體區771-2之濃度之一N-半導體區772-2、P+半導體區773-2 (其一P型半導體區)及其中受體雜質之濃度低於P+半導體區773-2之濃度之一P-半導體區774-2。
在信號提取單元765-2中,N+半導體區771-2及N-半導體區772-2經形成於P+半導體區773-2及P-半導體區774-2周圍以便包圍P+半導體區773-2及P-半導體區774-2之周邊。P+半導體區773-2及N+半導體區771-2與多層互連層42接觸。P-半導體區774-2經配置於P+半導體區773-2上(在晶片上透鏡47之側上)以便覆蓋P+半導體區773-2,且N-半導體區772-2經配置於N+半導體區771-2上(在晶片上透鏡47之側上)以便覆蓋N+半導體區771-2。換言之,P+半導體區773-2及N+半導體區771-2經配置於半導體基板41內部之多層互連層42之側上,且N-半導體區772-1及P-半導體區774-2經配置於半導體基板41內部之晶片上透鏡47之側上。此外,由氧化物膜或類似者製成之一隔離部分775-2經形成於N+半導體區771-2與P+半導體區773-2之間以將該等區彼此隔離。
氧化物膜764亦經形成於一規定像素10之信號提取單元765-1之N+半導體區771-1與一相鄰像素10之信號提取單元765-2之N+半導體區771-2之間的區(即,彼此相鄰之像素10之間的邊界區)中。
在半導體基板41之光入射表面側上之介面上,形成具有帶一正固定電荷之一層壓式膜以覆蓋整個光入射表面之一P+半導體區701。
在後文中,當不需要特定地將信號提取單元765-1及765-2彼此區分開時,信號提取單元765-1及765-2將簡稱為信號提取單元765。
此外,在後文中,當不需要特定地將N+半導體區771-1及771-2彼此區分開時,N+半導體區771-1及771-2將簡稱為N+半導體區771,且當不需要特定地將N-半導體區772-1及772-2彼此區分開時,N-半導體區772-1及772-2將簡稱為N-半導體區772。
另外,在後文中,當不需要特定地將P+半導體區773-1及773-2彼此區分開時,P+半導體區773-1及773-2將簡稱為P+半導體區773,且當不需要特定地將P-半導體區774-1及774-2彼此區分開時,P-半導體區774-1及774-2將簡稱為P-半導體區774。此外,當不需要特定地將隔離部分775-1及775-2彼此區分開時,隔離部分775-1及775-2將簡稱為隔離部分775。
設置於半導體基板41中之N+半導體區771用作偵測自外部入射於像素10上之光量(即,藉由半導體基板41之光電轉換而產生之信號載流子量)之電荷偵測單元。應注意,除N+半導體區771之外,其中供體雜質濃度為低之N-半導體區772亦可被辨識為電荷偵測單元。此外,P+半導體區773用作將多個載流子電流注入至半導體基板41 (即,直接將一電壓施加至半導體基板41以在半導體基板41內部產生電場)之電壓施加單元。應注意,除P+半導體區773之外,其中受體雜質濃度為低之P-半導體區774亦可被辨識為電壓施加單元。
在半導體基板41之前表面側(即,其上形成多層互連層42之一側)上之介面上,例如配置依一規定間隔規則地配置之一擴散膜811。此外,儘管在圖中省略,但一絕緣膜(閘極絕緣膜)經形成於擴散膜811與半導體基板41之介面之間。
擴散膜811類似於形成於圖30之像素10中之擴散膜419或類似者。即,擴散膜811依例如一規定間隔規則地配置於半導體基板41之前表面側(即,其上形成多層互連層42之一側)上之介面上,且自半導體基板41穿透至多層互連層42之光及稍後將描述之一反射構件815反射之光由擴散膜811擴散以防止進一步穿透至半導體基板41之外部(晶片上透鏡47之側)。擴散膜811亦可由諸如具有多晶矽作為主要成分之多晶矽之一材料製成。
應注意,如圖36中所展示,擴散膜811經形成以避開N+半導體區771-1及P+半導體區773-1之位置以免與N+半導體區771-1及P+半導體區773-1之位置重疊。
在圖35中,多層互連層42之一第一金屬膜M1至一第五金屬膜M5當中最靠近半導體基板41之第一金屬膜M1包含:一電力供應線813,其供應一電力供應電壓;一電壓施加互連件814,其將一規定電壓施加至P+半導體區773-1或773-2;及一反射構件815,其係用來反射入射光之一構件。電壓施加互連件814經由一接觸電極812連接至P+半導體區773-1或773-2且分別將一規定電壓MIX0及一規定電壓MIX1施加至P+半導體區773-1及P+半導體區773-2。
在圖35之第一金屬膜M1中,除電力供應線813及電壓施加互連件814之外的一互連件變為反射構件815,但省略一些參考符號以防止圖式之複雜化。反射構件815係經提供以反射入射光之一虛設互連件。反射構件815經配置於N+半導體區771-1及771-2下方以便在一平面視圖中與N+半導體區771-1及771-2 (其為電荷偵測單元)重疊。此外,在第一金屬膜M1中,亦形成將N+半導體區771及傳送電晶體721彼此連接之一接觸電極(未展示)以將累積於N+半導體區771中之電荷傳送至FD 722。
應注意,在此實例中,反射構件815經配置於第一金屬膜M1之相同層中但不必配置於相同層中。
在第二金屬膜M2 (其為自半導體基板41之側之第二層)中,例如形成連接至第一金屬膜M1之電壓施加互連件814之一電壓施加互連件816、傳輸傳送驅動信號TRG、重設驅動信號RST、選擇驅動信號SEL、FD驅動信號FDG或類似者之一控制線817、一接地線或類似者。此外,FD 722或類似者亦經形成於第二金屬膜M2中。
在第三金屬膜M3 (其為自半導體基板41之側之第三層)中,例如形成垂直信號線29、用於遮蔽之一互連件或類似者。
在第四金屬膜M4 (其為自半導體基板41之側之第四層)中,例如形成將一規定電壓MIX0或MIX1施加至P+半導體區773-1及773-2 (其等為信號提取單元765之電壓施加單元)之一電壓供應線(未展示)。
將描述圖35之像素10  (其為一CAPD像素)之操作。
垂直驅動單元22驅動像素10且將對應於藉由光電轉換獲得之電荷之信號分配至FD 722A及FD 722B (圖34)。
