WO2024048336A1 - 受光素子、および測距装置 - Google Patents

受光素子、および測距装置 Download PDF

Info

Publication number
WO2024048336A1
WO2024048336A1 PCT/JP2023/029949 JP2023029949W WO2024048336A1 WO 2024048336 A1 WO2024048336 A1 WO 2024048336A1 JP 2023029949 W JP2023029949 W JP 2023029949W WO 2024048336 A1 WO2024048336 A1 WO 2024048336A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
receiving element
light receiving
dtic
photoelectric conversion
Prior art date
Application number
PCT/JP2023/029949
Other languages
English (en)
French (fr)
Inventor
嵩宏 濱崎
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024048336A1 publication Critical patent/WO2024048336A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present disclosure relates to a light receiving element and a distance measuring device.
  • an indirect time of flight (ToF) method is generally known.
  • This indirect ToF method a phase difference is generated from the time when pattern light is irradiated toward an object until it is received as reflected light, and a distance measurement value is generated based on this phase difference.
  • the distance measurement error in a distance measurement device is determined by the main drive frequency and charge distribution efficiency.
  • the main drive frequency when increasing the main drive frequency to improve the distance measurement error, there is a risk that the charge distribution efficiency will decrease.
  • the present disclosure provides a light receiving element and a distance measuring device that can suppress a decrease in charge distribution efficiency even when the main drive frequency is increased.
  • a light receiving element having a plurality of pixels is a photoelectric conversion unit that generates carriers according to the amount of light received; a first conductor portion configured inside a first insulator that insulates between adjacent pixels; a second conductor section configured on the outer edge side of the light receiving area of the photoelectric conversion section and having an opening area; a charge storage region corresponding to the opening region and configured further toward the outer edge than the second conductor portion; A light receiving element is provided.
  • the photoelectric conversion section is made of a first conductivity type semiconductor,
  • the charge accumulation region may be formed on one side of the photoelectric conversion section, and may be formed with a higher impurity density than the photoelectric conversion section.
  • the second conductor portion may be configured inside a second insulator that insulates between the photoelectric conversion portion and the photoelectric conversion portion.
  • the second conductor portion may include first, second, third, and fourth conductor portions that are spaced apart.
  • the first, second, third, and fourth conductor portions may be configured to surround a light receiving area of the photoelectric conversion portion.
  • the first, second, third, and fourth conductor portions may have any one of a rectangular shape, a circular shape, and an octagonal shape.
  • the second insulator may be configured to correspond to each of the first, second, third, and fourth conductor portions and to be spaced apart from each other.
  • Each of the first, second, third, and fourth conductor portions may be composed of two spaced apart conductor portions.
  • Each of the first, second, third and fourth conductor parts is composed of two spaced apart conductor parts, and each of the second insulators in which the two spaced apart conductor parts are formed is also spaced apart. It may be configured as follows.
  • the first conductor section and the second conductor section may be arranged from one surface side to the other surface side of the photoelectric conversion section.
  • the charge storage region may include first, second, third, and fourth charge storage regions spaced apart from each other.
  • the charge storage region has first to eighth charge storage regions spaced apart, and each of the first to eighth charge storage regions corresponds to each of the eight opening regions of the second conductor section. It may be configured as follows.
  • a central conductor portion surrounded by an insulator that insulates between the photoelectric conversion portion and the photoelectric conversion portion may be further provided at the center of the photoelectric conversion portion, and a predetermined potential may be applied to the central conductor portion.
  • An on-chip lens may be configured on the other surface side of the photoelectric conversion section.
  • An impurity layer of a second conductivity type different from the first conductivity type may be formed in the surface layer portion of the photoelectric conversion section.
  • the impurity layer may have a fixed potential.
  • the first conductor portion is isolated from the first, second, third, and fourth charge storage regions, and is applied with a predetermined potential, First, second, third, and fourth periodic signals whose potentials change periodically are applied to each of the first, second, third, and fourth conductor portions, and The phases of the third and fourth periodic signals may differ by 90 degrees.
  • the first conductor portion is isolated from the first to eighth charge storage regions and is applied with a predetermined potential, First to eighth periodic signals whose potentials change periodically are applied to each of the eight spaced apart conductor parts, and the phases of the first to eighth periodic signals may differ by 45 degrees.
  • the first to eighth charge storage regions are paired with respect to the center of the photoelectric conversion section,
  • the first conductor portion is isolated from the first to eighth charge storage regions and is applied with a predetermined potential,
  • Four conductor parts forming the two openings corresponding to the pair of charge storage regions are set as one group to form four groups,
  • First to fourth periodic signals whose potentials change periodically are applied to the four conductor parts in each of the four groups, and the phases of the first to fourth periodic signals may differ by 90 degrees.
  • the first conductor portion includes first, second, third, and fourth first conductor portions that are configured in isolation to correspond to the first, second, third, and fourth charge storage regions. have, Each of the first, second, third and fourth charge storage regions may be connected to any one of the corresponding first, second, third and fourth conductor portions via a gate transistor. good.
  • the first conductor portion includes first, second, third, and fourth first conductor portions that are configured to be separated from each other in correspondence with the first, second, third, and fourth charge storage regions.
  • Each of the first, second, third, and fourth charge storage regions may be connected to a corresponding one of the first, second, third, and fourth embedded memories via a gate transistor. good.
  • the first insulator and the second insulator may be integrally configured to electrically cut off the first, second, third, and fourth embedded memories.
  • a base configured on one side of the photoelectric conversion section; further comprising a memory electrically connectable to the first, second, third and fourth charge storage regions,
  • the memory may be configured on the substrate.
  • the memory may be configured of MOS (Metal Oxide Semiconductor) or MIM (Meteal-Insulator-Metal).
  • the first conductor portion may be shared between adjacent pixels.
  • the first conductor portion is isolated from the first, second, third, and fourth charge storage regions, and
  • the device may further include a light shielding portion that covers one side or the other side of the isolated first conductor portion.
  • the first, second, third, and fourth conductor portions may be made of a metal material having a predetermined reflectance.
  • a circuit configured to correspond to the first, second, third, and fourth charge storage regions may be configured in the photoelectric conversion section.
  • the apparatus may further include a signal processing section that generates a distance measurement value to the target object using a measurement signal based on the light receiving element.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a ranging system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example of a distance measuring device. A diagram schematically showing the relationship between the distance to an object and the distance measurement method.
  • FIG. 2 is a block diagram showing a configuration example of a light receiving element.
  • FIG. 3 is a plan view showing an example of a pixel configuration. BB sectional view of FIG. 5. DD sectional view of FIG. 5.
  • FIG. 3 is a diagram schematically showing the electric potential when charge is not transferred.
  • FIG. 3 is a diagram schematically showing the electric potential during charge transfer. Another diagram schematically showing the electric potential during charge transfer.
  • FIG. 6 is a diagram schematically showing charge movement in a comparative example.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a ranging system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example of a distance measuring device.
  • FIG. 7 is a diagram schematically showing a timing chart of charge generation as a comparative example.
  • FIG. 3 is a diagram showing an example of a circuit configuration of a pixel.
  • FIG. 3 is a diagram illustrating a configuration example of a pixel circuit.
  • FIG. 3 is a diagram illustrating a configuration example of a pixel circuit.
  • FIG. 3 is a diagram showing an example of a control signal supplied from a row scanning circuit.
  • FIG. 3 is a diagram showing a relationship between a light emission pattern of a light source and a detection signal at a pixel.
  • FIG. 3 is a diagram showing an example of a circuit configuration of a pixel.
  • FIG. 3 is a diagram illustrating a configuration example of a pixel circuit.
  • FIG. 3 is a diagram illustrating a configuration example of a pixel circuit.
  • FIG. 3 is a diagram showing an
  • FIG. 7 is a diagram showing an example of the configuration of a pixel according to a second embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to Modification 1 of the second embodiment.
  • FIG. 7 is a plan view showing the configuration of a pixel according to a third embodiment.
  • FIG. 7 is a plan view showing the configuration of a pixel according to a fourth embodiment.
  • FIG. 7 is a plan view showing the configuration of a pixel according to Modification 1 of the fourth embodiment.
  • FIG. 7 is a plan view showing the configuration of a pixel according to a fifth embodiment.
  • FIG. 7 is a plan view showing the configuration of a pixel according to Modification 1 of the fifth embodiment.
  • FIG. 7 is a diagram illustrating an example of the configuration of a pixel according to a sixth embodiment.
  • FIG. 7 is a diagram showing an example of an equivalent circuit of a pixel according to a sixth embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to modification example 1 of the sixth embodiment.
  • FIG. 7 is a diagram showing an example of an equivalent circuit of a pixel according to Modification 1 of the sixth embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a pixel according to Modification 2 of the sixth embodiment.
  • FIG. 3 is a cross-sectional view of a pixel 1 according to a first modification of the second embodiment.
  • FIG. 7 is a diagram showing an example of an equivalent circuit of a pixel according to a seventh embodiment.
  • FIG. 7 is a diagram showing an example of an equivalent circuit of a pixel according to a seventh embodiment.
  • FIG. 7 is a plan view showing an example of the configuration of a pixel according to an eighth embodiment.
  • FIG. 7 is a plan view showing an example of the configuration of a pixel according to Modification 1 of the eighth embodiment.
  • FIG. 7 is a plan view showing an example of the configuration of a pixel according to an eighth embodiment.
  • FIG. 7 is an AA cross-sectional view showing a configuration example of a pixel according to a tenth embodiment.
  • FIG. 7 is an AA cross-sectional view showing a configuration example of a pixel according to an eleventh embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of a pixel according to a twelfth embodiment.
  • FIG. 7 is a plan view showing an example of the configuration of a pixel according to a thirteenth embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a ranging system to which the present technology is applied.
  • the ranging system 1 shown in FIG. 1 includes a ranging device 10 and a display device 51 (see FIG. 2).
  • the distance measuring device 10 includes a light source section 11 and a distance measuring section 21.
  • the light source unit 11 generates irradiation light while modulating it at a timing according to a light emission timing signal, and irradiates the object with the irradiation light via an irradiation optical system.
  • the irradiated light emitted from the light source section 11 is reflected by the object and enters the distance measuring section 21 via the light-receiving optical system.
  • the distance measuring unit 21 receives reflected light that is reflected by an object and enters the object.
  • the distance measuring section 21 generates a detection signal according to the amount of received reflected light. Then, the distance measuring unit 21 calculates and outputs a distance value, which is a measured value of the distance to a predetermined object, based on the detection signal.
  • FIG. 2 is a block diagram showing a configuration example of the distance measuring device 10.
  • the light source section 11 of the distance measuring device 10 includes a light emitting source 31 and a light source driving section 32.
  • the distance measurement section 21 of the distance measurement device 10 includes a synchronization control section 41, a light receiving element 42, a signal processing section 43, and a storage section 44.
  • the light emitting source 31 is constituted by a light source array in which a plurality of light emitting elements such as VCSEL (Vertical Cavity Surface Emitting Laser) are arranged in a plane direction.
  • the light source 31 emits light while modulating the timing according to the light emission timing signal supplied from the synchronization control section 41 of the ranging section 21 under the control of the light source driving section 32, and directs the irradiated light to a predetermined target. irradiate.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the light source driving section 32 is composed of, for example, a laser driver, and causes each light emitting element of the light source 31 to emit light in accordance with a light emission timing signal supplied from the synchronization control section 41.
  • the synchronization control section 41 of the ranging section 21 generates a light emission timing signal that controls the timing at which each light emitting element of the light source 31 emits light, and supplies it to the light source driving section 32 . Further, the synchronization control unit 41 also supplies a light emission timing signal to the light receiving element 42 in order to drive the light receiving element 42 in accordance with the timing of light emission from the light emitting source 31.
  • a rectangular wave signal (pulse signal) that turns on and off at a predetermined frequency (eg, 10 MHz, 20 MHz, 50 MHz, 120 MHz, etc.) can be used as the light emission timing signal.
  • a predetermined frequency eg, 10 MHz, 20 MHz, 50 MHz, 120 MHz, etc.
  • the light emission timing signal is not limited to a rectangular wave as long as it is a periodic signal, and may be a sine wave, for example.
  • the light-receiving element 42 receives the reflected light reflected from the object by the pixel array section 63 (see FIG. 4) in which a plurality of pixels 71 (see FIG. 4) are two-dimensionally arranged in a matrix. Then, the light receiving element 42 supplies a detection signal corresponding to the amount of received reflected light to the signal processing section 43 in units of pixels of the pixel array section 63.
  • the light receiving element 42 is composed of, for example, a semiconductor element.
  • the signal processing unit 43 is configured to include, for example, a CPU (Central Processing Unit).
  • the signal processing unit 43 performs signal processing according to a program stored in the storage unit 44. That is, the signal processing unit 43 generates a distance value, which is the distance from the light receiving element 42 to a predetermined object, based on the detection signal supplied from the light receiving element 42.
  • the distance measurement method according to the present embodiment is, for example, a ToF (Time of Flight) method, in which the time from when the irradiation light is irradiated to when the light is received as reflected light is detected as a phase difference, and the distance measurement method is based on the phase difference. Calculate distance.
  • ToF Time of Flight
  • the storage unit 44 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like. This storage unit 44 stores detection signals, measured distance values, and the like.
  • the display device 51 is, for example, a monitor. This display device 51 can display, for example, a two-dimensional distance image.
  • FIG. 3 is a perspective view showing an example of the chip configuration of the distance measuring section 21.
  • the distance measuring section 21 can be configured with one chip in which a first die (substrate) 91 and a second die (substrate) 92 are stacked.
  • the first die 91 includes, for example, a synchronization control section 41 and a light receiving element 42
  • the second die 92 includes, for example, a signal processing section 43 and a storage section 44.
  • the distance measuring unit 21 may be configured with three layers in which another logic die is stacked in addition to the first die 91 and the second die 92, or may be configured with a stack of four or more layers of dies (substrates). You may also Further, the distance measuring section 21 includes a first chip 95 as the light receiving element 42 and a second chip 96 as the signal processing section 43 formed on a relay board 97, as shown in FIG. 4B, for example. can be configured. The synchronization control section 41 is included in either the first chip 95 or the second chip 96.
  • FIG. 4 is a block diagram showing an example of the configuration of the light receiving element 42.
  • the light receiving element 42 includes a timing control section 61 , a row scanning circuit 62 , a pixel array section 63 , a plurality of AD (Analog to Digital) conversion sections 64 , a column scanning circuit 65 , and a signal processing section 43 .
  • a pixel array section 63 a plurality of pixels 71 are two-dimensionally arranged in a matrix in the row and column directions.
  • the row direction is the direction in which the pixels 71 are arranged in the horizontal direction
  • the column direction is the direction in which the pixels 71 are arranged in the vertical direction.
  • the row direction is the horizontal direction in the figure
  • the column direction is the vertical direction in the figure.
  • the timing control section 61 includes, for example, a timing generator that generates various timing signals, and generates various timing signals in synchronization with the light emission timing signal supplied from the synchronization control section 41 (FIG. 2).
  • the signal is supplied to a row scanning circuit 62, an AD converter 64, and a column scanning circuit 65. That is, the timing control section 61 controls the drive timing of the row scanning circuit 62, the AD conversion section 64, and the column scanning circuit 65.
  • the row scanning circuit 62 is composed of, for example, a shift register or an address decoder, and drives each pixel 71 of the pixel array section 63 simultaneously or in units of rows.
  • the pixel 71 receives reflected light under the control of the row scanning circuit 62 and outputs a detection signal (pixel signal) at a level corresponding to the amount of received light. Details of the pixel 71 will be described later.
  • pixel drive lines 72 are wired along the horizontal direction for each pixel row, and vertical signal lines 73 are wired along the vertical direction for each pixel column.
  • the pixel drive line 72 transmits a drive signal for driving when reading a detection signal from the pixel 71.
  • the coordinates of the pixel 71 may be indicated as (x, y).
  • x is the position of pixel I in the row direction
  • y is the position in the column direction.
  • the pixel drive line 72 is shown as one wiring in FIG. 5, it is actually composed of a plurality of wirings.
  • the vertical signal line 73 is shown as one wiring, it is actually composed of a plurality of wirings.
  • the AD converter 64 is provided for each column, and converts the detection signal supplied from each pixel 71 in the corresponding column via the vertical signal line 73 in synchronization with the clock signal CK supplied from the timing controller 61. AD convert.
  • the AD converter 64 outputs the AD-converted detection signal (detection data) to the signal processor 43 under the control of the column scanning circuit 65 .
  • the column scanning circuit 65 sequentially selects the AD conversion units 64 and outputs the detected data after AD conversion to the signal processing unit 43 .
  • FIG. 5 is a plan view showing an example of the configuration of the pixel 71.
  • FIG. 6 is a sectional view taken along line BB in FIG.
  • FIG. 7 is a DD cross-sectional view of FIG. 5.
  • the pixel 71 includes a photoelectric conversion section 80, a substrate 82, a first insulator 84, a second insulator 86, a first conductor part DTIC-A, a second conductor part DTIC-B, Includes a third conductor part DTIC-C, a fourth conductor part DTIC-D, a fifth conductor part DTIC-0, a sixth conductor part DTIC-1, a seventh conductor part DTIC-2, and an eighth conductor part DTIC-3. .
