TW202106981A - 風扇 - Google Patents

風扇 Download PDF

Info

Publication number
TW202106981A
TW202106981A TW109118616A TW109118616A TW202106981A TW 202106981 A TW202106981 A TW 202106981A TW 109118616 A TW109118616 A TW 109118616A TW 109118616 A TW109118616 A TW 109118616A TW 202106981 A TW202106981 A TW 202106981A
Authority
TW
Taiwan
Prior art keywords
rotor
stator
fan
designed
hub
Prior art date
Application number
TW109118616A
Other languages
English (en)
Inventor
湯瑪士 霍蘭斯汀
佛羅里安 威斯模
Original Assignee
瑞士商力威磁浮技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商力威磁浮技術有限公司 filed Critical 瑞士商力威磁浮技術有限公司
Publication of TW202106981A publication Critical patent/TW202106981A/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/062Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0633Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/064Details of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0646Details of the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

提出一種風扇,其具有用於產生流體流的轉子(2),且具有定子(3),定子與轉子(2)一起形成電磁旋轉驅動,用於使轉子(2)繞著軸向方向(A)旋轉,旋轉驅動被設計為外部轉子,轉子(2)包括以環狀方式來設計的磁有效核心(22)、以及動葉輪(21),動葉輪包括輪轂(23),其上佈置有用於產生流體流的複數個葉片(24),定子(3)被設計為軸承和驅動定子,轉子(2)可藉由軸承和驅動定子在未接觸的情況下磁性地驅動,且可相對於定子(3)在未接觸的情況下磁性地懸浮,且轉子(2)在垂直於軸向方向(A)的徑向平面中主動磁性地懸浮,動葉輪(21)的輪轂(23)完全地封閉轉子(2)的磁有效核心(22),且定子(3)被封裝在由低滲透性材料所製成的定子殼體(4)中。