垂直驅動單元22經由接觸電極812或類似者將一電壓施加至兩個P+半導體區773。例如,垂直驅動單元22將1.5 V之一電壓施加至P+半導體區773-1且將0 V之一電壓施加至P+半導體區773-2。
接著,在半導體基板41中之兩個P+半導體區773之間產生一電場,且一電流自P+半導體區773-1流動至P+半導體區773-2。在此情況中,在半導體基板41內部,電洞在P+半導體區773-1之方向上移動且電子在P+半導體區773-1之方向上移動。
據此,在此一狀態中,當來自外部之紅外光(反射光)經由晶片上透鏡47入射於半導體基板41上且接著光電地轉換成半導體基板41內部之電子及電洞對時,經獲得電子藉由P+半導體區773之間的電場引導於P+半導體區773-1之方向上且移動至N+半導體區771-1中。
在此情況中,藉由光電轉換產生之電子用作用於偵測對應於入射於像素10上之紅外光量(即,經接收紅外光量)之一信號之信號載流子。
因此,對應於移動至N+半導體區771-1中之電子之電荷經累積於N+半導體區771-1中且由行處理單元23經由FD 722A、放大電晶體724A、垂直信號線29A或類似者偵測。
即,將N+半導體區771-1之經累積電荷傳送至直接連接至N+半導體區771-1之FD 722A,且由行處理單元23經由放大電晶體724A或垂直信號線29A讀取對應於傳送至FD 722A之電荷之一信號。接著,由行處理單元23將諸如AD轉換處理之處理應用於讀取信號,且將作為一處理結果而獲得之一像素信號供應至信號處理單元26。
像素信號變為指示對應於由N+半導體區771-1偵測之電子之電荷量(即,累積於FD 722A中之電荷量)之一信號。換言之,像素信號亦可稱為指示由像素10接收之紅外光量之一信號。
應注意,如同N+半導體區771-1之情況,對應於由N+半導體區771-2偵測之電子之一像素信號亦可適當地用於距離測量中。
此外,依下一時序,由垂直驅動單元22經由接觸電極812或類似者將一電壓施加至兩個P+半導體區773使得在與直至彼時已在半導體基板41內部產生之電場之方向相反之一方向上產生一電場。具體而言,例如,將1.5 V之一電壓施加至P+半導體區773-2,且將0 V之一電壓施加至P+半導體區773-1。
因此,在半導體基板41中之兩個P+半導體區773之間產生一電場,且一電流自P+半導體區773-2流動至P+半導體區773-1。
在此一狀態中,當來自外部之紅外光(反射光)經由晶片上透鏡47入射於半導體基板41上且接著光電地轉換成半導體基板41內部之電子及電洞對時,經獲得電子藉由P+半導體區773之間的電場引導於P+半導體區773-2之方向上且移動至N+半導體區771-2中。
因此,對應於移動至N+半導體區771-2中之電子之電荷經累積於N+半導體區771-2中且由行處理單元23經由FD 722B、放大電晶體724B、垂直信號線29B或類似者偵測。
即,將N+半導體區771-2之經累積電荷傳送至直接連接至N+半導體區771-2之FD 722B,且由行處理單元23經由放大電晶體724B或垂直信號線29B讀取對應於傳送至FD 722B之電荷之一信號。接著,由行處理單元23將諸如AD轉換處理之處理應用於讀取信號,且將作為一處理結果而獲得之一像素信號供應至信號處理單元26。
應注意,如同N+半導體區771-2之情況,對應於由N+半導體區771-1偵測之電子之一像素信號亦可適當地用於距離測量中。
當以上文所描述之方式獲得在相同像素10中在彼此不同之週期中藉由光電轉換獲得之像素信號時,信號處理單元26可基於像素信號計算至一目標物件之一距離。
圖36係展示在其中像素10係一CAPD像素之一情況中之信號提取單元765及擴散膜811之配置之一平面視圖。
如同圖27中所展示之擴散膜351,擴散膜811經組態使得矩形突起部分依一規定間隔配置組態。擴散膜811經形成以避開N+半導體區771、P+半導體區773及隔離部分775之位置以免與信號提取單元765之位置重疊。
在亦如上文所描述般組態之CAPD像素之組態實例中,擴散膜811經形成於半導體基板41之前表面側(即,其上形成多層互連層42之一側)上之介面上。由於擴散膜811經形成於半導體基板41之前表面上之介面上,故自半導體基板41穿透至多層互連層42之光及由反射構件815反射之光藉由擴散膜811擴散。因此,防止已暫時入射於半導體基板41上之入射光穿透至半導體基板41之晶片上透鏡47之側。
據此,根據圖35及圖36之CAPD像素之組態實例,可高效地將已自晶片上透鏡47之側暫時入射於半導體基板41上之入射光限制於半導體基板41內部。即,可進一步增加在半導體基板41內部進行光電轉換之紅外光量且改良量子效率(QE),即,對紅外光之敏感度。應注意,當光令人滿意地反射且藉由擴散膜811擴散至半導體基板41時,可省略反射構件815。
<21. RGBIR成像感測器之組態實例> 上文所描述之IR成像感測器之第一至第四組態實例不限於僅接收紅外光之光接收元件,而且可應用於接收紅外光及RGB光之RGBIR成像感測器。
圖37A至圖37C展示在其中光接收元件1包含接收紅外光及RGB光之一RGBIR成像感測器之一情況中之一像素配置實例。
在其中光接收元件1包含一RGBIR成像感測器之情況中,將接收R (紅色)光之一R像素、接收B (藍色)光之一B像素、接收G (綠色)光之一G像素及接收IR (紅外)光之一IR像素分配至如圖37A至圖37C中所展示之四個(2×2)像素。
各自像素10具有諸如上文所描述之像素間溝槽部分61、像素內溝槽部分112及像素間溝槽部分121之溝槽部分。然而,可採用關於是否在光電二極體PD之形成區上方形成其中週期性地形成微小不規則性之一蛾眼結構之圖37A至圖37C中所展示之三種方法。
圖37A展示其中蛾眼結構經形成於R像素、B像素、G像素及IR像素之所有像素10中之一組態。
圖37B展示其中蛾眼結構僅經形成於IR像素中且未經形成於R像素、B像素及G像素中之一組態。
圖37C展示其中蛾眼結構僅經形成於B像素及IR像素中且未經形成於R像素及G像素中之一組態。其中形成蛾眼結構之像素10可減少半導體基板41之入射表面之反射且因此可改良其敏感度。應注意,蛾眼結構可具有如同蛾眼結構部分111之一形狀或如同蛾眼結構部分114之一形狀。