  • the conductor portion DTIC refers to, for example, a trench portion (DTI: Deep Trench Isolation) physically provided in a semiconductor substrate in which at least a portion of a conductor is included.
  • the conductor may be completely embedded in the semiconductor substrate, or may be provided without reaching the surface of the semiconductor substrate. Further, a void (cavity) may be included within the conductor.
  • the conductor may be partially protruded from the surface of the semiconductor substrate.
  • the photoelectric conversion section 80 is an N-semiconductor region that is a first conductivity type region.
  • the substrate 82 is configured as a P-semiconductor region, which is a second conductivity type region, below the photoelectric conversion section 80.
  • reflected light is focused on a light receiving area surrounded by the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 of the photoelectric conversion section 80. Ru.
  • the photoelectric conversion unit 80 generates charges proportional to the amount of received reflected light focused on the light receiving area, for example.
  • the conductivity types may be selected in a reverse relationship, with the first conductivity type being the P type and the second conductivity type being the N type.
  • the first insulator 84 is configured in a rectangular shape around the outer periphery of the pixel 71.
  • the first insulator 84 is configured as a partition wall extending from the upper surface of the photoelectric conversion unit 80 to the substrate 82, and insulates adjacent pixels.
  • an L-shaped trench is formed at the corner of the first insulator 84 from the top surface of the photoelectric conversion section 80 to the top surface of the substrate 82.
  • the first conductor portion DTIC-A, the second conductor portion DTIC-B, the third conductor portion DTIC-C, and the fourth conductor portion DTIC-D are configured within these L-shaped trenches.
  • the second insulator 86 is located, for example, at a position equidistant from the center of the photoelectric conversion unit 80 and parallel to each side of the square-shaped first insulator 84. are provided spaced apart from each other.
  • the second insulator 86 is formed, for example, from the top surface of the photoelectric conversion section 80 to the top surface of the base plate 82 .
  • An I-shaped trench is formed in the second insulator 86 provided at a distance.
  • the fifth conductor portion DTIC-0, the sixth conductor portion DTIC-1, the seventh conductor portion DTIC-2, and the eighth conductor portion DTIC-3 are configured within these I-shaped trenches.
  • the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-D are To surround the light-receiving area of the converting unit 80, the light-receiving area is provided at, for example, four symmetrical positions with respect to the center position of the light-receiving area, spaced apart from each other.
  • These first charge accumulation region FD-A, second charge accumulation region FD-B, third charge accumulation region FD-C, and fourth charge accumulation region FD-D have a donor impurity concentration lower than that of the photoelectric conversion section 80. It is composed of N+ type with high
  • the pixel 71 includes a photoelectric conversion section 80 which is an N- semiconductor region, a first charge storage region FD-A which is an N+ semiconductor region with a higher concentration of donor impurities than the photoelectric conversion section 80, and a second charge storage region FD-A. It has a region FD-B, a third charge accumulation region FD-C, and a fourth charge accumulation region FD-D.
  • donor impurities include elements belonging to Group 5 in the periodic table of elements such as phosphorus (P) and arsenic (As) for Si
  • acceptor impurities include, for example, elements that belong to Group 5 of the periodic table of elements such as phosphorus (P) and arsenic (As) for Si. Examples include elements belonging to Group 3 in the periodic table of elements, such as boron (B).
  • An element that becomes a donor impurity is sometimes called a donor element, and an element that becomes an acceptor impurity is sometimes called an acceptor element.
  • a voltage of, for example, +0.5 volts is applied to the first conductor portion DTIC-A and the second conductor portion DTIC- via the pixel drive line 72 (see FIG. 4).
  • B is applied to the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • a voltage signal synchronized with a control signal Scdti0 is supplied to the fifth conductor portion DTIC-0 from the row scanning circuit 62 via the pixel drive line 72.
  • a voltage signal synchronized with a control signal Scdti1 is supplied to the fifth conductor portion DTIC-0 from the row scanning circuit 62 via the pixel drive line 72.
  • the corresponding fifth conductor portion DTIC-0, sixth conductor portion DTIC-1, seventh conductor portion DTIC-2, and eighth conductor portion DTIC-3 have the following characteristics: For example, a voltage of -0.6 volts (ON state) is applied. On the other hand, when the control signals Scdti0 to Scdti4 are at low level, the corresponding fifth conductor part DTIC-0, sixth conductor part DTIC-1, seventh conductor part DTIC-2, and eighth conductor part DTIC-3 For example, a voltage of -2.2 volts (OFF state) is applied.
  • FIG. 8 is a diagram schematically showing the electric potential during non-transfer of charges along the DD cross-sectional view of FIG. 5.
  • the vertical axis represents the potential
  • the horizontal axis represents the position along the DD cross-sectional view.
  • a voltage of +0.5 volt is applied to the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • a voltage of -2.2 volts (OFF state) is applied to the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3.
  • a voltage of -2.2 volts applied to the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 causes photoelectric conversion.
  • the charge generated in proportion to the light received by the portion 80 is surrounded by the fifth conductor portion DTIC-0, the sixth conductor portion DTIC-1, the seventh conductor portion DTIC-2, and the eighth conductor portion DTIC-3. Exiting outside the light receiving area is suppressed.
  • FIG. 9 is a diagram schematically showing the electric potential during charge transfer along the DD cross-sectional view of FIG. 5.
  • the vertical axis represents the potential
  • the horizontal axis represents the position along the DD cross-sectional view.
  • a voltage of -0.6 volts (ON state) is applied to the seventh conductor part DTIC-2 (see FIG. 5) and the eighth conductor part DTIC-3
  • the fifth conductor part DTIC-0 and A voltage of -2.2 volts (OFF state) is applied to the sixth conductor part DTIC-1
  • the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the A voltage of 0.5 volt is applied to the 4-conductor section DTIC-D.
  • a potential gradient is created in the potential, and charges are horizontally transferred to the third charge storage region FD-C through the openings formed by the seventh conductor part DTIC-2 and the eighth conductor part DTIC-3. be done.
  • the portion DTIC-0, the sixth conductor portion DTIC-1, the seventh conductor portion DTIC-2, and the eighth conductor portion DTIC-3 are formed from the upper surface to the lower surface of the photoelectric conversion portion 80. Therefore, when transferring charges to the third charge accumulation region FD-C, for example, the charges generated in the photoelectric conversion section 80 reach the third conductor section DTIC-C in the shortest distance in the horizontal direction. . That is, as shown in FIG.
  • the electric potential is inclined in the horizontal direction, and the third charge is accumulated in the shortest distance through the opening formed by the seventh conductor part DTIC-2 and the eighth conductor part DTIC-3. Charge is horizontally transferred to the area FD-C side. Then, it is transferred vertically.
  • FIG. 10 is a diagram schematically showing the potential at the time of charge transfer to the first charge storage region FD-A side along the DD cross-sectional view of FIG. 5.
  • the vertical axis represents the potential
  • the horizontal axis represents the position along the DD cross-sectional view.
  • a voltage of -2.2 volts (OFF state) is applied to the seventh conductor part DTIC-2 (see FIG.
  • the charge transfer direction changes from the third charge storage region FD-D side to the first charge storage region FD-A side. That is, even if the electric potential shown in FIG. 9 switches to the electric potential shown in FIG. 10, -2.2 volts (OFF Since the voltage of state ) is applied, the potential has a shape having the potential gradient shown on the right side of FIG. Therefore, the charges that have passed through the seventh conductor part DTIC-2 (see FIG. 5) and the eighth conductor part DTIC-3 do not move to the first charge accumulation region FD-A side, but are transferred to the third charge accumulation region FD-A. Vertical transfer to FD-C.
  • the electric potential at the time of charge transfer to the second charge storage region FD-B side is -2.2 volts (
  • a voltage of -0.6 volts (ON state) is applied to the sixth conductor part DTIC-1 and the seventh conductor part DTIC-2, and a voltage of -0.6 volts (ON state) is applied to the sixth conductor part DTIC-1 and the seventh conductor part DTIC-2. It is generated by applying a voltage of 0.5 volt to the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • the electric potential during charge transfer to the second charge storage region FD-D side is -2.2 volts (in the OFF state) at the sixth conductor part DTIC1 (see FIG. 5) and the seventh conductor part DTIC-2. ) is applied to the fifth conductor part DTIC-0 and the eighth conductor part DTIC-3, and a voltage of -0.6 volts (ON state) is applied to the first conductor part DTIC-A and the second conductor part DTIC-3. It is generated by applying a voltage of 0.5 volt to the section DTIC-B, the third conductor section DTIC-C, and the fourth conductor section DTIC-D.
  • FIG. 11 shows, as a comparative example, a first conductor part DTIC-A, a second conductor part DTIC-B, a third conductor part DTIC-C, a fourth conductor part DTIC-D, a fifth conductor part DTIC-0, A diagram schematically showing the movement of charges when the lengths of the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 are, for example, about one-fourth of the length. It is. In such a case, the charges move diagonally, so it takes time to transfer them.
  • the charges in the region where the potential potential is not formed in the horizontal direction will be transferred to the first charge storage region FD-A side. 1 will move again to the side of the charge accumulation region FD-A and will be charged.
  • FIG. 12 is a diagram schematically showing a timing chart of charge generation as a comparative example. From the top, irradiated light, reflected light, charge transfer timing Qa to the first charge storage region FD-A side, and charge transfer timing Qd to the third charge storage region FD-C are shown. A high level of the irradiated light and reflected light indicates the intensity of the light, and a high level indicates the charge transfer timing to the first charge storage region FD-A side and the charge transfer timing to the third charge storage region FD-C side. indicates the transfer of
  • Equation (1) shows the relationship between the distance measurement error ⁇ depth, the driving frequency Fmod, and the charge distribution efficiency Cmod.
  • the distance measurement error ⁇ depth decreases as the drive frequency Fmod becomes higher.
  • the distance measurement error ⁇ depth decreases as the charge distribution efficiency Cmod increases.
  • the driving frequency Fmod becomes higher, the charge distribution efficiency Cmod decreases as in the comparative example.
  • the efficiency Cmod is expressed by equations (2) to (4). Note that Q0, Q90, Q180, and Q270 will be described later with reference to FIG. 19.
  • the charges generated in the photoelectric conversion section 80 reach the third conductor section DTIC-C in the shortest distance in the horizontal direction. Then, it is transferred vertically. Further, the potential has a potential gradient shown in the shape on the right side of FIG. Therefore, even if the driving frequency Fmod is increased, the charges that have reached the third conductor portion DTIC-C do not move to the first charge storage region FD-A side, but are transferred to the third charge storage region FD-C. is transferred vertically. As can be seen from this, even if the driving frequency Fmod is increased, the decrease in the charge distribution efficiency Cmod can be suppressed by changing and forming the potentials in time series as shown in FIGS. 9 and 10, for example.
  • the openings formed by the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 are It becomes possible to move in the shortest distance, and even if the driving frequency Fmod is increased, the charge distribution efficiency Cmod is further suppressed from decreasing.
  • FIG. 13 is a diagram showing an example of the circuit configuration of the pixel 71.
  • the charges generated by the photoelectric conversion unit 80 are outputted to the AD conversion unit 64 via a plurality of pixel circuits Ca100, Cb100, Cc100, and Cd100, respectively via vertical signal lines 73.
  • Pixel circuits Ca100, Cb100, Cc100, and Cd100 store charges in the first charge accumulation region FD-A, second charge accumulation region FD-B, third charge accumulation region FD-C, and fourth charge accumulation region FD-D, respectively. Used for transfer.
  • the pixel circuit Ca100 includes transfer transistors Tr-0, Tr-1, and Tr-A, a first charge storage region FD-A, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL.
  • the transfer transistors Tr-0, Tr-1, and Tr-A are connected in series, with one end connected to the photoelectric conversion section 80 and the other end connected to the first charge storage region FD-A. Note that when the transfer transistors Tr-A to Tr-D become conductive, a potential toward the charge storage regions FD-A to FD-D is formed, and the generated charges are vertically transferred.
  • Control signals Scdti0, Scdti1, and Sqa are supplied from the row scanning circuit 62 to the gates of the transfer transistors Tr-0, Tr-1, and Tr-A, respectively.
  • the control signals Sqa, Scdti1, and Scdti0 are at high level, they become conductive. That is, the transfer transistors Tr-0 and Tr-1 are synchronized with the switching elements TGa-0 and TGb-0 and the switching elements TGa-1 and TGb-1 (see FIG. 9).
  • the reset transistor RST becomes conductive when the control signal Srst supplied from the row scanning circuit 62 to the gate electrode becomes high level, discharges the accumulated charge in the first charge accumulation region FD-A, and resets the reset transistor RST. That is, when starting measurement at the pixel 71, the row scanning circuit 62 first resets the pixel 71.
  • One end of the amplification transistor AMP is connected to the voltage source VDD, and the other end is connected to the vertical signal line 73 via the selection transistor SEL.
  • the selection transistor SEL is connected between the source electrode of the amplification transistor AMP and the vertical signal line 73.
  • the selection transistor SEL becomes conductive when the control signal Ssel supplied to the gate electrode from the row scanning circuit 62 becomes high level, and outputs the detection signal output from the amplification transistor AMP to the vertical signal line 73. That is, when the measurement at the pixel 71 is completed, the row scanning circuit 62 sets the control signal Ssel to a high level and outputs a detection signal to the vertical signal line 73.
  • the row scanning circuit 62 sets the control signal Ssel to high level in the order of the pixel circuits Ca100, Cb100, Cc100, and Cd100, and outputs the detection signal to the vertical signal line 73.
  • FIG. 14 is a diagram showing a configuration example of the pixel circuit Cb100.
  • the pixel circuit Cb100 has the same configuration as the pixel circuit Ca100. That is, the pixel circuit Cb100 includes transfer transistors Tr-1, Tr-2, and Tr-B, a second charge storage region FD-B, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL.
  • the transfer transistors Tr-1, Tr-2, and Tr-B are connected in series, with one end connected to the photoelectric conversion section 80 and the other end connected to the second charge storage region FD-B.
  • Control signals Scdti1, Scdti2, and Sqb are supplied from the row scanning circuit 62 to the gates of the transfer transistors Tr-1, Tr-2, and Tr-B, respectively.
  • FIG. 15 is a diagram showing a configuration example of the pixel circuit Cc100.
  • the pixel circuit Cb100 has the same configuration as the element circuit Ca100. That is, the pixel circuit Cc100 includes transfer transistors Tr-2, Tr-3, and Tr-B, a third charge storage region FD-C, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL. Transfer transistors Tr-2, Tr-3, and Tr-B are connected in series, with one end connected to the photoelectric conversion section 80 and the other end connected to the third charge storage region FD-C.
  • Control signals Scdti2, Scdti3, and Sqc are supplied from the row scanning circuit 62 to the gates of the transfer transistors Tr-2, Tr-3, and Tr-C, respectively.
  • FIG. 16 is a diagram showing a configuration example of the pixel circuit Cd100.
  • the pixel circuit Cd100 has the same configuration as the element circuit Ca100. That is, the pixel circuit Cd100 includes transfer transistors Tr-3, Tr-0, and Tr-D, a fourth charge storage region FD-D, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL.
  • the transfer transistors Tr-2, Tr-3, and Tr-B are connected in series, with one end connected to the photoelectric conversion section 80 and the other end connected to the second charge storage region FD-D.
  • Control signals Scdti3, Scdti0, and Sqd are supplied from the row scanning circuit 62 to the gates of the transfer transistors Tr-3, Tr-0, and Tr-D, respectively.
  • the circuit configuration example of the pixel 71 is just an example, and the circuit configuration is not limited thereto.
  • FIG. 17 is a diagram showing an example of control signals Scdti0, Scdti1, Scdti2, and Scdti3 supplied from the row scanning circuit 62.
  • Control signals Scdti0, Scdti1, Scdti2, and Scdti3 are shown in order from the top.
  • the horizontal axis shows time.
  • the control signals Scdti0, Scdti1, Scdti2, and Scdti3 have the same period and are shifted in phase by 90 degrees.
  • the fifth conductor part DTIC-0 when the control signal Scdti0 is at a high level, the fifth conductor part DTIC-0 is in an ON state, and when the control signal Scdti0 is at a low level, the fifth conductor part DTIC-0 is in an OFF state.
  • the sixth conductor part DTIC-1 when the control signal Scdti1 is at a high level, the sixth conductor part DTIC-1 is in an ON state, and when the control signal Scdti1 is at a low level, the sixth conductor part DTIC-1 is in an OFF state.
  • the seventh conductor part DTIC-2 is in an ON state, and when the control signal Scdti2 is at a low level, the seventh conductor part DTIC-2 is in an OFF state.
  • the eighth conductor part DTIC-3 is in an ON state, and when the control signal Scdti2 is at a low level, the eighth conductor part DTIC-3 is in an OFF state.
  • the high-level periods of the transfer transistors Tr-0 to Tr-3 and Tr-A to Tr-D may be increased in consideration of the vertical transfer time of electrons in the photoelectric conversion unit 80.
  • the control signals Sqa, Sqb, Sqc, and Sqd always maintain a high level while the pixel 71 is being driven. As described above, a potential toward the first charge storage region FD-A is formed while the pixel 71 is being driven, and the generated charges are vertically transferred. As a result, charges are transferred to each of the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-D.
  • FIG. 18 shows the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the third charge accumulation region FD-C when driving with the control signals shown in FIGS. 17 and 20 is repeated.
  • 3 is a diagram schematically showing the number of charges flowing into each of four charge accumulation regions FD-D.
  • FIG. The vertical axis shows the number of charges, and the horizontal axis shows time.
  • Lines LFD-A and LFD-B indicate the number of charges flowing into the first charge accumulation region FD-A, second charge accumulation region FD-B, third charge accumulation region FD-C, and fourth charge accumulation region FD-D, respectively. , LFD-C, and LFD-D.
  • the control signals Scdti0, Scdti1 Different charges are accumulated depending on the phase of Scdti2 and Scdti3.
  • FIG. 19 is a diagram showing the relationship between the light emission pattern of the light source 31 and the detection signal at the pixel 71. From the top, the light emission pattern of the light emitting source 31, the light reception pattern which is the timing at which the light emission pattern is received by the pixel 71, and the detection signals of phase 0 degrees, phase 90 degrees, phase 180 degrees, and phase 270 degrees are shown.
  • the vertical axis of each signal indicates high level and low level, and the horizontal axis indicates time.
  • the high level of the light emission pattern indicates the time during which the pattern light 15 (see FIG. 1) is irradiated, and the high level of the light reception pattern indicates the time during which the pattern light 15 is reflected and returned.
  • pulsed light that repeatedly turns on and off at high speed at a frequency f (modulation frequency) is used.
  • One period T of the pulsed light is 1/f.
  • the phase of the reflected light is shifted depending on the time ⁇ t from the light-emitting source 31 to the light-receiving element 42 and is detected.
  • a high level in the detection signal of phase 0 degrees indicates the light reception timing of the pixel 71. That is, the timing is such that the phase of the pulsed light emitted by the light emitting source 31 of the light source section 11 is the same as that of the light emitting pattern.
  • the high level of the detection signal with a phase of 90 degrees is the timing at which the phase is delayed by 90 degrees from the pulsed light (light emission pattern) emitted by the light emitting source 31 of the light source section 11.