Description

風扇
本發明關於一種根據獨立專利請求項的前言之風扇,其具有用於產生流體流的轉子。
風扇通常被使用來使各種設備冷卻、或亦用於使各種建築物、系統或裝置通風。一般而言,風扇的任務是產生流體流,特別是空氣流,接著從特定位置抽取熱量或亦提供熱量,例如,作為傳熱介質(heat transfer medium)。流體流或空氣流還可被使用來移除不想要的氣體蓄積或以新鮮的空氣替換之。風扇使用的例子為電子電路或電源的冷卻,例如,在電腦中。風扇亦可被整合到管路或管路系統中,以在此產生理想的流或維持壓力水平。尤其是在這樣的應用中,當然理想的是風扇具有緊湊的設計。然而,它們應該提供高的性能,這是為什麼風扇通常以極高的旋轉速度運作。
在許多應用中,亦存在風扇在揚塵或受汙染的環境中運作的情況。特別是在轉子軸承上的灰塵或髒汙可導致非常高的磨損及短的使用壽命。同樣為了特別解決這樣的問題,已知的是在未接觸的情況下(亦即,尤其是在沒有機械軸承的情況下)支撐轉子的風扇。例如,在這些風扇的情況下,轉子藉由磁力或電磁力來支撐,為此正常地提供至少一個磁性軸承。在磁性軸承的情況下,做成在被動和主動的磁性軸承之間的基本區別。被動的磁性軸承或穩定無法被控制或調節。這通常基於磁阻力。被動的磁性軸承或穩定因此在沒有外部能源供應的情況下運作。主動的磁性軸承為可被控制的軸承。在主動的磁性軸承的情況下,例如,藉由施加電磁場,可主動地影響或調節要被支撐的本體的位置。例如,從歐洲專利說明書EP-B-2 064 450已知具有非接觸磁性支撐的轉子的風扇。在此處,提出一種風扇,其包括至少一個被動的徑向磁性軸承、及主動的(亦即,可調節的)軸向磁性軸承系統。
另一方面,不具有機械軸承的風扇特別適用於輸送高純度氣體,這是因為不會有可能發生在機械軸承中之磨損的危險。這種高純度氣體被使用於,例如,雷射技術中。
即使風扇中的轉子的磁性軸承已經證明其價值,但仍存在改進的空間,特別是關於風扇之盡可能的緊湊設計,而同時維持高性能,或關於風扇的磨損和使用壽命。尤其是在化學侵蝕性環境中,例如,在半導體工業中發現的環境中,例如,在管路系統中,風扇會暴露在侵蝕性物質(例如,腐蝕性蒸氣或氣體)、含有固體顆粒或細小液滴之帶有顆粒的空氣流中(例如,光阻劑)、或六氟化硫(sulfur hexafluoride)(SF6 )中,它們被使用來作為半導體製造中的蝕刻氣體。這種更具侵略性的環境通常造成增加的磨損或風扇之令人不滿意的短使用壽命。本發明專注於這些問題。
因此,本發明的目的在於提出一種非常緊湊且同時有效率的風扇,其可在沒有用於轉子之機械軸承的情況下運作,且其亦適用於在更具侵略性的環境條件下使用。
滿足此問題之本發明的目的之特徵在於獨立專利請求項的特徵。
根據本發明,因此提出一種風扇,其具有用於產生流體流的轉子,且具有定子,定子與轉子一起形成電磁旋轉驅動,用於使轉子繞著軸向方向旋轉,旋轉驅動被設計為外部轉子,轉子包括以環狀方式來設計的磁有效核心(magnetically effective core)、以及動葉輪(impeller),動葉輪包括輪轂,其上佈置有用於產生流體流的複數個葉片,定子被設計為軸承和驅動定子,轉子可藉由軸承和驅動定子在未接觸的情況下磁性地驅動,且可相對於定子在未接觸的情況下磁性地懸浮,轉子在垂直於軸向方向的徑向平面中主動磁性地懸浮,動葉輪的輪轂完全地封閉轉子的磁有效核心,且定子被封裝在由低滲透性材料所製成的定子殼體中。
較佳地,流體流為空氣流。
為了實現風扇之非常緊湊的設計,根據無軸承馬達(bearingless motor)的原理來設計風扇的電磁旋轉驅動。在此同時,無軸承馬達對於本領域技術人士而言是眾所周知的,因此不再需要對其功能的詳細描述。定子被設計為軸承和驅動定子,在運作狀態下,轉子可藉由此軸承和驅動定子在未接觸的情況下在軸向方向上被磁性地驅動,亦即,旋轉,且可相對於定子在未接觸的情況下磁性地懸浮。藉由轉子之理想的旋轉軸線來確定軸向方向。
術語“無軸承馬達”指的是轉子被磁性地懸浮而沒有接觸的事實,其中,未提供單獨的磁性軸承。定子既為電驅動的定子亦為磁性軸承的定子。定子包括繞組,藉由此繞組可產生磁性旋轉場,其一方面將扭矩施加到轉子上造成其旋轉,且另一方面將可自由地調整的橫向力施加到轉子上,使得其徑向位置(亦即,其在徑向平面中的位置)可被主動地控制或調節。因此,可主動地調節轉子的至少三個自由度。關於轉子在軸向方向上的偏轉(deflection),藉由磁阻力而使轉子被動磁性地穩定,亦即,其為不可控制的。還相對於其餘兩個自由度(亦即,相對於垂直於軸向方向的徑向平面之傾斜)使轉子被動磁性地穩定。
無軸承馬達的原理的基本面向在於,在軸承和驅動定子中無法做成在軸承單元和驅動單元之間的區別。從先前技術的狀態,例如,已知電磁驅動和軸承裝置,其中,驅動的定子和磁性軸承的定子被結合以形成結構單元。定子包括一個或複數個軸承單元以及驅動單元,例如,驅動單元可被佈置在兩個軸承單元之間。這種裝置因此顯示出軸承單元,其可被從僅用於磁性軸承的驅動單元分離。然而,這種裝置在本案的意義上不應被理解成無軸承馬達,因為它們實際上具有分離的軸承單元,其從驅動功能分離出來,實現轉子的軸承。在本案的意義上之無軸承馬達的情況下,不可能將定子分成軸承單元及驅動單元。正是此特性賦予無軸承馬達之名號。
本發明的另一個重要面向在於,轉子的磁有效核心和定子均被完全地封閉,且較佳地被氣密地封閉。以此方式,轉子的磁有效核心和定子,且特別是,例如,定子上的繞組或定子上的線圈核心,被可靠地保護,尤其是在,例如,風扇將接觸腐蝕性氣體、蒸氣或其他腐蝕性或酸性流體之具化學侵略性環境中亦然。轉子的磁有效核心和定子同樣被可靠地保護,免於像是泥漿之類的磨料流體之害。藉由完全地封閉磁有效核心及定子,風扇至少具有顯著地減少的磨損及相當長的使用壽命,即使在具侵略性的環境中亦然。
轉子的磁有效核心被完全地封閉在動葉輪的輪轂中,因此形成轉子的護套(sheathing)。定子被封裝在定子殼體中,其由低滲透性材料所製成,亦即,僅具有低的磁滲透率(magnetic permeability)(磁導率)之材料。例如,此低滲透性材料可為塑膠。在本申請案的架構中,低滲透性材料被理解為在一般實踐中其滲透率數(permeability number)(相對滲透率)僅稍微偏離1或甚至未偏離1(真空的滲透率數)的那些材料。在任何情況下,低滲透性材料具有少於1.1的滲透率數。
由於轉子的磁性核心和定子的完全護套,封閉轉子的磁有效核心之輪轂與定子殼體的壁兩者必須被佈置在轉子與定子之間的磁氣隙(magnetic air gap)中。這要求轉子和定子的磁性互動零件之間相對於徑向方向有大的距離,亦即,在轉子和定子的磁路中的磁氣隙為大的。出乎意料地,儘管存在大的磁氣隙,但轉子相對於定子之可靠且穩定的軸承是可能的。
較佳地,動葉輪由第一塑膠所製成,且定子殼體由第二塑膠所製成。第一塑膠及第二塑膠可為相同的塑膠,或者,第一塑膠及第二塑膠可為不同的塑膠。
根據較佳實施例,風扇包括實質呈管狀的殼體,其具有吸入側及壓力側,其中,轉子及定子殼體被佈置在殼體中,且其中,定子殼體藉由複數個支桿被固定在殼體中。這允許風扇被輕易地整合到管路或管路系統中,以在其處產生理想的流或壓力,舉例而言。為此目的,風扇的殼體在每種情況下都可在吸入側及壓力側兩者上均包括凸緣,風扇可藉由此凸緣被附接到管路。定子殼體藉由其被固定的支桿可有利地被設計為用於風扇的擴散器(diffuser)。
另一個較佳的措施為定子殼體具有第一殼體部分及第二殼體部分,第一殼體部分被佈置在轉子內且被轉子的磁性核心所圍繞,且第二殼體部分具有外直徑,外直徑至少與轉子的磁有效核心的外直徑一樣大。定子殼體的這種優化形狀允許像是用於電磁旋轉驅動的功率電子設備之額外部件被佈置在定子殼體中,並因此受到定子殼體的保護。
較佳地,風扇包括檢查裝置,用於控制或調節風扇,檢查裝置被佈置在定子殼體的第二殼體部分中。此措施可實現特別緊湊和節省空間的設計。整個檢查裝置被整合到或內建於定子殼體中,檢查裝置可包括用於產生電磁場的功率電子設備、用於驅動和支撐轉子的調節裝置、以及必要時包括感測器或評估單元。因此,僅需要對風扇供應能量,且如果必要的話,可發出信號,例如,用於開始或停止風扇或用於確定轉速的信號。為此目的,可提供電源線,其對風扇提供電能。此電源線較佳地被佈置在定子殼體藉由其被固定的支桿中的一者內部。
此外,有利的是,設置有感測器,流體流的壓力或流率可藉由感測器來確定,其中,感測器被信號連接到檢查裝置,且檢查裝置被設計來調節或控制壓力或流率。以此方式,例如,可控制或調節由風扇所產生的流體流。感測器可被佈置在吸入側上或壓力側上。特別是,感測器亦可被固定到定子殼體。
根據較佳實施例,定子包括複數個線圈核心,其每一者在徑向方向上延伸,每一個線圈核心承載用於產生旋轉電磁場的集中繞組(concentrated winding)。尤其較佳的是,定子具有正好六個線圈核心,其每一者承載集中繞組。
在較佳實施例中,轉子的磁有效核心包括環狀回流(reflux)及複數個永久磁鐵,回流被設計為連續的且由軟磁性材料所製成,且每一個永久磁鐵被設計為具有鐮刀形(sickle-shaped)截面且被裝配到回流的徑向內側中。一方面,藉由此實施例,可達成磁性軸承之非常良好的扭矩及非常良好的剛性,且另一方面,由於需要特別少的永磁材料(permanent magnetic material),用於永久磁鐵的成本被減少。
另一個較佳的措施為用於散熱的熱傳導元件被設置在定子殼體中,熱傳導元件被設計為使得其至少圍繞檢查裝置。熱傳導元件較佳地為金屬熱傳導元件,且由,例如,鋁,所組成。例如,熱傳導元件可為杯形的,使得其沿著第二殼體部分的內壁延伸。
為了支撐轉子的磁性軸承,轉子較佳地被設計用於轉子之流體力學穩定,以抵抗傾斜。由於此流體力學穩定,磁性軸承有利地亦相對於軸向方向衰減,從而防止了軸向軸承的振盪。
存在各種用於流體力學穩定的措施,其中的一些現在於非窮舉列表中被提及:
動葉輪的輪轂具有吸入側端及壓力側端,其中,轉子的磁有效核心相對於軸向方向被佈置為相較於輪轂的吸入側端更靠近壓力側端。這意味著磁有效核心相對於軸向方向未被定位在動葉輪的輪轂的中心,而是沿著壓力側的方向位移。
