TW202106698A - 用於製備粒細胞群落刺激因子的方法 - Google Patents

用於製備粒細胞群落刺激因子的方法 Download PDF

Info

Publication number
TW202106698A
TW202106698A TW109113444A TW109113444A TW202106698A TW 202106698 A TW202106698 A TW 202106698A TW 109113444 A TW109113444 A TW 109113444A TW 109113444 A TW109113444 A TW 109113444A TW 202106698 A TW202106698 A TW 202106698A
Authority
TW
Taiwan
Prior art keywords
csf
buffer
folding
sodium
solubilized
Prior art date
Application number
TW109113444A
Other languages
English (en)
Inventor
珍妮弗 蕾妮 霍普
Original Assignee
美商坦韋克斯生物製藥美國股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商坦韋克斯生物製藥美國股份有限公司 filed Critical 美商坦韋克斯生物製藥美國股份有限公司
Publication of TW202106698A publication Critical patent/TW202106698A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本文尤其提供了組合物和用於從包涵體(IB)分離和/或純化粒細胞群落刺激因子(G-CSF)的方法。本揭示內容的一些實施例涉及一種通過優化該IB中含有的重組G-CSF的折疊來製備具有提高的純度和/或功能活性的有生物活性且正確折疊的G-CSF的方法。還提供了通過此類方法獲得的G-CSF,包含該G-CSF的醫藥組合物,以及用於治療和/或預防有需要的受試者的疾病的方法。

Description

用於製備粒細胞群落刺激因子的方法
本揭示內容總體上涉及一種用於從原核細胞中產生的包涵體(IB)分離和/或製備粒細胞群落刺激因子(G-CSF),特別是重組人G-CSF的方法。
粒細胞群落刺激因子(G-CSF),也稱為群落刺激因子3(CSF-3),屬於調節造血前體細胞的分化和增殖以及成熟嗜中性粒細胞的活化的群落刺激因子組。具體地,據報導G-CSF刺激骨髓產生粒細胞和幹細胞並將該粒細胞和幹細胞釋放到血流中,並且因此往往用於血液學和腫瘤學領域的醫學中。
隨著重組技術的出現,已經廣泛地開發了出於通過異源或外源基因的表現產生特定蛋白質的目的而對各種宿主生物進行遺傳轉化的技術。具體地,生物活性重組蛋白的合成是製造商業上重要的多肽的關鍵問題。通常,重組多肽不能在宿主細胞內正確地折疊並且形成通常由錯誤折疊的、往往變性的多肽組成的無定形蛋白質聚集體。這些聚集體稱為包涵體(IB)或折射體,因為當用顯微鏡觀察細胞時它們表現為高度折射的區域。在G-CSF的情況下,其現在可以在各種真核生物(例如酵母和哺乳動物細胞)和原核生物(諸如細菌)中重組產生。重組產生的G-CSF的形式取決於用於表現的宿主生物的類型。當在非哺乳動物宿主細胞,特別是原核細胞中重組產生G-CSF時,G-CSF蛋白通常以非天然形式表現,該非天然形式通常是具有有限溶解度的無活性IB的組分。通常,重組宿主細胞中形成的IB具有複雜的二級結構並且密集地聚集。在G-CSF的情況下,從在常用的非哺乳動物宿主細胞中表現的無活性IB產生生物活性重組G-CSF蛋白也被報導為是挑戰性的。
通常,從IB純化重組表現的蛋白包括從宿主細胞中提取IB,之後使純化的IB增溶。由於與初始收穫、增溶和複性步驟相關的各種技術問題,往往很難從IB中回收重組蛋白。用於分離和純化在IB中產生的重組G-CSF蛋白的現有方法通常是複雜、冗長的並且單位成本很高。另外,這些方法往往摻入強變性劑、強還原劑、氧化還原反應和/或重金屬。此外,這些藥劑中的許多藥劑具有挑戰性,包括在大生產規模時成本高以及在不銹鋼製造工廠中具有腐蝕性。
因此,為了克服與重組G-CSF的製造相關的各種技術問題,需要改進的生產方法和可擴展的程式,該改進的生產方法和可擴展的程式是成本有效的、具有穩定的G-CSF高回收率並且在工業上適用,例如可以在商業生產規模上實施。
本文尤其提供了組合物和用於製備和/或分離高度純化和活性形式的粒細胞群落刺激因子(G-CSF)的方法。如下文更詳細描述的,所公開的方法對於在原核表現系統中表現的G-CSF特別有用,並且更特別地對於其中G-CSF在細菌細胞內以包涵體形式表現的細菌系統是特別有用的。還提供了通過此類方法獲得的G-CSF,包含該G-CSF的醫藥組合物,以及用於治療和/或預防有需要的受試者的疾病的方法。
在一個態樣,本揭示內容的一些實施例涉及一種從包涵體(IB)分離粒細胞群落刺激因子(G-CSF)的方法,該方法包括:(a) 用包含變性劑的增溶緩衝液使IB中含有的G-CSF增溶;以及 (b) 通過經由連續逐級稀釋過程用僅包含硫醇氧化還原對的還原形式的折疊緩衝液稀釋來自 (a) 的被增溶物(solubilizate)來發起所增溶的G-CSF的折疊,以獲得折疊的G-CSF。
在一個態樣,本揭示內容的一些實施例涉及一種製備生物活性G-CSF的方法,該方法包括:(a) 用包含變性劑的增溶緩衝液使含有G-CSF的IB增溶;以及 (b) 通過經由連續逐級稀釋過程用僅包含硫醇氧化還原對的還原形式的折疊緩衝液稀釋來自 (a) 的被增溶物來發起所增溶的G-CSF的折疊,以獲得具有提高的純度和/或功能活性的折疊的G-CSF。
根據本揭示內容的用於分離和/或製備G-CSF的方法的實施例的實施可包括以下特徵中的一個或多個。在一些實施例中,所獲得的G-CSF包括具有大於80%的純度的有生物活性的正確折疊的G-CSF。在一些實施例中,方法還包括回收折疊的G-CSF。在一些實施例中,在增溶之前,將含有G-CSF的IB懸浮在懸浮緩衝液中。在一些實施例中,懸浮緩衝液包含在約7.0至8.0的範圍內的pH下的約20 mM至60 mM的Tris。在一些實施例中,懸浮緩衝液包含約7.6的pH下的約40 mM的Tris。
在一些實施例中,增溶緩衝液中的變性劑包括溫和的變性去污劑、強變性去污劑、離子型去污劑、或其任何組合。在一些實施例中,增溶緩衝液中的變性劑包括N-月桂醯肌胺酸(十二烷基肌胺酸鈉(sarkosyl))、十二烷基硫酸鈉(SDS)、月桂基硫酸鈉、聚氧乙烯聚氧丙二醇、椰油醯兩性基乙酸鹽、十二烷基硫酸鋰、辛基硫酸鈉、去氧膽酸、水合膽酸鈉、去氧膽酸鈉、甘胺膽酸鈉、牛磺去氧膽酸鈉、或其任何組合。在一些實施例中,變性劑是陰離子型去污劑。在一些實施例中,增溶緩衝液中的陰離子型去污劑是十二烷基肌胺酸鈉。在一些實施例中,十二烷基肌胺酸鈉以按重量計約0.2%至約5.0%範圍內的量存在於增溶緩衝液中。在一些實施例中,十二烷基肌胺酸鈉以按重量計約0.2%、約0.56%、約1.0%或約2.0%的量存在於增溶緩衝液中。在一些實施例中,增溶緩衝液包含在約7.5至約9.0的範圍內的pH下的約20 mM至60 mM的Tris、約0.2%至約5%的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含在約8.4的pH下的約40 mM、約2.0%的十二烷基肌胺酸鈉。在一些實施例中,調節懸浮緩衝液與增溶緩衝液的體積比,使得最終pH為約7.5至約7.8。
在一些實施例中,連續逐級稀釋過程包括逐漸降低來自 (a) 的被增溶物中的變性劑的濃度。在一些實施例中,逐漸降低變性劑濃度的過程包括以下操作中的一項或多項:(i) 將增溶緩衝液與懸浮緩衝液混合,在該懸浮緩衝液中懸浮有含有G-CSF的IB;(ii) 用注射用水(WFI)稀釋來自 (i) 的被增溶物,以形成稀釋的被增溶物;(iii) 將折疊緩衝液添加到來自 (ii) 的稀釋的被增溶物中;以及 (iv) 用WFI進一步稀釋來自 (iii) 的折疊混合物。
在一些實施例中,(i) 中的增溶緩衝液與懸浮緩衝液的體積比為約1 : 1。在一些實施例中,來自 (i) 的被增溶物與WFI的體積比為約1 : 1。在一些實施例中,折疊緩衝液與來自 (ii) 的稀釋的被增溶物的體積比為約1 : 1。在一些實施例中,來自 (iii) 的折疊混合物與WFI的體積比為約1 : 1。在一些實施例中,(b) 處的G-CSF的折疊過程包括:(i) 將來自 (a) 的增溶的G-CSF孵育約14-24小時的時間段;(ii) 用WFI以約1 : 1的體積比執行對來自 (i) 的孵育的G-CSF的初次稀釋;(iii) 添加折疊緩衝液,並將從 (ii) 獲得的稀釋的G-CSF混合物在不混合的情況下再孵育約20-24小時的時間段;以及 (iv) 用WFI以約1 : 1的體積比對從 (iii) 獲得的稀釋的G-CSF混合物執行二次稀釋。
在一些實施例中,孵育在約2ºC至約25ºC的溫度下進行。在一些實施例中,孵育在約20ºC±2ºC的溫度下進行。在一些實施例中,孵育在約4ºC的溫度下進行。在一些實施例中,通過將含有G-CSF的混合物滴入WFI中來進行初次稀釋和/或二次稀釋。