<22. 距離測量模組之組態實例> 圖38係展示使用上文所描述之光接收元件1輸出距離測量資訊之一距離測量模組之一組態實例之一方塊圖。
一距離測量模組500包含一發光單元511、一光發射控制單元512及一光接收單元513。
發光單元511具有發射具有一規定波長之光之一光源,且發射亮度週期性地波動之照射光以用該照射光照射一物件。例如,發光單元511具有一發光二極體,該發光二極體發射具有780 nm至1000 nm之一波長之紅外光作為一光源,且與具有自光發射控制單元512供應之一矩形波之一光發射控制信號CLKp同步地發射照射光。
應注意,光發射控制信號CLKp不限於一矩形波,只要光發射控制信號CLKp係一週期性信號。例如,光發射控制信號CLKp可具有一正弦波。
光發射控制單元512將光發射控制信號CLKp供應至發光單元511及光接收單元513且控制照射光之一照射時序。光發射控制信號CLKp具有例如20兆赫茲(MHz)之一頻率。應注意,光發射控制信號CLKp之頻率不限於20兆赫茲但可為5兆赫茲、100兆赫茲或類似者。
光接收單元513接收被一物件反射之反射光,根據光接收之一結果計算各像素之距離資訊,且產生及輸出其中對應於至該物件(對象)之一距離之一深度值經儲存為一像素值之一深度影像。
使用具有基於間接ToF方法之第一至第七組態實例、SPAD像素之第一至第三組態實例及上文所描述之CAPD像素之組態實例之任一者之像素結構之光接收元件1作為光接收單元513。例如,用作光接收單元513之光接收元件1基於光發射控制信號CLKp自對應於分配至像素陣列單元21之各自像素10之浮動擴散區FD1或FD2之電荷之一偵測信號計算各像素之距離資訊。
如上文所描述,具有基於間接ToF方法之第一至第七組態實例、SPAD像素之第一至第三組態實例及上文所描述之CAPD像素之組態實例之任一者之像素結構之光接收元件1可經嵌入為計算及輸出關於至一對象之一距離之資訊之距離測量模組500之光接收單元513。因此,可改良距離測量模組500之距離測量特性。
<23. 電子儀器之組態實例> 應注意,光接收元件1除適用於如上文所描述之距離測量之外,亦適用於例如諸如成像裝置之各種電子儀器,如同具有一距離測量功能之數位靜態相機或數位攝影機及具有一距離測量功能之智慧型電話。
圖39係展示作為應用本技術之一電子儀器之一智慧型電話之一組態實例之一方塊圖。
如圖39中所展示,一智慧型電話601經組態使得一距離測量模組602、一成像裝置603、一顯示器604、一揚聲器605、一麥克風606、一通信模組607、一感測器單元608、一觸控面板609及一控制單元610經由一匯流排611彼此連接。此外,當一CPU執行一程式時,控制單元610具有作為一應用程式處理單元621及一作業系統處理單元622之功能。
應用圖38之距離測量模組500作為距離測量模組602。例如,距離測量模組602經配置於智慧型電話601之前面。藉由對智慧型電話601之一使用者執行距離測量,距離測量模組602可輸出使用者之面部、手、手指或類似者之前表面形狀之一深度值作為一距離測量結果。
成像裝置603經配置於智慧型電話601之前面。藉由使作為一對象之智慧型電話601之使用者成像,成像裝置603獲取使用者之一影像。應注意,儘管未在圖中展示,但成像裝置603亦可經配置於智慧型電話601之後面。
顯示器604顯示一操作螢幕以執行由應用程式處理單元621及作業系統處理單元622之處理、由成像裝置603成像之一影像或類似者。例如,當使用智慧型電話601進行一電話呼叫時,揚聲器605及麥克風606執行另一方之語音之輸出及使用者之語音之收集。
通信模組607經由一通信網路(諸如網際網路、一公共電話線網路)、一遠距離通信網路(諸如用於無線移動體之所謂4-G線及5-G線、一WAN (廣域網路)及一LAN (區域網路))、短距離無線通信(諸如Bluetooth (TM)及NFC (近場通信))或類似者執行網路通信。感測器單元608感測速度、加速度、近接度或類似者,且觸控面板609獲取由使用者在顯示器604上顯示之一操作螢幕上執行之一觸碰操作。
應用程式處理單元621執行處理以利用智慧型電話601提供各種服務。例如,應用程式處理單元621可執行處理以基於其中虛擬地重現使用者之面部表情之電腦圖形產生一面部,且基於自距離測量模組602供應之一深度值在顯示器604上顯示經產生面部。此外,應用程式處理單元621可執行例如處理以基於自距離測量模組602供應之一深度值產生任何多邊形物件之三維形狀資料。
作業系統處理單元622執行處理以實現智慧型電話601之基本功能及操作。例如,作業系統處理單元622可執行處理以鑑認使用者之面部且基於自距離測量模組602供應之一深度值對智慧型電話601進行解鎖。此外,作業系統處理單元622可執行例如處理以辨識使用者之一手勢且基於自距離測量模組602供應之一深度值輸入各種操作。
在如上文所描述般組態之智慧型電話601中,可應用上文被描述為距離測量模組602之距離測量模組500例如執行處理以測量及顯示至一規定物件之一距離,執行處理以產生及顯示一規定物件之三維形狀資料之處理或類似者。
<24. 移動本體之應用實例> 根據本發明之技術(本技術)可應用於各種產品。例如,根據本發明之技術可被實現為安裝於任何類型之移動本體中之一裝置,諸如一汽車、一電動車輛、一混合動力電動車輛、一自動雙輪車輛、一自行車、一個人機動車、一飛機、一無人機、一輪船及一機器人。
圖40係描繪一車輛控制系統之示意性組態之一實例作為可應用根據本發明之一實施例之技術之一移動本體控制系統之一實例之一方塊圖。
車輛控制系統12000包含經由一通信網路12001彼此連接之複數個電子控制單元。在圖40中所描繪之實例中,車輛控制系統12000包含一驅動系統控制單元12010、一本體系統控制單元12020、一車輛外部資訊偵測單元12030、一車輛內部資訊偵測單元12040及一整合式控制單元12050。另外,一微電腦12051、一聲音/影像輸出區段12052及一車載網路介面(I/F) 12053被繪示為整合式控制單元12050之一功能組態。