動葉輪的輪轂可包括在其吸入側端的入口區域,在入口區域中,輪轂被設計成沿著吸入側端的方向漸細。
動葉輪可被設計為使得每一個葉片具有前緣,每一個前緣垂直於軸向方向延伸。
動葉輪可被設計為使得每一個葉片具有後緣(trailing edge),每一個後緣以與軸向方向差90度之角度通向輪轂。
動葉輪可被設計為使得每一個葉片具有後緣,其中,至少一個穩定環被設置在後緣處,穩定環被與轉子同軸地佈置。
亦可能將動葉輪設計為使得每一個葉片在位於輪轂的吸入側端與壓力側端之間的位置處相對於軸向方向通向輪轂。
僅實現上述措施中的任一者之風扇的實施例、以及實現上述措施中的任意組合的這種實施例為可能的。
從附屬請求項得出本發明之更多有利的措施及實施例。
圖1以透視圖顯示根據本發明的風扇之實施例,風扇作為整體被標示為標號1。為了更好理解,圖2及圖3仍顯示根據圖1中的截面線II-II之本實施例的兩個截面圖,其中,圖2顯示截面表面的平面圖,且圖3顯示透視圖中的截面。
風扇1包括用於產生流體流(例如,空氣流或氣體流)的轉子2、以及定子3,定子3與轉子2一起形成電磁旋轉驅動,用於使轉子2繞著軸向方向A旋轉。轉子2及定子3形成旋轉驅動,其被設計為外部轉子,亦即,轉子2圍繞定子3,且在運作狀態下繞著內部的定子3旋轉。
根據無軸承馬達的原理來設計電磁旋轉驅動,且電磁旋轉驅動包括轉子2及定子3,轉子2可在未接觸的情況下被磁性地驅動,且被設計為無線圈的,定子3被設計為軸承及驅動定子,轉子2藉由此軸承及驅動定子而可於運作狀態下在未接觸的情況下繞著理想的旋轉軸線被磁性地驅動,且可在未接觸的情況下相對於定子3磁性地懸浮。理想的旋轉軸線界定出軸向方向A。定子3相對於轉子2被佈置在內部。
在下文中,界定出軸向方向A之理想的旋轉軸線指的是轉子2在其處於相對於定子3居中及未傾斜位置時繞著其旋轉的旋轉軸線。轉子2接著在平面中被定位在中心且未相對於此平面傾斜,此平面垂直於定子3的中心軸線。理想的旋轉軸線通常與定子3的中心軸線重合。
在下文中,垂直於軸向方向的方向通常進一步地被稱作徑向方向。徑向平面指的是垂直於旋轉或軸向方向A的理想軸線之平面,其為定子3的磁性中心平面。徑向平面界定笛卡兒座標系統(Cartesian coordinate system)的XY平面,笛卡兒座標系統的Z軸線沿著軸向方向A行進。
為了更好理解,圖4及圖5分別顯示通過圖1所繪示的實施例之截面,其中,截面在徑向平面中(亦即,在定子3的磁性中心平面中)垂直於軸向方向A,如圖2中由截面線IV-IV所表示的。圖4顯示對於截面平面(亦即,對於定子3的磁性中心平面)的平面圖,且圖5以透視圖顯示截面。
旋轉驅動的轉子2被設計為無線圈的,亦即,沒有繞組被設置在轉子2上。轉子2包括被以環狀方式來設計的磁有效核心22、以及動葉輪21,動葉輪21包括輪轂23及被佈置在輪轂23上的複數個葉片24。動葉輪21被設計為軸向動葉輪。葉片24在運作狀態下產生流體流。動葉輪21的輪轂23及葉片24由第一塑膠組成。轉子2為風扇1藉由其產生空氣流的轉子2、及藉由其驅動動葉輪21的旋轉之電磁旋轉驅動的轉子2兩者。也被稱為整合轉子之本實施例能夠達成風扇1之特別緊湊的設計。
轉子2的磁有效核心22被設計成在軸向方向A上具有高度HR(圖11)且具有內半徑IR(圖9)之環狀碟片或圓柱環的形式。轉子2的“磁有效核心22”指的是轉子2之與定子3磁性地交互作用的區域,用於產生扭矩及用於產生磁性軸承力(magnetic bearing force)。
轉子24的磁有效核心22包括環狀徑向外側的回流222、及至少一個永久磁鐵221,例如,永久磁鐵221可被設計為永久磁性環。當然,同樣可能設置複數個永久磁鐵221,其每一者被設計為,例如,環區段。在本文中所描述的實施例中,參見圖4及圖5,設置有總共四個永久磁鐵221,其共同形成環。每一個永久磁鐵221在徑向或直徑方向上被磁化,如圖4及圖5中沒有標號的箭頭所示。相鄰的永久磁鐵221分別沿著相反方向被極化,亦即,被徑向或直徑地向內極化的一個永久磁鐵221及被徑向或直徑地向外極化的一個永久磁鐵221在每種情況下彼此相鄰。在此處,轉子2因此為四極的,亦即,被設計為具有數量為二的極對。
具有高矯頑磁場強度(coercive field strength)之硬磁性的這些鐵磁(ferromagnetic)或亞鐵磁(ferrimagnetic)材料通常被稱為永久磁鐵。矯頑磁場強度為使材料消磁所需的磁場強度。在本申請案的架構中,永久磁鐵被理解為具有超過10000A/m的量之矯頑磁場強度(更精確地,磁極化的矯頑磁場強度)的材料。轉子的磁有效核心之所有永久磁鐵221較佳地由釹鐵硼(NdFeB)或釤鈷(SmCo)合金組成。
磁有效核心22還包括環狀回流222,其圍繞所有永久磁鐵221被徑向地佈置在外部。回流222由鐵磁材料所組成,且作用來引導磁通量。回流222封閉所有永久磁鐵221。
轉子2的磁有效核心22被佈置在動葉輪21的輪轂23中,使得動葉輪21的輪轂23完全地封閉轉子2的磁有效核心22,且輪轂23形成用於轉子2的磁有效核心22之護套。為此目的,例如,在製造處理的過程中,磁有效核心22可藉由以製造輪轂23的第一塑膠來模製而被封裝。然而,亦可能提供具有環狀凹部的輪轂23,磁有效核心22被插入此環狀凹部中。接著,以適當形狀的塑膠蓋封閉環狀凹部,接著將其連接到輪轂23的其餘部分,例如,藉由焊接處理。接下來,轉子2的磁有效核心22被氣密地封裝。
定子3包括複數個(在此處為六個)線圈核心31,其以星形方式被佈置。每一個線圈核心31被設計為棒狀,且從佈置在定子3的中心之中心極件32向外徑向地延伸,並終止在圓極靴311中(亦參見圖9),使得每一個線圈核心31具有基本T形外觀。所有極靴311的徑向外邊界表面均位在與中心極件32的縱向軸線同軸之圓柱上。
為了產生轉子2之磁性驅動及磁性軸承所需的電磁旋轉場,線圈核心承載繞組。例如,在此處所描述的實施例中,繞組被設計為使得集中繞組分別作為分離的線圈33被捲繞在每一個線圈核心31上。這些線圈33在運作狀態下被使用來產生這些電磁旋轉場,藉由此電磁旋轉場,扭矩作用在轉子2上,且藉由此電磁旋轉場,任意可調的橫向力可在徑向方向上被施加到轉子2上,使得可主動地控制或調節轉子2的徑向位置,亦即,轉子2在垂直於軸向方向A的徑向平面中的位置。
定子3的中心極件32及線圈核心31和轉子2的磁有效核心22的回流222兩者分別由軟磁性材料所製成,這是因為它們作用為用來引導磁通量的通量傳導元件。例如,適合的軟磁性材料為鐵磁或亞鐵磁材料,尤其是鐵、鎳鐵或矽鐵。特別是對於定子3,在此處較佳的是設計為定子金屬片堆疊,其中,線圈核心31和中心極件32由金屬片所製成,亦即,它們由被堆疊的多個薄元件所組成。轉子2的磁有效核心22的回流222亦可由金屬片所製成。作為金屬片設計的替代,由電絕緣及壓縮的金屬顆粒所組成的軟磁性複合材料亦可被使用於轉子及/或定子。特別地,這些軟磁性複合材料,亦被稱為SMC(軟磁性複合材(soft magnetic composite)),可由塗覆有電絕緣層的鐵粉顆粒所組成。接著使用粉末冶金(powder metallurgical)處理將這些SMC形成為理想形狀。
如同已經提到的,具有轉子2和定子3的電磁旋轉驅動是根據無軸承馬達的原理來設計的,其中,轉子2在未接觸的情況下被磁性地驅動,且相對於定子3在未接觸的情況下磁性地懸浮,其中,沒有為轉子2提供分離或可分離的磁性軸承。藉由相同的定子3實現軸承功能及驅動功能,其中,無法將定子3分為軸承單元和驅動單元。軸承功能及驅動功能無法被相互分離。由於沒有為轉子2提供分離的磁性軸承或磁性軸承單元,已對於這種旋轉驅動建立了詞語“無軸承馬達”。這些特別有效率的無軸承馬達的特徵在於,其極其緊湊的設計同時實現了“非接觸”的概念。
因此,無軸承馬達為電磁旋轉驅動,其中,轉子2相對於定子3磁性地懸浮,其中,沒有提供分離的磁性軸承或磁性軸承單元。為此目的,定子3被設計為軸承及驅動定子,其同時為電驅動的定子3及磁性軸承的定子3。磁性旋轉場可藉由軸承及驅動定子3的線圈33而被產生,此磁性旋轉場一方面將扭矩施加到轉子2上,使得其旋轉,且此磁性旋轉場另一方面將任意可調的橫向力施加到轉子2上,使得可主動地控制或調節轉子2的徑向位置,亦即,其在徑向平面中的位置。無軸承馬達現在對於本領域技術人士而言為已知的,因此不再需要對其功能的詳細描述。
因此,可主動地控制或調節轉子2的三個自由度,亦即,其在徑向平面中的位置(兩個自由度)、以及其繞著軸向方向A的旋轉。關於其在理想的旋轉軸線方向上的軸向偏轉,轉子2藉由磁阻力而被動磁化地(亦即,非可控制的)穩定或懸浮。關於剩下兩個自由度,轉子2同樣被動磁化地穩定或懸浮,亦即,相對於垂直於軸向方向的徑向平面傾斜。因此,轉子2的徑向軸承對應於主動徑向磁性軸承的功能,且軸向軸承對應於被動軸向磁性軸承的功能。
與習知的磁性軸承相反,無軸承馬達的磁性軸承和馬達的驅動透過電磁旋轉場來實現。典型地,在無軸承馬達中,藉由兩個磁性旋轉場(通常被稱為驅動場及控制場)的疊加來產生磁性驅動和軸承功能。藉由定子3的繞組或線圈33而產生的這兩個旋轉場通常具有相差一個的極對數(pole pair number)。例如,若驅動場具有極對數p,控制場具有極對數p+1或p-1。藉由驅動場產生在徑向平面中作用在轉子2上的切向力(tangential force),造成使得轉子2繞著軸向方向A旋轉的扭矩。藉由疊加驅動場和控制場,同樣可能在徑向平面中於轉子2上產生任意可調的橫向力,藉由此任意可調的橫向力,可調節轉子2在徑向平面中的位置。因此,不可能將由定子3的線圈33所產生的電磁通量分成僅提供轉子2的驅動之(電)磁通量、以及僅實現轉子2的磁性軸承之(電)磁通量。