  • the high level of the detection signal with a phase of 180 degrees is the timing at which the phase is delayed by 180 degrees from the pulsed light (light emission pattern) emitted by the light emitting source 31 of the light source section 11.
  • the high level of the detection signal with a phase of 270 degrees is the timing at which the phase is delayed by 270 degrees from the pulsed light (light emission pattern) emitted by the light emitting source 31 of the light source section 11.
  • the measurement signals corresponding to the charges accumulated when the light reception timing is set to phase 0 degrees, phase 90 degrees, phase 180 degrees, and phase 270 degrees are respectively Q0, Q90, Q180, and Q270.
  • QA is a value obtained by converting the detection signal detected from the first charge accumulation region FD-A at the end of the measurement into a digital signal by the AD converter 64.
  • QB is a value obtained by converting the detection signal detected from the third charge storage region FD-B at the end of the measurement into a digital signal by the AD converter 64.
  • QC is a value obtained by converting the detection signal detected from the third charge storage region FD-C at the end of the measurement into a digital signal by the AD converter 64.
  • QD is a value obtained by converting the detection signal detected from the fourth charge storage region FD-D at the end of the measurement into a digital signal by the AD converter 64.
  • the signals corresponding to these charges are measured as measurement signals Q0 (x, y), Q90 (x, y), Q180 (x, y), and Q270 (x, y) for each pixel I (x, y). , are stored in the storage unit 44.
  • the distance measurement value D(x,y) [mm] corresponding to the distance from the distance measurement unit 21 to the target object can be calculated using the following equation (5).
  • ⁇ t (x, y) in equation (1) is the time it takes for the pattern light 15 emitted from the light emitting source 31 to be reflected by the object and enter each pixel (x, y) of the light receiving element 42, c represents the speed of light.
  • (x, y) are the coordinates of the pixel 71.
  • the pattern light 15 emitted from the light emitting source 31 employs pulsed light that repeatedly turns on and off at a predetermined frequency f (modulation frequency) as shown in FIG. 19 at a high speed.
  • One period T of the pulsed light is 1/f.
  • the phase of the reflected light (light receiving pattern) is shifted and detected according to the time ⁇ t(x, y) from the light emitting source 31 to the light receiving element 42. If the amount of phase shift (phase difference) between the light emitting pattern and the light receiving pattern is ⁇ (x, y), the time ⁇ t(x, y) can be calculated using the following equation (6).
  • the measured distance Da(x, y) from the light receiving element 42 to the object can be calculated using the following equation (7) from equation (4) and equation (6).
  • FIG. 9 is a diagram showing the phase difference ⁇ generated by the phase generator 437.
  • the phase generation unit 437 converts the phase difference ⁇ (x, y) at the pixel I(x, y) into the measurement signals Q0(x, y), Q90(x, y), Q180(x , y) and Q270(x, y) using the following equation (8).
  • the measured distance value Da(x, y) from the distance measuring device 10 to the target object is calculated. be able to.
  • the distance measurement value Da(x,y) of the signal processing unit 43 can be stored in the storage unit 44 as a two-dimensional distance image, and can be displayed on the display device 51.
  • the DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 were formed from the upper surface to the lower surface of the photoelectric conversion section 80.
  • the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, the fourth conductor part DTIC-D, the fifth conductor part DTIC-0, and the sixth conductor part DTIC -1 by changing the combination of voltages applied to the seventh conductor part DTIC-2 and the eighth conductor part DTIC-3 in chronological order, the first conductor part DTIC-A, the second conductor part DTIC-B, It is possible to form a potential that horizontally transfers charges in either direction of the third conductor part DTIC-C and the fourth conductor part DTIC-D from the upper surface to the lower surface of the electric conversion section 80. becomes.
  • the first Charge can be horizontally transferred to any of the conductor portion DTIC-A, the second conductor portion DTIC-B, the third conductor portion DTIC-C, and the fourth conductor portion DTIC-D. This suppresses a decrease in charge distribution efficiency.
  • the voltage applied to the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 causes the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, and the sixth conductor part DTIC-0 to
  • the first conductor part DTIC-A and the second conductor part DTIC-A and the second conductor part are connected at the shortest distance in the horizontal direction through the opening of any one of the conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3.
  • Charges transferred to either side of DTIC-B, third conductor portion DTIC-C, and fourth conductor portion DTIC-D are suppressed from being retransferred to other conductor portions. This further suppresses a decrease in charge distribution efficiency.
  • the distance measuring device 10 according to the first modification of the first embodiment differs from the distance measuring device 10 according to the first embodiment in that a P-type impurity region 88 is further formed on the outermost surface of the photoelectric conversion section 80 of the pixel 71. do. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 20 is a diagram showing a DD cross section (see FIG. 5) of the pixel 71.
  • the distance measuring device 10 according to the first modification of the first embodiment has a P-type impurity region 88 on the outermost surface of the photoelectric conversion section 80 of the pixel 71.
  • the generation of dark electrons generated at the interface on the surface side of the photoelectric conversion section 80 can be suppressed. Therefore, it is possible to suppress a decrease in the SN ratio due to dark electrons in the pixel 71, and it is possible to suppress a decrease in the distance measurement error ⁇ depth (see equation (1)).
  • the distance measuring device 10 according to the second embodiment is different from the distance measuring device 10 according to the first embodiment in that it is a back-illuminated type. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 21 is a diagram showing a configuration example of the pixel 71 according to the second embodiment.
  • FIG. A is a plan view showing a configuration example of a pixel 71 according to the second embodiment.
  • Figure B is a BB sectional view.
  • the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-D are located on the substrate 82 side of the photoelectric conversion section 80. It is different from the distance measuring device 10 according to the first embodiment in that it is arranged. This allows the wiring of the circuits Ca100 to Cd100 (see FIG. 13) to be simplified. In addition, it is possible to prevent the incident light from being reflected by the wiring layer and the light incident on the photoelectric conversion unit 80 is reduced, and Qe increases.
  • the pixel 71 according to the second embodiment further includes an on-chip lens 90 on the back side of the photoelectric conversion unit 80 on which reflected light enters.
  • reflected light enters from the back side opposite to the substrate side on which the circuit and the like are arranged, so that the aperture ratio of the pixel 71 can be increased.
  • the distance measuring device 10 according to the first modification of the second embodiment is similar to the second embodiment in that an insulating film 92 of a P-type impurity region is further formed on the outermost surface of the photoelectric conversion section 80 of the pixel 71 on the substrate side. This is different from the distance measuring device 10. Below, differences from the distance measuring device 10 according to the second embodiment will be explained.
  • FIG. 22 is a diagram showing a configuration example of the pixel 71 according to Modification 1 of the second embodiment.
  • FIG. A is a plan view showing a configuration example of a pixel 71 according to the second embodiment.
  • Figure B is a CC sectional view.
  • the distance measuring device 10 includes a film 92 having a negative fixed potential on the outermost surface of the photoelectric conversion unit 80 of the pixel 71 on the on-chip lens 90 side. Furthermore, holes are induced at the interface with the photoelectric conversion section 80. Furthermore, a P-type impurity region 88a is provided on the outermost surface of the photoelectric conversion section 80 of the pixel 71 on the substrate side. It is electrically connected to GND through holes induced in the side walls of DTIC-0 to DTIC-3. In this way, holes are generated within the photoelectric conversion section 80, and the generation of dark electrons can be suppressed. Therefore, a decrease in the SN ratio of the pixel 71 can be suppressed, and a decrease in the distance measurement error ⁇ depth (see equation (1)) can be suppressed.
  • the distance measuring device 10 according to the third embodiment differs from the distance measuring device 10 according to the first embodiment in that a plurality of conductor parts are formed in an I-shaped trench. The differences from the distance measuring device 10 according to the first embodiment will be explained below.
  • FIG. 23 is a plan view showing the configuration of the pixel 71 according to the third embodiment.
  • a plurality of conductor portions are formed in an I-shaped trench in a second insulator 86 provided at a distance. That is, the ninth conductor part DTICa-0, the tenth conductor part DTICb-0, the eleventh conductor part DTICa-1, the twelfth conductor part DTICb-1, the thirteenth conductor part DTICa-2, the fourteenth conductor part DTICb-2, It includes a fifteenth conductor part DTICa-3 and a sixteenth conductor part DTICb-3.
  • the first group G1 is a combination of (9th conductor part DTICa-0, 12th conductor part DTICb-1), and the second group G2 is a combination of (11th conductor part DTICa-1, 14th conductor part DTICb-2).
  • the third group G3 is a combination of (13th conductor part DTICa-2, 16th conductor part DTICb-3)
  • the fourth group G4 is a combination of (15th conductor part DTICa-3, 10th conductor part DTICb). -0) combination.
  • the row scanning circuit 62 (see FIG. 4) to control the ON state and OFF state for each group.
  • the separation of charges into the first charge storage region FD-A, the second charge storage region FD-B, the third charge storage region FD-C, and the fourth charge storage region FD-D is further improved.
  • the distance measuring device 10 according to the fourth embodiment has a plurality of first charge accumulation regions FD-A, a plurality of second charge accumulation regions FD-B, a plurality of third charge accumulation regions FD-C, and a plurality of fourth charge accumulation regions FD-D.
  • the distance measuring device 10 is different from the distance measuring device 10 according to the first embodiment in its configuration. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 24 is a plan view showing the configuration of the pixel 71 according to the fourth embodiment.
  • a plurality of conductor portions are formed in an I-shaped trench in a second insulator 86 provided at a distance. That is, the ninth conductor part DTICa-0, the tenth conductor part DTICb-0, the eleventh conductor part DTICa-1, the twelfth conductor part DTICa-1, the thirteenth conductor part DTICa-2, the fourteenth conductor part DTICb-2, It includes a fifteenth conductor part DTICa-3 and a sixteenth conductor part DTICb-3.
  • the ninth conductor part DTICa-0 and the tenth conductor part DTICb-0 are spaced apart from each other to form an opening
  • the eleventh conductor part DTICa-1 and the twelfth conductor part DTICb-1 are spaced apart from each other.
  • an opening is formed
  • the 13th conductor part DTICa-2 and the 14th conductor part DTICb-2 are spaced apart
  • an opening is formed between the 15th conductor part DTICa-3 and the 16th conductor part DTICb-3. The space is spaced apart to form an opening.
  • the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-D are arranged with respect to the center point of the photoelectric conversion section 80, respectively. Constructed in pairs at target locations. These first charge storage region FD-A, second charge storage region FD-B, third charge storage region FD-C, and fourth charge storage region FD-D configured as a pair are electrically connected. There is.
  • the first group G1 is a combination of (9th conductor part DTICa-0, 12th conductor part DTICb-1, 13th conductor part DTICa-2, and 15th conductor part DTICb-3)
  • the second group G2 is a combination of (12th conductor portion DTICb-1, 11th conductor portion DTICa-1, 16th conductor portion DTICb-3, and 15th conductor portion DTICa-3)
  • the third group G3 is a combination of (14th conductor portion DTICb-1).
  • the 4th group G4 is the combination of (the 15th conductor part DTICa-3, the 10th conductor part DTICa-0).
  • the row scanning circuit 62 (see FIG. 4) to control the ON state and OFF state for each group.
  • charges are transferred from a half area of the photoelectric conversion unit 80 to each of the two first charge accumulation regions FD-A. Similarly, charges are transferred to each of the two second charge accumulation regions FD-B from a half region of the photoelectric conversion unit 80 to the target. Similarly, charges are transferred to each of the two third charge accumulation regions FD-C from a half region of the photoelectric conversion unit 80 to the target. Similarly, charges are transferred to each of the two fourth charge storage regions FD-D from a half region of the photoelectric conversion unit 80 to the target. This further reduces the horizontal transfer time, so that even if the drive frequency Fmod is increased, the charge distribution efficiency Cmod (see equation 1) is further suppressed from decreasing.
  • the distance measuring device 10 according to the first modification of the fourth embodiment is different from the distance measuring device 10 according to the fourth embodiment in that a conductor section DTIC-M is further configured in the center of the photoelectric conversion section 80. Below, differences from the distance measuring device 10 according to the fourth embodiment will be explained.
  • FIG. 25 is a plan view showing the configuration of a pixel 71 according to Modification 1 of the fourth embodiment.
  • the pixel 71 according to the first modification of the fourth embodiment further includes a square conductor section DTIC-M at the center of the photoelectric conversion section 80.
  • the conductor portion DTIC-M is configured from the upper surface to the lower surface of the photoelectric conversion portion 80, and an insulator 86a is configured around the conductor portion DTIC-M.
  • the row scanning circuit 62 applies, for example, ⁇ 2.2 volts (OFF state) to the conductor portion DTIC-M as a potential corresponding to the OFF state.
  • the conductor portion DTIC-M has a shape in which the potential gradient of the potential at the central portion where it is arranged increases the acceleration of transferring charge to the peripheral portion.
  • the horizontal transfer time is further shortened, so that even if the driving frequency Fmod is further increased, a decrease in the charge distribution efficiency Cmod (see equation 1) is further suppressed.
  • the distance measuring device 10 according to the fifth embodiment differs from the distance measuring device 10 according to the fourth embodiment in that each charge storage region independently stores charges. Below, differences from the distance measuring device 10 according to the fourth embodiment will be explained.
  • FIG. 26 is a plan view showing the configuration of the pixel 71 according to the fifth embodiment.
  • the pixel 71 according to the fifth embodiment includes a first charge accumulation region FD-A, a second charge accumulation region FD-B, a third charge accumulation region FD-C, and a fourth charge accumulation region FD.
  • -D a fifth charge accumulation region FD-E, a sixth charge accumulation region FD-F, a seventh charge accumulation region FD-G, and an eighth charge accumulation region FD-H.
  • the first charge accumulation region FD-A and the fifth charge accumulation region FD-E are arranged at symmetrical positions with respect to the center point of the photoelectric conversion section 80.
  • the second charge accumulation region FD-B and the sixth charge accumulation region FD-F are arranged at symmetrical positions with respect to the center point of the photoelectric conversion section 80.
  • the third charge accumulation region FD-C and the seventh charge accumulation region FD-G are arranged at symmetrical positions with respect to the center point of the photoelectric conversion section 80.
  • the fourth charge accumulation region FD-D and the eighth charge accumulation region FD-H are arranged at symmetrical positions with respect to the center point of the photoelectric conversion section 80.
  • the first group G1 is a combination of (the ninth conductor part DTICa-0 and the twelfth conductor part DTICb-1), and the second group G2 is a combination of (the twelfth conductor part DTICb-1 and the eleventh conductor part DTICa).
  • the 13th group G3 is a combination of (11th conductor part DTICa-1 and 14th conductor part DTICb-2), and the 4th group G4 is a combination of (14th conductor part DTICb-2 and 14th conductor part DTICb-2).
  • the fifth group G5 is a combination of (13th conductor section DTICa-2, and 16th conductor section DTICb-3)
  • the sixth group G6 is a combination of (16th conductor section DTICb- 3, and the 15th conductor part DTICa-3)
  • the 7th group G7 is the combination of (the 15th conductor part DTICa-3, and the 10th conductor part DTICb-0)
  • the 8th group G8 is the combination of (the 10th A combination of the conductor portion DTICb-0 and the ninth conductor portion DTICa-0).
  • the distance measuring device 10 according to the first modification of the fifth embodiment differs from the distance measuring device 10 according to the fifth embodiment in that a conductor section DTIC-M is further configured in the center of the photoelectric conversion section 80. Below, differences from the distance measuring device 10 according to the fourth embodiment will be explained.
  • FIG. 27 is a plan view showing the configuration of a pixel 71 according to Modification 1 of the fifth embodiment.
  • the pixel 71 according to the first modification of the fifth embodiment further includes a square conductor section DTIC-M at the center of the photoelectric conversion section 80.
  • the conductor portion DTIC-M is configured from the upper surface to the lower surface of the photoelectric conversion portion 80, and an insulator 86a is configured around the conductor portion DTIC-M.
  • the row scanning circuit 62 applies, for example, ⁇ 2.2 volts to the conductor portion DTIC-M as a potential corresponding to the OFF state.
  • the conductor portion DTIC-M has a shape in which the slope of the electric potential at the central portion thereof increases the acceleration of transferring charge to the peripheral portion.
  • the horizontal transfer time is further shortened, so that even if the driving frequency Fmod is further increased, a decrease in the charge distribution efficiency Cmod (see equation 1) is further suppressed.
  • the distance measuring device 10 applies charges to the peripheral parts of the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-D are transferred after accumulating charges. This is different from the distance measuring device 10 according to the embodiment. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 28 is a diagram showing a configuration example of the pixel 71 according to the sixth embodiment.
  • Figure A is a plan view of the pixel 71 according to the fifth embodiment, and
  • Figure B is a cross section taken along line AA.
  • the second substrate 82b is configured as a P-semiconductor region, which is a second conductivity type region, above the photoelectric conversion section 80.
  • the first charge storage region FD-A, the second charge storage region FD-B, the third charge storage region FD-C, and the fourth charge storage region FD-D are formed in the upper layer of the second base 82b. Further, each of the first charge storage region FD-A, the second charge storage region FD-B, the third charge storage region FD-C, and the fourth charge storage region FD-D is connected to a third charge storage region FD-A through a gate transistor TG. It is connected to the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • FIG. 29 is a diagram showing an example of an equivalent circuit of the pixel 71 according to the sixth embodiment.
  • the capacitances Cca, Ccb, CcC, and CcD are the charge capacities around the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D, respectively. show.
  • One end of each transfer transistor is connected to the photoelectric conversion unit 80, and the other end is connected to capacitors Cca, Ccb, CcC, and CcD, respectively.
  • each gate transistor TG is connected to the capacitors Cca, Ccb, CcC, and CcD, respectively, and the other end is connected to the first charge storage region FD-A, the second charge storage region FD-B, and the third charge storage region FD-B. They are connected to the storage region FD-C and the fourth charge storage region FD-D, respectively.
  • One end of the reset transistor RST is connected to the first charge storage region FD-A, the second charge storage region FD-B, the third charge storage region FD-C, and the fourth charge storage region FD-D.
  • one end of the amplification transistor AMP is connected to the voltage source VDD, and the other end is connected to the vertical signal line 73 via the selection transistor SEL.