驅動系統控制單元12010根據各種程式控制與車輛之驅動系統相關之裝置之操作。例如,驅動系統控制單元12010用作以下各者之一控制裝置:用於產生車輛之驅動力之一驅動力產生裝置,諸如一內燃機、一驅動馬達或類似者;用於將驅動力傳輸至車輪之一驅動力傳輸機構;用於調整車輛之轉向角之一轉向機構;用於產生車輛之制動力之一制動裝置及類似者。
本體系統控制單元12020根據各種程式控制提供至一車輛本體之各種裝置之操作。例如,本體系統控制單元12020用作以下各者之一控制裝置:一無鑰匙進入系統、一智慧型鑰匙系統、一電動車窗裝置或各種燈(諸如車頭燈、倒車燈、制動燈、轉向燈、一霧燈或類似者)。在此情況中,可將自作為一鑰匙之一替代物之一行動裝置傳輸之無線電波或各種開關之信號輸入至本體系統控制單元12020。本體系統控制單元12020接收此等輸入無線電波或信號,且控制車輛之一門鎖裝置、電動車窗裝置、燈或類似者。
車輛外部資訊偵測單元12030偵測關於包含車輛控制系統12000之車輛外部之資訊。例如,車輛外部資訊偵測單元12030與一成像區段12031連接。車輛外部資訊偵測單元12030引起成像區段12031使車輛外部之一影像成像且接收經成像影像。在經接收影像之基礎上,車輛外部資訊偵測單元12030可執行偵測一物件(諸如一路面上之一人、一車輛、一障礙物、一標誌、一文字或類似者)之處理或偵測至其之一距離之處理。
成像區段12031係接收光之一光學感測器,且其輸出對應於光之一經接收光量之一電信號。成像區段12031可輸出電信號作為一影像,或可輸出該電信號作為關於一經量測距離之資訊。另外,由成像區段12031接收之光可為可見光或可為不可見光,諸如紅外線或類似者。
車輛內部資訊偵測單元12040偵測關於車輛內部之資訊。車輛內部資訊偵測單元12040例如與偵測一駕駛員之狀態之一駕駛員狀態偵測區段12041連接在一起。駕駛員狀態偵測區段12041例如包含使駕駛員成像之一相機。基於自駕駛員狀態偵測區段12041輸入之偵測資訊,車輛內部資訊偵測單元12040可計算駕駛員之一疲勞程度或駕駛員之一集中程度,或可判定駕駛員是否在打瞌睡。
微電腦12051可基於關於車輛之內部或外部之資訊(該資訊藉由車輛外部資訊偵測單元12030或車輛內部資訊偵測單元12040獲得)計算驅動力產生裝置、轉向機構或制動裝置之一控制目標值,且將一控制命令輸出至驅動系統控制單元12010。例如,微電腦12051可執行旨在實施一先進駕駛輔助系統(ADAS)之功能(該等功能包含車輛之碰撞避免或撞擊緩解、基於跟車距離之跟車駕駛、恆定車速駕駛、車輛碰撞警告、車輛偏離車道之一警告或類似者)之協同控制。
另外,微電腦12051可藉由基於關於車輛之外部或內部之資訊(該資訊藉由車輛外部資訊偵測單元12030或車輛內部資訊偵測單元12040獲得)控制驅動力產生裝置、轉向機構、制動裝置或類似者而執行旨在用於自動駕駛(其使車輛自主行駛而不取決於駕駛員之操作)或類似者之協同控制。
另外,微電腦12051可基於關於車輛外部之資訊(該資訊藉由車輛外部資訊偵測單元12030獲得)將一控制命令輸出至本體系統控制單元12020。例如,微電腦12051可藉由(例如)根據由車輛外部資訊偵測單元12030偵測之一前方車輛或一來臨車輛之位置控制車頭燈以便自遠光燈改變成近光燈而執行旨在防止眩光之協同控制。
聲音/影像輸出區段12052將一聲音及一影像之至少一者之一輸出信號傳輸至一輸出裝置,該輸出裝置能夠在視覺上或聽覺上對車輛之乘客或車輛外部通知資訊。在圖40之實例中,繪示一音訊揚聲器12061、一顯示區段12062及一儀表板12063作為輸出裝置。顯示區段12062可(例如)包含一機載顯示器及一抬頭顯示器之至少一者。
圖41係描繪成像區段12031之安裝位置之一實例之一圖。
在圖41中,成像區段12031包含成像區段12101、12102、12103、12104及12105。
成像區段12101、12102、12103、12104及12105例如經安置於車輛12100之一前鼻、側視鏡、一後保險杠及一後門上之位置以及車輛內部內之一擋風玻璃之一上部分上之一位置處。提供至前鼻之成像區段12101及提供至車輛內部內之擋風玻璃之上部分之成像區段12105主要獲得車輛12100前部之一影像。提供至後視鏡之成像區段12102及12103主要獲得車輛12100之側之一影像。提供至後保險槓或後門之成像區段12104主要獲得車輛12100之後方之一影像。提供至車輛之內部內之擋風玻璃之上部分之成像區段12105主要用於偵測一前方車輛、一行人、一障礙物、一信號、一交通標誌、一車道或類似者。
順便提及,圖41描繪成像區段12101至12104之拍攝範圍之一實例。成像範圍12111表示提供至前鼻之成像區段12101之成像範圍。成像範圍12112及12113分別表示提供至後視鏡之成像區段12102及12103之成像範圍。成像範圍12114表示提供至後保險槓或後門之成像區段12104之成像範圍。例如,藉由疊加由成像區段12101至12104成像之影像資料而獲得如自上方觀看之車輛12100之一鳥瞰影像。
成像區段12101至12104之至少一者可具有獲得距離資訊之一功能。例如,成像區段12101至12104之至少一者可為由複數個成像元件構成之一立體相機或可為具有用於相位差偵測之像素之一成像元件。
例如,微電腦12051可基於自成像區段12101至12104獲得之距離資訊判定距成像範圍12111至12114內之各三維物件之一距離及距離之一時間改變(相對於車輛12100之相對速度),且藉此尤其提取一最接近三維物件(其存在於車輛12100之一行駛路徑上且在實質上與車輛12100相同之方向上按一預定速度(例如,等於或大於0 km/小時)行駛)作為一前方車輛。此外,微電腦12051可預先設定欲在一前方車輛前面維持的一跟車距離,且執行自動制動控制(包含跟車停止控制)、自動加速控制(包含跟車啟動控制)或類似者。因此,可執行旨在用於自動駕駛(其使車輛自主行駛而不取決於駕駛員之操作)或類似者之協同控制。