一方面,為了產生驅動場和控制場,可能使用兩個不同的繞組系統,亦即,一個用來產生驅動場,且一個用來產生控制場。接著,用於產生驅動場的線圈通常被稱為驅動線圈,且用於產生控制場的線圈通常被稱為控制線圈。接著,被加到這些線圈中的電流被稱作驅動電流或控制電流。另一方面,還可能產生僅以一個繞組系統來產生驅動及軸承功能,使得沒有驅動線圈與控制線圈之間的區別。這可能以分別藉由檢查裝置5而確定之用於驅動電流及控制電流的值藉由計算被相加或疊加(亦即,例如,藉由軟體)且將得到的總電流加到各個線圈33中的這種方式來實現。在此情況下,當然不再可能區分控制線圈和驅動線圈。在此處所描述的實施例中,實現後者的變型,亦即,沒有控制線圈和驅動線圈之間的區別,而是只有一個繞組系統,其中,驅動電流和控制電流之數學上確定的總和被加到此繞組系統的六個線圈33中。然而,當然亦可能以兩個分離的繞組系統(亦即,以分離的驅動線圈和分離的控制線圈)來設計根據本發明的風扇1。
對於熟知本領域技術人士而言,已知感測器技術,例如,用於確定轉子的位置、被設計為無軸成馬達的旋轉驅動之控制、供給、和調節,且在此處不需要任何進一步的說明。
在根據本發明的風扇1中,不僅轉子2的磁有效核心22藉由動葉輪21的輪轂23被完全地封閉,且定子3亦被封裝在由低滲透性材料所製成的定子殼體4中。此低滲透性材料較佳地為第二塑膠。
低滲透性材料為僅具有低的磁滲透率(磁導率)之材料。在本申請案的架構中,低滲透性材料被理解為在一般實踐中其滲透率數(相對滲透率)僅稍微偏離1或甚至未偏離1(真空的滲透率數)的那些材料。在任何情況下,低滲透性材料具有少於1.1的滲透率數。因此,相較於,例如,製成線圈核心31的鐵磁材料,低滲透性材料具有非常低的磁導率。
如同已經提到的,製成定子殼體4的此低滲透性材料較佳地為第二塑膠。因此,較佳地,轉子2的動葉輪21由第一塑膠所製成,且定子殼體4由第二塑膠所製成。當然,可能且對於許多應用而言為較佳的是,第一塑膠和第二塑膠為相同的塑膠。另一方面,同樣可能的是第一塑膠和第二塑膠為不同的塑膠。
例如,第一塑膠及/或第二塑膠可為以下塑膠中的一者:聚乙烯(PE)、低密度聚乙烯(LDPE)、超低密度聚乙烯(ULDPE)、乙烯/乙酸乙烯酯(EVA)、聚乙烯對苯二甲酸酯(PET)、聚氯乙烯(PVC)、聚丙烯(PP)、聚氨酯(PU)、聚偏二氟乙烯(PVDF)、丙烯腈-丁二烯-苯乙烯(ABS)、聚丙烯酸、聚碳酸酯(PC)、或聚矽氧。對於許多應用而言,在商標名稱Teflon下已知的材料聚四氟乙烯(PTFE)及全氟烷氧基聚合物(PFA)同樣適合作為第一塑膠及/或第二塑膠。
較佳地,這些塑膠中的一者被使用作為第一塑膠,以氣密地封裝轉子2的磁有效核心22,且這些塑膠中的一者被使用作為第二塑膠,以氣密地封裝定子3。由於對於理解而言是充分的,在下文中將不對第一塑膠和第二塑膠之間做出區分。
由於所有提到的塑膠均為低滲透性的,亦即,它們傳導的磁通量很差,在徑向方向上被佈置在轉子2的磁有效核心22和定子3的線圈核心31的極靴311之間的輪轂23及定子殼體4的區域被分配到轉子2和定子3之間的磁氣隙。因此,轉子2和定子3之間的磁氣隙相當於徑向方向上之轉子2的磁有效核心22和定子3的線圈核心31的極靴311之間的距離。因此,磁有效核心22的氣密封裝和定子3的氣密封裝促成磁氣隙,其相較於其他無軸承馬達而言為大的。例如,當轉子3被定位在中心時,磁氣隙的寬度為4 mm或更大。這意味著藉由4 mm之磁氣隙的寬度,從一個極靴311到相反的極靴311所測量到之定子3的最大直徑為8 mm,小於轉子2的磁有效核心22的內直徑。
風扇1還包括殼體6,其形狀上為實質呈管狀的,且同軸地圍繞轉子2的動葉輪21。殼體6具有吸入側61(圖2、圖3)及壓力側62,風扇1經由吸入側61吸入空氣,風扇1經由壓力側62排出空氣。藉由其被封閉的轉子2及定子3以及整個定子殼體4在吸入側61和壓力側62之間被佈置在管狀的殼體6中,其中,定子殼體4較佳地經由複數個支桿7被附接到殼體6的壓力側62。每一個支桿7在徑向方向上從定子殼體4向外延伸到管狀的殼體6之內壁。支桿7的整體可被設計為擴散器。較佳地,支桿7由第一塑膠或第二塑膠所製成。
殼體6具有在吸入側61上的吸入側凸緣63、以及在壓力側62上的壓力側凸緣64。藉由凸緣63及64,風扇1能夠以簡單的方式被整合到管路或管路系統(參見,例如,圖22)中。在此處所描述的實施例中,凸緣63、64兩者被設計成矩形的,且特別是方形形狀,且分別在每一個凸緣63、64的每一個角落提供安裝孔65,分別用於接收緊固裝置,例如,螺釘(未顯示),使得風扇1能夠以簡單的方式被附接到另一個元件,例如,附接到另一個凸緣。
定子殼體4包括第一殼體部分41及第二殼體部分42,其對於軸向方向A被佈置為一者在另一者上方,第一殼體部分41被佈置在殼體6的吸入側61上,且第二殼體部分42被佈置在殼體6的壓力側62上。每一個殼體部分41、42具有圓柱形狀,第二殼體部分42的外直徑D2(圖2)大於第一殼體部分41的外直徑D1。總體而言,定子殼體4使在L被繞著長腳旋轉時所建立的空間封閉。
第一殼體部分41的外直徑D1小於轉子2的輪轂23中的中心凹部的內直徑,使得第一殼體部分41可被插入到此中心凹部中。電旋轉驅動的定子3被佈置在定子殼體4的第一殼體部分41中,使得當定子殼體4被插入到轉子2的輪轂23的中心凹部中時,定子3被由轉子2的磁有效核心22所圍繞。這造成用於外部轉子的旋轉驅動之常規佈置,其中,定子3由轉子2在內部徑向向內地圍繞。
定子殼體4的第二殼體部分42的外直徑D2被定尺寸為使得其至少與轉子2的磁有效核心22的外直徑DM一樣大。將定子殼體4固定在殼體6中的支桿7被佈置在第二殼體部分42上,並從此處沿著徑向方向分別延伸到殼體6的內壁。在定子殼體4的第二殼體部分42(其根據圖式被佈置在轉子2下方)中,設置檢查裝置5,風扇1藉由檢查裝置5被驅動及調節。檢查裝置5包括電力電子設備以及調節和控制裝置,用於線圈33的電流藉由此電力電子設備被產生,轉子2的驅動及轉子2的徑向位置藉由此調節和控制裝置來調節和控制。以相同的方式,檢查裝置5可包括流量電路及/或壓力控制電路,其可在與選擇性的壓力或流量感測器連接之後被啟動。電力電子設備較佳地被設計為電路板或印刷電路板(PCB)。此外,檢查裝置5可包括不同的感測器、及用於處理由感測器所供給的信號之評估單元。由於整個檢查裝置5亦被佈置在定子殼體4中的事實,達成了風扇1之非常緊湊且節省空間的設計。此外,在氣密地密封的定子殼體4中的檢查裝置5還被保護免於化學侵蝕性環境條件以及灰塵和髒污。
此外,對線纜72提供饋通(feed-through)71,經由線纜72將能量供給到檢查裝置5。線纜72可進一步被使用來將類比或數位信號傳輸到檢查裝置5或從檢查裝置5傳輸類比或數位信號。為此目的,例如,線纜72被連接到電壓源(voltage source)以及通信介面400(圖22)。從定子殼體4的第二殼體部分42到風扇1的周圍之饋通71尤其較佳的是被設置在支桿7中的一者中,或饋通71作用為支桿7中的一者。
由於轉子2的磁有效核心22和定子3以及檢查裝置5因此被氣密地封裝,風扇1非常適合在有問題的環境中使用,例如,在半導體工業中發現的那些環境。在此處可能出現腐蝕性蒸氣、氣體或甚至是酸性物質,其可能在僅短期間的運作之後對習知的風扇造成可觀的損害。然而,風扇1亦為特別抗環境的機械性污物的,例如,灰塵或固態顆粒。由於無軸承的概念以及定子3和轉子2的磁有效核心22的氣密封裝,風扇1特別適合使用在高純度環境,或用於輸送高純度氣體,例如,使用在雷射技術中的那些氣體。
圖6至圖8顯示用於轉子2的磁有效核心22的設計之較佳變型。由於對於理解而言是充分的,為了較好概述的原因,僅在圖6、圖7及圖8中顯示轉子2的磁有效核心22和定子3。圖6以透視截面圖顯示變型,其中,在軸向方向A上通過定子3的中心極件32做成截面。圖7以沿著圖6的截面線VII-VII之透視截面圖顯示用於轉子2的磁有效核心22之此變型。垂直於軸向方向A通過定子3的中心做成截面。圖8顯示對於圖7的截面表面的平面圖。
在用於轉子2的磁有效核心22之此同樣為環狀的變型中,環狀回流222及複數個永久磁鐵221(在此處為四個)被徑向地設置在外側。回流222被設計為連續的,且由軟磁性材料所製成。四個永久磁鐵221中的每一個永久磁鐵221被設計為使得其具有垂直於軸向方向A的鐮刀形截面,並相對於軸向方向A在轉子2的磁有效核心22的整個高度HR(圖11)上延伸。永久磁鐵221相對於圓周方向等距離地被佈置在回流222的徑向內側上,且被裝配到回流222的徑向內側中之對應形狀的凹部中。
因此,每一個永久磁鐵22在徑向方向上和兩個圓柱形區段分界,亦即,在徑向內側上和具有與轉子2的磁有效核心22之徑向內側分界表面223相同的半徑和相同的中心之圓柱形區段分界,且在徑向外側上和其中心從磁有效核心22之徑向內側分界表面223的中心偏移且其半徑小於磁有效核心22之徑向內側分界表面的半徑之圓柱形區段分界。
每一個永久磁鐵在徑向或直徑方向上被磁化,如圖6至圖8中沒有標號的箭頭所示。相對於轉子2的圓周方向,永久磁鐵221交替地在徑向或直徑方向上對於外部和在徑向或直徑方向上對於內部被磁化,使得各個相鄰的永久磁鐵221在相反方向上被磁化。因此,轉子2被設計為具有四個極,亦即,被設計為具有數量為二的極對。
對於其為盡可能強大且有效率的風扇1而言,轉子2的高旋轉速度為較佳的,這是為什麼轉子2較佳地被設計為具有四個極。
特別是關於轉子2之可靠的非接觸磁性軸承,特別較佳的是,轉子2之環狀碟形的磁有效核心22(不論其具體設計為何)具有內直徑,此內直徑為至少磁有效核心22在軸向方向A上的高度HR(圖11)的1.5倍大,且較佳地為2倍大。若當在徑向方向上觀看時,高度HR在磁有效核心22上改變,亦即,其並非恆定的,則至少在磁有效核心22的徑向內側分界表面223處,應滿足的條件為,磁有效核心22的內直徑為磁有效核心22的高度HR的1.5倍大,且較佳地為2倍大。這意味著高處HR表示磁有效核心22在其徑向內側分界表面223處的高度。
在下文中,基於圖9至圖11說明轉子2的磁有效核心22及定子3的一些較佳的幾何尺寸,其對於轉子2的非接觸驅動和轉子2的非接觸磁性軸承而言為特別有利的。圖9及圖10基本上分別顯示與圖8相同的圖示,亦即,垂直於軸向方向A的截面,但一些尺寸被繪製在圖11中,圖11基本上顯示與圖6相同的圖示,亦即,垂直於軸向方向A的截面,但一些尺寸被繪製。