在一些實施例中,硫醇氧化還原對的還原形式是還原形式的半胱胺酸、谷胱甘肽、青黴胺、N-乙醯基-青黴胺、2-巰基乙酸、2-巰基丙酸、3-巰基丙酸、巰基琥珀酸、巰基丙酮酸、巰基乙醇、單硫代甘油、γ-麩胺醯半胱胺酸、半胱胺醯甘胺酸、半胱胺、N-乙醯基-L-半胱胺酸、同型半胱胺酸、或硫辛酸(二氫硫辛醯胺)。在一些實施例中,硫醇氧化還原對的還原形式是還原型谷胱甘肽(GSH)。在一些實施例中,折疊緩衝液中的硫醇氧化還原對的還原形式是半胱胺酸。在一些實施例中,半胱胺酸以在約20 μM至200 μM範圍內的濃度存在於折疊緩衝液中。在一些實施例中,半胱胺酸以約40 μM、約50 μM、約80 μM或約160 μM的濃度存在於折疊緩衝液中。在一些實施例中,將折疊緩衝液添加到被增溶物中以使半胱胺酸的最終濃度為約80 μM。
在一些實施例中,折疊的G-CSF的回收包括選自以下的一種或多種技術:親和層析、陰離子交換層析(AEX)、陽離子交換層析(CEX)、羥基磷灰石層析、尺寸排阻層析(SEC)、疏水相互作用層析(HIC)、金屬親和層析、混合模式層析(MMC)、離心、滲濾和超濾。在一些實施例中,陰離子交換層析包括DEAE Sepharose層析。在一些實施例中,陽離子交換層析包括CM Sepharose層析。在一些實施例中,滲濾和/或超濾包括聚醚碸膜。
在一些實施例中,G-CSF是人G-CSF(hG-CSF)。在一些實施例中,含有G-CSF的IB獲自表現G-CSF的重組細胞,其中表現的G-CSF在細胞中形成IB。在一些實施例中,重組細胞是原核細胞或真核細胞。
在一些實施例中,如本文所公開的方法不包括強變性劑、強還原劑、氧化還原反應和/或重金屬。在一些實施例中,強還原劑是尿素、三-2-羧乙基膦鹽酸鹽(TCEP)或二硫蘇糖醇(DTT)。在一些實施例中,重金屬是銅。
在一個態樣,本揭示內容的一些實施例涉及一種通過本文所公開的方法純化或分離的粒細胞群落刺激因子(G-CSF)。
在一個相關態樣,本揭示內容的一些實施例涉及一種醫藥組合物,該醫藥組合物包含治療有效量的如本文所公開的G-CSF,以及醫藥上可接受的輔助物質。在一些實施例中,該醫藥組合物是液體組合物、凍幹物或粉末。
在另一態樣,本揭示內容的一些實施例涉及一種用於治療或預防受試者的疾病的方法,該方法包括向受試者投予治療有效量的如本文所公開的G-CSF和/或如本文所公開的醫藥組合物。在一些實施例中,該疾病是嗜中性粒細胞減少症。
[相關申請案的交叉引用]
本申請案要求2019年4月24日提交的美國臨時專利申請案序號62/838,226的優先權權益。上面引用的申請案的公開內容,包括任何附圖在內,通過引用以其整體明確地併入本文。
本揭示內容尤其提供了用於純化和/或製備粒細胞群落刺激因子(G-CSF)的方法以及G-CSF的組合物。該方法提供用於改善從在原核細胞中產生的IB產生G-CSF(例如,重組人G-CSF)。本揭示內容尤其提供了通過以下方式從在重組宿主細胞(諸如大腸桿菌(E. coli))中產生的IB純化G-CSF的方法:在含有變性劑的緩衝液中使來自IB的G-CSF蛋白質增溶;通過用僅含有硫醇氧化還原對的還原形式的折疊緩衝液稀釋被增溶物來折疊增溶的G-CSF蛋白,以獲得折疊的G-CSF,其中稀釋步驟是經由連續逐級稀釋過程進行的。如下文更詳細描述的,本揭示內容的方法特別適合於製備具有提高的純度和/或功能活性的生物活性G-CSF。
[定義]
除非另外定義,否則本文使用的所有領域術語、符號和其他科學術語或用辭旨在具有熟習本揭示內容所屬領域技術者通常理解的含義。在一些情況下,為了清楚和/或為了便於引用而在本文中定義具有通常理解的含義的術語,並且本文中包含此類定義不一定應當被解釋為代表與業內通常所理解的含義有實質性差異。本文描述或提及的技術和程式中的許多技術和程式被熟習此項技術者很好地理解並且通常由熟習此項技術者使用常規方法採用。
除非上下文明確指示其他含義,否則單數形式“一個”、 “一種”和“該”包括複數指示物。例如,術語“一個細胞”包括一個或多個細胞,包括其混合物。本文使用“A和/或B”包括所有以下替代方案:“A”、“B”、“A或B”以及“A和B”。
如本文所使用的,術語“約”具有其通常的含義,即大致。如果根據上下文原本不清楚近似程度,則“約”表示在所提供的值的正負10%以內,或者四捨五入為最接近的有效數字,在所有情況下包括所提供的值。在提供範圍的情況下,該範圍包括邊界值。
應理解的是,本文描述的本揭示內容的態樣和實施例包括“包含(comprising)”態樣和實施例、“由態樣和實施例組成(consisting)”,以及“基本上由態樣和實施例組成(consisting essentially of)”。
提供標題(例如,(a)、(b)、(i) 等)只是為了便於閱讀說明書和申請專利範圍。說明書或申請專利範圍中的標題的使用不要求步驟或元素按字母或數位順序或它們提供的順序進行。
[粒細胞群落刺激因子(G-CSF)]
粒細胞群落刺激因子(G-CSF)是一種多功能的細胞因子,其廣泛用於治療人類的嗜中性粒細胞減少症。G-CSF是造血譜系特異的細胞因子,其主要由來自骨髓基質的成纖維細胞和內皮細胞並由免疫活性細胞(例如,單核細胞、巨噬細胞)產生。G-CSF受體(G-CSFR)是細胞因子和血細胞生成素受體超家族的一部分,並且G-CSFR突變會導致嚴重的先天性嗜中性粒細胞減少症。G-CSF/G-CSFR連鎖的主要作用是刺激骨髓中的嗜中性粒細胞的分化、增殖、動員、存活和趨化性,並控制它們到血流中的釋放。另外,已經報導了許多其他的G-CSF效應,包括內皮細胞的生長和遷移、去甲腎上腺素再攝取的減少、破骨細胞活性的增加和成骨細胞活性的降低。
G-CSF的治療適應症已被廣泛報導,並且包括非嗜中性粒細胞減少症患者感染、生殖醫學、神經系統紊亂、急性心肌梗塞後的再生療法和骨骼肌再生療法、以及丙型肝炎療法。在腫瘤學中,G-CSF尤其用於化療誘導的嗜中性粒細胞減少症的初級預防,但其也可用於造血幹細胞移植,在造血幹細胞移植中其可產生一些骨髓性白血病的單核細胞分化。
人G-CSF(hG-CSF)可以在真核生物(例如,酵母和哺乳動物細胞系)和原核生物(諸如細菌(例如,大腸桿菌))中產生。所產生的hG-CSF的形式取決於用於表現的宿主生物的類型。人G-CSF mRNA含有分泌蛋白典型的疏水前導序列的編碼序列。當hG-CSF在真核細胞中表現時,其通常以可溶形式產生並分泌。另一方面,當hG-CSF在原核細胞中產生時,所產生的hG-CSF可形成為細胞內的緻密聚集體,該細胞內的緻密聚集體被稱為具有有限溶解度的包涵體。通常,在重組宿主細胞中形成的包涵體具有複雜的二級結構並且密集地聚集,並且在顯微鏡下顯示為亮斑。據報導,在宿主細胞中重組蛋白的IB的形成是蛋白錯誤折疊的表現之一,並且聚集是由未能達成天然構象的部分折疊的多肽鏈的積聚導致的。
有功能活性的G-CSF含有在36/42位和64/74位處的半胱胺酸殘基之間存在的兩個分子內二硫鍵,認為該兩個分子內二硫鍵為蛋白質提供了穩定性。這些分子中的二硫鍵使結構穩定,並且使該結構對相對苛刻的處理(一些蛋白酶、高溫、變性溶劑、極端pH)具有抵抗性,該相對苛刻的處理確實會在二硫鍵還原後導致變性。
目前有許多純化方法可用於從真核細胞產生G-CSF。與通過細胞內原核生物進行蛋白質表現相比,通過細胞外真核生物實現蛋白質分泌形成了完全不同的技術。具體地,已經開發了幾種用於由重組真核細胞(例如,酵母細胞和哺乳動物細胞)將可溶性G-CSF表現和分泌到培養基中的現有方法。因此,這些方法不易適用於在大腸桿菌或其他宿主細胞中表現的重組G-CSF,其中G-CSF以具有有限溶解度的包涵體的形式產生。例如,真核蛋白在原核細胞(諸如大腸桿菌)中的高水準表現往往會導致細胞質中不溶性IB的形成。
由於聚集的多肽通常被錯誤折疊(例如,不正確的二硫鍵配對)並且因此沒有任何生物活性,因此產物回收中的關鍵問題是重構正確的三維構象。通常,需要採取多個步驟從宿主細胞中獲得正確折疊形式的功能性G-CSF蛋白,在宿主細胞中該功能性G-CSF蛋白以變性形式(例如,所表現的G-CSF的無生物活性、未折疊或主要是錯誤折疊的形式)積聚。因此,對於在大腸桿菌細胞中產生的G-CSF,IB的增溶和增溶的G-CSF的折疊是需要考慮的另外的步驟。在這種情況下,通常需要將帶有包涵體的細菌細胞解體,並通過例如離心或微濾來收穫包涵體,然後將該包涵體溶解在增溶緩衝液中。然後將變性蛋白轉移到有利於其天然構象恢復的環境中,其中該變性蛋白的天然二級和/或三級結構的一些或全部被恢復。在採用蛋白的天然構象之前,該蛋白會通過各種半穩定的中間體進行過渡。因為折疊途徑早期中的中間體具有高度暴露的易締合疏水結構域,因此該中間體傾向于形成聚集體。據報導分子內相互作用是非濃度依賴性的,而分子間相互作用是濃度依賴性的。蛋白質濃度越高,則分子間錯折疊的風險越高,反之亦然。為了使聚集最小化,通常必須使蛋白質濃度保持較低,這往往是工業方法中的瓶頸。
在商業規模上,多步過程的產率損失可能非常顯著。另外,以IB形式產生的重組蛋白的折疊通常摻入強變性劑、強還原劑、氧化還原反應和/或重金屬。這些藥劑中的許多藥劑具有挑戰性,包括在大生產規模時成本高以及在不銹鋼製造工廠中具有腐蝕性。