  • the selection transistor SEL is connected between the source electrode of the amplification transistor AMP and the vertical signal line 73.
  • the selection transistor SEL becomes conductive when the control signal Ssel supplied to the gate electrode from the row scanning circuit 62 becomes high level, and outputs the detection signal output from the amplification transistor AMP to the vertical signal line 73.
  • the reset transistor RST becomes conductive when the control signal Srst supplied to the gate electrode from the row scanning circuit 62 becomes high level, and the reset transistor RST becomes conductive when the control signal Srst supplied to the gate electrode from the row scanning circuit 62 becomes a high level, and the reset transistor RST becomes conductive.
  • the accumulated charges in the region FD-C and the fourth charge accumulation region FD-D are discharged and reset.
  • the row scanning circuit 62 supplies a high level signal to each gate transistor TG to discharge the accumulated charges in the capacitors Cca, Ccb, CcC, and CcD and reset them.
  • control signals Sqa, Sqb, Sqc, and Sqd are supplied to the gates of the transfer transistors from the row scanning circuit 62.
  • the control signals Sqa, Sqb, Sqc, and Sqd are at high level, charges are accumulated in the capacitors Cca, Ccb, CcC, and CcD, respectively.
  • the row scanning circuit 62 sets the reset transistor RST to high level again, so that the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, Then, the accumulated charges in the fourth charge accumulation region FD-D are discharged and reset. Subsequently, the control signal STGa is set to high level, the charge of the capacitor Cca is transferred to the first charge storage region FD-A, and a detection signal is output to the vertical signal line 73 via the amplification transistor AMP.
  • the row scanning circuit 62 sets the reset transistor RST to high level again, and the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region The accumulated charges in the accumulation region FD-D are discharged and reset. Subsequently, the control signal STGb is set to high level, the charge of the capacitor Ccb is transferred to the second charge storage region FD-B, and a detection signal is output to the vertical signal line 73 via the amplification transistor AMP. By repeating such processing, it is possible to read out the charges accumulated in each capacitor Cca, Ccb, CcC, and CcD as a detection signal.
  • the distance measuring device 10 according to the first modification of the sixth embodiment accumulates charges in the embedded memory, and then stores charges in the first charge accumulation region FD-A, the second charge accumulation region FD-B, and the third charge accumulation region. It differs from the distance measuring device 10 according to the sixth embodiment in that the charge is transferred to the FD-C and the fourth charge storage region FD-D. Below, differences from the distance measuring device 10 according to the sixth embodiment will be explained.
  • FIG. 30 is a diagram showing a configuration example of the pixel 71 according to Modification 1 of the sixth embodiment.
  • Figure A is a plan view of a pixel 71 according to Modification 1 of the sixth embodiment
  • Figure B is a cross section taken along line AA.
  • the first insulator Embedded memory A, memory B, memory C, and memory D are configured through 84.
  • FIG. 31 is a diagram showing an example of an equivalent circuit of the pixel 71 according to Modification 1 of the sixth embodiment.
  • One end of each transfer transistor TR is connected to the photoelectric conversion unit 80, and the other end is connected to memory A, memory B, memory C, and memory D, respectively.
  • one end of each gate transistor TG is connected to memory A, memory B, memory C, and memory D, respectively, and the other end is connected to the first charge storage region FD-A, the second charge storage region FD-B, The third charge storage region FD-C and the fourth charge storage region FD-D are connected to each other.
  • the subsequent operation is equivalent to that of the pixel 71 according to the sixth embodiment.
  • the second modification example 10 of the sixth embodiment is different from the distance measurement device 10 according to the first modification example of the sixth embodiment in that the first insulator 84 and the second insulator 86 are connected as insulators. differ. Below, differences from the distance measuring device 10 according to Modification 1 of the sixth embodiment will be explained.
  • FIG. 32 is a diagram showing a configuration example of the pixel 71 according to Modification 2 of the sixth embodiment.
  • Figure A is a plan view of a pixel 71 according to Modification 1 of the sixth embodiment
  • Figure B is a cross section taken along line AA.
  • the first insulator 84 and the second insulator 86 are configured as an integrated insulator.
  • the movement of charges between the embedded memory A, memory B, memory C, and memory D can be suppressed by the insulator 84.
  • crosstalk between memory A, memory B, memory C, and memory D can be suppressed. Therefore, even if the drive frequency Fmod is increased, the charge distribution efficiency Cmod (see equation 1) is further suppressed from decreasing.
  • the distance measuring device 10 according to the seventh embodiment differs from the distance measuring device 10 according to Modification 1 of the second embodiment in that the circuit configuration is configured in a substrate on the opposite side to the on-chip lens 90. Below, differences from the distance measuring device 10 according to the first modification of the second embodiment will be explained.
  • FIG. 33 is a CC sectional view (see FIG. 21) of the pixel 71 according to Modification 1 of the second embodiment.
  • the distance measuring device 10 according to the seventh embodiment includes a base 82 and a base 82c.
  • the base 82c is configured as a so-called TERIS structure.
  • FIG. 34 is a diagram showing an example of an equivalent circuit of the pixel 71 according to the seventh embodiment.
  • One end of each transfer transistor TR is connected to the photoelectric conversion section 80, and the other end is connected to the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region FD-A.
  • Each is connected to the storage area FD-D.
  • each gate transistor TG is connected to a first charge storage region FD-A, a second charge storage region FD-B, a third charge storage region FD-C, and a fourth charge storage region FD-D, respectively.
  • the other end is connected to the memory Al.
  • the memory Al is composed of, for example, a MOS (Metal Oxide Semiconductor).
  • the memory Al is configured of, for example, MIM (Meteal-Insulator-Metal).
  • the memory Al is configured on the second floor portion of the board 82c, and each transistor is configured on the first floor portion.
  • the memory Al etc. can be designed without being restricted by the pixels 71. In this way, it is possible to configure the circuit of the pixel 71 on the bonded substrate 82 and substrate 82c.
  • one end of the amplification transistor AMP is connected to the voltage source VDD, and the other end is connected to the vertical signal line 73 via the selection transistor SEL.
  • the selection transistor SEL is connected between the source electrode of the amplification transistor AMP and the vertical signal line 73.
  • the selection transistor SEL becomes conductive when the control signal Ssel supplied to the gate electrode from the row scanning circuit 62 becomes high level, and outputs the detection signal output from the amplification transistor AMP to the vertical signal line 73.
  • the reset transistor RST becomes conductive when the control signal Srst supplied to the gate electrode from the row scanning circuit 62 becomes high level, and resets the memory Al. At this time, the row scanning circuit 62 supplies the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and discharge the accumulated charge in the fourth charge accumulation region FD-D and reset it.
  • control signals Sqa, Sqb, Sqc, and Sqd are supplied to the gates of the transfer transistors from the row scanning circuit 62.
  • the control signals Sqa, Sqb, Sqc, and Sqd are at high level, the first charge accumulation region FD-A, the second charge accumulation region FD-B, the third charge accumulation region FD-C, and the fourth charge accumulation region Charges are accumulated in each region FD-D.
  • the row scanning circuit 62 sets the reset transistor RST to high level again, discharges the accumulated charge in the memory Al, and resets the memory Al. Subsequently, the control signal STGa is set to high level to transfer the charge in the first charge storage region FD-A to the memory Al, and output the detection signal to the vertical signal line 73 via the amplification transistor AMP.
  • the row scanning circuit 62 sets the reset transistor RST to high level again, discharges the accumulated charges in the memory Al, and resets the memory Al.
  • the control signal STGb is set to high level to transfer the charges in the second charge storage region FD-B to the memory Al, and output the detection signal to the vertical signal line 73 via the amplification transistor AMP.
  • the accumulated charges in each of the first charge accumulation region FD-A, second charge accumulation region FD-B, third charge accumulation region FD-C, and fourth charge accumulation region FD-D are reduced. It can be read out as a detection signal. As can be seen from these, it becomes possible to share the reset transistor RS, the amplification transistor AMP, and the selection transistor SEL.
  • the distance measuring device 10 according to the ninth embodiment changes the shape of the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 to reflect light.
  • the distance measuring device 10 is different from the distance measuring device 10 according to the first embodiment in that it is configured according to the condensing shape. Below, differences from the distance measuring device 10 according to the first modification of the first embodiment will be explained.
  • FIG. 35 is a plan view showing a configuration example of the pixel 71 according to the eighth embodiment.
  • the shapes of the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 are adjusted to the condensing shape of the reflected light. It is constructed in a circular shape.
  • the shape of the potential formed from the center of the photoelectric conversion unit 80 approaches point symmetry and overlaps with the electron generation distribution, resulting in the first charge storage region FD-A and the second charge storage region FD-B.
  • the third charge storage region FD-C, and the fourth charge storage region FD-D can be efficiently transferred.
  • the charge distribution efficiency Cmod (see equation 1) is further suppressed from decreasing.
  • the distance measuring device 10 according to the first modification of the eighth embodiment has the shapes of the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3.
  • the distance measuring device 10 is different from the distance measuring device 10 according to the eighth embodiment in that the distance measuring device 10 is configured in an octagonal shape. Below, differences from the distance measuring device 10 according to Modification 1 of the first embodiment will be explained.
  • FIG. 36 is a plan view showing a configuration example of the pixel 71 according to Modification 1 of the eighth embodiment.
  • the shapes of the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 are adjusted to the condensing shape of the reflected light. It is constructed in an octagonal shape.
  • the shape of the potential formed from the center of the photoelectric conversion unit 80 approaches point symmetry and overlaps with the electron generation distribution, resulting in the first charge storage region FD-A and the second charge storage region FD-B.
  • the efficiency of transferring electrons to the third charge storage region FD-C and the fourth charge storage region FD-D increases.
  • the charge distribution efficiency Cmod (see equation 1) is further suppressed from decreasing. Furthermore, since the shapes of the fifth conductor part DTIC-0, the sixth conductor part DTIC-1, the seventh conductor part DTIC-2, and the eighth conductor part DTIC-3 can be configured linearly, manufacturing becomes easier. .
  • the distance measuring device 10 according to the ninth embodiment connects each of the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D to adjacent pixels.
  • the distance measuring device 10 according to the first embodiment is different from the distance measuring device 10 according to the first embodiment. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 37 is a plan view showing a configuration example of the pixel 71 according to the ninth embodiment.
  • the distance measuring device 10 according to the ninth embodiment includes a first conductor part DTIC-A, a second conductor part DTIC-B, a third conductor part DTIC-C, and a fourth conductor part DTIC. -D are supplied by adjacent pixels.
  • the first insulator 84 can be made thinner, so the pitch of the pixels 71 can be made shorter, and the resolution of the distance measuring device 10 can be increased.
  • the distance measuring device 10 according to the tenth embodiment includes a reflective material on the upper part of the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • the distance measuring device 10 is different from the distance measuring device 10 according to the first embodiment in that the distance measuring device 200 is configured. Below, differences from the distance measuring device 10 according to the first embodiment will be explained.
  • FIG. 38 is an AA cross-sectional view (see FIG. 5) showing a configuration example of the pixel 71 according to the tenth embodiment.
  • a reflective material 200 is formed above the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D.
  • the reflective material 200 is a metal material with high reflectivity, such as tungsten or aluminum. In this way, a light shielding structure is formed by the reflective material 200 directly above the path during vertical charge transfer. Thereby, PLS (Parasitic Light Sensitivity) components can be suppressed.
  • the distance measuring device 10 according to the eleventh embodiment includes a reflective material on the upper part of the first conductor part DTIC-A, the second conductor part DTIC-B, the third conductor part DTIC-C, and the fourth conductor part DTIC-D. 200 is different from the distance measuring device 10 according to the first modification of the second embodiment. Below, differences from the distance measuring device 10 according to the first modification of the second embodiment will be explained.
  • FIG. 39 is an AA cross-sectional view (see FIG. 21) showing a configuration example of the pixel 71 according to the eleventh embodiment.
  • a reflective material 200 is formed inside an insulating film 92 containing P-type impurities.
  • the reflective material 200 is a metal material with high reflectivity, such as tungsten or aluminum. In this way, a light shielding structure is formed by the reflective material 200 directly above the path during vertical charge transfer. Thereby, the PLS component can be suppressed even in the case of backside irradiation.
  • the fifth conductor part DTICR-0, the sixth conductor part DTICR-1, the seventh conductor part DTICR-2, and the eighth conductor part DTICR-3 are made of a material with high reflectance.
  • the distance measuring device 10 is different from the distance measuring device 10 according to the first embodiment in that the distance measuring device 10 is configured as follows. Below, differences from the distance measuring device 10 according to Modification 1 of the first embodiment will be explained.
  • FIG. 40 is a diagram showing a configuration example of the pixel 71 according to the twelfth embodiment.
  • Figure A is a plan view
  • Figure B is a sectional view taken along line AA.
  • the fifth conductor part DTICR-0, the sixth conductor part DTICR-1, the seventh conductor part DTICR-2, and the eighth conductor part DTICR-3 are made of a material with high reflectance.
  • the fifth conductor portion DTICR-0, the sixth conductor portion DTICR-1, the seventh conductor portion DTICR-2, and the eighth conductor portion DTICR-3 are made of a metal material with high reflectivity, such as tungsten or aluminum.
  • Qe is improved.
  • the distance measuring device 10 according to the thirteenth embodiment differs from the distance measuring device 10 according to the first embodiment in that a reset transistor RS, an amplification transistor AMP, and a selection transistor SEL are configured in a photoelectric conversion section 80. Below, differences from the distance measuring device 10 according to Modification 1 of the first embodiment will be explained.
  • FIG. 41 is a plan view showing a configuration example of the pixel 71 according to the thirteenth embodiment.
  • the photoelectric conversion section 80 includes a reset transistor RS, an amplification transistor AMP, and a selection transistor SEL (see FIGS. 13 to 18). This makes it possible to reduce wiring to the board 82 side.
  • a light receiving element having a plurality of pixels The pixel is a photoelectric conversion unit that generates carriers according to the amount of light received; a first conductor portion configured inside a first insulator that insulates between adjacent pixels; a second conductor section configured on the outer edge side of the light receiving area of the photoelectric conversion section and having an opening area; a charge storage region corresponding to the opening region and configured further toward the outer edge than the second conductor portion;
  • a light receiving element comprising:
  • the photoelectric conversion section is made of a first conductivity type semiconductor, The light receiving element according to (1), wherein the charge accumulation region is formed on one surface side of the photoelectric conversion section and has a higher impurity density than the photoelectric conversion section.
  • each of the first, second, third, and fourth conductor portions is composed of two spaced apart conductor portions.
  • Each of the first, second, third and fourth conductor parts is composed of two spaced apart conductor parts, and each of the second insulators in which the two spaced apart conductor parts are formed is also spaced apart.
  • the light receiving element according to (8) comprising:
  • the charge storage region has first to eighth charge storage regions spaced apart, and each of the first to eighth charge storage regions corresponds to each of the eight opening regions of the second conductor section.
  • the photoelectric conversion section further includes a center conductor section surrounded by an insulator that insulates between the photoelectric conversion section and the photoelectric conversion section, and a predetermined potential is applied to the center conductor section. ).
  • the first conductor portion is isolated from the first, second, third, and fourth charge storage regions, and is applied with a predetermined potential, First, second, third, and fourth periodic signals whose potentials change periodically are applied to each of the first, second, third, and fourth conductor portions, and The light receiving element according to (11), wherein the phases of the third and fourth periodic signals differ by 90 degrees.
  • the first conductor portion is isolated from the first to eighth charge storage regions and is applied with a predetermined potential, First to eighth periodic signals whose potentials change periodically are applied to each of the eight spaced apart conductor parts, and the phases of the first to eighth periodic signals differ by 45 degrees, (12) The light receiving element described in .
  • the first to eighth charge storage regions are paired with respect to the center of the photoelectric conversion section,
  • the first conductor portion is isolated from the first to eighth charge storage regions, and is applied with a predetermined potential,
  • Four conductor parts forming two openings corresponding to the pair of charge storage regions are set as one group to form four groups,
  • First to fourth periodic signals whose potentials change periodically are applied to the four conductor parts in each of the four groups, and the phases of the first to fourth periodic signals differ by 90 degrees, (12)
  • the first conductor portion includes first, second, third, and fourth first conductor portions that are configured to be separated from each other in correspondence with the first, second, third, and fourth charge storage regions. have, Each of the first, second, third and fourth charge storage regions is connected to one of the corresponding first, second, third and fourth conductor portions via a gate transistor, The light receiving element according to (11).
  • the first conductor portion includes first, second, third, and fourth first conductor portions that are configured in isolation to correspond to the first, second, third, and fourth charge storage regions.
  • Each of the first, second, third and fourth charge storage regions is connected to a corresponding one of the first, second, third and fourth embedded memories via a gate transistor,
  • a base configured on one side of the photoelectric conversion section; further comprising a memory electrically connectable to the first, second, third and fourth charge storage regions, The light receiving element according to (11), wherein the memory is configured on the substrate.
  • the first conductor portion is isolated from the first, second, third, and fourth charge storage regions, and The light receiving element according to (11), further comprising a light shielding part that covers one side or the other side of the isolated first conductor part.
  • a distance measuring device comprising: a signal processing unit that generates a measured distance value to a target object using a measurement signal based on the light receiving element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