MR表示轉子2的環狀磁有效核心22在徑向平面中的幾何中心(geometric center)。
IR表示磁有效核心22的內半徑。這意味著IR表示磁有效核心22的內直徑的一半。
HR表示磁有效核心22在磁有效核心22的徑向內側分界表面223處之在軸向方向A上的高度。
BM表示永久磁鐵221在徑向方向上的最大厚度。
BR表示磁有效核心22在徑向方向上的最大厚度。
MP表示位在徑向平面上的圓柱形區段的幾何中心,位在徑向平面上的圓柱形區段形成永久磁鐵221的徑向外側分界。
E表示從轉子2的磁有效核心22的中心MR到中心MP的距離。
MS表示定子3或定子3的中心極件32在徑向平面中的幾何中心。
AS表示定子3的外半徑,亦即,其上佈置有極靴311的圓柱形的半徑。
BP表示定子3的線圈核心31的極靴311之開口角度(opening angle)。此開口角度BP為當在圓周方向上觀看時之連接中心MS與極靴311的兩端的兩連接線所包圍的角度,亦即,從基本上為T形之線圈核心31的T的短腳的兩端到中心MS的連接線。
BS表示線圈核心31在徑向平面中的寬度。
HS表示線圈核心21在軸向方向上A的高度。若線圈核心21的高度HS在徑向方向上改變,HS表示線圈核心31在徑向外側端處的高度,亦即,在極靴處311的高度。在此處所描述的實施例中,當在徑向方向上觀看時,高度HS為恆定的,且中心極件32同樣具有在軸向方向上A的高度HS。
以下的相關尺寸為較佳的: BM對BR的比率較佳地為0.5到0.9,且特別較佳地為0.7。 E對IR的比率較佳地為0.25到0.65,且特別較佳地為0.45。 BS對AS的比率較佳地為0.25到0.45,且特別較佳地為0.35。 HR對HS的比率較佳地為1.5到2.5,且特別較佳地為2.0。 極靴311的開口角度BP較佳地為30度到45度,且特別較佳地為40度。
為了以最佳可能的方式分散或發散,例如,由檢查裝置5的電力電子設備所產生的熱及/或由定子3透過流動的電流所產生的熱,進一步較佳的措施為在定子殼體4中設置熱傳導元件8。熱傳導元件8由具有良好的熱導率之材料所組成,例如,金屬材料。較佳地,熱傳導元件8由鋁所製成。在下文中,說明熱傳導元件8的不同變型,其中,熱傳導元件8較佳地總是由鋁所製成。
圖12以透視截面圖顯示具有熱傳導元件8的定子殼體4的設計的第一變型。熱傳導元件8以其至少圍繞檢查裝置5的方式來設計及佈置,使得特別是由電力電子設備所產生的熱盡可能地被分散。
在圖12所表示的變型中,熱傳導元件8被設計為套筒,其完全地沿著定子殼體4的第二殼體部分42的內圓柱壁延伸,檢查裝置5被佈置於其中。熱傳導元件8直接地靠在第二殼體部分42的圓柱壁的內側上。因此,被設計為套筒的熱傳導元件8具有外直徑W2,其對應於定子殼體4之圓柱狀的第二殼體部分42的內直徑。熱傳導元件8具有旋轉地對稱的L型輪廓,使得環狀區域421亦在其內側上襯有熱傳導元件8,環狀區域421分界在徑向方向上突出超過第一殼體部分41之第二殼體部分42的那個端面,並因此根據圖式被佈置在轉子2下方。由於此措施,特別是由檢查裝置5所產生的熱在第二殼體部分42的壁上之大的區域上分散。由於此措施,儘管定子殼體4較佳地由導熱不良的塑膠所製成,仍可從定子殼體4發散足夠的熱。熱在第二殼體部分42的內壁上之盡可能大的區域上被分散,且被導入塑膠當中。此外,較佳的是,熱被饋送到定子殼體4之在運作狀態下經歷特別強的流體力學流的區域中,藉由此區域使熱可靠地發散。
在用於圖13所顯示的定子殼體4的設計之第二變型中,定子3亦被熱耦接到熱傳導元件8。熱傳導元件8包括杯體81,其具有旋轉地對稱的U輪廓。杯體81完全地沿著定子殼體4的第二殼體部分42的內圓柱壁延伸並靠在其上。因此,杯體81具有外直徑W2,其對應於定子殼體4之圓柱狀的第二殼體部分42的內直徑。
相反於圖12中所顯示的第一變型,在第二變型中,熱傳導元件8(更精確地為杯體81)在第一殼體部分41及第二殼體部分42之間的邊界處被完全地封閉。此外,熱傳導元件8包括被佈置在中心處的桿件82,其沿著軸向方向A延伸。根據圖式(圖13),桿件82沿著軸向方向A從杯體81延伸,完全地通過定子3的中心極件32,並在中心極件32上方終結。由於此措施,定子3同樣被熱連接到熱傳導元件8,使得經由定子殼體4且特別是經由第二殼體部分42的壁,在定子3中所產生的熱同樣在大的區域上被分散。定子3中所產生的熱主要是基於線圈33中的電流,線圈33由,例如,銅線所製成(所謂的銅損(copper loss));基於在線圈核心31和中心極件32中所感應的渦電流(eddy current),線圈核心31和中心極件32由,例如,鐵所製成;以及基於再磁化損耗(remagnetization loss),所謂的磁滯損耗(hysteresis loss)。渦電流損耗和磁滯損耗一起亦被稱為鐵損(iron loss)。
在圖14中,呈現出具有熱傳導元件8之定子殼體4的設計之第三變型。為了更好理解,圖15仍顯示圖14之熱傳導元件8的透視圖。
在第三變型中,如同在第二變型中一般,熱傳導元件8同樣包括杯體81(其圍繞檢查裝置5)、以及沿著軸向方向A從杯體81延伸通過中心極件32的內部的桿件82。此外,在第三變型中設置圓碟片形的板83,其被佈置在桿件82之背對杯體81的端處,且平行於徑向平面。板83具有直徑W1,其對應於圓柱狀的第一殼體部分41的內直徑。根據圖式(圖14),板83被佈置在定子3的線圈33上方且靠在內端面411上,內端面411沿著軸向方向A在吸入側61上分界出第一殼體部分41。在此第三變型中,熱因此被額外地分散在定子殼體4的內端面411上之大的區域上,且被導入定子殼體4的塑膠當中。因此,內端面411亦被使用作為板83將熱導入於其中的額外表面,熱接著被進入的流體帶走,板當然較佳地亦由鋁所製成。
在圖15中,仍顯示進一步有利的措施,其當然亦可在第一變型(圖12)或在第二變型(圖13)中被實現。熱傳導元件8實際上較佳地設置有複數個狹縫84,其每一者沿著熱的熱流方向延伸,亦即,沿著向外的徑向方向延伸。若熱傳導元件較佳地由金屬材料所製成,亦即,特別是鋁,在熱傳導元件8中的渦電流和相關的渦電流損耗至少可被非常強烈地減少,而通過狹縫84的熱的熱發散僅受到很小的影響。在圖15所表示的熱傳導元件8的第三變型中,沿著徑向方向行進的狹縫84被設置在板83和杯體82兩者中。
在下文中,基於圖16至圖21說明用於轉子2的動葉輪21的設計之一些變型。所有這些圖式為示意圖且簡化為足以理解的內容。動葉輪21包括環狀的輪轂23以及數個葉片24,輪轂23繞著被封裝在定子殼體4中的定子3被佈置,數個葉片24被牢固地連接到輪轂23。較佳地由塑膠所製成的葉片24亦可與輪轂23被製造為一件,或者,葉片24被與輪轂23分開地製造且接著被牢固地連接到輪轂23,例如,藉由黏著劑的幫助或藉由焊接處理。
輪轂23較佳地被製造為兩件,使得首先製造輪轂23的第一部分,其中,設置有用於轉子2的磁有效核心22的凹部。磁有效核心22接著被插入到此凹部中。接下來,被設計來做為蓋體之輪轂23的第二部分被牢固地連接到輪轂的第一部分(較佳地藉由焊接處理),使得磁有效核心22被氣密地封裝在輪轂23中。
如同特別可從圖3中清楚地觀看到的,動葉輪21的每一個葉片24較佳地能夠被設計為使得動葉輪21的葉片24相對於軸向方向A傾斜。為了更好理解,相對於軸向方向A的此傾斜未被表示在圖16至圖21的示意圖中。在這些圖16至圖21中,在旋轉過程中繞著軸向方向A被葉片24掃過的空間分別被表示為沿著旋轉軸線的截面,亦即,沿著軸向方向A的截面,使得葉片24相對於軸向方向A(亦即,相對於圖16至圖21中的各個截取平面)的傾斜未被表示出來。這些圖式分別對應到葉片24在各個圖式平面上的垂直投影。
此外,圖16至圖21分別顯示當被磁性地懸浮的轉子2在徑向平面中(亦即,在定子3的磁性中心平面中)相對於定子3被定位在中心時之在運作狀態下的動葉輪21。在圖16至圖21中,僅顯示出定子殼體4。沒有標號的箭頭分別指示流體流(亦即,特別是空氣流)沿著其流動的方向。根據圖式,吸入側61分別在頂部,且壓力側62在底部。在圖16至圖21中,其亦被稱為幾何中心平面RM。幾何中心平面RM為垂直於軸向方向A的平面,其延伸通過轉子2的磁有效核心22的幾何中心。若轉子2被定位在中心且未相對於定子3傾斜,則幾何中心平面RM與徑向平面(亦即,定子3的磁性中心平面)重合。
較佳地,動葉輪21的所有葉片24被設計為相同的。
圖16顯示具有動葉輪21的轉子2的第一變型的示意截面圖,動葉輪21包括輪轂23及葉片24。每一個葉片24具有面對吸入側61的前緣241、以及面對壓力側62的後緣242。在此第一變型中,每一個葉片24被設計且佈置為相對於中心平面RM為對稱的。每一個葉片24在軸向方向A上的高度沿著徑向方向從輪轂23向外側減少。相對於中心平面RM為對稱的之前緣241和後緣242可分別被彎曲,如圖16所示。當然,亦能夠將前緣241和後緣242設計為直線,亦即,沒有曲率。
如同已經提到的,相較於被設計來作為無軸承馬達的習知旋轉驅動,由於一方面轉子2的磁性核心22和另一方面定子3的完全封裝,在轉子2和定子3之間的磁路中的磁氣隙為相當大的。因此,特別較佳的措施是,具有動葉輪21的轉子2被設計為用於在運作過程中之轉子2的流體力學穩定。特別是,轉子2較佳地應被設計為使得流動通過風扇1的流體(亦即,例如,空氣流)使轉子2相對於其在軸向方向A上的位置及抵抗分別相對於徑向平面的傾斜而穩定。如此一來,藉由流動的流體達成轉子2相對於那些自由度的穩定,其中,轉子2被動磁性地被懸浮或穩定。因此,流體力學穩定支撐轉子2的被動磁性軸承或穩定。由於藉由流動的流體之流體力學穩定,特別是轉子2的被動磁性軸向軸承亦被衰減,使得轉子2在軸向方向A上的振動被抑制或至少被強烈地衰減。
在下文中,基於非窮舉列表中的不同變型,說明如何可設計轉子2用於流體力學穩定的措施。應理解的是,亦能夠組合這些措施中的一些措施。
圖17顯示一種變型,其中,葉片24一方面具有非對稱的設計,且另一方面沿著吸入側61的方向被位移。每一個葉片24被設計且佈置為使得其重心明顯地落在中心平面RM外側並位於吸入側61與中心平面RM之間。前緣241沿著徑向方向從輪轂23以直線(亦即,未被彎曲)延伸到外側,亦即,其垂直於軸向方向A延伸,其中,前緣241被與輪轂23的吸入側端對齊。後緣242以類似於圖16所表示的變型的方式在徑向方向上被彎曲,但同樣沿著吸入側61的方向被位移。