例如,微電腦12051可基於自成像區段12101至12104獲得之距離資訊將關於三維物件之三維物件資料分類成二輪車輛、標準大小車輛、大型車輛、行人、電線桿及其他三維物件之三維物件資料,提取經分類三維物件資料且使用經提取三維物件資料以自動避免一障礙物。例如,微電腦12501將車輛12100周圍之障礙物識別為車輛12100之駕駛員可在視覺上辨識之障礙物及車輛12100之駕駛員難以在視覺上辨識之障礙物。接著,微電腦12051判定指示與各障礙物碰撞之一風險之一碰撞風險。在其中碰撞風險等於或高於一設定值且因此存在碰撞之一可能性之一情境中,微電腦12051經由音訊揚聲器12061或顯示區段12062將警告輸出至駕駛員,且經由驅動系統控制單元12010執行強制減速或避免轉向。藉此,微電腦12051可輔助駕駛以避免碰撞。
成像區段12101至12104之至少一者可為偵測紅外線之一紅外線相機。例如,微電腦12051可藉由判定在成像區段12101至12104之經成像影像中是否存在一行人而辨識一行人。例如,藉由在作為紅外線相機之成像區段12101至12104之經成像影像中提取特性點之一程序及藉由對表示物件之輪廓之一系列特性點執行圖案匹配處理而判定物件是否係行人之一程序來執行一行人之此辨識。當微電腦12051判定在成像區段12101至12104之經成像影像中存在一行人且因此辨識該行人時,聲音/影像輸出區段12052控制顯示區段12062使得用於強調之一正方形輪廓線經顯示以便疊加於經辨識行人上。聲音/影像輸出區段12052亦可控制顯示區段12062使得在一所要位置處顯示表示行人之一圖示或類似者。
上文已描述可應用根據本發明之一實施例之技術之車輛控制系統之一實例。根據本發明之實施例之技術可應用於上述組態當中之車輛外部資訊偵測單元12030或成像區段12031。具體而言,光接收元件1或距離測量模組500可應用於車輛外部資訊偵測單元12030或成像區段12031之距離偵測處理區塊。藉由將根據本發明之實施例之技術應用於車輛外部資訊偵測單元12030或成像區段12031,可高度準確地測量至諸如一人、一車輛、一障礙物、一標誌、一路面上之一人或類似者之一物件之一距離,且藉由使用經獲得距離資訊,可降低駕駛員之疲勞度且增強駕駛員及車輛之安全度。
本技術之實施例不限於上文所描述之實施例,但可在不背離本技術之精神之情況下以各種方式修改。
此外,在上文所描述之光接收元件1中描述其中電子用作信號載流子之一實例,但藉由光電轉換產生之電洞可用作信號載流子。
例如,在上文所描述之光接收元件1中可採用其中一些或所有各自實施例彼此組合之一模式。
應注意,本說明書中所描述之效應僅係為了繪示而給出且不以一受限方式來解釋。可產生除本說明書中所描述之效應之外的效應。
應注意,本技術可採用以下組態。 (1)      一種光接收元件,其包含: 一晶片上透鏡; 一互連層;及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。 (2)    根據(1)之光接收元件,其中 該半導體層進一步包含 一第一傳送電晶體,其將由該光電二極體產生之電荷傳送至一第一電荷累積單元, 一第二傳送電晶體,其將由該光電二極體產生之該等電荷傳送至一第二電荷累積單元,及 該第一電荷累積單元及該第二電荷累積單元。 (3)    根據(1)之光接收元件,其中 該半導體層進一步包含 一傳送電晶體,其將由該光電二極體產生之電荷傳送至一電荷累積單元,及 該電荷累積單元。 (4)    根據(1)至(3)中任一項之光接收元件,其中 該像素間溝槽部分經雕刻直至諸如穿透該半導體層之一程度。 (5)    根據(1)至(4)中任一項之光接收元件,其中 該像素內溝槽部分係依距其上形成該晶片上透鏡之該半導體層之該後表面之一規定深度雕刻。 (6)    根據(1)至(4)中任一項之光接收元件,其中 該像素內溝槽部分係依距其上形成該互連層之該半導體層之該前表面之一規定深度雕刻。 (7)    根據(1)至(6)中任一項之光接收元件,其中 該像素內溝槽部分經配置使得該像素之一矩形平面區在一平面視圖中在一水平方向及一垂直方向之各者上劃分成複數個區。 (8)    根據(1)至(7)中任一項之光接收元件,其中 該像素內溝槽部分經形成為一十字形狀,其中該像素之一矩形平面區在一平面視圖中劃分成四個區。 (9)    根據(8)之光接收元件,其中 該像素內溝槽部分未經形成於其具有該十字形狀之一交叉點處。 (10)  根據(1)至(9)中任一項之光接收元件,其中 具有週期性之一不規則性結構經形成於其上形成該晶片上透鏡之該半導體層之一後表面側上。 (11)  根據(10)之光接收元件,其中 該像素內溝槽部分經形成於具有該週期性之該不規則性結構之一凹陷部分中。 (12)  根據(1)至(11)中任一項之光接收元件,其中 該像素內溝槽部分及該像素間溝槽部分由相同材料製成。 (13)  根據(1)至(11)中任一項之光接收元件,其中 該像素內溝槽部分及該像素間溝槽部分由不同材料製成。 (14)  根據(1)至(13)中任一項之光接收元件,其中 該一個晶片上透鏡經形成於該一個光電二極體之一光入射表面側上之該半導體層之一上表面上。 (15)  根據(1)至(13)中任一項之光接收元件,其中 複數個該晶片上透鏡經形成於該一個光電二極體之一光入射表面側上之該半導體層之一上表面上。 (16)  根據(15)之光接收元件,其中 四件該晶片上透鏡經形成於該一個光電二極體之該光入射表面側上之該半導體層之該上表面上。 (17)  根據(1)至(16)中任一項之光接收元件,其中 該互連層具有包含一遮光構件之至少一個層,且 該遮光構件經提供以便在一平面視圖中與該光電二極體重疊。 (18)  根據(1)至(17)中任一項之光接收元件,其中 該互連層具有依一規定間隔規則地配置於該半導體層之一前表面側上之一介面上之一擴散膜。 (19)   一種距離測量模組,其包含: 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。 (20)   一種電子儀器,其包含: 一距離測量模組,其包含 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
熟習此項技術者應理解,可取決於設計要求及其他因素進行各種修改、組合、子組合及變動,只要其等在隨附發明申請專利範圍或其等效物之範疇內即可。