[課題]本開示では、駆動主周波数を上げても電荷振り分け効率の低下を抑制可能な受光素子、および測距装置を提供する。 [解決手段]本開示によれば、複数の画素を有する受光素子であって、画素は、受光量に応じたキャリアを生成する光電変換部と、隣接する画素間を絶縁する第1絶縁体の内部に構成される第1の導体部と、光電変換部の受光領域の外縁側に構成され、開口領域を有する第2の導体部と、開口領域に対応し、第2の導体部よりも更に外縁側に構成される電荷蓄積領域と、を備える、受光素子が提供される。

Description

受光素子、および測距装置
 本開示は、受光素子、および測距装置に関する。
 測距装置における測距方法としては、例えばIndirect ToF(Indirect Time of Flight)方式が一般に知られている。このIndirect ToF方式では、物体に向かってパターン光が照射されてから反射光として受光されるまでの時間を位相差として生成し、この位相差に基づき測距値を生成する。
特願2015-561233号公報
 測距装置における測距誤差は、駆動主周波数と電荷振り分け効率により決まることが知られている。ところが、駆動主周波数を上げて測距誤差を向上させる場合に、電荷振り分け効率が低下してしまう恐れがある。
 そこで、本開示では、駆動主周波数を上げても電荷振り分け効率の低下を抑制可能な受光素子、および測距装置を提供する。
 上記の課題を解決するために、本開示によれば、
 複数の画素を有する受光素子であって、
 前記画素は、
 受光量に応じたキャリアを生成する光電変換部と、
 隣接する画素間を絶縁する第1絶縁体の内部に構成される第1の導体部と、
 前記光電変換部の受光領域の外縁側に構成され、開口領域を有する第2の導体部と、
 前記開口領域に対応し、前記第2の導体部よりも更に外縁側に構成される電荷蓄積領域と、 
 を備える、受光素子が提供される。
 前記光電変換部は、第1導電型の半導体から構成され、
 前記電荷蓄積領域は、前記光電変換部の一方の面側に構成され、前記光電変換部よりも高不純物密度で構成されてもよい。
 前記第2の導体部は、前記光電変換部との間を絶縁する第2絶縁体の内部に構成されてもよい。
 前記第2の導体部は、離間して構成される第1、第2、第3及び第4導体部を有してもよい。
 前記第1、第2、第3及び第4導体部は、前記光電変換部の受光領域を囲むように構成されてもよい。
 前記第1、第2、第3及び第4導体部は、4角形状、円形状、及び八角形状のいずれかで構成されてもよい。
 前記第2絶縁体は、前記第1、第2、第3及び第4導体部のそれぞれに対応し、離間して構成されてもよい。
 前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成されてもよい。
 前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成され、前記離間した2つの導体部が内部に構成される第2絶縁体のそれぞれも離間して構成されてもよい。
 前記第1の導体部、前記第2の導体部は、前記光電変換部の一方の面側から、他方の面側まで配置されてもよい。
 前記電荷蓄積領域は、離間して構成される第1、第2、第3及び第4電荷蓄積領域を有してもよい。
 前記電荷蓄積領域は、離間して構成される第1乃至第8電荷蓄積領域を有し、第1乃至第8電荷蓄積領域のそれぞれは、前記第2の導体部の8つの開口領域それぞれに対応して構成されてもよい。
 前記光電変換部の中心部に、前記光電変換部との間を絶縁する絶縁体で囲まれた中央導体部を、更に備え、前記中央導体部には、所定の電位が印可されてもよい。
 前記光電変換部の他方の面側に、オンチップレンズが構成されてもよい。
 前記光電変換部の表層部には、第1導電型と異なる第2導電型の不純物層が、構成されてもよい。
 前記不純物層は、固定電位を有してもよい。
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記第1、第2、第3及び第4導体部のそれぞれには、電位が周期的に変わる第1、第2、第3及び第4の周期信号が印可され、第1、第2、第3及び第4の周期信号の位相は、90度ずつ異なってもよい。
 前記第1の導体部は、第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記離間した8つの導体部のそれぞれには、電位が周期的に変わる第1乃至第8の周期信号が印可され、第1乃至第8の周期信号の位相は、45度ずつ異なってもよい。
 前記第1乃至第8電荷蓄積領域は、前記光電変換部の中心に対して対となっており、
 前記第1の導体部は、前記第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記対となる電荷蓄積領域に対応する2つの開口部を構成する4つの導体部を1つのグループとして、4つのグループを構成し、
 電位が周期的に変わる第1乃至第4の周期信号が4つのグループ毎の4つの導体部に印可され、前記第1乃至第4の周期信号の位相は、90度ずつ異なってもよい。
 前記光電変換部の一面側に構成される基盤を更に備え、
 前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
 前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する第1、第2、第3及び第4の第1導体部のいずれかに接続されてもよい。
 前記光電変換部の一面側に構成される基盤を更に備え、
 前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
 前記第1、第2、第3及び第4の第1導体部にそれぞれ隣接する第1、第2、第3及び第4の埋め込み型メモリを更に備え、
 前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する前記第1、第2、第3及び第4の埋め込み型メモリのいずれかに接続されてもよい。
 前記第1絶縁体と前記第2絶縁体とは一体的に構成され、前記第1、第2、第3及び第4の埋め込み型メモリを電気的に遮断されてもよい。
 前記光電変換部の一面側に構成される基盤と、
 前記第1、第2、第3及び第4電荷蓄積領域に電気的に接続可能なメモリと、を、更に備え、
 前記メモリは、前記基盤に構成されてもよい。
 前記メモリは、MOS(Meteal Oxide Semiconductor)、或いはMIM(Meteal-Insulator-Metalで構成されてもよい。
 前記第1の導体部は、隣接する画素間で共有さされてもよい。
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、
 前記隔離した前記第1の導体部の一方側又は他方側を覆う遮光部を更に備えてもよい。
 前記第1、第2、第3及び第4導体部は、所定の反射率を有する金属材料で構成されてもよい。
 前記第1、第2、第3及び第4電荷蓄積領域に対応して構成される回路を、前記光電変換部に構成されてもよい。
 受光素子と、
 前記受光素子に基づく計測信号を用いて、対象物までの測距値を生成する信号処理部と、を備えてもよい。
本技術を適用した測距システムの概略構成例を示している図。 測距装置の構成例を示すブロック図。 物体までの距離と測距方式の関係を模式的に示す図。 受光素子の構成例を示すブロック図。 画素の構成例を示す平面図。 図5のBB断面図。 図5のDD断面図。 電荷の非転送時における電位ポテンシャルを模式的に示す図。 電荷転送時の電位ポテンシャルを模式的に示す図。 電荷転送時の電位ポテンシャルを模式的に示す他の図。 比較例における電荷の移動を模式的に示す図。 比較例としての電荷生成のタイミングチャートを模式的に示す図。 画素の回路構成例を示す図。 画素回路の構成例を示す図。 画素回路の構成例を示す図。 画素回路の構成例を示す図。 行走査回路から供給される制御信号の例を示す図。 電荷数を模式的に示す図。 発光源の発光パターンと画素での検出信号との関係を示す図。 画素の断面を示す図。 第2実施形態に係る画素の構成例を示す図。 第2実施形態の変形例1に係る画素の構成例を示す図。 第3実施形態に係る画素の構成を示す平面図。 第4実施形態に係る画素の構成を示す平面図。 第4実施形態の変形例1に係る画素の構成を示す平面図。 第5実施形態に係る画素の構成を示す平面図。 第5実施形態の変形例1に係る画素の構成を示す平面図。 第6実施形態に係る画素の構成例を示す図。 第6実施形態に係る画素の等価回路例を示す図。 第6実施形態の変形例1に係る画素の構成例を示す図。 第6実施形態の変形例1に係る画素の等価回路例を示す図。 第6実施形態の変形例2に係る画素の構成例を示す図。 第2実施形態の変形例1に係る画素1の断面図。 第7実施形態に係る画素の等価回路例を示す図。 第8実施形態に係る画素の構成例を示す平面図。 第8実施形態の変形例1に係る画素の構成例を示す平面図。 第8実施形態に係る画素の構成例を示す平面図。 第10実施形態に係る画素の構成例を示すAA断面図。 第11実施形態に係る画素の構成例を示すAA断面図。 第12実施形態に係る画素の構成例を示す図。 第13実施形態に係る画素の構成例を示す平面図。
 以下、図面を参照して、受光素子、および測距装置の実施形態について説明する。以下では、受光素子、および測距装置の主要な構成部分を中心に説明する受光素子、および測距装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
(第1実施形態)
 図1は、本技術を適用した測距システムの概略構成例を示している図である。図1に示す測距システム1は、測距装置10と、表示装置51(図2参照)を備える。また、測距装置10は、光源部11、測距部21を有する。光源部11は、発光タイミング信号に応じたタイミングで変調しながら照射光を生成し、照射光学系を介して対象物に照射する。光源部11から照射された照射光は、対象物で反射され、受光側光学系を介して、測距部21に入射する。
 測距部21は、対象物で反射されて入射されてくる反射光を受光する。測距部21は、受光した反射光の光量に応じた検出信号を生成する。そして、測距部21は、検出信号に基づいて、所定の対象物までの距離の測定値である測距値を算出し、出力する。
 図2は、測距装置10の構成例を示すブロック図である。図2に示すように、測距装置10の光源部11は、発光源31と、光源駆動部32とを有する。測距装置10の測距部21は、同期制御部41、受光素子42、信号処理部43、および、記憶部44を有する。
 発光源31は、例えば、VCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)等の発光素子を平面方向に複数配列した光源アレイで構成される。発光源31は、光源駆動部32の制御にしたがい、測距部21の同期制御部41から供給される発光タイミング信号に応じたタイミングで変調しながら発光して、照射光を所定の対象物に照射する。照射光には、例えば、波長が約850nmから940nmの範囲の赤外光が用いられる。
 光源駆動部32は、例えば、レーザドライバ等で構成され、同期制御部41から供給される発光タイミング信号に応じて、発光源31の各発光素子を発光させる。測距部21の同期制御部41は、発光源31の各発光素子が発光するタイミングを制御する発光タイミング信号を生成し、光源駆動部32に供給する。また、同期制御部41は、発光源31の発光のタイミングに合わせて受光素子42を駆動させるために、発光タイミング信号を受光素子42にも供給する。発光タイミング信号には、例えば、所定の周波数(例えば、10MHz、20MHz、50MHz、120MHzなど)でオンオフする矩形波の信号(パルス信号)を用いることができる。なお、発光タイミング信号は、周期信号であれば、矩形波に限定されず、例えば、サイン波などでもよい。
 受光素子42は、複数の画素71(図4参照)が行列状に2次元配置された画素アレイ部63(図4参照)により、対象物で反射された反射光を受光する。そして、受光素子42は、受光した反射光の受光量に応じた検出信号を、画素アレイ部63の画素単位で信号処理部43に供給する。受光素子42は、例えば半導体素子で構成される。
 信号処理部43は、例えばCPU(CentralProcessingUnit)を含んで構成される。信号処理部43は、記憶部44に記憶されるプログラムにしたがい、信号処理を行う。すなわち、この信号処理部43は、受光素子42から供給される検出信号に基づいて、受光素子42から所定の対象物までの距離である測距値を生成する。本実施形態に係る測距方式は、例えばToF(Time of Flight)方式であり、照射光が照射されてから、反射光として受光されるまでの時間を位相差として検出し、位相差に基づいて距離を算出する。
 記憶部44は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。この記憶部44は、検出信号、測距値などを記憶する。表示装置51は、例えばモニタである。この表示装置51は、例えば、二次元の距離画像などを表示可能である。
 図3は、測距部21のチップ構成例を示す斜視図である。測距部21は、図4のAに示されるように、第1ダイ(基盤)91と、第2ダイ(基盤)92とが積層された1つのチップで構成することができる。第1ダイ91には、例えば、同期制御部41と受光素子42が構成され、第2ダイ92には、例えば、信号処理部43と記憶部44とが構成される。
 なお、測距部21は、第1ダイ91と第2ダイ92とに加えて、もう1つのロジックダイを積層した3層で構成したり、4層以上のダイ(基盤)の積層で構成したりしてもよい。また、測距部21は、例えば、図4のBに示されるように、受光素子42としての第1チップ95と、信号処理部43としての第2チップ96とを、中継基盤97上に形成して構成することができる。同期制御部41は、第1チップ95または第2チップ96のいずれかに含んで構成される。
 図4は、受光素子42の構成例を示すブロック図である。受光素子42は、タイミング制御部61、行走査回路62、画素アレイ部63、複数のAD(Analog to Digital)変換部64、列走査回路65、および、信号処理部43を備える。画素アレイ部63には、複数の画素71が行方向および列方向の行列状に2次元配置されている。ここで、行方向とは、水平方向の画素71の配列方向であり、列方向とは、垂直方向の画素71の配列方向である。行方向は、図中、横方向であり、列方向は図中、縦方向である。
 タイミング制御部61は、例えば、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、同期制御部41(図2)から供給される発光タイミング信号に同期して、各種のタイミング信号を生成し、行走査回路62、AD変換部64、および、列走査回路65に供給する。すなわち、タイミング制御部61は、行走査回路62、AD変換部64、および、列走査回路65の駆動タイミングを制御する。
 行走査回路62は、例えば、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部63の各画素71を全画素同時または行単位等で駆動する。画素71は、行走査回路62の制御に従って反射光を受光し、受光量に応じたレベルの検出信号(画素信号)を出力する。画素71の詳細については、後述する。
 画素アレイ部63の行列状の画素配列に対して、画素行ごとに画素駆動線72が水平方向に沿って配線され、画素列ごとに垂直信号線73が垂直方向に沿って配線されている。画素駆動線72は、画素71から検出信号を読み出す際の駆動を行うための駆動信号を伝送する。以後の説明では、画素71の座標を(x、y)で示す場合がある。xは、画素Iの行方向の位置であり、yは列方向の位置である。図5では、画素駆動線72が1本の配線として示されているが、実際には複数の配線で構成される。同様に、垂直信号線73も1本の配線として示されているが、実際には複数の配線で構成される。
 AD変換部64は、列単位に設けられ、タイミング制御部61から供給されるクロック信号CKに同期して、垂直信号線73を介して、対応する列の各画素71から供給される検出信号をAD変換する。AD変換部64は、列走査回路65の制御に従って、AD変換した検出信号(検出データ)を信号処理部43に出力する。列走査回路65は、AD変換部64を順に選択して、AD変換後の検出データを信号処理部43へ出力させる。
 ここで、図5乃至図7を用いて画素71の構成例を説明する。図5は、画素71の構成例を示す平面図である。図6は、図5のBB断面図である。図7は、図5のDD断面図である。
 図5乃至図7に示すように、画素71は、光電変換部80、基盤82、第1絶縁体84、第2絶縁体86、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、第4導体部DTIC-D、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3を備える。導体部DTIC(DTIC:DTI-filled with Conductor)は、例えば半導体基板に物理的に設けられた溝部(DTI:Deep Trench Isolation)に少なくとも一部の導体が含まれている溝部を指す。導体は半導体基板に完全に埋め込まれていても良いし、半導体基板の表面まで到達せずに設けられていても良い。また、導体内にボイド(空洞)が含まれていても良い。導体は半導体基板の表面から一部、突出する形で儲けられていても良い。
 光電変換部80は、第1導電型領域であるN-半導体領域である。基盤82は、光電変換部80の下部に第2導電型領域であるP-半導体領域として構成される。例えば光電変換部80の第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3で囲まれる受光領域に反射光が集光される。これにより、光電変換部80は、例えば受光領域に集光された反射光の受光量に比例した電荷を生成する。なお、実施形態の説明では、第1導電型がN型、第2導電型がP型の場合について例示的に説明するが、これに限定されない。例えば導電型を逆の関係に選択して、第1導電型をP型、第2導電型をN型としてもよい。
 第1絶縁体84は、画素71の外周に4角形状に構成される。第1絶縁体84は、光電変換部80の上面部から基盤82まで達する隔壁として構成され、隣接する画素を絶縁する。
 図5、及び図7に示すように、第1絶縁体84の角部には、光電変換部80の上面から基盤82の上面までのL字形状のトレンチが形成される。第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dは、これらのL字形状のトレンチ内に構成される。
 図5、及び図6に示すように、第2絶縁体86は、例えば光電変換部80の中心位置から等距離であり、且つ4角形状の第1絶縁体84の各辺と平行となる位置のそれぞれに互いに離間して設けられる。第2絶縁体86は、例えば光電変換部80の上面から基盤82の上面まで形成される。
 離間して設けられた第2絶縁体86には、I字形状のトレンチが形成される。第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3は、これらのI字形状のトレンチ内に構成される。
 図5、及び図7に示すように、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは、光電変換部80の受光領域を囲むように、受光領域の中心位置に関して、例えば対称となる4つ位置にそれぞれが互いに離間して設けられる。これらの第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは、光電変換部80よりもドナー不純物の濃度が高いN+型で構成される。
 このように、画素71は、N―半導体領域である光電変換部80と、光電変換部80よりもドナー不純物の濃度が高いN+半導体領域である第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dを有している。ここで、ドナー不純物とは、例えばSiに対してのリン(P)やヒ素(As)等の元素の周期表で5族に属する元素が挙げられ、アクセプター不純物とは、例えばSiに対してのホウ素(B)等の元素の周期表で3族に属する元素が挙げられる。ドナー不純物となる元素をドナー元素、アクセプター不純物となる元素をアクセプター元素と称する場合がある。
 再び図5に示すように、画素71の駆動時には、画素駆動線72(図4参照)を介して例えば、+0.5ボルトの電圧が、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに印可される。また、第5導体部DTIC-0には、制御信号Scdti0(後述する図17参照)に同期した電圧信号が画素駆動線72を介して行走査回路62から供給される。同様に、第6導体部DTIC-1には、制御信号Scdti1(後述する図17参照)に同期した電圧信号が画素駆動線72を介して行走査回路62から供給される。同様に、第7導体部DTIC-2(後述する図17参照)には、制御信号Scdti2(後述する図17参照)に同期した電圧信号が画素駆動線72を介して行走査回路62から供給される。同様に、第8導体部DTIC-3には、制御信号Scdti3(後述する図17参照)に同期した電圧信号が画素駆動線72を介して行走査回路62から供給される。
 制御信号Scdti0~Scdti4がハイレベルである場合に、対応する第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3には、例えば-0.6ボルト(ON状態)の電圧が、印可される。一方で、制御信号Scdti0~Scdti4がロウレベルである場合に、対応する第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3には、例えば-2.2ボルト(OFF状態)の電圧が、印可される。
 図8は、図5のDD断面図に沿って電荷の非転送時における電位ポテンシャルを模式的に示す図である。縦軸は電位であり、横軸はDD断面図に沿った位置を示す。図9は、例えば、+0.5ボルトの電圧が、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに印可され、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3には、-2.2ボルト(OFF状態)の電圧が、印可されている状態である。この場合、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3に印可される-2.2ボルトの電圧により、光電変換部80の受光に比例して生成された電荷は、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3に囲まれた受光領域の外に出ることが抑制される。
 図9は、図5のDD断面図に沿って電荷転送時の電位ポテンシャルを模式的に示す図である。縦軸は電位であり、横軸はDD断面図に沿った位置を示す。図9では、第7導体部DTIC-2(図5参照)、及び第8導体部DTIC-3に-0.6ボルト(ON状態)の電圧を印可し、第5導体部DTIC-0、及び第6導体部DTIC-1に-2.2ボルト(OFF状態)の電圧を印可し、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに0.5ボルトの電圧を印可している。この場合、電位ポテンシャルに電位勾配ができ、第7導体部DTIC-2、及び第8導体部DTIC-3の形成する開口部を介して、第3電荷蓄積領域FD-C側に電荷が水平転送される。
 再び、図6、及び図7に示すように、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-D、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3は、光電変換部80の上面から下面まで形成されている。このため、例えば第3電荷蓄積領域FD-C側に電荷を転送する場合には、光電変換部80で生成された電荷は、水平方向に、最短距離で第3導体部DTIC-Cに到達する。すなわち、図9で示すように水平方向に電位ポテンシャルに傾斜ができ、第7導体部DTIC-2、及び第8導体部DTIC-3の形成する開口部を介して、最短距離で第3電荷蓄積領域FD-C側に電荷が水平転送される。そして、垂直方向に転送される。
 図10は、図5のDD断面図に沿って第1電荷蓄積領域FD-A側への電荷転送時の電位ポテンシャルを模式的に示す図である。縦軸は電位であり、横軸はDD断面図に沿った位置を示す。図10では、第7導体部DTIC-2(図5参照)、及び第8導体部DTIC-3に-2.2ボルト(OFF状態)の電圧を印可し、第5導体部DTIC-0、及び第6導体部DTIC-1に-0.6ボルト(ON状態)の電圧を印可し、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに0.5ボルトの電圧を印可している。
 ここで、仮に、電荷の転送方向が第3電荷蓄積領域FD-D側から第1電荷蓄積領域FD-A側に変わったとする。すなわち、図9で示す電位ポテンシャルが図10で示す電位ポテンシャルに切り替わったとしても、第7導体部DTIC-2(図5参照)、及び第8導体部DTIC-3に-2.2ボルト(OFF状態)の電圧が印可されるので、電位ポテンシャルは、図10の右側の電位勾配を有する形状となる。このため、第7導体部DTIC-2(図5参照)、及び第8導体部DTIC-3を通過した電荷は、第1電荷蓄積領域FD-A側に移動することなく、第3電荷蓄積領域FD-Cに垂直転送される。
 同様に、第2電荷蓄積領域FD-B側への電荷転送時の電位ポテンシャルは、第5導体部DTIC-0(図5参照)、及び第8導体部DTIC-3に-2.2ボルト(OFF状態)の電圧を印可し、第6導体部DTIC-1、及び第7導体部DTIC-2に-0.6ボルト(ON状態)の電圧を印可し、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに0.5ボルトの電圧を印可して生成される。
 同様に、第2電荷蓄積領域FD-D側への電荷転送時の電位ポテンシャルは、第6導体部DTIC1(図5参照)、及び第7導体部DTIC-2に-2.2ボルト(OFF状態)の電圧を印可し、第5導体部DTIC-0、及び第8導体部DTIC-3に-0.6ボルト(ON状態)の電圧を印可し、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに0.5ボルトの電圧を印可して生成される。
 図11は、比較例として、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-D、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の長さを、例えば4分の1程度の長さとしたときの電荷の移動を模式的に示す図である。このような場合、電荷は斜めに移動するため、転送に時間がかかってしまう。また、電位ポテンシャルが水平方向に形成されていない領域の電荷は、仮に、電荷の転送方向が第3電荷蓄積領域FD-D側から第1電荷蓄積領域FD-A側に変わった場合に、第1電荷蓄積領域FD-A側に再移動し畜電されてしまう。
 図12は、比較例としての電荷生成のタイミングチャートを模式的に示す図である。上から照射光、反射光、第1電荷蓄積領域FD-A側への電荷転送タイミングQa、第3電荷蓄積領域FD-Cへの電荷転送タイミングQdを示す。照射光、及び反射光はハイレベルが光の強度を示し、第1電荷蓄積領域FD-A側への電荷転送タイミング、及び第3電荷蓄積領域FD-Cへの電荷転送タイミングはハイレベルが電荷の転送を示す。
 例えば、電荷転送タイミングQaがハイレベルの場合には、電荷は第1電荷蓄積領域FD-A側へ転送され、電荷転送タイミングQdがハイレベルの場合には、電荷は第3電荷蓄積領域FD-D側へ転送されることを示している。図12に示すように、図11で説明した比較例では、電荷転送タイミングQdで、反射光により生成された電荷が、第1電荷蓄積領域FD-A側に再移動して、第1電荷蓄積領域FD-A側に再移動し畜電されてしまう。例えば、電荷転送タイミングQdで仮に10の電荷が生成されたとしても、例えば2の電荷が第1電荷蓄積領域FD-A側に再移動し畜電されてしまう。これにより、(1)式で示す電荷振り分け効率Cmodが低下してしまう。