圖18所表示的變型以類似於圖17所表示的變型的方式被設計,然而,在根據圖18的變型中,葉片24(更精確地,其各自的重心)在吸入側61的方向上被進一步地位移。此外,每一個前緣241亦被彎曲,曲率為使得前緣241的徑向內側端被與輪轂23的吸入側端對齊,且前緣241的徑向外側端在吸入側61的方向上突出超過輪轂23的吸入側端。
在圖19所顯示的變型中,轉子2的磁有效核心22在輪轂23的壓力側端的方向上被位移。磁有效核心22因此不再相對於軸向方向A被定位在輪轂23的中心,而是被佈置為相較於輪轂23的吸入側端更靠近輪轂23的壓力側端。每一個前緣241沿著徑向方向從輪轂23以直線(亦即,為被彎曲)延伸到外側,亦即,其垂直於軸向方向A延伸,其中,每一個前緣241被與輪轂23的吸入側端對齊。後緣242以類似於圖17所表示的變型的方式在徑向方向上分別被彎曲,但根據圖式(圖19),後緣242在輪轂23的壓力側端上方通向輪轂23的外表面,亦即,後緣242並未相對於軸向方向A延伸到輪轂23的壓力側端。當然,藉由圖19所表示的變型,同樣可能的是將後緣242設計為直線的,亦即,未彎曲的。
圖20所表示之動葉輪21的變型以類似於圖19所表示的變型之方式被設計。然而,在圖20所表示的變型中,動葉輪21的輪轂23在其吸入側端具有入口區域231,其中,輪轂23被設計為沿著吸入側端的方向漸細。這意味著在此入口區域231中,輪轂23被設計為錐形的或截錐形的,其中,錐形的頂點位在吸入側上。根據圖式,入口區域231相對於軸向方向A被佈置在磁有效核心22上方。
圖21所表示的變型以類似於圖16所表示的變型之方式被設計。然而,在圖21所顯示的變型中,設置有數個被同心地佈置的穩定環243,其每一者被佈置在所有葉片24的後緣243處且在壓力側上相對於軸向方向A突出超過葉片24。每一個穩定環243被與轉子2同軸地佈置,且分別在所有葉片24的後緣242上延伸。在圖21所表示的變型中,設置有三個同心的穩定環243。當然,亦可能僅設置一個穩定環243。
如同已經提到的,圖16至圖21中所描述的變型或措施亦可被組合。例如,因此,亦可能分別在根據圖17至圖20的變型中設置一個或多個穩定環243。可在參見圖16至圖21的所有變型中被實現之進一步較佳的措施為若每一個後緣以不同於90度之相對於軸向方向A的角度且特別是少於90度的角度通往輪轂23。此措施對於在徑向方向上彎曲的後緣242(參見圖16至圖21)以及對於直線的(亦即,未彎曲的)這種後緣(未顯示)兩者而言均為可能的。
此外,或作為流體力學穩定的替代,亦可藉由線圈33或由線圈所產生的電磁場來提供主動衰減。為此目的,由線圈33所產生的旋轉場被定向為使得其不再造成轉子2上的任何扭矩而是弱化或強化由永久磁鐵221所產生的磁場。這意味著由線圈所產生的旋轉場被調整為使得電流指示器(current pointer)指向與磁通量指示器(magnetic flux pointer)相同或相反的方向,以使得此兩個指示器之間不再存在90度相位移(phase displacement)。
此方法亦可有利地被使用來特別快速地使轉子減速。藉由試圖改變轉子2中的永久磁鐵221的磁化強度來損耗存在於轉子2中的動能。轉子2之此動能的損耗導致轉子2的旋轉的快速減速。
進一步較佳的措施是,設置感測器9,流體流的壓力或流率可藉由感測器9來確定,其中,感測器9被信號連接到檢查裝置5。較佳地,檢查裝置5接著被設計來調節或控制壓力或流率。感測器9可被佈置在轉子2的吸入側或壓力側上。
基於圖22至圖24的示意圖,現在將說明各種不同的變型,其中,風扇1被設計且佈置用於流體流(例如,空氣流)的調節或控制。參照具有例示性性質的申請案,其中,風扇1被整合到管路100中,且意圖在此處產生可調節或可控制的流體流。管路100被佈置在腔室200中。其可能為需要耐化學性(chemical resistance)的腔室200,如可為半導體工業中的情況。
圖22顯示風扇1被整合到管路100中的變型,管路100通過腔室200。風扇被佈置在管路100的第一區段101和第二區段102之間。為此目的,風扇1的吸入側凸緣63被牢固地連接到第一區段101的凸緣,且壓力側凸緣64被牢固地連接到第二區段102的凸緣。由風扇1所產生的流體流由沒有標號的箭頭所指示。感測器9被設計作為壓力感測器或流量感測器,且被設置在吸入側上,亦即,風扇1的上游。例如,感測器9可被附接到管路100或亦可被附接到風扇1。感測器9,例如,透過信號線91或無線地,被信號連接到外部邏輯單元300。例如,邏輯單元300被設計為可程式邏輯控制器(PLC,programmable logic controller)。在邏輯單元300上,例如,感測器9的類比信號(analog signal)經由線纜72被饋送到檢查裝置5。檢查裝置5包括必要的調節裝置,以藉由感測器9的信號來調節或控制管路100中的流體流。藉由這些調節裝置,可將流體流調節到預定的理想值。
風扇被進一步地連接到通信介面400,使用者可藉由通信介面400輸入或讀取數據。當然,同樣可能的是這樣的實施例,其中,感測器9被佈置在壓力側上,亦即,風扇的下游,或其中,感測器9被佈置在風扇1的吸入側及壓力側兩者上。
對於圖23及圖24所表示的變型,僅說明與圖22所顯示的變型的不同之處。否則,圖22所給出的說明也以相同或相似的方式應用於圖23和圖24中所表示的變型。
在圖23所表示的變型中,感測器9被直接地連接到風扇1的定子殼體4中的檢查裝置5,例如,透過感測器線纜92。感測器9可被直接地附接到風扇1或管路100。圖23顯示感測器9被佈置在風扇1的壓力側上的實施例。當然,在此處,同樣可能的是這樣的實施例,其中,感測器9被佈置在風扇1的吸入側上,或其中,感測器9被佈置在風扇1的吸入側及壓力側兩者上。即使具有感測器9和檢查裝置5之間的此種直接信號連接,感測器信號之必要的評估裝置以及用於調整流體流或調節流體流之控制或調節裝置被直接地整合到檢查裝置5中。
在圖24所表示的變型中,感測器9被直接地整合到風扇1中。例如,感測器9可被附接到風扇1的殼體6,或亦可,如圖24所示,被附接到定子殼體4。感測器9可被附接到定子殼體4的壓力側(參見圖24)或亦可被附接到吸入側。當然,感測器9被設置在吸入側及壓力側兩者上的實施例在此處亦為可能的。感測器9被信號連接到被佈置在定子殼體4中的檢查裝置5。同樣地,在此變型中,用於感測器信號之必要的評估裝置、以及用於調整流體流或調節流體流之控制或調節裝置被直接地整合到檢查裝置5中。特別是,在此變型中,風扇1設置有完全整合的感測器9,特別是流量或壓力感測器9,使得風扇1可將其所產生的空氣流調節到壓力或流率之預定的理想值,而不需任何額外的部件。
1:風扇 2:轉子 3:定子 4:定子殼體 5:檢查裝置 6:殼體 7:支桿 8:熱傳導元件 9:感測器 21:動葉輪 22:磁有效核心 23:輪轂 24:葉片 31:線圈核心 32:中心極件 33:線圈 41:第一殼體部分 42:第二殼體部分 61:吸入側 62:壓力側 63:(吸入側)凸緣 64:(壓力側)凸緣 65:安裝孔 71:饋通 72:線纜 81:杯體 82:桿件 83:板 84:狹縫 91:信號線 92:感測器線纜 100:管路 101:第一區段 102:第二區段 200:腔室 221:永久磁鐵 222:(環狀)回流 223:徑向內側分界表面 231:入口區域 241:前緣 242:後緣 243:穩定環 300:(外部)邏輯單元 311:(圓)極靴 400:通信介面 411:內端面 421:環狀區域 A:軸向方向 AS:外半徑 BM:最大厚度 BP:開口角度 BR:最大厚度 BS:寬度 E:距離 D1:外直徑 D2:外直徑 DM:外直徑 HR:高度 HS:高度 IR:內半徑 MP:(幾何)中心 MR:(幾何)中心 MS:(幾何)中心 RM:(幾何)中心平面 W1:直徑 W2:外直徑
在下文中,將參照實施例以及參照圖式詳細說明本發明。在圖式中顯示(部分以截面): [圖1]:根據本發明的風扇的實施例之透視圖, [圖2]:沿著圖1中的截面線II-II截取在軸向方向上通過實施例的截面, [圖3]:如圖2所示,但以透視圖顯示, [圖4]:沿著圖2中的截面線IV-IV截取在垂直於軸向方向上通過實施例的截面, [圖5]:如圖4所示,但以透視圖顯示, [圖6]:在透視圖中通過對於轉子之磁有效核心的變型之定子及轉子的磁有效核心之在軸向方向上的截面, [圖7]:在透視圖中沿著圖6的截面線VII-VII之通過圖6的定子及轉子的磁有效核心之垂直於軸向方向的截面, [圖8]:如圖7所示,但以對於截取表面的平面圖顯示, [圖9]:如圖8所示,但用於闡明尺寸, [圖10]:如圖9所示,但用於進一步闡明尺寸, [圖11]:如圖6所示,但以對於截取表面的平面圖顯示, [圖12]:在透視圖中通過對於具有熱傳導元件的定子殼體的設計的第一變型之在軸向方向上的截面, [圖13]:如圖12所示,但為對於定子殼體的設計的第二變型, [圖14]:如圖12所示,但為對於定子殼體的設計的第三變型, [圖15]:實施例的定子殼體的設計的第三變型之圖14的熱傳導元件的透視圖, [圖16]:在沿著軸向方向的截面中之轉子的示意截面圖,其中,動葉輪的葉片被佈置在風扇的殼體中, [圖17至21]:分別如圖16所示,但為對於具有轉子的流體力學穩定之轉子的設計的不同變型,以及 [圖22至24]:被佈置在管路中之根據本發明的風扇的實施例的不同變型的示意圖。
1:風扇
2:轉子
3:定子
4:定子殼體
5:檢查裝置
6:殼體
7:支桿
21:動葉輪
22:磁有效核心
23:輪轂
24:葉片
33:線圈
41:第一殼體部分
42:第二殼體部分
61:吸入側
62:壓力側
63:(吸入側)凸緣
64:(壓力側)凸緣
65:安裝孔
71:饋通
72:線纜
221:永久磁鐵
222:(環狀)回流
A:軸向方向