如以下更詳細描述的,本揭示內容提供了特別適合於商業生產規模的用於生產G-CSF的改進方法。
[用於製備G-CSF的方法]
儘管通常可能難以從IB中回收重組產生的G-CSF,但是本文提供的方法利用重組G-CSF在宿主細胞內的不溶形式積聚進行下游加工,獲得了更好的回收。
通常,重組蛋白產物占IB的總蛋白含量的至少40%至50%。另外,可以通過離心或微濾相對容易地將蛋白聚集體與裂解細胞的可溶性組分分離。因此,用於包涵體蛋白的純化程式通常比用於以可溶形式表現的可比較蛋白的程式需要更少的步驟,這趨向於節省時間並減少損失。此類純化程式的初始步驟是從細胞中釋放IB,這通常涉及細胞破碎以及將不溶性IB材料與可溶性細胞組分分離。此類方法被認為是相對簡單的。可以使用機械技術(諸如均質化)或通過化學或酶促方法來裂解細胞。可通過離心和重懸於緩衝液中的迴圈來將可溶性細胞材料從包涵體製備物中去除。可溶性材料也可以通過過濾去除,這降低了固定成本和操作成本,並且更易於擴大規模。在此步驟完成時,所得製備物基本上含有具有少量污染性細胞碎片的IB。任選地,可以使用蔗糖梯度差速離心來去除污染物,諸如細胞碎片和膜蛋白。然後可以將純化的包涵體級分沈澱並儲存以用於下游加工。
一旦已分離出IB,就可以將該IB在變性劑的存在下增溶,然後以變性狀態進一步純化。IB蛋白純化方案的重要步驟是使變性蛋白折疊(例如,複性和/或重折疊)以形成生物活性產物。儘管對於小的單體蛋白質而言折疊可能相對簡單,但是當蛋白質由多於一個多肽鏈組成或含有若干個二硫鍵(諸如為G-CSF)時,此過程可能會非常複雜。不充分的折疊過程可導致活性蛋白的低總回收產率。
在本揭示內容的一個態樣,本文所公開的一些實施例涉及一種用於從重組宿主細胞(諸如大腸桿菌)中產生的IB中分離和/或純化G-CSF的方法,該方法包括將來自IB的G-CSF蛋白質溶解在含有變性劑的增溶緩衝液中;之後通過用僅含有硫醇氧化還原對的還原形式的折疊緩衝液稀釋被增溶物來折疊增溶的G-CSF蛋白,以獲得折疊的G-CSF,其中該稀釋步驟是經由連續逐級稀釋過程進行的。
在一些實施例中,根據本文公開的方法獲得的G-CSF包括生物活性形式的G-CSF,例如,處於單體和非變性狀態下並且能夠促進造血前體細胞的分化和增殖以及造血系統的成熟細胞的活化的G-CSF的形式或分子。在一些實施例中,根據本文公開的方法獲得的G-CSF包括具有提高的純度和/或功能活性的生物活性G-CSF。
在本文公開的方法的一些實施例中,所獲得的G-CSF含有具有大於80%的純度的有生物活性的正確折疊的G-CSF。在一些實施例中,所獲得的G-CSF包括具有大於85%、90%、95%、96%、97%、98%或99%的純度的有生物活性的正確折疊的G-CSF。用於對所獲得的G-CSF的純化程度定量的多種方法對於熟習此項技術者而言將是根據本揭示內容已知的。這些方法包括例如確定活性G-CSF的比活性,或通過SDS-PAGE分析評估最終產物中的G-CSF的量。用於評估從所公開的方法獲得的G-CSF的純度的示例性方法是計算所獲得的G-CSF的比活性,並將該比活性與初始提取物的比活性進行比較,從而計算出純度。
可以通過業內已知的多種技術(例如借助於業內已知的生物測定)來確定根據本揭示內容獲得的G-CSF的生物活性,並與可商購的標準G-CSF的活性進行比較。例如,可以通過基於使用由Hammerling, U等人 (J Pharm Biomed Anal 13, 9-20 (1995))描述的方法刺激細胞增殖(NFS-60細胞)和國際標準人重組G-CSF的使用的測定來確定從如本文所公開的方法獲得的G-CSF的生物活性。在此測定中,可以在合適的培養基(例如補充有2 mM麩胺醯胺、10% FCS、0.05 mM的2-巰基乙醇和60 ng/ml G-CSF的RPMI 1640培養基)中培養對G-CSF有反應的小鼠細胞系NFS-60。對於活性測試,將細胞用不含G-CSF的培養基洗滌兩次,並以合適的濃度(例如,2×104 個細胞/孔)放置在96孔板中,並在37ºC和4.5%的CO2 下分別與不同濃度的純化G-CSF和標準品孵育三天。隨後,可將細胞用XTT試劑(Thermo Fischer Scientific)染色,並在微量滴定酶標儀(microtiter-plate reader)中測量450 nm處的吸收。
然後可表明,用如本文所述純化或分離的G-CSF處理的細胞與用標準品處理的那些細胞一樣好或更好地生長。具體地,可表明,根據本揭示內容的方法獲得的純化的G-CSF的特徵為在NFS-60增殖測定中參考WHO參考標準的生物活性為80%至100%。
在一些實施例中,如本文所述純化或分離的G-CSF是具有提高的純度和/或功能活性的正確折疊的G-CSF。在一些實施例中,本文所述的G-CSF具有大於80%的純度,諸如大於85%、90%、95%、96%、97%、98%或99%的純度。在一些實施例中,所獲得的G-CSF表現出顯著的比活性增長,例如比活性為至少1×105 IU/mg。在一些實施例中,所獲得的G-CSF的比活性為至少1×106 IU/mg,較佳地至少1×107 IU/mg,更佳地在2×107 IU/mg至9×107 IU/mg的比活性範圍內,並且最佳地比活性為約1×108 IU/mg,其中比活性是通過基於刺激細胞增殖的方法測量。
增溶
可以使IB中含有的G-CSF可以在變性條件下在含有一種或多種變性劑(也稱為增溶劑)的增溶緩衝液中增溶,該一種或多種變性劑是具有當與G-CSF蛋白接觸時去除該G-CSF蛋白的二級和/或三級結構中的一些或全部的能力的化合物。在增溶過程期間,通過用變性劑處理使IB中含有的G-CSF變得溶解,從而去除G-CSF蛋白的二級和/或三級結構中的一些或全部。天然G-CSF蛋白中不存在的分子間和分子內相互作用在增溶過程中變得被破壞,從而產生了G-CSF在增溶緩衝液中的單體分散體。適用于本揭示內容的方法的變性劑涵蓋能夠使蛋白質展開,從而導致天然蛋白質構象減少或喪失的藥劑。適用于本揭示內容的方法的示例性變性劑包括但不限於溫和變性劑、強變性劑、離子型去污劑(例如,陽離子型去污劑和陰離子型去污劑)、或其組合。
在一些實施例中,增溶緩衝液中的變性劑包括溫和變性劑,該溫和變性劑的特徵是例如通過結合蛋白鏈並用表面活性劑分子包被來使蛋白質變性的去污劑作用機理。離子型去污劑表面活性劑,包括陽離子型、陰離子型和兩性離子去污劑表面活性劑,是用於本揭示內容的方法的合適的親水性表面活性劑。適用於增溶緩衝液的離子型去污劑表面活性劑的非限制性例子包括N-月桂醯肌胺酸(十二烷基肌胺酸鈉)、十二烷基硫酸鈉(SDS)、月桂基硫酸鈉、聚氧乙烯聚氧丙二醇、椰油醯兩性基乙酸鹽、十二烷基硫酸鋰、辛基硫酸鈉、去氧膽酸、水合膽酸鈉、去氧膽酸鈉、甘胺膽酸鈉、牛磺去氧膽酸鈉油酸鈉、月桂基肌胺酸鈉、二辛基磺基琥珀酸鈉、膽酸鈉、牛磺膽酸鈉、月桂醯肉堿、棕櫚醯肉堿、肉豆蔻醯肉堿。在一些實施例中,增溶緩衝液中的溫和變性去污劑包括烷基硫酸鹽去污劑。在一些實施例中,增溶緩衝液中的變性劑包括N-月桂醯肌胺酸(即,NLS或十二烷基肌胺酸鈉)、十二烷基硫酸鈉(SDS)、或其任何組合。在一些實施例中,增溶緩衝液中的變性劑包括十二烷基肌胺酸鈉。
在一些實施例中,增溶緩衝液中的變性劑包括強變性劑,該強變性劑的特徵是例如通過破壞水分子之間的氫鍵並因此降低蛋白質穩定性來使蛋白質變性的離液作用機理。適用于本揭示內容的方法的強變性劑的非限制性例子包括尿素、鹽酸胍(GndHCl)、三-2-羧乙基膦鹽酸鹽(TCEP)、二硫蘇糖醇(DTT)、硫氰酸鈉、硫氰酸鉀、極端pH(稀釋的酸或堿)、強變性去污劑、鹽(例如,氯化物、硝酸鹽、硫氰酸鹽、三氯乙酸鹽)、化學衍生化(亞硫酸分解(sulfitolyse),或在鹼性條件下與檸康酸酐(citraconanhydrid)的反應),以及溶劑(例如,2-胺基-2-甲基-1-丙醇或醇類、二甲基亞碸(DMSO)和二甲基硫醚(DMS))。
在本文所公開的方法的一些實施例中,增溶緩衝液不包含離液劑。在一些實施例中,增溶緩衝液不包含尿素、GdmCl、硫氰酸鈉、硫氰酸鉀、巰基乙醇、DTT、TCEP、二硫蘇糖醇或DMSO。
在一些實施例中,增溶緩衝液中的變性劑包括陰離子型去污劑。適用于本文公開內容的方法和組合物中的陰離子型去污劑的非限制性例子包括烷基硫酸鹽、烷基磺酸鹽和膽鹽。適用于本揭示內容的陰離子型去污劑的具體例子包括但不限於十二烷基硫酸鋰、辛基硫酸鈉、戊烷磺酸鈉、己烷磺酸鈉、1-辛磺酸鈉、4-十二烷基苯磺酸、乙烷磺酸鈉鹽一水合物、1-丁烷磺酸鈉陰離子型去污劑、1-癸烷磺酸鈉、1-庚烷磺酸鈉、1-壬烷磺酸鈉、1-辛烷磺酸鈉。適用于本揭示內容的膽鹽的具體例子包括但不限於鵝去氧膽酸、鵝去氧膽酸二乙酸甲酯、膽酸、去氧膽酸、甘胺膽酸、鵝去氧膽酸鈉、水合膽酸鈉、膽酸鈉、膽固醇硫酸鈉、去氧膽酸鈉、甘胺膽酸鈉、甘胺鵝去氧膽酸鈉、牛磺鵝去氧膽酸鈉、牛磺石膽酸鈉、牛磺豬去氧膽酸鈉。適用于本揭示內容的其他陰離子型去污劑包括但不限於磺基琥珀酸二環己酯鈉、雙十六烷基磷酸酯、磺基琥珀酸二己酯鈉、多庫酯鈉、3,5-二碘水楊酸鋰、N-月桂醯肌胺酸鈉、N-月桂醯肌胺酸(十二烷基肌胺酸鈉)、辛酸鈉,以及TritonTM QS-15。