1:光接收元件 10:矩形像素 21:像素陣列單元 22:垂直驅動單元 23:行處理單元 24:水平驅動單元 25:系統控制單元 26:信號處理單元 27:資料儲存單元 28:像素驅動線 29:垂直信號線 29A:垂直信號線 29B:垂直信號線 41:半導體基板/第一基板 42:多層互連層 43:抗反射膜 44:邊界部分(像素邊界部分) 45:像素間遮光膜 46:平坦化膜 47:晶片上透鏡 51:P型(第一導電類型)半導體區 52:N型(第二導電類型)半導體區 53:氧化鉿膜 54:氧化鋁膜 55:氧化矽膜 61:像素間溝槽部分 62:層間絕緣膜 63:遮光構件 64:互連電容 111:蛾眼結構部分 112:像素內溝槽部分 113:平坦部分 114:蛾眼結構部分 121:像素間溝槽部分 141:像素內溝槽部分 161:晶片上透鏡 301:半導體基板/第二基板 311:互連層 312:絕緣層 313:絕緣層 321:多層互連層 333:層間絕緣膜 331-1:矽穿孔(TSV) 331-2:矽穿孔(TSV) 332-1:矽穿孔(TSV) 332-2:矽穿孔(TSV) 351:擴散膜 352:像素內溝槽部分 371:單光子雪崩二極體(SPAD) 372:讀取電路 381:電晶體 382:反相器 383:開關 401:N井區 402:P型擴散層 403:N型擴散層 404:電洞累積層 405:集中P型擴散層 406:雪崩倍增區 410:互連層/邏輯互連層 411:接觸電極 412:接觸電極 413:金屬互連件 414:金屬互連件 415:接觸電極 416:接觸電極 417:金屬墊 418:金屬墊 419:擴散膜 421:電極墊 422:電極墊 423:接觸電極 424:接觸電極 425:接觸電極 426:接觸電極 429:絕緣層 431:金屬墊 432:金屬墊 451:擴散膜 500:距離測量模組 511:發光單元 512:光發射控制單元 513:光接收單元 601:智慧型電話 602:距離測量模組 603:成像裝置 604:顯示器 605:揚聲器 606:麥克風 607:通信模組 608:感測器單元 609:觸控面板 610:控制單元 611:匯流排 621:應用程式處理單元 622:作業系統處理單元 701:P+半導體區 721A:傳送電晶體 721B:傳送電晶體 722A:FD 722B:FD 723A:重設電晶體 723B:重設電晶體 724A:放大電晶體 724B:放大電晶體 725A:選擇電晶體 725B:選擇電晶體 726A:恆定電流源電路單元 726B:恆定電流源電路單元 764:氧化物膜 765-1:信號提取單元 765-2:信號提取單元 771-1:N+半導體區 771-2:N+半導體區 772-1:N-半導體區 772-2:N-半導體區 773-1:P+半導體區 773-2:P+半導體區 774-1:P-半導體區 774-1P-半導體區 775-1:隔離部分 775-2:隔離部分 811:擴散膜 812:接觸電極 813:電力供應線 814:電壓施加互連件 815:反射構件 816:電壓施加互連件 817:控制線 12000:車輛控制系統 12001:通信網路 12010:驅動系統控制單元 12020:本體系統控制單元 12030:車輛外部資訊偵測單元 12031:成像區段 12040:車輛內部資訊偵測單元 12041:駕駛員狀態偵測區段 12050:整合式控制單元 12051:微電腦 12052:聲音/影像輸出區段 12053:車載網路介面(I/F) 12061:音訊揚聲器 12062:顯示區段 12063:儀表板 12100:車輛 12101:成像區段 12102:成像區段 12103:成像區段 12104:成像區段 12105:成像區段 12111:成像範圍 12112:成像範圍 12113:成像範圍 12114:成像範圍 AMP1:放大電晶體 AMP2:放大電晶體 CLKp:光發射控制信號 D:寬度 FD1:浮動擴散區 FD2:浮動擴散區 FDG1:切換電晶體 FDG1g:FD驅動信號 FDG2:切換電晶體 FDG2g:FD驅動信號 FDL1:額外電容器 FDL2:額外電容器 LP:規定循環 M:金屬膜 M1:第一金屬膜 M2:第二金屬膜 M3:第三金屬膜 M4:第四金屬膜 M5:第五金屬膜 MEM1:記憶體 MEM2:記憶體 MIX0:規定電壓 MIX1:規定電壓 OFG:電荷釋放電晶體 OFG1g:釋放驅動信號 PD:光電二極體 Pfout:偵測信號 RST:重設驅動信號 RST1:重設電晶體 RST1g:重設驅動信號 RST2:重設電晶體 RST2g:重設驅動信號 RSTg:重設驅動信號 SEL:選擇驅動信號 SEL1:選擇電晶體 SEL1g:選擇信號 SEL2:選擇電晶體 SEL2g:選擇信號 T:循環 Tr1:像素電晶體 Tr2:像素電晶體 TRG:傳送驅動信號 TRG1:傳送電晶體 TRG1g:傳送驅動信號 TRG2:傳送電晶體 TRG2g:傳送驅動信號 TRGa1:第一傳送電晶體 TRGa1g:第一傳送驅動信號 TRGa2:第一傳送電晶體 TRGa2g:第一傳送驅動信號 TRGb1:第二傳送電晶體 TRGb1g:第二傳送驅動信號 TRGb2:第二傳送電晶體 TRGb2g:第二傳送驅動信號 VA:電力供應器電壓/陽極電壓 VBD:崩潰電壓 VDD:重設電壓 VE:電力供應器電壓 VG:閘控控制信號 VS:陰極電壓 VSL1:偵測信號 VSL2:偵測信號