Claims (15)

  1. 一種風扇,具有用於產生流體流的轉子(2),且具有定子(3),該定子與該轉子(2)一起形成電磁旋轉驅動,用於繞著軸向方向(A)旋轉該轉子(2),該旋轉驅動被設計作為外部轉子,該轉子(2)包括以環狀方式來設計的磁有效核心(22)、以及動葉輪(21),該動葉輪包括輪轂(23),其上佈置有用於產生該流體流的複數個葉片(24),該定子(3)被設計為軸承和驅動定子,該轉子(2)可藉由該軸承和驅動定子在未接觸的情況下磁性地驅動,且可相對於該定子(3)在未接觸的情況下磁性地懸浮,且該轉子(2)在垂直於該軸向方向(A)的徑向平面中主動磁性地懸浮,其特徵在於,該動葉輪(21)的該輪轂(23)完全地封閉該轉子(2)的該磁有效核心(22),且該定子(3)被封裝在由低滲透性材料所製成的定子殼體(4)中。
  2. 如請求項1之風扇,其中,該動葉輪(21)由第一塑膠所組成,且該定子殼體(4)由第二塑膠所組成。
  3. 如請求項1或2之風扇,包括實質呈管狀的殼體(6),其具有吸入側(61)及壓力側(62),其中,該轉子(2)及該定子殼體(4)被佈置在該殼體(6)中,且其中,該定子殼體(4)藉由複數個支桿(7)被固定在該殼體(6)中。
  4. 如請求項1或2之風扇,其中,該定子殼體(4)具有第一殼體部分(41)及第二殼體部分(42),該第一殼體部分(41)被佈置在該轉子(2)內且被該轉子(2)的該磁性核心(22)所圍繞,且該第二殼體部分(42)具有外直徑(D2),該外直徑至少與該轉子(2)的該磁有效核心(22)的外直徑(DM)一樣大。
  5. 如請求項4之風扇,還包括檢查裝置(5),用於控制或調節該風扇(1),該檢查裝置(5)被佈置在該定子殼體(4)的該第二殼體部分(42)中。
  6. 如請求項5之風扇,其中,設置有感測器(9),該流體流的壓力或流率可藉由該感測器(9)來確定,該感測器(9)被信號連接到該檢查裝置(5),且該檢查裝置(5)被設計來調節或控制該壓力或該流率。
  7. 如請求項1或2之風扇,其中,該定子(3)包括複數個線圈核心(31),其每一者在徑向方向上延伸,且每一個線圈核心(31)承載用於產生電磁旋轉場的集中繞組(33)。
  8. 如請求項1或2之風扇,其中,該轉子(2)的該磁有效核心(22)包括環狀回流(222)以及複數個永久磁鐵(221),該回流(222)被設計為連續的且由軟磁性材料所製成,且每一個永久磁鐵(221)被設計為具有鐮刀形截面且被裝配到該回流(222)的徑向內側中。
  9. 如請求項5之風扇,其中,用於散熱的熱傳導元件(8)被設置在該定子殼體(4)中,且該熱傳導元件(8)被設計為使得其至少圍繞該檢查裝置(5)。
  10. 如請求項1或2之風扇,其中,該轉子(2)被設計用於該轉子(2)之抵抗傾斜的流體力學穩定。
  11. 如請求項1或2之風扇,其中,該動葉輪(21)的該輪轂(23)具有吸入側端及壓力側端,且該轉子的該磁有效核心(22)相對於該軸向方向被佈置為相較於該輪轂(23)的該吸入側端更靠近該壓力側端。
  12. 如請求項11之風扇,其中,該動葉輪(21)的該輪轂(23)包括在其吸入側端的入口區域(231),在該入口區域中,該輪轂(23)被設計成沿著該吸入側端的方向漸細。
  13. 如請求項1或2之風扇,其中,每一個葉片(24)具有前緣(241),每一個前緣(241)垂直於該軸向方向(A)延伸。
  14. 如請求項1或2之風扇,其中,每一個葉片(24)具有後緣(242),每一個後緣(242)以與該軸向方向(A)差90度之角度通向該輪轂。
  15. 如請求項1或2之風扇,其中,每一個葉片(24)具有後緣(242),且其中,至少一個穩定環(243)被設置在該後緣(242)處,該穩定環(243)被與該轉子(2)同軸地佈置。
TW109118616A 2019-06-17 2020-06-03 風扇 TW202106981A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19180504.3 2019-06-17
EP19180504 2019-06-17