在一些實施例中,增溶緩衝液中的陰離子型去污劑包括N-月桂醯肌胺酸(即,NLS或十二烷基肌胺酸鈉)、十二烷基硫酸鈉(SDS)、或其任何組合。在一些實施例中,增溶緩衝液中的陰離子型去污劑包括十二烷基肌胺酸鈉。在一些實施例中,十二烷基肌胺酸鈉以按重量計約0.2%至約5.0%範圍內的量存在於增溶緩衝液中。例如,在一些實施例中,增溶緩衝液包含按重量計在約0.2%至5.0%、約0.5%至4.0%、約1.0%至3.0%、約1.5%至2.0%、約0.2%至3.0%、約0.5%至2.0%、約1.0%至2.0%的範圍內的量的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含按重量計約0.2%、0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%、4.0%、4.5%或5.0%的量的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含按重量計約0.2%的量的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含按重量計約0.56%的量的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含按重量計約1.0%的量的十二烷基肌胺酸鈉。在一些實施例中,增溶緩衝液包含按重量計約2.0%的量的十二烷基肌胺酸鈉。
適用於增溶緩衝液的緩衝劑的例子包括但不限於三(羥甲基)胺基甲烷(Tris)、磷酸鹽、檸檬酸鹽、乙酸鹽、琥珀酸鹽、MES、MOPS、或銨、及其鹽或其衍生物。在一些實施例中,懸浮緩衝液包含Tris作為緩衝劑。在一些實施例中,增溶緩衝液包含體積莫耳濃度(molarity)在約20 mM至60 mM,例如約20 mM至40 mM、約30 mM至50 mM、約40 mM至60 mM、約20 mM至30 mM、約30 mM至60 mM和約40 mM至50 mM的範圍內的Tris。在一些實施例中,增溶緩衝液包含體積莫耳濃度為約20 mM、30 mM、40 mM、50 mM或60 mM的Tris。在一些實施例中,增溶緩衝液包含體積莫耳濃度為約40 mM的Tris。在一些實施例中,增溶緩衝液中的Tris的體積莫耳濃度類似於懸浮緩衝液中的Tris的體積莫耳濃度。在一些實施例中,增溶緩衝液中的Tris的體積莫耳濃度不同於懸浮緩衝液中的Tris的體積莫耳濃度。
在本揭示內容的一些實施例中,增溶緩衝液的合適pH在約7.5至9.0,例如約7.5至8.0、約8.0至8.5、約8.5至9.0、約7.5至8.5、約8.0至9.0的範圍內。pH範圍經選擇以優化IB的增溶並保持IB中含有的G-CSF的所需特徵。在一些實施例中,增溶緩衝液的pH為約7.5、7.6、7.7、7.8、7.9或8.0。在一些實施例中,增溶緩衝液的pH為約8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9或9.0。在一些實施例中,增溶緩衝液的pH為約8.4。在一些實施例中,增溶緩衝液包含在8.4的pH下的40 mM Tris。
在一些實施例中,在增溶之前,將含有G-CSF的IB懸浮在懸浮緩衝液中以形成包涵體懸浮液。適用於懸浮緩衝液的緩衝劑的例子包括但不限於三(羥甲基)胺基甲烷(Tris)、磷酸鹽、檸檬酸鹽、乙酸鹽、琥珀酸鹽、MES、MOPS、或銨、及其鹽或其衍生物。在一些實施例中,懸浮緩衝液包含Tris作為緩衝劑。在一些實施例中,懸浮緩衝液包含體積莫耳濃度在約20 mM至60 mM,例如約20 mM至40 mM、約30 mM至50 mM、約40 mM至60 mM、約20 mM至30 mM、約30 mM至60 mM和約40 mM至50 mM的範圍內的Tris。在一些實施例中,懸浮緩衝液包含體積莫耳濃度為約20 mM、30 mM、40 mM、50 mM或60 mM的Tris。在一些實施例中,懸浮緩衝液包含體積莫耳濃度為約40 mM的Tris。
在本揭示內容的一些實施例中,懸浮緩衝液的合適pH在約7.0至8.0,例如約7.0至7.5、約7.2至7.6、約7.3至7.7、約7.4至7.8、約7.5至7.9的範圍內。在一些實施例中,懸浮緩衝液的pH為約7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9或8.0。在一些實施例中,懸浮緩衝液的pH為約7.6。在一些實施例中,懸浮緩衝液包含在7.6的pH下的40 mM Tris。
為了確保有效且最大程度地懸浮含有G-CSF的IB,需要適當比例的IB和懸浮緩衝液。根據本揭示內容的一些實施例,使用每克IB(例如,粒料品質)10 g至100 g的懸浮緩衝液,例如每克IB約20 g至90 g、約30 g至80 g、約40 g至70 g、約50 g至60 g的懸浮緩衝液。在一些實施例中,使用每克IB約10 g至50 g、約20 g至60 g、約30 g至70 g、約40 g至80 g、約50 g至90 g的懸浮緩衝液。在一些實施例中,使用每克IB約10 g、20 g、30 g、40 g、50 g、60 g、70 g、80 g、90 g或100 g的懸浮緩衝液。在一些實施例中,使用每克IB約25 g的懸浮緩衝液。
在一些實施例中,懸浮緩衝液的pH類似於增溶緩衝液的pH。在一些實施例中,懸浮緩衝液的pH不同於增溶緩衝液的pH。在一些實施例中,調節懸浮緩衝液與增溶緩衝液的體積比,使得被增溶物的最終pH為約7.6至約8.4,例如約7.6、7.7、7.8、7.9、8.0、8.1、8.2、8.3或8.4。在一些實施例中,調節懸浮緩衝液與增溶緩衝液的體積比,使得被增溶物的最終pH為約7.6。在一些實施例中,調節懸浮緩衝液與增溶緩衝液的體積比,使得被增溶物的最終pH為約7.8至約8.2,例如約7.8、7.9、8.0、8.1或8.2。在一些實施例中,調節懸浮緩衝液與增溶緩衝液的體積比,使得被增溶物的最終pH為約8.0。
在本文公開的方法的一些實施例中,增溶緩衝液包含在約8.4的pH下的約40 mM的Tris、約2%的十二烷基肌胺酸鈉。在本文公開的方法的一些實施例中,增溶緩衝液包含在8.4的pH下的40 mM的Tris、2%的十二烷基肌胺酸鈉。
為了確保懸浮的IB的有效且完全增溶,需要適當比率的IB(和增溶緩衝液)。根據本揭示內容的一些實施例,使用每克IB(例如,裂解的粒料品質)10 g至50 g的增溶緩衝液,例如每克IB約10 g至30 g、約15 g至35 g、約20 g至40 g、約30 g至45 g的增溶緩衝液。在一些實施例中,使用每克IB約10 g至45 g、約20 g至35 g、約25 g至30 g、約30 g至50 g、約25 g至45 g的增溶緩衝液。在一些實施例中,使用每克IB約10 g、15 g、20 g、25 g、30 g、35 g、40 g、45 g或50 g的增溶緩衝液。在一些實施例中,使用每克IB約25 g的增溶緩衝液。
在一些實施例中,使用每克IB(裂解的粒料品質)10 mL至100 mL的增溶緩衝液,例如每克IB約20 mL至90 mL、約30 mL至80 mL、約40 mL至70 mL、約50 mL至60 mL的增溶緩衝液。在一些實施例中,使用每克IB約10 mL至50 mL、約20 mL至60 mL、約30 mL至70 mL、約40 mL至80 mL、約50 mL至90 mL的增溶緩衝液。在一些實施例中,使用每克IB約10 mL、20 mL、30 mL、40 mL、50 mL、60 mL、70 mL、80 mL、90 mL或100 mL的增溶緩衝液。
在本文公開的一些實施例中,為了確保懸浮的IB的有效且完全增溶,本揭示內容的方法的增溶時間通常在約4小時至48小時的範圍內。在一些實施例中,在將增溶緩衝液添加到包涵體懸浮液中之後,將增溶混合物孵育在約4小時至48小時的範圍內的時間段。在一些實施例中,增溶時間在約4小時至42小時、約12小時至36小時、或約18小時至30小時的範圍內。在一些實施例中,增溶時間在約4小時至24小時、約12小時至30小時、約18小時至36小時、約24小時至42小時、或約30小時至48小時的範圍內。在一些實施例中,增溶時間為約4小時至24小時。在一些實施例中,增溶時間為約14小時至24小時。
折疊
在分離和/或純化IB中產生的G-CSF的過程中的重要步驟是使變性蛋白折疊(例如,複性)以形成生物活性產物。理論上,可以通過去除變性劑來實現複性。然而,實際上,折疊過程更加複雜,並且次佳的複性往往可導致蛋白質聚集和/或失活,以及正確折疊的蛋白質的低回收率。不受任何特定理論的束縛,蛋白質聚集的程度取決於環境參數。當培養基的pH遠離蛋白質的等電點時,往往會減少聚集。然而,溶液pH與蛋白質聚集程度之間的關係要複雜得多。聚集通常隨著漸增的溫度而增加,部分原因是在高溫下蛋白質分子之間發生碰撞的可能性增加。被認為對於最大化折疊產率而言重要的因素之一是變性劑的去除速率。變性劑的去除可以通過多種技術來完成。這些技術包括稀釋、透析、凝膠過濾、滲濾和固定在固體支援物上。在一些實施例中,變性劑的去除可以通過稀釋來完成。在已知的蛋白質折疊策略中,稀釋通常被認為是最簡單的方法之一。在工業規模的應用中,稀釋通常用於折疊在宿主細胞中作為IB表現的重組蛋白。在若干種現有的分離G-CSF的方法中,稀釋通常是通過將含有增溶的蛋白的溶液與達到最佳稀釋水準所必需的量的含有變性劑的稀釋劑混合/用達到最佳稀釋水準所必需的量的含有變性劑的稀釋劑稀釋而以一個步驟進行的。當變性劑的濃度低於某個閾值水準時,重組蛋白開始恢復其生物活性三維構象。取決於所選擇的折疊條件,折疊在幾毫秒至幾秒內開始。然而,在此初始爆發階段,重組蛋白高度易聚集。為了使聚集最小化,通常必須將蛋白質濃度保持較低。