Figure JPOXMLDOC01-appb-M000001
(1)式は、測距誤差σdepthと駆動周波数Fmodと電荷振り分け効率Cmodとの関係を示す。(1)式に示すように、測距誤差σdepthは、駆動周波数Fmodが高周波数になるにしたがい減少する。また、測距誤差σdepthは、電荷振り分け効率Cmodが高くなるにしたがい減少する。一方で、駆動周波数Fmodが高周波数になるにしたがい、比較例のように、電荷振り分け効率Cmodが低下する。これにより、駆動周波数Fmodを高周波数にしても、測距誤差σdepthが減少しなくなってしまう。また、効率Cmodは(2)~(4)式で示される。なお、Q0、Q90、Q180、および、Q270は、図19を参照して後述する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 これに対して、本実施形態では、光電変換部80で生成された電荷は、水平方向に、最短距離で第3導体部DTIC-Cに到達する。そして、垂直方向に転送される。また、電位ポテンシャルは、図10の右側の形状で示す電位勾配を有することとなる。このため、駆動周波数Fmodをより上げたとしても、第3導体部DTIC-C側に到達した電荷は、第1電荷蓄積領域FD-A側に移動することなく、第3電荷蓄積領域FD-Cに垂直転送される。これから分かるように、駆動周波数Fmodをより上げたとしても、例えば、図9、及び図10のような電位ポテンシャルを時系列に切り変え形成することにより、電荷振り分け効率Cmodの低下が抑制される。また、電荷の水平転送を可能とするので、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形成する開口部を最短距離で移動することが可能となり、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmodの低下が抑制される。
 ここで、図13乃至図16を用いて、画素71の等価回路例を説明する。図13は、画素71の回路構成例を示す図である。図13に示すように、光電変換部80で生成された電荷は、複数の画素回路Ca100、Cb100、Cc100、Cd100を介して、それぞれ垂直信号線73を介して、AD変換部64へ出力される。画素回路Ca100、Cb100、Cc100、Cd100はそれぞれ、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dの電荷転送に用いられる。
 画素回路Ca100は、転送トランジスタTr-0、Tr-1、Tr-Aと、第1電荷蓄積領域FD-Aと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELとを有する。転送トランジスタTr-0、Tr-1、Tr-Aは、直列に接続され、一端が光電変換部80に接続され、他端が第1電荷蓄積領域FD-Aに接続される。なお、転送トランジスタTr-A~Dが導通状態になる場合に、電荷蓄積領域FD-A~Dに向かう電位ポテンシャルが形成され、生成電荷は垂直転送される。
 転送トランジスタTr-0、Tr-1、Tr-Aのそれぞれのゲートには、行走査回路62から制御信号Scdti0、Scdti1、Sqaが供給される。制御信号Sqa、Scdti1、Scdti0がハイレベルの時に導通状態となる。つまり、転送トランジスタTr-0、Tr-1は、スイッチング素子TGa-0、TGb-0、スイッチング素子TGa-1、TGb-1(図9参照)と同期している。
 リセットトランジスタRSTは、一端が第1電荷蓄積領域FD-Aにされ、他端が電圧源VDDに接続される。リセットトランジスタRSTは、行走査回路62からゲート電極に供給される制御信号Srstがハイレベルになると導通状態となり、第1電荷蓄積領域FD-Aの蓄積電荷を排出して、リセットする。すなわち、行走査回路62は、画素71での測定を開始する場合に、画素71を先ずリセットする。
 増幅トランジスタAMPは、一端が電圧源VDDに接続され、他端が選択トランジスタSELを介して垂直信号線73に接続される。選択トランジスタSELは、増幅トランジスタAMPのソース電極と垂直信号線73との間に接続される。選択トランジスタSELは、行走査回路62からゲート電極に供給される制御信号Sselがハイレベルになると導通状態ととなり、増幅トランジスタAMPから出力される検出信号を垂直信号線73に出力する。すなわち、行走査回路62は、画素71での測定が終了した場合に、制御信号Sselをハイレベルにし、検出信号を垂直信号線73に出力する。行走査回路62は、画素回路Ca100、Cb100、Cc100、Cd100の順に制御信号Sselをハイレベルにし、検出信号を垂直信号線73に出力する。
 図14は、画素回路Cb100の構成例を示す図である。画素回路Cb100は、画素回路Ca100と同等の構成である。すなわち、画素回路Cb100は、転送トランジスタTr-1、Tr-2、Tr-Bと、第2電荷蓄積領域FD-Bと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELとを有する。転送トランジスタTr-1、Tr-2、Tr-Bは、直列に接続され、一端が光電変換部80に接続され、他端が第2電荷蓄積領域FD-Bに接続される。
 転送トランジスタTr-1、Tr-2、Tr-Bのそれぞれのゲートには、行走査回路62から制御信号Scdti1、Scdti2、Sqbが供給される。
 図15は、画素回路Cc100の構成例を示す図である。画素回路Cb100は、素回路Ca100と同等の構成である。すなわち、画素回路Cc100は、転送トランジスタTr-2、Tr-3、Tr-Bと、第3電荷蓄積領域FD-Cと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELとを有する。転送トランジスタTr-2、Tr-3、Tr-Bは、直列に接続され、一端が光電変換部80に接続され、他端が第3電荷蓄積領域FD-Cに接続される。
 転送トランジスタTr-2、Tr-3、Tr-Cのそれぞれのゲートには、行走査回路62から制御信号Scdti2、Scdti3、Sqcが供給される。
 図16は、画素回路Cd100の構成例を示す図である。画素回路Cd100は、素回路Ca100と同等の構成である。すなわち、画素回路Cd100は、転送トランジスタTr-3、Tr-0、Tr-Dと、第4電荷蓄積領域FD-Dと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELとを有する。転送トランジスタTr-2、Tr-3、Tr-Bは、直列に接続され、一端が光電変換部80に接続され、他端が第2電荷蓄積領域FD-Dに接続される。
 転送トランジスタTr-3、Tr-0、Tr-Dのそれぞれのゲートには、行走査回路62から制御信号Scdti3、Scdti0、Sqdが供給される。なお、画素71の回路構成例は一例であり、これらに限定されない。
 ここで、図17乃至図18を用いて、測距装置10の制御動作例を説明する。図17は、行走査回路62から供給される制御信号Scdti0、Scdti1、Scdti2、Scdti3の例を示す図である。上から順に制御信号Scdti0、Scdti1、Scdti2、Scdti3を示す。横軸は時間をしめす。制御信号Scdti0、Scdti1、Scdti2、Scdti3は、同じ周期を有し、位相が90度毎ずれている。
 再び図9を参照すると、制御信号Scdti0がハイレベルの時に、第5導体部DTIC-0がON状態であり、制御信号Scdti0がロウレベルの時に、第5導体部DTIC-0がOFF状態である。同様に、制御信号Scdti1がハイレベルの時に、第6導体部DTIC-1がON状態であり、制御信号Scdti1がロウレベルの時に、第6導体部DTIC-1がOFF状態である。同様に、制御信号Scdti2がハイレベルの時に、第7導体部DTIC-2がON状態であり、制御信号Scdti2がロウレベルの時に、第7導体部DTIC-2がOFF状態である。同様に、制御信号Scdti2がハイレベルの時に、第8導体部DTIC-3がON状態であり、制御信号Scdti2がロウレベルの時に、第8導体部DTIC-3がOFF状態である。なお、転送トランジスタTr-0~Tr-3、Tr-A~Tr-Dのハイレベル期間を、光電変換部80における電子の垂直転送時間を考慮して、増加させててもよい。
 これから分かるように、制御信号Scdti0、Scdti1が同時にハイレベルの時に、第1電荷蓄積領域FD-A側に電荷が転送され、制御信号Scdti1、Scdti2が同時にハイレベルの時に、第2電荷蓄積領域FD-B側に電荷が転送され、制御信号Scdti2、Scdti3が同時にハイレベルの時に、第3電荷蓄積領域FD-C側に電荷が転送され、制御信号Scdti3、Scdti0が同時にハイレベルの時に、第4電荷蓄積領域FD-D側に電荷が転送される。
 制御信号Sqa、Sqb、Sqc、Sqdは、画素71の駆動中は常にハイレベルを維持する。上述のように、第1電荷蓄積領域FD-Aに向かう電位ポテンシャルが、画素71の駆動中に形成され、生成電荷は垂直転送される。これにより、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、第4電荷蓄積領域FD-Dそれぞれに電荷が転送される。
 図18は、図17及び図20で示す制御信号での駆動を繰り返した場合に、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、第4電荷蓄積領域FD-Dそれぞれに流入する電荷数を模式的に示す図である。縦軸は電荷数、横軸は時間をしめす。第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、第4電荷蓄積領域FD-Dそれぞれに流入する電荷数をラインLFD-A、LFD-B、LFD-C、LFD-Dで示す。このように、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dのそれぞれには制御信号Scdti0、Scdti1、Scdti2、Scdti3の位相に応じて、異なる電荷が蓄積される。
 図19は、発光源31の発光パターンと画素71での検出信号との関係を示す図である。上から発光源31の発光パターン、画素71に発光パターンが受光されるタイミングである受光パターン、位相0度、位相90度、位相180度、位相270度、の検出信号を示す。各信号の縦軸はハイレベルとロウレベルを示し、横軸は時間を示す。発光パターンのハイレベルでは、パターン光15(図1参照)が照射される時間を示し、受光パターンのハイレベルは、パターン光15が反射して戻ってくる時間を示す。すなわち、本実施形態では、周波数f(変調周波数)で高速にオンオフを繰り返すパルス光が採用される。パルス光の1周期Tは1/fとなる。画素71では、発光源31から受光素子42に到達するまでの時間Δtに応じて、反射光(受光パターン)の位相がずれて検出される。
 位相0度の検出信号におけるハイレベルは、画素71の受光タイミングを示す。すなわち、光源部11の発光源31が出射するパルス光の位相、すなわち発光パターンと同じ位相とするタイミングである。
 同様に、位相90度の検出信号のハイレベルは、光源部11の発光源31が出射するパルス光(発光パターン)から90度遅れた位相とするタイミングである。同様に、位相180度の検出信号のハイレベルは、光源部11の発光源31が出射するパルス光(発光パターン)から180度遅れた位相とするタイミングである。同様に、位相270度の検出信号のハイレベルは、光源部11の発光源31が出射するパルス光(発光パターン)から270度遅れた位相とするタイミングである。
 受光タイミングを、位相0度、位相90度、位相180度、および、位相270度としたときに蓄積された電荷に対応する計測信号を、それぞれ、Q0、Q90、Q180、および、Q270とする。
 このとき、Q0=QA+QB、Q90=QB+QC、Q180=QC+QD、Q270=QD+QAの関係がある。QAは、測定の終了時に第1電荷蓄積領域FD-Aから検出された検出信号をAD変換部64でデジタル信号に変換した値である。同様に、QBは、測定の終了時に第3電荷蓄積領域FD-Bから検出された検出信号をAD変換部64でデジタル信号に変換した値である。同様に、QCは、測定の終了時に第3電荷蓄積領域FD-Cから検出された検出信号をAD変換部64でデジタル信号に変換した値である。同様に、QDは、測定の終了時に第4電荷蓄積領域FD-Dから検出された検出信号をAD変換部64でデジタル信号に変換した値である。
 これらの電荷に対応する信号は、画素I(x、y)毎に計測信号Q0(x、y)、Q90(x、y)、Q180(x、y)、および、Q270(x、y)として、記憶部44に記憶される。
 ここで、信号処理部43の詳細を説明する。最初に、ToF方式による測距の方法を説明する。
 測距部21から対象物までの距離に相当する測距値D(x、y)[mm]は、以下の式(5)で計算することができる。
Figure JPOXMLDOC01-appb-M000005
式(1)のΔt(x、y)は、発光源31から出射されたパターン光15が対象物で反射されて受光素子42の各画素(x、y)に入射するまでの時間であり、cは、光速を表す。(x、y)は、画素71の座標である。
 発光源31から照射されるパターン光15には、図19に示されるような、所定の周波数f(変調周波数)で高速にオンオフを繰り返すパルス光が採用される。パルス光の1周期Tは1/fとなる。受光素子42では、発光源31から受光素子42に到達するまでの時間Δt(x、y)に応じて、反射光(受光パターン)の位相がずれて検出される。この発光パターンと受光パターンとの位相のずれ量(位相差)をφ(x、y)とすると、時間Δt(x、y)は、下記の式(6)で算出することができる。 
Figure JPOXMLDOC01-appb-M000006
 したがって、受光素子42から対象物までの測距値Da(x、y)は、式(4)と式(6)とから、下記の式(7)で算出することができる。 
Figure JPOXMLDOC01-appb-M000007
 図9は、位相生成部437の生成する位相差φを示す図である。図9に示すように、位相生成部437は、画素I(x、y)における位相差φ(x、y)を、計測信号Q0(x、y)、Q90(x、y)、Q180(x、y)、および、Q270(x、y)を用いて、下記の式(8)で算出する。 
Figure JPOXMLDOC01-appb-M000008
 式(8)で算出された位相差φ(x、y)を上記の式(7)に入力することにより、測距装置10から対象物までの測距値Da(x、y)を算出することができる。信号処理部43測距値Da(x、y)を2次元の距離画像として、記憶部44に記憶させると共に、表示装置51に表示させることが可能である。
 以上説明したように本実施形態によれば、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-D、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3を光電変換部80の上面から下面まで形成することした。このため、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-D、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3に印可する電圧の組合せを時系列に変更することにより、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dのいずれかの方向に電荷を水平に転送する電位ポテンシャルを、電変換部80の上面から下面まで水平方向に形成することが可能となる。このため、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3のいずれかの開口部を介して、最短距離で第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dのいずれかに電荷を水平転送できる。これにより、電荷振り分け効率の低下が抑制される。
 また、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3に印可する電圧により、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3のいずれかの開口部を介して、水平方向に最短距離で第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dのいずれか側に転送された電荷は、他の導体部に再転送されることが抑制される。これにより、電荷振り分け効率の低下が更に抑制される。
 (第1実施形態の変形例1)
 第1実施形態の変形例1に係る測距装置10は、画素71の光電変換部80の最表面にP型不純物領域88を更に形成する点で第1実施形態に係る測距装置10と相違する。以下では第1実施形態に係る測距装置10と相違する点を説明する。
 図20は、画素71のDD断面(図5参照)を示す図である。図20に示すように、第1実施形態の変形例1に係る測距装置10は、画素71の光電変換部80の最表面にP型不純物領域88を有する。これにより、光電変換部80の表面側の界面で発生する暗電子の発生を抑制できる。このため、画素71の暗電子によるSN比の低下を抑制でき、測距誤差σdepth((1)式参照)の低下を抑制できる。
 (第2実施形態)
 第2実施形態に係る測距装置10は裏面照射型である点で第1実施形態に係る測距装置10と相違する。以下では第1実施形態に係る測距装置10と相違する点を説明する。
 図21は、第2実施形態に係る画素71の構成例を示す図である。A図は、第2実施形態に係る画素71の構成例を示す平面図である。B図は、BB断面図である。
 第2実施形態に係る画素71は、回路などが配置される基盤側と反対側である裏面側から反射光が入射する。このため、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは、光電変換部80の基盤82側に配置される点で、第1実施形態に係る測距装置10と相違する。これにより、回路Ca100~Cd100(図13参照)の配線が簡易化可能となる。加えて、配線層によって入射光が反射してしまい、光電変換部80に入射する光が減少してしまうことを防ぐことが可能となり、Qeが増加する 
 また、第2実施形態に係る画素71は、反射光が入射する光電変換部80の裏面側にオンチップレンズ90を更に有する。第2実施形態に係る画素71は、回路などが配置される基盤側と反対側の裏面側から反射光が入射するので、画素71の開口率をより大きくすることが可能となる。
 (第2実施形態の変形例1) 
 第2実施形態の変形例1に係る測距装置10は、画素71の光電変換部80の基盤側の最表面にP型不純物領域の絶縁膜92を更に形成する点で第2実施形態に係る測距装置10と相違する。以下では第2実施形態に係る測距装置10と相違する点を説明する。
 図22は、第2実施形態の変形例1に係る画素71の構成例を示す図である。A図は、第2実施形態に係る画素71の構成例を示す平面図である。B図は、CC断面図である。
 図22に示すように、第2実施形態の変形例1に係る測距装置10は、画素71の光電変換部80のオンチップレンズ90側の最表面に負の固定電位を有する縁膜92を更に有して、光電変換部80との界面にホールを誘起させる。また、画素71の光電変換部80の基盤側の最表面にP型不純物領域88aを有する。DTIC-0~3の側壁に誘起されるホールを通じてGNDに導通する。このように、ホールを光電変換部80内に生成出き、暗電子の発生を抑制できる。このため、画素71のSN比の低下を抑制でき、測距誤差σdepth((1)式参照)の低下を抑制できる。
 (第3実施形態)
 第3実施形態に係る測距装置10はI字形状のトレンチの中に複数の導体部が形成される点で第1実施形態に係る測距装置10と相違する。以下では第1実施形態に係る測距装置10と相違する点を説明する。
 図23は、第3実施形態に係る画素71の構成を示す平面図である。図23に示すように、第3実施形態に係る画素71は、離間して設けられた第2絶縁体86には、I字形状のトレンチの中に複数の導体部が形成される。すなわち、第9導体部DTICa-0、第10導体部DTICb-0、第11導体部DTICa-1、第12導体部DTICb-1、第13導体部DTICa-2、第14導体部DTICb-2、第15導体部DTICa-3、及び第16導体部DTICb-3を備える。
 これにより、第1グループG1を(第9導体部DTICa-0、第12導体部DTICb-1)の組合せとし、第2グループG2を(第11導体部DTICa-1、第14導体部DTICb-2)の組合せとし、第3グループG3を(第13導体部DTICa-2、第16導体部DTICb-3)の組合せとし、第4グループG4を(第15導体部DTICa-3、第10導体部DTICb-0)の組合せとする。
 これにより、行走査回路62(図4参照)は、ON状態、OFF状態の制御をグループ毎に可能となる。例えば、図19に示すように、第1グループG1に位相0度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第1グループG2に位相90度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第1グループG3に位相180度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第4グループG4に位相270度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。
 このため、電荷の第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dへの分離性が更によくなる。これにより、目的とする電荷蓄積領域外への電荷の流入をより抑制できるので、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。
 (第4実施形態)
 第4実施形態に係る測距装置10は第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dをそれぞれ複数構成する点で第1実施形態に係る測距装置10と相違する。以下では第1実施形態に係る測距装置10と相違する点を説明する。
 図24は、第4実施形態に係る画素71の構成を示す平面図である。図24に示すように、第4実施形態に係る画素71は、離間して設けられた第2絶縁体86には、I字形状のトレンチの中に複数の導体部が形成される。すなわち、第9導体部DTICa-0、第10導体部DTICb-0、第11導体部DTICa-1、第12導体部DTICb-1、第13導体部DTICa-2、第14導体部DTICb-2、第15導体部DTICa-3、及び第16導体部DTICb-3を備える。更に、第9導体部DTICa-0、及び第10導体部DTICb-0の間は離間され、開口が形成され、第11導体部DTICa-1、及び第12導体部DTICb-1の間は離間され、開口が形成され、第13導体部DTICa-2、及び第14導体部DTICb-2の間は離間され、開口が形成され、第15導体部DTICa-3、及び第16導体部DTICb-3の間は離間され、開口が形成される。
 第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは、それぞれ、光電変換部80の中心点に対して対象となる位置に対として構成される。これら、対として構成される第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは電気的に接続されている。
 これにより、第1グループG1を(第9導体部DTICa-0、第12導体部DTICb-1、第13導体部DTICa-2、及び第15導体部DTICb-3)の組合せとし、第2グループG2を(第12導体部DTICb-1、第11導体部DTICa-1、第16導体部DTICb-3、及び第15導体部DTICa-3)の組合せとし、第3グループG3を(第14導体部DTICb-2、第13導体部DTICa-2、第10導体部DTICb-0、及び第9導体部DTICa-0)の組合せとし、第4グループG4を(第15導体部DTICa-3、第10導体部DTICb-0、第11導体部DTICa-1、及び第14導体部DTICb-2)の組合せとする。
 これにより、行走査回路62(図4参照)は、ON状態、OFF状態の制御をグループ毎に可能となる。例えば、図19に示すように、第1グループG1に位相0度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第1グループG2に位相90度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第1グループG3に位相180度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。同様に第4グループG4に位相270度信号のハイレベルとロウレベルに合わせた、ON状態制御とOFF状態を行うことが可能となる。
 このため、2つの第1電荷蓄積領域FD-Aのそれぞれには、光電変換部80の半分の領域から対象に電荷が転送される。同様に、2つの第2電荷蓄積領域FD-Bのそれぞれには、光電変換部80の半分の領域から対象に電荷が転送される。同様に、2つの第3電荷蓄積領域FD-Cのそれぞれには、光電変換部80の半分の領域から対象に電荷が転送される。同様に、2つの第4電荷蓄積領域FD-Dのそれぞれには、光電変換部80の半分の領域から対象に電荷が転送される。これにより、水平方向の転送時間がより短縮されるので、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下がより抑制される。
 (第4実施形態の変形例1)
 第4実施形態の変形例1に係る測距装置10は光電変換部80の中心部に更に導体部DTIC-Mを構成する点で第4実施形態に係る測距装置10と相違する。以下では第4実施形態に係る測距装置10と相違する点を説明する。
 図25は、第4実施形態の変形例1に係る画素71の構成を示す平面図である。図25に示すように、第4実施形態の変形例1に係る画素71は、光電変換部80の中心部に正方形状の導体部DTIC-Mを更に有する。導体部DTIC-Mは、光電変換部80の上面から下面まで構成され、周囲には絶縁体86aが構成される。
 行走査回路62(図4参照)は、導体部DTIC-MにOFF状態に対応する電位として、例えば-2.2ボルト(OFF状態)を印可する。これにより、導体部DTIC-Mは配置される中央部の電位ポテンシャルの電位勾配が、より周辺部に電荷を転送する加速度を増加する形状となる。これにより、水平方向の転送時間がさらに短縮されるので、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。
 (第5実施形態)
 第5実施形態に係る測距装置10はそれぞれの電荷蓄積領域が独立して電荷を蓄積する点で第4実施形態に係る測距装置10と相違する。以下では第4実施形態に係る測距装置10と相違する点を説明する。
 図26は、第5実施形態に係る画素71の構成を示す平面図である。図26に示すように、第5実施形態に係る画素71は、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、第4電荷蓄積領域FD-D、第5電荷蓄積領域FD-E、第6電荷蓄積領域FD-F、第7電荷蓄積領域FD-G、第8電荷蓄積領域FD-Hを有する。第1電荷蓄積領域FD-Aと、第5電荷蓄積領域FD-Eとは、光電変換部80の中心点に対して対象となる位置に構成される。同様に第2電荷蓄積領域FD-Bと、第6電荷蓄積領域FD-Fとは、光電変換部80の中心点に対して対象となる位置に構成される。同様に第3電荷蓄積領域FD-Cと、第7電荷蓄積領域FD-Gとは、光電変換部80の中心点に対して対象となる位置に構成される。同様に第4電荷蓄積領域FD-Dと、第8電荷蓄積領域FD-Hとは、光電変換部80の中心点に対して対象となる位置に構成される。