Publications (1)

Publication Number Publication Date
TW202106981A true TW202106981A (zh) 2021-02-16

Family

ID=66912671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118616A TW202106981A (zh) 2019-06-17 2020-06-03 風扇

Country Status (6)

Country Link
US (1) US20200392961A1 (zh)
EP (1) EP3754204B1 (zh)
JP (1) JP2020204323A (zh)
KR (1) KR20200144465A (zh)
CN (1) CN112096632A (zh)
TW (1) TW202106981A (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247496A (zh) * 2018-03-07 2019-09-17 台达电子工业股份有限公司 机械装置及其无轴承马达
EP4158203A1 (en) * 2020-05-27 2023-04-05 Howden Netherlands B.V. Diffuser
US20220260078A1 (en) * 2021-02-18 2022-08-18 Levitronix Gmbh Cross-flow fan
CN116412139B (zh) * 2023-04-28 2024-05-17 武汉理工大学 一种内嵌式外转子电力直驱水环泵及其悬浮力控制方法
CN116792408B (zh) * 2023-08-25 2023-11-03 江苏领臣精密机械有限公司 一种静压导轨节流结构

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820176B1 (fr) * 2001-01-30 2003-05-09 Faurecia Ind Organe rotatif, notamment helice, ventilateur, bloc avant et vehicule automobile correspondants
JP3756079B2 (ja) * 2001-05-31 2006-03-15 松下冷機株式会社 羽根車と、送風機と、冷凍冷蔵庫
CN100359184C (zh) * 2002-10-04 2008-01-02 株式会社T.Rad 带环风扇及其制造方法
US20060119198A1 (en) * 2004-12-03 2006-06-08 Chuy-Nan Chio Shaftless magnetic trajectory fan
CN1975174B (zh) * 2005-11-28 2012-03-07 台达电子工业股份有限公司 风扇及其叶轮
JP4844877B2 (ja) * 2006-05-29 2011-12-28 日本電産株式会社 直列式軸流ファンおよび軸流ファン
JP3129498U (ja) * 2006-08-11 2007-02-22 建軍 ▲兪▼ 磁気浮上回転装置
DE102007036692A1 (de) 2006-09-22 2008-03-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüfter
US7832922B2 (en) * 2007-11-30 2010-11-16 Levitronix Gmbh Mixing apparatus and container for such
CN201219230Y (zh) * 2008-07-11 2009-04-08 元山科技工业股份有限公司 外极式风扇
CN101713417B (zh) * 2008-10-08 2012-06-13 日本电产伺服有限公司 叶轮、使用叶轮的风扇装置和制造叶轮的方法
CN201723471U (zh) * 2010-07-19 2011-01-26 元山科技工业股份有限公司 散热风扇
US9765788B2 (en) * 2013-12-04 2017-09-19 Apple Inc. Shrouded fan impeller with reduced cover overlap
GB2538217B (en) * 2015-01-19 2018-04-04 Vent Axia Group Ltd Motorised impeller assemblies
EP3115103B1 (de) * 2015-07-06 2021-04-21 Levitronix GmbH Mischvorrichtung sowie einmalvorrichtung für eine mischvorrichtung
EP3115616B1 (de) * 2015-07-06 2022-09-07 Levitronix GmbH Elektromagnetischer drehantrieb
EP3179615A1 (de) * 2015-12-11 2017-06-14 Siemens Aktiengesellschaft Permanentmagnet für einen rotor einer aussenläufermaschine
JP6327677B2 (ja) * 2016-08-15 2018-05-23 豊田 哲郎 扇風機及び掃除機
CN107313950A (zh) * 2017-07-12 2017-11-03 李小顺 电磁驱动风扇装置
JP2019056309A (ja) * 2017-09-20 2019-04-11 ミネベアミツミ株式会社 軸流ファン
DE102017122238A1 (de) * 2017-09-26 2019-03-28 Ebm-Papst Mulfingen Gmbh & Co. Kg Radialventilator mit Differenzdruckmessung

Also Published As

Publication number Publication date
CN112096632A (zh) 2020-12-18
US20200392961A1 (en) 2020-12-17
KR20200144465A (ko) 2020-12-29
EP3754204A1 (de) 2020-12-23
EP3754204B1 (de) 2022-03-16
JP2020204323A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
TW202106981A (zh) 風扇
EP3018352B1 (en) Magnetic levitated pump
JP4767488B2 (ja) 磁気浮上型ポンプ
EP2209186B1 (en) Magnetically-levitated motor and pump
CN100504078C (zh) 轴流式风扇
US7732956B2 (en) Motor
US20150256041A1 (en) Stator of heat dissipation fan
JPWO2009095949A1 (ja) 磁気浮上モータおよびポンプ
JP2002354767A (ja) 磁気浮上電動機
JP2001351874A (ja) 基板回転装置
US10784733B2 (en) Motor and air conditioning apparatus
US11879466B2 (en) Electromagnetic rotary drive, a centrifugal pump and a pump unit
US20220316487A1 (en) Rotating device
JP2018178990A (ja) モノリス式の永久磁石
US6939113B2 (en) Fan with increased air flow
US20220260078A1 (en) Cross-flow fan
US20220345016A1 (en) Electromagnetic rotary drive, a centrifugal pump and a pump unit
CN102163942B (zh) 磁悬浮电动机
JP2019039431A (ja) 調整リング
JP2003339136A (ja) 環状モータ
JP2009130997A (ja) 平準化磁界形成機構を有する磁場回転式電磁ポンプ
JP3357639B2 (ja) ターボ形ポンプ
JP2023000891A (ja) 真空ポンプ
JP2009127537A (ja) ベアリングレスモータを用いたポンプ