相比之下,作為相對於用於純化在IB中產生的G-CSF的現有方法的重要區別特徵,本文公開的方法的一些實施例涉及逐級稀釋的過程。如以下更詳細描述的,在本揭示內容的一些實施例中,可以通過在逐級稀釋程式中逐漸降低被增溶物中的變性劑濃度來實現從被增溶物中去除一種或多種變性劑。這是所公開的方法的關鍵特徵之一,因為被認為對最大化折疊產率而言重要的因素之一是變性劑的去除速率。
在本文公開的方法的一些實施例中,在增溶步驟之後,增溶的G-CSF的折疊可通過以下方式實現:經由連續逐級稀釋過程將被增溶物在僅含有硫醇氧化還原對的還原形式的折疊緩衝液中稀釋,以引發折疊並獲得折疊的G-CSF,該硫醇氧化還原對例如可稱為硫醇氧化還原電對或硫醇氧化還原體系。在本文公開的方法的一些實施例中,連續逐級稀釋過程包括逐漸降低被增溶物中的變性劑濃度。在一些實施例中,逐漸降低變性劑濃度的過程包括以下項中的一項或多項:(i) 將增溶緩衝液與懸浮緩衝液混合,在該懸浮緩衝液中懸浮有含有G-CSF的IB;(ii) 用WFI稀釋來自 (i) 的被增溶物,以形成稀釋的被增溶物;(iii) 將折疊緩衝液添加到來自 (ii) 的稀釋的被增溶物中;以及 (iv) 用WFI進一步稀釋來自 (iii) 的折疊混合物。如上文所討論,可以在工業規模的應用中有利地實現如本文所公開的多步折疊過程。
在一些實施例中,通過將懸浮緩衝液添加到增溶緩衝液來實現變性劑濃度的降低。在一些實施例中,通過緩慢地將懸液緩衝液滴加到增溶緩衝液中直至達到懸液緩衝液與增溶緩衝液的所需比率來實現變性劑濃度的降低。在一些實施例中,懸浮緩衝液與增溶緩衝液的體積比為約1 : 1、1 : 2、1 : 3、1 : 4、1 : 5、5 : 1、4 : 1、3 : 1、或2 : 1。在一些實施例中,(i) 中的懸浮緩衝液與增溶緩衝液的體積比為約1 : 1。在一些實施例中,通過向 (i) 中的被增溶物中添加WFI來進一步降低變性劑的濃度。在一些實施例中,通過緩慢地將WFI例如通過滴加添加到被增溶物中直至達到被增溶物與WFI的所需比率來實現變性劑濃度的降低。在一些實施例中,來自 (i) 的被增溶物與WFI的體積比為約1 : 1、1 : 2、1 : 3、1 : 4、1 : 5、5 : 1、4 : 1、3 : 1、或2 : 1。在一些實施例中,來自 (i) 的被增溶物與WFI的體積比為約1 : 1。
在一些實施例中,通過將折疊緩衝液添加到來自 (ii) 的稀釋的被增溶物中來進一步降低變性劑的濃度。在一些實施例中,通過緩慢地將折疊緩衝液例如通過滴加添加到稀釋的被增溶物中直至達到折疊緩衝液與稀釋的被增溶物的所需比率來實現變性劑濃度的降低。在一些實施例中,折疊緩衝液與來自 (ii) 的稀釋的被增溶物的體積比為約1 : 1、1 : 2、1 : 3、1 : 4、1 : 5、5 : 1、4 : 1、3 : 1、或2 : 1。在一些實施例中,折疊緩衝液與來自 (ii) 的稀釋的被增溶物的體積比為約1 : 1。在一些實施例中,通過將WFI添加到來自 (iii) 的折疊混合物中來進一步降低變性劑的濃度。在一些實施例中,通過緩慢地將WFI例如通過滴加添加到折疊混合物中直至達到折疊混合物與WFI的所需比率來實現變性劑濃度的降低。在一些實施例中,來自 (iii) 的折疊混合物與WFI的體積比為約1 : 1、1 : 2、1 : 3、1 : 4、1 : 5、5 : 1、4 : 1、3 : 1、或2 : 1。在一些實施例中,來自 (iii) 的折疊混合物與WFI的體積比為約1 : 1。
通常,本揭示內容的用於分離和/或製備G-CSF的方法可以在約2ºC至約25ºC,諸如約4ºC至約15ºC、約10ºC至約25ºC、約15ºC至約25ºC、約20ºC至約25ºC、約15ºC至約20ºC、或約10ºC至約15ºC的溫度下進行。在一些實施例中,該方法可以在約4ºC±2ºC的溫度下進行。在一些實施例中,該方法可以在例如通常高於10ºC並且有利地在室溫(即20ºC±2ºC)下的環境溫度下進行。環境溫度可以在10ºC與30ºC之間變化,並且較佳地在15ºC與25ºC之間,更佳地在17ºC與23ºC之間,並且特別較佳地在19ºC與21ºC之間。在一些實施例中,本揭示內容的方法在約15ºC至約25ºC的溫度下進行。在一些實施例中,本揭示內容的方法在約20ºC±2ºC的溫度下進行。在一些實施例中,IB的懸浮、懸浮的IB的增溶和G-CSF的折疊在不同溫度下進行。在一些實施例中,IB的懸浮、懸浮的IB的增溶和G-CSF的折疊在相同溫度下進行。在一些實施例中,G-CSF的折疊在約2ºC至約25ºC,例如約4ºC至約15ºC、約10ºC至約25ºC、約15ºC至約25ºC、約20ºC至約25ºC、約15ºC至約20ºC、或約10ºC至約15ºC的溫度下進行。在一些實施例中,G-CSF的折疊在約4ºC±2ºC的溫度下進行。在一些實施例中,G-CSF的折疊在約4ºC的溫度下進行。在一些實施例中,G-CSF的折疊在約20±2ºC的溫度下進行。在一些實施例中,G-CSF的折疊在約20ºC的溫度下進行。
已經證明,不同蛋白質的折疊速率可以從小於一秒變化至幾小時以及甚至幾天。這是因為二硫鍵異構化以形成存在于天然蛋白質中的正確半胱胺酸對是緩慢的,並且代表了折疊中的重要限速步驟。出於此原因,含有若干個半胱胺酸殘基的多肽(例如G-CSF)的體外折疊往往非常緩慢且低效。根據本文公開的一些實施例,為了確保增溶的G-CSF的有效和最大折疊,本揭示內容的方法的折疊反應時間通常在約12小時至48小時的範圍內,該折疊反應時間通常取決於折疊過程的溫度。在一些實施例中,在將折疊緩衝液添加到被增溶物中之後,將折疊混合物孵育在約12小時至48小時的範圍內的時間段。在一些實施例中,折疊反應時間在約12小時至24小時、約18小時至30小時、約24小時至36小時、或約30小時至48小時的範圍內。在一些實施例中,折疊反應時間在約12小時至30小時、約18小時至36小時、約24小時至48小時、約30小時至48小時、或約18小時至24小時的範圍內。在一些實施例中,折疊反應時間為約16小時至24小時。在一些實施例中,折疊反應時間為約20小時至24小時。
在一些實施例中,(b) 處的G-CSF的折疊過程是多步過程,並且包括:(i) 將來自 (a) 的含有G-CSF的被增溶物孵育約14-24小時的時間段;(ii) 用WFI以約1 : 1的體積比執行對來自 (i) 的孵育的G-CSF的初次稀釋;(iii) 添加折疊緩衝液,並將從 (ii) 獲得的稀釋的G-CSF混合物在不混合的情況下再孵育約20-24小時的時間段;以及 (iv) 用WFI以約1 : 1的體積比對從 (iii) 獲得的稀釋的G-CSF混合物執行二次稀釋。
在一些實施例中,通過將被增溶物和/或含有G-CSF的混合物緩慢添加到WFI中來進行初次稀釋和/或二次稀釋。在一些實施例中,以連續模式執行本揭示內容的方法。在一些實施例中,通過將含有G-CSF的混合物連續進料到容納有WFI的容器中來進行初次稀釋和/或二次稀釋。與已知方法相比,通過連續進行折疊過程,可以減少時間消耗和成本,並且可以提高折疊蛋白的產率。本揭示內容的方法特別是在其連續模式下確保了IB蛋白的快速和有效加工,從而減少了無意的變化,諸如折疊效率或產物均一性的變化。
在一些實施例中,有利的是在合適地裝配以用於溫度受控操作的混合容器中進行稀釋,以排除任何甚至最小的聚集。在一些實施例中,混合容器與冷卻供應或製冷設備熱耦接。適用于本揭示內容的方法的混合容器是確保快速混合和短混合時間的任何混合器,例如可商購的管狀噴射混合器或靜態混合器。此類設備可用於實現所需的混合效率。在混合器是高通量連續流動設備的情況下,精確控制流動特別重要。使用此類混合器,可以實現在小規模上低至幾毫秒或在大規模上低至幾秒的混合時間。在一些實施例中,混合容器包括滴加機構,該滴加機構被配置為使得能夠將被增溶物和/或含有G-CSF的混合物直接滴加到容納有WFI的容器中(反之亦然),其中可以將滴加速率調節或設置在所需的範圍內。
在一些實施例中,通過將孵育的被增溶物緩慢添加到WFI中直至達到約1 : 1的最終體積比來進行初次稀釋。在一些實施例中,通過將WFI緩慢添加到孵育的被增溶物中直至達到約1 : 1的最終體積比來進行初次稀釋。在一些實施例中,初次稀釋步驟是通過滴加機構進行的。在一些實施例中,將滴加速率調節或設置在所需的範圍內。
在一些實施例中,通過將稀釋的G-CSF混合物緩慢添加到WFI中直至達到約1 : 1的最終體積比來進行二次稀釋。在一些實施例中,通過將WFI緩慢添加到稀釋的G-CSF混合物中直至達到約1 : 1的最終體積比來進行二次稀釋。在一些實施例中,初次稀釋步驟是通過滴加機構進行的。在一些實施例中,將滴加速率調節或設置在所需的範圍內。