圖1係展示應用本技術之一光接收元件之一示意性組態實例之一方塊圖。 圖2係展示一像素之一第一組態實例之一截面視圖。 圖3A及圖3B係一像素間溝槽部分及一像素內溝槽部分之平面視圖。 圖4係展示圖2之像素之一電路組態實例之一圖。 圖5係展示圖4之一像素電路之一配置實例之一平面視圖。 圖6係展示圖2之像素之另一電路組態實例之一圖。 圖7係展示圖6之一像素電路之一配置實例之一平面視圖。 圖8係展示像素之一第二組態實例之一截面視圖。 圖9係展示像素之一第三組態實例之一截面視圖。 圖10係展示像素之第三組態實例之一修改實例之一截面視圖。 圖11係圖10之像素間溝槽部分及像素內溝槽部分之一平面視圖。 圖12係展示根據像素電晶體之配置之像素內溝槽部分之一配置實例之一平面視圖。 圖13係展示像素之一第四組態實例之一截面視圖。 圖14係展示像素之一第五組態實例之一截面視圖。 圖15係展示根據第五組態實例之像素之晶片上透鏡之配置之一平面視圖。 圖16係展示像素之一第六組態實例之一截面視圖。 圖17係第六組態實例中之像素間溝槽部分及像素內溝槽部分之一平面視圖。 圖18係展示像素之一第七組態實例之一截面視圖。 圖19係展示在其中一光接收元件包含一IR成像感測器之一情況下之像素之一電路組態實例之一圖。 圖20係展示在其中光接收元件經組態為一IR成像感測器之一情況下之像素之一第一組態實例之一截面視圖。 圖21係展示在其中光接收元件包含一IR成像感測器之一情況下之像素之一第二組態實例之一截面視圖。 圖22係展示圖21之一擴散膜之平面配置之像素之一平面視圖。 圖23係展示在其中光接收元件包含一IR成像感測器之一情況下之像素之一第三組態實例之一截面視圖。 圖24係展示圖23之擴散膜之平面配置之像素之一平面視圖。 圖25係展示在其中光接收元件包含一IR成像感測器之一情況下之像素之一第四組態實例之一截面視圖。 圖26A及圖26B係圖25之像素內溝槽部分之平面視圖。 圖27係展示擴散膜之一修改實例之一平面視圖。 圖28係展示在其中像素係一SPAD像素之一情況下之一電路組態實例之一圖。 圖29係描述SPAD像素之操作之一圖。 圖30係展示在其中像素係一SPAD像素之一情況下之一第一組態實例之一截面視圖。 圖31係展示一擴散膜之平面配置之SPAD像素之一平面視圖。 圖32係展示在其中像素係一SPAD像素之一情況下之一第二組態實例之一截面視圖。 圖33係展示在其中像素係一SPAD像素之一情況下之一第三組態實例之一截面視圖。 圖34係展示在其中像素係一CAPD像素之一情況下之一電路組態實例之一圖。 圖35係在其中像素係一CAPD像素之一情況下之一截面視圖。 圖36係展示在其中像素係一CAPD像素之一情況下之信號提取單元及一擴散膜之配置之一平面視圖。 圖37A至圖37C係各展示在其中光接收元件包含一RGBIR成像感測器之一情況下之一像素配置實例之圖。 圖38係展示應用本技術之一距離測量模組之一組態實例之一方塊圖。 圖39係展示作為應用本技術之一電子儀器之一智慧型電話之一組態實例之一方塊圖。 圖40係描繪一車輛控制系統之示意性組態之一實例之一方塊圖。 圖41係輔助解釋一車輛外部資訊偵測區段及一成像區段之安裝位置之一實例之一圖。
10:像素
41:半導體基板/第一基板
42:多層互連層
43:抗反射膜
44:邊界部分(像素邊界部分)
45:像素間遮光膜
46:平坦化膜
47:晶片上透鏡
51:P型(第一導電類型)半導體區
52:N型(第二導電類型)半導體區
53:氧化鉿膜
54:氧化鋁膜
55:氧化矽膜
61:像素間溝槽部分
62:層間絕緣膜
63:遮光構件
64:互連電容
111:蛾眼結構部分
112:像素內溝槽部分
FD1:浮動擴散區
FD2:浮動擴散區
M1:第一金屬膜
M2:第二金屬膜
M3:第三金屬膜
PD:光電二極體
TRG1:傳送電晶體
TRG2:傳送電晶體

Claims (20)

  1. 一種光接收元件,其包括: 一晶片上透鏡; 一互連層;及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
  2. 如請求項1之光接收元件,其中 該半導體層進一步包含 一第一傳送電晶體,其將由該光電二極體產生之電荷傳送至一第一電荷累積單元, 一第二傳送電晶體,其將由該光電二極體產生之該等電荷傳送至一第二電荷累積單元,及 該第一電荷累積單元及該第二電荷累積單元。
  3. 如請求項1之光接收元件,其中 該半導體層進一步包含 一傳送電晶體,其將由該光電二極體產生之電荷傳送至一電荷累積單元,及 該電荷累積單元。
  4. 如請求項1之光接收元件,其中 該像素間溝槽部分經雕刻直至諸如穿透該半導體層之一程度。
  5. 如請求項1之光接收元件,其中 該像素內溝槽部分係依距其上形成該晶片上透鏡之該半導體層之該後表面之一規定深度雕刻。
  6. 如請求項1之光接收元件,其中 該像素內溝槽部分係依距其上形成該互連層之該半導體層之該前表面之一規定深度雕刻。
  7. 如請求項1之光接收元件,其中 該像素內溝槽部分經配置使得該像素之一矩形平面區在一平面視圖中在一水平方向及一垂直方向之各者上劃分成複數個區。
  8. 如請求項1之光接收元件,其中 該像素內溝槽部分經形成為一十字形狀,其中該像素之一矩形平面區在一平面視圖中劃分成四個區。
  9. 如請求項8之光接收元件,其中 該像素內溝槽部分未經形成於具有該十字形狀之一交叉點處。
  10. 如請求項1之光接收元件,其中 具有週期性之一不規則性結構經形成於其上形成該晶片上透鏡之該半導體層之一後表面側上。
  11. 如請求項10之光接收元件,其中 該像素內溝槽部分經形成於具有該週期性之該不規則性結構之一凹陷部分中。
  12. 如請求項1之光接收元件,其中 該像素內溝槽部分及該像素間溝槽部分由相同材料製成。
  13. 如請求項1之光接收元件,其中 該像素內溝槽部分及該像素間溝槽部分由不同材料製成。
  14. 如請求項1之光接收元件,其中 該一個晶片上透鏡經形成於該一個光電二極體之一光入射表面側上之該半導體層之一上表面上。
  15. 如請求項1之光接收元件,其中 複數個該晶片上透鏡經形成於該一個光電二極體之一光入射表面側上之該半導體層之一上表面上。
  16. 如請求項15之光接收元件,其中 四件該晶片上透鏡經形成於該一個光電二極體之該光入射表面側上之該半導體層之該上表面上。
  17. 如請求項1之光接收元件,其中 該互連層具有包含一遮光構件之至少一個層,且 該遮光構件經提供以便在一平面視圖中與該光電二極體重疊。
  18. 如請求項1之光接收元件,其中 該互連層具有依一規定間隔規則地配置於該半導體層之一前表面側上之一介面上之一擴散膜。
  19. 一種距離測量模組,其包括: 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