 これにより、第1グループG1を(第9導体部DTICa-0、及び第12導体部DTICb-1)の組合せとし、第2グループG2を(第12導体部DTICb-1、及び第11導体部DTICa-1)の組合せとし、第13グループG3を(第11導体部DTICa-1、及び第14導体部DTICb-2)の組合せとし、第4グループG4を(第14導体部DTICb-2、及び第13導体部DTICa-2)の組合せとし、第5グループG5を(第13導体部DTICa-2、及び第16導体部DTICb-3)の組合せとし、第6グループG6を(第16導体部DTICb-3、及び第15導体部DTICa-3)の組合せとし、第7グループG7を(第15導体部DTICa-3、及び第10導体部DTICb-0)の組合せとし、第8グループG8を(第10導体部DTICb-0、及び第9導体部DTICa-0)の組合せとする。
 これにより、行走査回路62(図4参照)は、ON状態、OFF状態の制御をグループ毎に可能となる。これにより、所謂8Tap構成の画素71を構成することが可能となるこのため、例えば位相を45度ずつ異ならせた位相0度信号、位相45度信号、位相90度信号、位相135度信号、位相180度信号(図19参照)に対応させた駆動制御が可能となる。
 (第5実施形態の変形例1)
 第5実施形態の変形例1に係る測距装置10は光電変換部80の中心部に更に導体部DTIC-Mを構成する点で第5実施形態に係る測距装置10と相違する。以下では第4実施形態に係る測距装置10と相違する点を説明する。
 図27は、第5実施形態の変形例1に係る画素71の構成を示す平面図である。図27に示すように、第5実施形態の変形例1に係る画素71は、光電変換部80の中心部に正方形状の導体部DTIC-Mを更に有する。導体部DTIC-Mは、光電変換部80の上面から下面まで構成され、周囲には絶縁体86aが構成される。
 行走査回路62(図4参照)は、導体部DTIC-MにOFF状態に対応する電位として、例えば-2.2ボルトを印可する。これにより、導体部DTIC-Mは配置される中央部の電位ポテンシャルの傾斜が、より周辺部に電荷を転送する加速度を増加する形状となる。これにより、水平方向の転送時間がさらに短縮されるので、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。
 (第6実施形態)
 第6実施形態に係る測距装置10は電荷を第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dの周辺部に電荷を蓄積した後に、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び、第4電荷蓄積領域FD-Dに転送する点で第1実施形態に係る測距装置10と相違する。以下では第1実施形態に係る測距装置10と相違する点を説明する。
 図28は、第6実施形態に係る画素71の構成例を示す図である。A図は、第5実施形態に係る画素71の平面図であり、B図はA-A断面である。図28に示すように、第2基盤82bは、光電変換部80の上部に第2導電型領域であるP-半導体領域として構成される。
 第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dは、第2基盤82bの上層部に構成される。更に第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dのそれぞれは、ゲートトランジスタTGを介して、それぞれ第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dに接続される。
 図29は、第6実施形態に係る画素71の等価回路例を示す図である。容量Cca、Ccb、CcC、CcDは、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dそれぞれの周辺の電荷容量を示す。各転送トランジスタの一端は光電変換部80に接続され、他端は、容量Cca、Ccb、CcC、CcDにそれぞれ接続される。
 また、各ゲートトランジスタTGの一端は、容量Cca、Ccb、CcC、及びCcDにそれぞれに接続され、他端は、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dにそれぞれ接続される。リセットトランジスタRSTは、一端が第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dに接続される。
 第1実施形態と同様に、増幅トランジスタAMPは、一端が電圧源VDDに接続され、他端が選択トランジスタSELを介して垂直信号線73に接続される。選択トランジスタSELは、増幅トランジスタAMPのソース電極と垂直信号線73との間に接続される。選択トランジスタSELは、行走査回路62からゲート電極に供給される制御信号Sselがハイレベルになると導通状態ととなり、増幅トランジスタAMPから出力される検出信号を垂直信号線73に出力する。
 リセットトランジスタRSTは、行走査回路62からゲート電極に供給される制御信号Srstがハイレベルになると導通状態となり、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dの蓄積電荷を排出して、リセットする。この際に、行走査回路62は、各ゲートランジスタTGにハイレベル信号を供給することにより、容量Cca、Ccb、CcC、及びCcDの蓄積電荷を排出して、リセットする。
 転送トランジスタのゲートには、図20に示すように、行走査回路62から制御信号Sqa、Sqb、Sqc、Sqdが供給される。これにより、制御信号Sqa、Sqb、Sqc、Sqdがハイレベルの時に、容量Cca、Ccb、CcC、CcDには電荷がそれぞれ蓄積される。
 そして、計測の終了後に、行走査回路62は、再度リセットトランジスタRSTをハイレベルにして、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dの蓄積電荷を排出して、リセットする。続けて、制御信号STGaをハイレベルにして、第1電荷蓄積領域FD-Aに容量Ccaの電荷を転送し、増幅トランジスタAMPを介して検出信号を垂直信号線73に出力する。
 同様に、行走査回路62は、再度リセットトランジスタRSTをハイレベルにして、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dの蓄積電荷を排出して、リセットする。続けて、制御信号STGbをハイレベルにして、第2電荷蓄積領域FD-Bに容量Ccbの電荷を転送し、増幅トランジスタAMPを介して検出信号を垂直信号線73に出力する。このような処理を繰り返すことにより、各容量Cca、Ccb、CcC、CcDの蓄積電荷を検出信号として読み出すことが可能である。これらから分かるように、容量Cca、Ccb、CcC、CcDに電荷を蓄積することにより、リセットトランジスタRS、増幅トランジスタAMP、選択トランジスタSELを共有化することが可能となる。これにより、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-D毎にアンプを構成する場合に比較して、アンプゲイン誤差を排除することが可能となる。このため、測距誤差σdepth((1)式参照)を更に抑制できる。
 (第6実施形態の変形例1)
 第6実施形態の変形例1に係る測距装置10は、電荷を埋め込み型のメモリに蓄積した後に、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び、第4電荷蓄積領域FD-Dに転送する点で第6実施形態に係る測距装置10と相違する。以下では第6実施形態に係る測距装置10と相違する点を説明する。
 図30は、第6実施形態の変形例1に係る画素71の構成例を示す図である。A図は、第6実施形態の変形例1に係る画素71の平面図であり、B図はA-A断面である。図30に示すように、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dそれぞれに隣接して、第1絶縁体84を介して埋め込み型のメモリA、メモリB、メモリC、メモリDが構成される。
 図31は、第6実施形態の変形例1に係る画素71の等価回路例を示す図である。各転送トランジスタTRの一端は光電変換部80に接続され、他端は、メモリA、メモリB、メモリC、及びメモリDにそれぞれ接続される。また、各ゲートトランジスタTGの一端は、メモリA、メモリB、メモリC、及びメモリDにそれぞれに接続され、他端は、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dにそれぞれ接続される。後の動作は第6実施形態に係る画素71と同等である。
 埋め込み型のメモリA、メモリB、メモリC、及びメモリDを構成することにより、電荷の垂直転送時に生じる暗電子の発生を抑制可能となる。このため、測距誤差σdepth((1)式参照)を更に抑制できる。
 (第6実施形態の変形例2)
 第6実施形態の変形例2測距装置10は、第1絶縁体84と第2絶縁体86とが絶縁体として接続される点で第6実施形態の変形例1に係る測距装置10と相違する。以下では、第6実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図32は、第6実施形態の変形例2に係る画素71の構成例を示す図である。A図は、第6実施形態の変形例1に係る画素71の平面図であり、B図はA-A断面である。図32に示すように、第1絶縁体84と第2絶縁体86とが一体の絶縁体として構成される。図Bに示すように、埋め込み型のメモリA、メモリB、メモリC、及びメモリD間での電荷の移動を絶縁体84で抑制できる。これにより、メモリA、メモリB、メモリC、及びメモリD間でのクロストークを抑制できる。このため、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。
 (第7実施形態)
 第7実施形態に係る測距装置10は、回路構成をオンチップレンズ90と反対側の基盤内に構成する点で、第2実施形態の変形例1に係る測距装置10と相違する。以下では第2実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図33は、第2実施形態の変形例1に係る画素71のCC断面図(図21参照)である。図33に示すように、第7実施形態に係る測距装置10は、基盤82と基盤82cとを有する。例えば基盤82cは、所謂TERIS構造として構成する。
 図34は、第7実施形態に係る画素71の等価回路例を示す図である。各転送トランジスタTRの一端は光電変換部80に接続され、他端は、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dにそれぞれ接続される。
 また、各ゲートトランジスタTGの一端は、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dにそれぞれ接続され、他端は、メモリAlに接続される。メモリAlは、例えばMOS(Meteal Oxide Semiconductor)で構成される。或いは、メモリAlは、例えばMIM(Meteal-Insulator-Metal)で構成される。
 基盤82cの例えば2階部分にメモリAlを構成し、1階部分に各トランジスタを構成する。これにより、メモリAlなどが画素71の制約を受けずに設計可能となる。このように、貼り合わせた基盤82と基盤82cとに、画素71の回路を構成することが可能である。
 第1実施形態と同様に、増幅トランジスタAMPは、一端が電圧源VDDに接続され、他端が選択トランジスタSELを介して垂直信号線73に接続される。選択トランジスタSELは、増幅トランジスタAMPのソース電極と垂直信号線73との間に接続される。選択トランジスタSELは、行走査回路62からゲート電極に供給される制御信号Sselがハイレベルになると導通状態ととなり、増幅トランジスタAMPから出力される検出信号を垂直信号線73に出力する。
 リセットトランジスタRSTは、行走査回路62からゲート電極に供給される制御信号Srstがハイレベルになると導通状態となり、メモリAlをリセットする。この際に、行走査回路62は、各ゲートランジスタTGにハイレベル信号を供給することにより第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dの蓄積電荷を排出して、リセットする 
 転送トランジスタのゲートには、図20に示すように、行走査回路62から制御信号Sqa、Sqb、Sqc、Sqdが供給される。これにより、制御信号Sqa、Sqb、Sqc、Sqdがハイレベルの時に、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dのそれぞれには電荷がそれぞれ蓄積される。
 そして、計測の終了後に、行走査回路62は、再度リセットトランジスタRSTをハイレベルにして、メモリAlの蓄積電荷を排出して、リセットする。続けて、制御信号STGaをハイレベルにして、メモリAlに第1電荷蓄積領域FD-Aの電荷を転送し、増幅トランジスタAMPを介して検出信号を垂直信号線73に出力する。
 同様に、行走査回路62は、再度リセットトランジスタRSTをハイレベルにして、メモリAlの蓄積電荷を排出して、リセットする。続けて、制御信号STGbをハイレベルにして、メモリAlに第2電荷蓄積領域FD-Bの電荷を転送し、増幅トランジスタAMPを介して検出信号を垂直信号線73に出力する。このような処理を繰り返すことにより、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dそれぞれの蓄積電荷を検出信号として読み出すことが可能である。これらから分かるように、リセットトランジスタRS、増幅トランジスタAMP、選択トランジスタSELを共有化することが可能となる。これにより、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-D毎にアンプを構成する場合に比較して、アンプゲイン誤差を排除することが可能となる。このため、測距誤差σdepth((1)式参照)を更に抑制できる。
 (第8実施形態)
 第9実施形態に係る測距装置10は、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形状を反射光の集光形状に合わせて構成される点で第1実施形態に係る測距装置10と相違する。以下では、第1実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図35は、第8実施形態に係る画素71の構成例を示す平面図である。図35に示すように、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形状を反射光の集光形状に合わせて円形状に構成される。これにより、光電変換部80の中心部から構成される電位ポテンシャルの形状は、点対称に近づくと共に、電子の生成分布と重なり、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dへの電子の転送効率を上げることが可能となる。これにより、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。
 (第8実施形態の変形例1)
 第8実施形態の変形例1に係る測距装置10は、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形状を八角形状に構成する点で第8実施形態に係る測距装置10と相違する。以下では、第1実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図36は、第8実施形態の変形例1に係る画素71の構成例を示す平面図である。図36に示すように、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形状を反射光の集光形状に合わせて八角形状に構成される。これにより、光電変換部80の中心部から構成される電位ポテンシャルの形状は、点対称に近づくと共に、電子の生成分布と重なり、第1電荷蓄積領域FD-A、第2電荷蓄積領域FD-B、第3電荷蓄積領域FD-C、及び第4電荷蓄積領域FD-Dへの電子の転送効率があがる。これにより、駆動周波数Fmodをより上げたとしても、更に電荷振り分け効率Cmod(1式参照)の低下が抑制される。また、第5導体部DTIC-0、第6導体部DTIC-1、第7導体部DTIC-2、及び第8導体部DTIC-3の形状を直線的に構成できるので、より製造が容易となる。
 (第9実施形態)
 第9実施形態に係る測距装置10は、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dそれぞれを隣接する画素で共有する点で第1実施形態に係る測距装置10と相違する。以下では、第1実施形態に係る測距装置10と相違する点を説明する。
 図37は、第9実施形態に係る画素71の構成例を示す平面図である。図37に示すように、第9実施形態に係る測距装置10は、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dそれぞれを隣接する画素で供給する。これにより、第1絶縁体84をより薄く構成できるので、画素71のピッチをより短くでき、測距装置10の解像度を上げることが可能となる。
 (第10実施形態)
 第10実施形態に係る測距装置10は、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dの上部に反射材200を構成する点で第1実施形態に係る測距装置10と相違する。以下では、第1実施形態に係る測距装置10と相違する点を説明する。
 図38は、第10実施形態に係る画素71の構成例を示すAA断面図(図5参照)である。図38に示すように、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dの上部に反射材200を構成する。反射材200は、例えばタングステン、アルミニウムなどの反射率の高い金属材料である。このように、電荷の垂直転送時の経路の直上に反射材200により遮光構造を構成する。これにより、PLS(Parasitic Light Sensitivity)成分を抑制できる。
 (第11実施形態)
 第11実施形態に係る測距装置10は、第1導体部DTIC-A、第2導体部DTIC-B、第3導体部DTIC-C、及び、第4導体部DTIC-Dの上部に反射材200を構成する点で第2実施形態の変形例1に係る測距装置10と相違する。以下では、第2実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図39は、第11実施形態に係る画素71の構成例を示すAA断面図(図21参照)である。図39に示すように、P型不純物を有する絶縁膜92の内部に反射材200を構成する。反射材200は、例えばタングステン、アルミニウムなどの反射率の高い金属材料である。このように、電荷の垂直転送時の経路の直上に反射材200により遮光構造を構成する。これにより、裏面照射の場合にも、PLS成分を抑制できる。
 (第12実施形態)
 第12実施形態に係る測距装置10は、第5導体部DTICR-0、第6導体部DTICR-1、第7導体部DTICR-2、及び第8導体部DTICR-3を反射率の高い材料で構成する点で第1実施形態に係る測距装置10と相違する。以下では、第1実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図40は、第12実施形態に係る画素71の構成例を示す図である。A図は平面図であり、B図はAA断面図である。図40に示すように、第5導体部DTICR-0、第6導体部DTICR-1、第7導体部DTICR-2、及び第8導体部DTICR-3を反射率の高い材料で構成する。第5導体部DTICR-0、第6導体部DTICR-1、第7導体部DTICR-2、及び第8導体部DTICR-3は、例えばタングステン、アルミニウムなどの反射率の高い金属材料である。これにより、B図に示すように光電変換部80ないで光が反射し、電荷の生成率が向上する。このため、所謂Qeが向上する。
 (第13実施形態)
 第13実施形態に係る測距装置10は、リセットトランジスタRS、増幅トランジスタAMP、選択トランジスタSELを光電変換部80に構成する点で第1実施形態に係る測距装置10と相違する。以下では、第1実施形態の変形例1に係る測距装置10と相違する点を説明する。
 図41は、第13実施形態に係る画素71の構成例を示す平面図である。図41に示すように、リセットトランジスタRS、増幅トランジスタAMP、選択トランジスタSEL(図13乃至18を参照)を光電変換部80に構成する。これにより、基盤82側への配線低減できる。
 なお、本技術は以下のような構成を取ることができる。
(1)
 複数の画素を有する受光素子であって、
 前記画素は、
 受光量に応じたキャリアを生成する光電変換部と、
 隣接する画素間を絶縁する第1絶縁体の内部に構成される第1の導体部と、
 前記光電変換部の受光領域の外縁側に構成され、開口領域を有する第2の導体部と、
 前記開口領域に対応し、前記第2の導体部よりも更に外縁側に構成される電荷蓄積領域と、 
 を備える、受光素子。
(2)
 前記光電変換部は、第1導電型の半導体から構成され、
 前記電荷蓄積領域は、前記光電変換部の一方の面側に構成され、前記光電変換部よりも高不純物密度で構成される、(1)に記載の受光素子。
(3)
 前記第2の導体部は、前記光電変換部との間を絶縁する第2絶縁体の内部に構成される、(1)に記載の受光素子。
(4)
 前記第2の導体部は、離間して構成される第1、第2、第3及び第4導体部を有する、(3)に記載の受光素子。
(5)
 前記第1、第2、第3及び第4導体部は、前記光電変換部の受光領域を囲むように構成される、(4)に記載の受光素子。
(6)
 前記第1、第2、第3及び第4導体部は、4角形状、円形状、及び八角形状のいずれかで構成される、(4)に記載の受光素子。
(7)
 前記第2絶縁体は、前記第1、第2、第3及び第4導体部のそれぞれに対応し、離間して構成される、(6)に記載の受光素子。
(8)
 前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成される、(6)に記載の受光素子。
(9)
 前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成され、前記離間した2つの導体部が内部に構成される第2絶縁体のそれぞれも離間して構成される、(8)に記載の受光素子。
(10)
 前記第1の導体部、前記第2の導体部は、前記光電変換部の一方の面側から、他方の面側まで配置される、(6)に記載の受光素子。
(11)
 前記電荷蓄積領域は、離間して構成される第1、第2、第3及び第4電荷蓄積領域を有する、(4)に記載の受光素子。
(12)
 前記電荷蓄積領域は、離間して構成される第1乃至第8電荷蓄積領域を有し、第1乃至第8電荷蓄積領域のそれぞれは、前記第2の導体部の8つの開口領域それぞれに対応して構成される、(9)に記載の受光素子。
(13)
 前記光電変換部の中心部に、前記光電変換部との間を絶縁する絶縁体で囲まれた中央導体部を、更に備え、前記中央導体部には、所定の電位が印可される、(1)に記載の受光素子。
(14)
 前記光電変換部の他方の面側に、オンチップレンズが構成される、(2)に記載の受光素子。
(15)
 前記光電変換部の表層部には、第1導電型と異なる第2導電型の不純物層が、構成される、(2)に記載の受光素子。
(16)
 前記不純物層は、固定電位を有する、(15)に記載の受光素子。
(17)
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記第1、第2、第3及び第4導体部のそれぞれには、電位が周期的に変わる第1、第2、第3及び第4の周期信号が印可され、第1、第2、第3及び第4の周期信号の位相は、90度ずつ異なる、(11)に記載の受光素子。
(18)
 前記第1の導体部は、第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記離間した8つの導体部のそれぞれには、電位が周期的に変わる第1乃至第8の周期信号が印可され、第1乃至第8の周期信号の位相は、45度ずつ異なる、(12)に記載の受光素子。
(19)
 前記第1乃至第8電荷蓄積領域は、前記光電変換部の中心に対して対となっており、
 前記第1の導体部は、前記第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
 前記対となる電荷蓄積領域に対応する2つの開口部を構成する4つの導体部を1つのグループとして、4つのグループを構成し、
 電位が周期的に変わる第1乃至第4の周期信号が4つのグループ毎の4つの導体部に印可され、前記第1乃至第4の周期信号の位相は、90度ずつ異なる、(12)に記載の受光素子。
(20)
 前記光電変換部の一面側に構成される基盤を更に備え、
 前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
 前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する第1、第2、第3及び第4の第1導体部のいずれかに接続される、(11)に記載の受光素子。
(21)
 前記光電変換部の一面側に構成される基盤を更に備え、
 前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
 前記第1、第2、第3及び第4の第1導体部にそれぞれ隣接する第1、第2、第3及び第4の埋め込み型メモリを更に備え、
 前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する前記第1、第2、第3及び第4の埋め込み型メモリのいずれかに接続される、(11)に記載の受光素子。
(22)
 前記第1絶縁体と前記第2絶縁体とは一体的に構成され、前記第1、第2、第3及び第4の埋め込み型メモリを電気的に遮断する、(21)に記載の受光素子。
(23)
 前記光電変換部の一面側に構成される基盤と、
 前記第1、第2、第3及び第4電荷蓄積領域に電気的に接続可能なメモリと、を、更に備え、
 前記メモリは、前記基盤に構成される、(11)に記載の受光素子。
(24)
 前記メモリは、MOS(Meteal Oxide Semiconductor)、或いはMIM(Meteal-Insulator-Metalで構成される、(23)に記載の受光素子。
(25)
 前記第1の導体部は、隣接する画素間で共有される、(1)に記載の受光素子。
(26)
 前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、
 前記隔離した前記第1の導体部の一方側又は他方側を覆う遮光部を更に備える、(11)に記載の受光素子。
(27)
 前記第1、第2、第3及び第4導体部は、所定の反射率を有する金属材料で構成される、(4)に記載の受光素子。
(28)
 前記第1、第2、第3及び第4電荷蓄積領域に対応して構成される回路を、前記光電変換部に構成する、(11)に記載の受光素子。
(29)
 (1)に記載の受光素子と、
 前記受光素子に基づく計測信号を用いて、対象物までの測距値を生成する信号処理部と、を備える測距装置。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 10:測距装置、42:受光素子、43:信号処理部、71:画素、80:光電変換部、82:基盤、84:第1絶縁体、86:第2絶縁体、90:オンチップレンズ、Al:メモリ、DTIC-A~D:第1乃至題4導体部、DTIC-0~3:第5乃至題8導体部、DTIC-M:導体部(中央導体部)、DTICa-0~3:第9導体部、第11導体部、第13導体部、第15導体部、DTICb-0~3:第10導体部、第12導体部、第14導体部、第16導体部、FD-A~D:電荷蓄積領域、TG:ゲートトランジスタ。