在一些實施例中,通過將含有G-CSF的混合物緩慢滴加到容納有WFI的容器中來進行初次稀釋和/或二次稀釋。在一些實施例中,通過將含有G-CSF的混合物連續滴加到容納有WFI的容器中來進行初次稀釋和/或二次稀釋。
在一些實施例中,本文公開的方法包括相對於用於純化IB中產生的G-CSF的現有方法的另一重要區別特徵的實施。為了促進增溶步驟後的折疊,現有的純化方法往往摻入含有硫醇氧化還原對或硫醇氧化還原電對的折疊緩衝液,該硫醇氧化還原對或硫醇氧化還原電對例如是還原型和氧化型硫醇劑的混合物。現有的G-CSF純化方法中常用的硫醇氧化還原對是還原型和氧化型谷胱甘肽(GSH/GSSG)、半胱胺酸/胱胺酸、半胱胺/胱胺、二硫蘇糖醇(DTT)/GSSG,以及二硫赤蘚糖醇(DTE)/GSSG。先前的蛋白質純化研究已報導 (i) 當重組蛋白質的一級胺基酸序列中存在半胱胺酸殘基時,有必要在氧化還原環境中完成折疊,該氧化還原環境允許二硫鍵的正確形成,以及 (ii) 具有二硫鍵和硫醇的氧化還原體系(例如,還原型和氧化型谷胱甘肽)的使用允許通過促進不正確形成的二硫鍵的快速轉化來在靶蛋白中正確形成二硫鍵。
相比之下,作為相對於用於純化在IB中產生的G-CSF的現有方法的重要區別特徵,本文公開的方法的一些實施例包括不含任何氧化型硫醇劑的折疊緩衝液。具體地,在本文公開的方法的一些實施例中,折疊緩衝液僅包含硫醇氧化還原對的還原形式(例如,還原型硫醇劑)。在一些實施例中,折疊緩衝液含有一種還原型硫醇劑。在一些實施例中,折疊緩衝液含有兩種還原型硫醇劑。在一些另外的實施例中,折疊緩衝液含有三種不同的還原型硫醇劑。適合在本文公開的方法的折疊緩衝液中使用的還原型硫醇劑包括但不限於還原形式的半胱胺酸、谷胱甘肽、青黴胺、N-乙醯基-青黴胺、2-巰基乙酸、2-巰基丙酸、3-巰基丙酸、巰基琥珀酸、巰基丙酮酸、巰基乙醇、單硫代甘油、γ-麩胺醯半胱胺酸、半胱胺醯甘胺酸、半胱胺、N-乙醯基-L-半胱胺酸、同型半胱胺酸、或硫辛酸(二氫硫辛醯胺)。在一些實施例中,折疊緩衝液中的還原型硫醇劑是GSH/GSSG硫醇氧化還原對的還原形式(即,GSH;還參見表1和實例1至2)。在一些實施例中,存在於折疊緩衝液中的唯一還原型硫醇劑是GSH。在一些實施例中,折疊緩衝液不含氧化形式的谷胱甘肽(GSSG或谷胱甘肽二硫化物)。在一些實施例中,本揭示內容的折疊緩衝液僅含有氧化還原半胱胺酸/胱胺酸硫醇氧化還原對的還原形式。在一些實施例中,折疊緩衝液不含氧化還原半胱胺酸/胱胺酸硫醇氧化還原對的氧化形式。
在一些實施例中,折疊緩衝液中存在的唯一還原型硫醇試劑是半胱胺酸(還參見表1和實例1至2)。不受任何特定理論的束縛,認為存在於折疊緩衝液中的半胱胺酸促進二硫鍵的形成。在一些實施例中,半胱胺酸以在約20 μM至約200 μM範圍內的濃度存在於折疊緩衝液中。在一些實施例中,半胱胺酸以約40 μM、約50 μM、約80 μM或約160 μM的濃度存在於折疊緩衝液中。
熟習此項技術者應理解的是,可以調節添加到被增溶物中的折疊緩衝液的體積,使得可以獲得混合物中還原型硫醇試劑的預定最終濃度。在一些實施例中,將折疊緩衝液添加到被增溶物中以使半胱胺酸的最終濃度在約20 μM至約200 μM的範圍內。在一些實施例中,將折疊緩衝液添加到被增溶物中以使半胱胺酸的最終濃度為約40 μM、約50 μM、約80 μM或約160 μM。在一些實施例中,將折疊緩衝液添加到被增溶物中以使半胱胺酸的最終濃度為約80 μM。
回收
在一些實施例中,本揭示內容的方法進一步包括回收從折疊步驟獲得的G-CSF的過程。G-CSF的回收可通過將G-CSF與表現/加工體系中存在的不應存在於中間體或最終產物中的非期望雜質(諸如宿主細胞碎片,G-CSF的聚集的未折疊蛋白、二聚體、多聚體和/或未折疊蛋白)在本質上分離來實現。在最廣義上,如本文所用的術語“雜質”是指不同於G-CSF的生物活性分子以致G-CSF的生物活性分子不純的物質。雜質可包括宿主細胞物質,諸如核酸、脂質、多糖、蛋白質等等;培養基,以及用於G-CSF的製備和加工的添加劑。在一些實施例中,雜質可包括選自以下的至少一種物質:無生物活性的單體形式、G-CSF的不正確折疊分子、G-CSF的寡聚和聚合形式、G-CSF的變性形式、以及宿主細胞蛋白質。一般熟習此項技術者應理解的是,目的重組蛋白的變性形式通常包括作為重組生產過程的產物獲得的重組蛋白的無生物活性、未折疊或主要是錯誤折疊的形式。在一些實施例中,通過根據本揭示內容的方法回收的G-CSF可以以直接從回收步驟獲得的塊體形式商業化,或進一步純化和/或配製成特定配製品,例如純化和/或配製成醫藥組合物和配製品。
在一些實施例中,折疊的G-CSF的回收可包括一種或多種層析技術。層析技術的合適例子包括但不限於親和層析、陰離子交換層析(AEX)、陽離子交換層析(CEX)、羥基磷灰石層析、尺寸排阻層析(SEC)、疏水相互作用層析(HIC)、金屬親和層析,以及混合模式層析(MMC)。也可以考慮使用非層析分離技術,諸如用鹽、酸或用聚合物PEG沈澱。適用於所公開方法的其他非限制性非層析分離技術包括離心、萃取、透析、滲濾和超濾。
關於過濾技術,通常有利的是在進一步加工之前使折疊的蛋白質經受過濾步驟,以去除高分子粒子,該高分子粒子通常是在折疊期間形成的蛋白質聚集體。在本揭示內容的方法的一些實施例中,將折疊的蛋白質溶液通過篩檢程式級聯過濾,例如通過10 μm和1.2 μm的篩檢程式級聯過濾。在過濾後,可將折疊的蛋白質溶液儲存在適當的條件下以供用於下游應用。
在一些實施例中,本文公開的方法的回收過程包括超濾、微濾或滲濾操作中的一種或多種以去除污染物,諸如細胞碎片、不溶性污染蛋白和核酸沈澱物。這些過濾操作為經濟並有效地去除細胞碎片、污染蛋白質和沈澱提供了便利的手段。一般熟習此項技術者應意識到,在選擇篩檢程式或篩檢程式方案時,重要的是在發生上游變化或變更的情況下確保穩健的性能。應注意保持良好的澄清性能與步驟產率之間的平衡。合適的篩檢程式類型可以利用纖維素篩檢程式、再生纖維素纖維、與無機助濾劑組合的纖維素纖維(例如,矽藻土、珍珠岩、氣相二氧化矽)、與無機助濾劑和有機樹脂組合的纖維素纖維、或其任何組合,以及聚合物篩檢程式來實現有效去除。聚合物篩檢程式的合適例子包括但不限於尼龍、聚丙烯、聚醚碸。在一些實施例中,使用聚醚碸膜執行過濾操作,例如滲濾步驟和/或超濾步驟。在一些實施例中,使用Sius Hystream膜執行滲濾步驟和/或超濾步驟。
在一些實施例中,可以在超濾和/或滲濾折疊的G-CSF之後進行離子交換層析的一個或多個步驟。為了去除其他污染物,例如宿主細胞蛋白質,特別是內毒素和宿主細胞DNA,可以使用單一離子交換層析進行離子交換層析。原則上,可以適當地使用陽離子交換層析(CEX)和/或陰離子交換層析(AEX)。
在一些實施例中,一個或多個離子交換步驟包括AEX,之後進行CEX。在這些情況下,AEX可以以非結合模式使用(G-CSF流經AEX)而污染物(諸如殘留的變性劑、宿主細胞蛋白質或DNA)與樹脂結合的發現使得必需按照AEX之後進行CEX的次序進行兩步離子交換層析。
通常,可以通過使用已知用於蛋白質的AEX層析的任何一種官能團來執行AEX步驟。這些基團包括二乙基胺基乙基(DEAE)、三甲基胺基乙基(TMAE)、季胺基甲基(Q)和季胺基乙基(QAE)。這些基團是生物層析過程中常用的官能性陰離子交換基團。合適的市售產品包括例如DEAE-Sepharose FF、DEAE-Sepharose CL-4B、Q-Sepharose FF、Q-Sepharose CL-4B、Q-Sepharose HP、Q-Sepharose XL、Q-Sepharose Big Beads、QAE-Sephadex、DEAE-Sephadex、Capto DEAE、Capto Q、Capto Q ImpRes、Source 15Q、Source 30Q、DEAE Sephacel。Macro-Prep High Q、Macro-Prep DEAE、Nuvia Q、TOYOPEARL DEAE-650、TOYOPEARL SuperQ-650、TOYOPEARL QAE-550、Fractogel EMD DEAE、Fractogel EMD TMAE、Biosepra Q Ceramic HyperD,以及Biosepra DEAE Ceramic HyperD。在一些特定的實施例中,執行使用DEAE Sepharose FF的AEX步驟,該步驟允許特別高的流動速率和良好的產物回收率。
在本文公開的方法的一些實施例中,執行使用選定材料(例如,CM Sepharose® FF)的CEX步驟,該步驟允許特別高的流動速率和良好的產物回收率。在這些情況下,由於事實上G-CSF在酸性環境中帶正電,因此G-CSF是強結合劑並且可以用在所需緩衝液中在酸化pH下高濃度的小體積線性氯化鈉梯度進行洗脫。用於執行陽離子交換層析的體系和方法是熟習此項技術者眾所周知的。通常,G-CSF在特定的pH範圍內由於其正總電荷而與陽離子交換基質結合,而大多數污染物質(如核酸、脂多糖和來源於宿主細胞的蛋白質,以及G-CSF的離子異構體和G-CSF的具有不同pH值的改變形式)不能結合並出現在流通物中,或者借助於洗滌而被去除。