  20. 一種電子儀器,其包括: 一距離測量模組,其包含 一規定發光源;及 一光接收元件, 該光接收元件包含 一晶片上透鏡, 一互連層,及 一半導體層,其經配置於該晶片上透鏡與該互連層之間, 該半導體層包含 一光電二極體, 一像素間溝槽部分,其在一相鄰像素之一邊界部分處雕刻直至該半導體層之一深度方向上之至少一部分,及 一像素內溝槽部分,其在一平面視圖中在與該光電二極體之一部分重疊之一位置處依距該半導體層之一前表面或一後表面之一規定深度雕刻。
TW109116852A 2019-09-25 2020-05-21 光接收元件、距離測量模組及電子儀器 TW202114241A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-174416 2019-09-25
JP2019174416 2019-09-25
JP2020016233 2020-02-03
JP2020-016233 2020-02-03

Publications (1)

Publication Number Publication Date
TW202114241A true TW202114241A (zh) 2021-04-01

Family

ID=72665282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116852A TW202114241A (zh) 2019-09-25 2020-05-21 光接收元件、距離測量模組及電子儀器

Country Status (7)

Country Link
US (1) US20220344388A1 (zh)
EP (1) EP4035208A1 (zh)
JP (1) JP2022549577A (zh)
KR (1) KR20220066890A (zh)
CN (1) CN114556571A (zh)
TW (1) TW202114241A (zh)
WO (1) WO2021060017A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804362B (zh) * 2022-04-08 2023-06-01 采鈺科技股份有限公司 影像感測器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121852A (ko) * 2020-03-31 2021-10-08 에스케이하이닉스 주식회사 이미지 센싱 장치
JP2021166249A (ja) * 2020-04-07 2021-10-14 キヤノン株式会社 光電変換装置およびその製造方法
JP2022036438A (ja) * 2020-08-24 2022-03-08 タワー パートナーズ セミコンダクター株式会社 固体撮像装置
EP4254501A1 (en) * 2022-03-31 2023-10-04 Sony Semiconductor Solutions Corporation A pixel unit with infrared absorber, a pixel array, and a camera implementing such a pixel array
US11967664B2 (en) * 2022-04-20 2024-04-23 Globalfoundries Singapore Pte. Ltd. Photodiodes with serpentine shaped electrical junction
WO2024048336A1 (ja) * 2022-08-29 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 受光素子、および測距装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474631A (en) 2009-10-14 2011-04-27 Optrima Nv Photonic Mixer
JP2017108062A (ja) * 2015-12-11 2017-06-15 ソニー株式会社 固体撮像素子、撮像装置、および、固体撮像素子の製造方法
JP2017168566A (ja) * 2016-03-15 2017-09-21 ソニー株式会社 固体撮像素子、および電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804362B (zh) * 2022-04-08 2023-06-01 采鈺科技股份有限公司 影像感測器

Also Published As

Publication number Publication date
CN114556571A (zh) 2022-05-27
WO2021060017A1 (en) 2021-04-01
EP4035208A1 (en) 2022-08-03
JP2022549577A (ja) 2022-11-28
US20220344388A1 (en) 2022-10-27
KR20220066890A (ko) 2022-05-24

Similar Documents

Publication Publication Date Title
KR102663339B1 (ko) 수광 소자, 거리측정 모듈, 및, 전자 기기
TW202114241A (zh) 光接收元件、距離測量模組及電子儀器
WO2022014365A1 (ja) 受光素子およびその製造方法、並びに、電子機器
WO2022014364A1 (ja) 受光素子およびその製造方法、並びに、電子機器
KR20220087436A (ko) 수광 소자, 거리 측정 모듈, 및, 전자 기기
KR20230023655A (ko) 촬상 소자, 전자 기기
US20230246041A1 (en) Ranging device
WO2022209326A1 (ja) 光検出装置
US20230204773A1 (en) Ranging device
KR20220084285A (ko) 수광 소자, 거리 측정 모듈, 및, 전자 기기