Claims (29)

  1.  複数の画素を有する受光素子であって、
     前記画素は、
     受光量に応じたキャリアを生成する光電変換部と、
     隣接する画素間を絶縁する第1絶縁体の内部に構成される第1の導体部と、
     前記光電変換部の受光領域の外縁側に構成され、開口領域を有する第2の導体部と、
     前記開口領域に対応し、前記第2の導体部よりも更に外縁側に構成される電荷蓄積領域と、
     を備える、受光素子。
  2.  前記光電変換部は、第1導電型の半導体から構成され、
     前記電荷蓄積領域は、前記光電変換部の一方の面側に構成され、前記光電変換部よりも高不純物密度で構成される、請求項1に記載の受光素子。
  3.  前記第2の導体部は、前記光電変換部との間を絶縁する第2絶縁体の内部に構成される、請求項1に記載の受光素子。
  4.  前記第2の導体部は、離間して構成される第1、第2、第3及び第4導体部を有する、請求項3に記載の受光素子。
  5.  前記第1、第2、第3及び第4導体部は、前記光電変換部の受光領域を囲むように構成される、請求項4に記載の受光素子。
  6.  前記第1、第2、第3及び第4導体部は、4角形状、円形状、及び八角形状のいずれかで構成される、請求項4に記載の受光素子。
  7.  前記第2絶縁体は、前記第1、第2、第3及び第4導体部のそれぞれに対応し、離間して構成される、請求項6に記載の受光素子。
  8.  前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成される、請求項6に記載の受光素子。
  9.  前記第1、第2、第3及び第4導体部のそれぞれは、離間した2つの導体部で構成され、前記離間した2つの導体部が内部に構成される第2絶縁体のそれぞれも離間して構成される、請求項8に記載の受光素子。
  10.  前記第1の導体部、前記第2の導体部は、前記光電変換部の一方の面側から、他方の面側まで配置される、請求項6に記載の受光素子。
  11.  前記電荷蓄積領域は、離間して構成される第1、第2、第3及び第4電荷蓄積領域を有する、請求項4に記載の受光素子。
  12.  前記電荷蓄積領域は、離間して構成される第1乃至第8電荷蓄積領域を有し、第1乃至第8電荷蓄積領域のそれぞれは、前記第2の導体部の8つの開口領域それぞれに対応して構成される、請求項9に記載の受光素子。
  13.  前記光電変換部の中心部に、前記光電変換部との間を絶縁する絶縁体で囲まれた中央導体部を、更に備え、前記中央導体部には、所定の電位が印可される、請求項1に記載の受光素子。
  14.  前記光電変換部の他方の面側に、オンチップレンズが構成される、請求項2に記載の受光素子。
  15.  前記光電変換部の表層部には、第1導電型と異なる第2導電型の不純物層が、構成される、請求項2に記載の受光素子。
  16.  前記不純物層は、固定電位を有する、請求項15に記載の受光素子。
  17.  前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
     前記第1、第2、第3及び第4導体部のそれぞれには、電位が周期的に変わる第1、第2、第3及び第4の周期信号が印可され、第1、第2、第3及び第4の周期信号の位相は、90度ずつ異なる、請求項11に記載の受光素子。
  18.  前記第1の導体部は、第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
     前記離間した8つの導体部のそれぞれには、電位が周期的に変わる第1乃至第8の周期信号が印可され、第1乃至第8の周期信号の位相は、45度ずつ異なる、請求項12に記載の受光素子。
  19.  前記第1乃至第8電荷蓄積領域は、前記光電変換部の中心に対して対となっており、
     前記第1の導体部は、前記第1乃至第8電荷蓄積領域に対応して隔離しており、且つ所定の電位が印可され、
     前記対となる電荷蓄積領域に対応する2つの開口部を構成する4つの導体部を1つのグループとして、4つのグループを構成し、
     電位が周期的に変わる第1乃至第4の周期信号が4つのグループ毎の4つの導体部に印可され、前記第1乃至第4の周期信号の位相は、90度ずつ異なる、請求項12に記載の受光素子。
  20.  前記光電変換部の一面側に構成される基盤を更に備え、
     前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
     前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
     前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する第1、第2、第3及び第4の第1導体部のいずれかに接続される、請求項11に記載の受光素子。
  21.  前記光電変換部の一面側に構成される基盤を更に備え、
     前記基盤に前記第1、第2、第3及び第4電荷蓄積領域が構成され、
     前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離して構成される第1、第2、第3及び第4の第1導体部を有し、
     前記第1、第2、第3及び第4の第1導体部にそれぞれ隣接する第1、第2、第3及び第4の埋め込み型メモリを更に備え、
     前記第1、第2、第3及び第4電荷蓄積領域のそれぞれはゲートトランジスタを介して、対応する前記第1、第2、第3及び第4の埋め込み型メモリのいずれかに接続される、請求項11に記載の受光素子。
  22.  前記第1絶縁体と前記第2絶縁体とは一体的に構成され、前記第1、第2、第3及び第4の埋め込み型メモリを電気的に遮断する、請求項21に記載の受光素子。
  23.  前記光電変換部の一面側に構成される基盤と、
     前記第1、第2、第3及び第4電荷蓄積領域に電気的に接続可能なメモリと、を、更に備え、
     前記メモリは、前記基盤に構成される、請求項11に記載の受光素子。
  24.  前記メモリは、MOS(Meteal Oxide SemiDTICuctor)、或いはMIM(Meteal-Insulator-Metalで構成される、請求項23に記載の受光素子。
  25.  前記第1の導体部は、隣接する画素間で共有される、請求項1に記載の受光素子。
  26.  前記第1の導体部は、前記第1、第2、第3及び第4電荷蓄積領域に対応して隔離しており、
     前記隔離した前記第1の導体部の一方側又は他方側を覆う遮光部を更に備える、請求項11に記載の受光素子。
  27.  前記第1、第2、第3及び第4導体部は、所定の反射率を有する金属材料で構成される、請求項4に記載の受光素子。
  28.  前記第1、第2、第3及び第4電荷蓄積領域に対応して構成される回路を、前記光電変換部に構成する、請求項11に記載の受光素子。
  29.  請求項1に記載の受光素子と、
     前記受光素子に基づく計測信号を用いて、対象物までの測距値を生成する信号処理部と、を備える測距装置。
PCT/JP2023/029949 2022-08-29 2023-08-21 受光素子、および測距装置 WO2024048336A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136277 2022-08-29
JP2022136277 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048336A1 true WO2024048336A1 (ja) 2024-03-07

Family

ID=90099447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029949 WO2024048336A1 (ja) 2022-08-29 2023-08-21 受光素子、および測距装置

Country Status (1)

Country Link
WO (1) WO2024048336A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021417A1 (ja) * 2012-08-03 2014-02-06 国立大学法人 静岡大学 半導体素子及び固体撮像装置
WO2018038230A1 (ja) * 2016-08-24 2018-03-01 国立大学法人静岡大学 光電変換素子及び固体撮像装置
WO2021060017A1 (en) * 2019-09-25 2021-04-01 Sony Semiconductor Solutions Corporation Light-receiving element, distance measurement module, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021417A1 (ja) * 2012-08-03 2014-02-06 国立大学法人 静岡大学 半導体素子及び固体撮像装置
WO2018038230A1 (ja) * 2016-08-24 2018-03-01 国立大学法人静岡大学 光電変換素子及び固体撮像装置
WO2021060017A1 (en) * 2019-09-25 2021-04-01 Sony Semiconductor Solutions Corporation Light-receiving element, distance measurement module, and electronic apparatus

Similar Documents

Publication Publication Date Title
CN110957339B (zh) 固态成像装置和电子设备
EP3410485B1 (en) Backside illuminated image sensor
KR101348522B1 (ko) 고체 촬상 장치 및 거리 화상 측정 장치
EP1752748B1 (en) Highly sensitive, fast pixel for use in an image sensor
US10616519B2 (en) Global shutter pixel structures with shared transfer gates
JP5501358B2 (ja) 電荷感知セルおよび画素の幾何形状が改良された、cmosフォトゲート3dカメラシステム
US9134401B2 (en) Range sensor and range image sensor
EP2549537B1 (en) Photo-detecting device
KR20170141661A (ko) 고체 촬상 소자, 반도체 장치, 및, 전자 기기
JP2011133464A (ja) 距離センサ及び距離画像センサ
JP5485919B2 (ja) 固体撮像装置
CN111668245A (zh) 图像传感器
WO2013128714A1 (ja) 距離センサ及び距離画像センサ
KR20210139089A (ko) 이미지 센싱 장치
WO2024048336A1 (ja) 受光素子、および測距装置
WO2022161295A1 (zh) 一种图像传感器
JP2023061391A (ja) イメージセンシング装置
US11652117B2 (en) Image sensing device
US9053998B2 (en) Range sensor and range image sensor
KR20220033130A (ko) 이미지 센서
CN112928131A (zh) 一种阵列型探测器与使用其的探测系统
JP2017117957A (ja) 光電変換装置
US11722792B2 (en) Image sensing device
US20240280673A1 (en) Sensor for acquiring a depth map of a scene
US20230362500A1 (en) Image sensor and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860099

Country of ref document: EP

Kind code of ref document: A1