用於CEX樹脂的合適的官能團包括但不限於羧甲基(CM)、磺酸根(S)、磺丙基(SP)和磺乙基(SE)。這些官能團是用於生物層析過程的常用陽離子交換官能團。合適的市售產品包括但不限於羧甲基(CM)纖維素、AG 50 W、Bio-Rex 70、羧甲基(CM)Sephadex、磺丙基(SP)Sephadex、羧甲基(CM) Sepharose CL-6B、CM sepharose HP、Hyper D-S陶瓷(Biosepra)和磺酸鹽(S)Sepharose、SP Sepharose FF、SP Sepharose HP、SP Sepharose 15 XL、CM Sepharose FF、TSK凝膠SP 5PW、TSK凝膠SP-5PW-HR、Toyopearl SP-650M、Toyopearl SP-650S、Toyopearl SP-650C、Toyopearl CM-650M、Toyopearl CM-650S等磺丙基基質,特別是產品SP Sepharose XL和SP Sepharose FF(速流)和S-Sepharose FF。在一些實施例中,陽離子交換材料是磺丙基陽離子交換材料。在本揭示內容的一些特定實施例中,用CM-Sepharose FF執行CEX。
在本文公開的一些實施例中,為了實現在折疊過程後獲得的G-CSF製備物的更高產物濃度,可以將折疊的G-CSF蛋白進行透析或滲濾以去除污染物,諸如不希望的緩衝液組分。具體地,滲濾是通過膜洗滌較小分子,從而使較大的目的分子留在滲餘物中的分級過程。滲濾被廣泛認為是一種用於去除或交換鹽、去除去污劑、分離游離的分子與結合的分子、去除低分子量材料、或快速改變離子或pH環境的方便且有效的技術。滲濾過程通常採用微濾或超濾膜,以從漿液中取出目的產物,同時保持漿液濃度恒定。
如上所述,可以在真核生物(例如,酵母和哺乳動物細胞系)或原核生物(諸如細菌(例如,大腸桿菌))中重組產生G-CSF蛋白,例如人G-CSF。所產生的G-CSF的形式取決於用於表現的宿主生物的類型。當G-CSF在真核細胞中表現時,其通常以可溶形式產生並分泌。當在原核細胞中產生G-CSF時,該產物形成為無活性的IB,該無活性的IB通常具有二級結構並密集地聚集。在本揭示內容的一些實施例中,G-CSF是人G-CSF(hG-CSF)。在一些實施例中,含有G-CSF的IB來源於表現G-CSF的重組細胞,其中表現的G-CSF在該細胞中形成IB。在一些實施例中,重組細胞是原核細胞或真核細胞。
在一些實施例中,本文公開的方法中的一種或多種緩衝液,例如增溶緩衝液,除了變性劑之外還含有還原劑(reducing agent)(例如,還原劑(reductant))。還原劑可以被包含作為還原具有形成分子內或分子間共價蛋白鍵傾向的暴露殘基並使非特異性鍵形成最小化的手段。合適的還原劑是還原型谷胱甘肽(GSH)、DTT、二硫赤蘚糖醇(DTE)、半胱胺酸、β-巰基乙醇和單硫代甘油。在一些實施例中,本文公開的方法中的還原劑是DTT。在本揭示內容的一些實施例中,增溶緩衝液中還原劑的濃度為1毫升/升至100毫升/升,較佳地1毫升/升至10毫升/升。
在一些其他實施例中,本文公開的方法不包括強變性劑、強還原劑、氧化還原反應和/或重金屬。在一些實施例中,本文公開的方法中的一種或多種緩衝液(例如,懸浮緩衝液、增溶緩衝液和折疊緩衝液)不含還原劑。在一些實施例中,本文公開的方法中的一種或多種緩衝劑不包括尿素、三-2-羧乙基膦鹽酸鹽(TCEP)、和/或DTT。在一些實施例中,本文公開的方法中的一種或多種緩衝劑不含重金屬或其鹽。在一些實施例中,本文公開的方法中的一種或多種緩衝劑不含重金屬銅或其鹽。在一些實施例中,本文公開的方法中的一種或多種緩衝劑不含CuSO4
如上文所討論,已證明含有硫醇氧化還原劑的折疊緩衝液是促進在各種宿主細胞中重組產生的蛋白質的複性和正確折疊的關鍵因素。為此目的而使用的最常見的硫醇氧化還原劑是氧化型和還原型谷胱甘肽(GSH/GSSG)、半胱胺酸/胱胺酸、半胱胺/胱胺、(DTT)/GSSG、以及(DTE)/GSSG)。在一些其他實施例中,本文公開的方法不包括氧化還原體系,諸如硫醇氧化還原體系。在一些實施例中,本文公開的方法中的一種或多種緩衝液(例如,懸浮緩衝液、增溶緩衝液和折疊緩衝液)不含氧化還原體系。在一些其他實施例中,折疊緩衝液不含氧化還原體系。在一些實施例中,折疊緩衝液不含谷胱甘肽氧化還原體系。在一些實施例中,折疊緩衝液不含半胱胺酸/胱胺酸氧化還原體系。
如果需要的話,則可以確定在所公開方法的任何給定步驟處樣品的蛋白質濃度,並且可以採用任何合適的方法。此類方法在業內是眾所周知的,並且包括:1) 比色法,諸如Lowry測定法、Bradford測定法、Smith測定法和膠體金測定法;2) 利用蛋白質的紫外線吸收特性的方法;以及3) 基於凝膠上的染色的蛋白條帶,依賴於與相同凝膠上已知量的蛋白質標準品的比較的視覺估計。蛋白質濃度的定期測定可用於在方法被執行時監測所述方法的進展。
需注意的是,所公開的方法的任何或所有步驟都可以手動地或通過任何方便的自動化手段進行,諸如通過採用自動化或電腦控制的系統。
如上文所討論,本文公開的多步折疊過程的有利特徵是其可擴展性,該可擴展性允許以從實驗室規模或中試規模到工業或商業規模的任何規模來實踐本揭示內容的方法。具體地,所公開的方法將合適地以商業規模應用,在該應用中可以將所公開的方法部署為有效地折疊或再折疊大量的G-CSF。
[本揭示內容的組合物]
在一個態樣,本揭示內容提供了一種通過本文公開的方法純化或分離的粒細胞群落刺激因子(G-CSF)。在一些較佳的實施例中,通過此類方法獲得的純化或分離的G-CSF是生物活性G-CSF。
根據本揭示內容的方法獲得的純化或分離的G-CSF,特別是通過此類方法獲得的生物活性G-CSF,可以特別適合於治療應用。因此,在本揭示內容的一個態樣,本文所公開的一些實施例涉及一種醫藥組合物,該醫藥組合物包含治療有效量的如本文所公開的生物活性G-CSF,並且適用於治療和臨床用途。
根據本揭示內容的醫藥組合物包括用於人和獸醫用途的組合物和配製品。在一些實施例中,該醫藥組合物包含如本文所公開的生物活性G-CSF與醫藥上可接受的輔助物質的混合物。合適的醫藥上可接受的輔助物質包括可用於G-CSF療法的合適的稀釋劑、佐劑和/或載劑。醫藥上可接受的輔助物質的非限制性例子包括但不限於與藥物投予相容的鹽水、溶劑、分散介質、包衣、抗細菌劑和抗真菌劑、等滲劑和吸收延遲劑。也可以將補充活性物質摻入組合物中。在一些實施例中,醫藥組合物還包含醫藥上可接受的添加劑,諸如緩衝劑、鹽和穩定劑。根據本揭示內容獲得的G-CSF和醫藥組合物可以 (i) 直接使用;或 (ii) 進一步加工,例如聚乙二醇化,如在下文或例如PCT公佈號WO2008/124406中更詳細描述的;然後以粉末或凍幹物的形式或以液體形式儲存。在一些實施例中,本揭示內容的醫藥組合物是液體組合物。在一些實施例中,本揭示內容的醫藥組合物是凍幹物或粉末。
G-CSF作為醫藥組合物的活性成分可以以通過靜脈內、動脈內、腹膜內、胸骨內、透皮、鼻、吸入、局部、直腸、口服、眼內或皮下途徑的典型方法投予。對投予方法沒有特別限制,但非口服投予是較佳的,並且皮下或靜脈內投予是更佳的。
在一些實施例中,適用於注射使用的醫藥組合物包括無菌的水性溶液(水溶性的)或分散體、以及用於臨時製備無菌可注射溶液或分散體的無菌粉末。對於靜脈內投予,合適的輔助物質包括生理鹽水、抑菌水、Cremophor EL™(新澤西州帕西帕尼的BASF)或磷酸鹽緩衝鹽水(PBS)。在一些情況下,組合物應是無菌的並且應當是易於注射的程度的流體。它在製造和儲存條件下應穩定並且必須抵抗微生物(如細菌和真菌)的污染作用而保存。輔助物質可以是溶劑或分散介質,該溶劑或分散介質含有例如水、乙醇、多元醇(例如,甘油、丙二醇和液體聚乙二醇)及其合適的混合物。例如,通過使用包衣如卵磷脂、通過在分散體的情況下維持所需的細微性、以及通過使用表面活性劑(例如,十二烷基硫酸鈉),可以維持適當的流動性。防止微生物的作用可以通過各種抗細菌劑和抗真菌劑,例如對羥基苯甲酸酯、氯丁醇、苯酚、抗壞血酸、硫柳汞來實現。在許多情況下,較佳的是在組合物中包含等滲劑,例如糖、多元醇(如甘露糖醇、山梨糖醇)、氯化鈉。通過在該組合物中包含延遲吸收的藥劑(例如單硬脂酸鋁和明膠),可以實現可注射組合物的延長吸收。
如本文所公開的包含G-CSF的醫藥組合物中的合適佐劑的其他例子包括但不限於穩定劑(如糖和糖醇)、胺基酸和表面活性劑(例如,聚山梨酯20、聚山梨酯60、聚山梨酯65、聚山梨酯80)、以及合適的緩衝物質。在根據本揭示內容的方法的一些實施例中,將純化/分離的生物活性G-CSF配製在pH 4.0的10 mM乙酸、0.0025%聚山梨酯80和50 g/L山梨糖醇中。
無菌可注射溶液可以通過以下方式製備:將活性化合物以所需量摻入視需要具有上文所列舉成分中的一種或組合的適當溶劑中,之後過濾滅菌。通常,通過將活性化合物摻入無菌媒劑中製備分散體,該無菌媒劑含有鹼性分散介質和來自以上列舉的那些的所需其他成分。在用於製備無菌可注射溶液的無菌粉末的情況下,較佳製備方法為真空乾燥和冷凍乾燥,該真空乾燥和冷凍乾燥由先前無菌過濾的溶液產生活性成分和任何其他所需成分的粉末。
口服組合物(如果使用的話)通常包含惰性稀釋劑或可食用的載劑。出於口服治療投予的目的,可以將活性化合物(例如,本文公開的G-CSF和/或含有該G-CSF的醫藥組合物)與賦形劑摻混,並以錠劑、糖錠或膠囊(例如,明膠膠囊)的形式使用。也可以使用流體載劑製備口服組合物以用作漱口水。可以包括醫藥上相容的結合劑和/或佐劑材料作為組合物的一部分。錠劑、丸劑、膠囊和糖錠可含有任何以下成分或具有類似性質的化合物:粘合劑,如微晶纖維素、黃芪膠或明膠;賦形劑,如澱粉或乳糖;崩解劑,如藻酸、Primogel™或玉米澱粉;潤滑劑,如硬脂酸鎂或Sterotes™;助流劑,如二氧化矽膠體;甜味劑,如蔗糖或糖精;或調味劑,如薄荷、水楊酸甲酯或橙味劑。
在通過吸入投予的情況下,從加壓容器或分配器(其含有合適的推進劑,例如氣體(如二氧化碳))或噴霧器以氣溶膠噴霧劑形式遞送如本文所公開的本揭示內容的主題G-CSF和/或醫藥組合物。此類方法包括在例如美國專利號6,468,798中描述的那些方法。
如本文所公開的主題G-CSF和/或醫藥組合物的全身投予也可以通過經粘膜或透皮手段進行。對於經粘膜或透皮投予,在配製品中使用適合待滲透的屏障的滲透劑。此類滲透劑通常是業內已知的,並且包括例如就經粘膜投予而言,洗滌劑、膽鹽、以及梭鏈孢酸衍生物。經粘膜投予可以通過使用鼻噴霧劑或栓劑來完成。對於透皮投予,將活性化合物配製成如業內通常已知的軟膏、藥膏、凝膠或乳膏。
在一些實施例中,也可以將如本文所公開的主題G-CSF和/或醫藥組合物以栓劑(例如,與常規栓劑基質如可可脂和其他甘油酯一起)或保留灌腸劑的形式製備以供直腸遞送。在一些實施例中,本揭示內容的G-CSF和/或醫藥組合物也可以通過使用業內已知的方法進行轉染或感染來投予。
在一個實施例中,本揭示內容的醫藥組合物是與載劑一起製備的,該載劑將保護重組G-CSF免於從身體迅速清除,該載劑為諸如控釋配製品,包括植入物和微囊化遞送系統。可以使用可生物降解的生物相容性聚合物,如乙烯乙酸乙烯酯、聚酸酐、聚乙醇酸、膠原、聚原酸酯和聚乳酸。此類配製品可以使用標準技術來製備。該材料也可以從Alza Corporation和Nova Pharmaceuticals, Inc.商購獲得。脂質體懸浮液(包括用針對病毒抗原的單克隆抗體靶向感染細胞的脂質體)也可用作醫藥上可接受的載劑。這些可以根據熟習此項技術者已知的方法,諸如美國專利號4,522,811中描述的那些方法來製備。
在一些實施例中,本揭示內容的重組G-CSF可以被進一步修飾以延長其體內和/或離體的半衰期。適用于修飾本揭示內容的重組G-CSF的已知策略和方法的非限制性例子包括 (1) 用高度可溶的大分子如聚乙二醇(“PEG”)對本文所述的多肽進行化學修飾,該高度可溶的大分子可防止多肽與蛋白酶接觸;以及 (2) 將本文所述的多肽與穩定的蛋白質(諸如,白蛋白)共價連接或綴合。因此,在一些實施例中,本揭示內容的重組G-CSF可以與穩定的蛋白質(諸如,白蛋白)融合。例如,已知人白蛋白是增強與其融合的多肽的穩定性的最有效的蛋白之一,並且有許多報導的此類融合蛋白。
在一些實施例中,將本揭示內容的重組G-CSF用一個或多個聚乙二醇部分進行化學修飾,例如,PEG化;或用類似的修飾進行修飾,例如PAS化。在一些實施例中,PEG分子或PAS分子與干擾素的一個或多個胺基酸側鏈綴合。在一些實施例中,PEG化或PAS化的G-CSF多肽僅在一個胺基酸上含有PEG或PAS部分。在其他實施例中,該PEG化或PAS化的G-CSF多肽在兩個或更多個胺基酸上含有PEG或PAS部分,例如該PEG或PAS部分附接至兩個或更多個、五個或更多個、十個或更多個、十五個或更多個、或二十個或更多個不同的胺基酸殘基。在一些實施例中,PEG鏈或PAS鏈為2000 Da,大於2000 Da、5000 Da、大於5,000 Da、10,000 Da、大於10,000 Da、大於10,000 Da、20,000 Da、大於20,000 Da、以及30,000 Da。PAS化的G-CSF多肽可以通過胺基、巰基、羥基或羧基直接偶聯至PEG或PAS(例如,不用連接基團)。在一些實施例中,本揭示內容的重組G-CSF與平均分子量為20,000道爾頓的聚乙二醇共價結合。
在一些實施例中,本揭示內容的醫藥組合物包含一種或多種聚乙二醇化試劑。如本文所用,術語“PEG化”是指通過將聚乙二醇(PEG)共價附接至蛋白質來修飾蛋白質,其中“PEG化”是指附接有PEG的蛋白質。可以使用多種化學物質將大小在從約10,000道爾頓至約40,000道爾頓的任選範圍內的一系列PEG或PEG衍生物附接至本揭示內容的重組多肽。在一些實施例中,聚乙二醇化試劑選自甲氧基聚乙二醇-琥珀醯亞胺丙酸酯(mPEG-SPA)、mPEG-琥珀醯亞胺丁酸酯(mPEG-SBA)、mPEG-琥珀醯亞胺琥珀酸酯(mPEG-SS)、mPEG-琥珀醯亞胺碳酸酯(mPEG-SC)、mPEG-琥珀醯亞胺戊二酸酯(mPEG-SG)、mPEG-N-羥基-琥珀醯亞胺(mPEG-NHS)、mPEG-三氟乙基磺酸酯(mPEG-tresylate)和mPEG-醛。在一些實施例中,聚乙二醇化試劑是聚乙二醇;較佳地,該聚乙二醇化試劑是與蛋白質的N末端甲硫胺酸殘基共價結合的平均分子量為20,000道爾頓的聚乙二醇。
[治療方法]
根據本揭示內容的方法獲得的純化或分離的G-CSF,特別是通過此類方法獲得的生物活性G-CSF,可以特別適合於治療應用。在此背景下,本揭示內容的一些實施例涉及一種用於治療或預防受試者的疾病的方法,該方法包括向受試者投予治療有效量的如本文所公開的G-CSF和/或如本文所公開的醫藥組合物。
如本文所用,術語“投予”是指通過包括但不限於口服、靜脈內、動脈內、肌內、腹膜內、皮下、肌內和局部投予或其組合的投予途徑來遞送生物活性組合物或配製品。該術語包括但不限於由醫學專業人員進行的投予和自我投予。本文所用的術語“治療有效量”是指通過本文所公開的方法獲得的生物活性G-CSF具有生物活性G-CSF的治療效應的量。
在本揭示內容的一些實施例中,將如本文所公開的G-CSF和/或醫藥組合物配製成與其預期投予途徑相容。本揭示內容的G-CSF和/或醫藥組合物可以口服或通過吸入投予,但是它們更可能將通過腸胃外途徑投予。腸胃外投予途徑的例子包括例如靜脈內、皮內、皮下、透皮(局部)、經粘膜和直腸投予。用於腸胃外應用的溶液或懸浮液可包括以下組分:無菌稀釋劑,諸如注射用水、鹽水溶液、固定油、聚乙二醇、甘油、丙二醇或其他合成溶劑;抗細菌劑,諸如苯甲醇或對羥基苯甲酸甲酯;抗氧化劑,諸如抗壞血酸或亞硫酸氫鈉;螯合劑,諸如EDTA;緩衝液,諸如乙酸鹽、檸檬酸鹽或磷酸鹽,以及用於調節張力的藥劑(諸如氯化鈉或右旋糖)。可用酸或堿(諸如磷酸二氫鈉和/或磷酸二鈉、鹽酸或氫氧化鈉)來調節pH(例如,調節至約7.2至7.8,例如7.5的pH)。可以將腸胃外製劑封裝在由玻璃或塑膠製成的安瓿、一次性注射器或多劑量小瓶中。
本揭示內容的此類主題G-CSF和/或醫藥組合物的劑量、毒性和治療功效可以通過細胞培養或實驗動物中的標準醫藥程式來確定,例如用於確定LD50 (對50%群體致死的劑量)和ED50 (在50%的群體中治療有效的劑量)。毒性效應與治療效應之間的劑量比是治療指數,並且其可表示為LD50 /ED50 的比率。表現出高治療指數的化合物是較佳的。儘管可以使用表現出毒副作用的化合物,但是應小心設計將此類化合物靶向至受累組織的部位的遞送系統,從而將對未感染細胞的潛在損害最小化,並且由此減少副作用。
從細胞培養測定和動物研究獲得的資料可以用於配製用於哺乳動物(例如,人)的劑量範圍。此類化合物的劑量較佳地在包括ED50 而具有很小或沒有毒性的迴圈濃度範圍內。劑量可取決於所採用的劑型和所利用的投予途徑而在此範圍內變化。對於在本揭示內容的治療方法中使用的任何醫藥組合物,可以首先根據細胞培養測定來估計治療有效劑量。可以在動物模型中制定劑量,以實現如在細胞培養中確定的迴圈血漿濃度範圍,該迴圈血漿濃度範圍包括IC50 (例如,實現對症狀的半最大抑制的測試化合物濃度)。此類資訊可以用於更準確地確定人中的有用劑量。可以例如通過高效液相層析測量血漿中的水準。
在一些實施例中,本揭示內容的方法適用於治療和/或預防與一種或多種適應症相關的疾病,該一種或多種適應症選自嗜中性粒細胞減少症和嗜中性粒細胞減少症相關的臨床後遺症、慢性嗜中性粒細胞減少症、嗜中性粒細胞減少性感染和非嗜中性粒細胞減少性感染;適用於減少因細胞毒性化療後的發熱性嗜中性粒細胞減少症而導致的住院治療;以及適用於減少接受清髓性療法之後進行骨髓移植的患者的嗜中性粒細胞減少症的持續時間,該骨髓移植被認為具有增加的嚴重嗜中性粒細胞減少症延長的風險。在一些實施例中,本揭示內容的方法適用於治療和/或預防與外周血祖細胞(PBPC)的動員和慢性炎性病症相關的疾病。
在一些實施例中,本文公開的G-CSF和/或含有該G-CSF的醫藥組合物的長期投予被指示可增加嗜中性粒細胞計數並減少感染相關事件的發生率和持續時間、治療晚期HIV感染患者的持續性嗜中性粒細胞減少症,以減少細菌感染的風險。在一些實施例中,本文公開的G-CSF和/或含有G-CSF的醫藥組合物被指示用於改善重症監護病房患者和危重症患者的臨床結局、創傷/皮膚潰瘍/燒傷的癒合和治療、化療和/或放療的強化、抗炎細胞因子的增加、光動力療法的抗腫瘤效應的增強。在一些實施例中,本文公開的G-CSF和/或含有該G-CSF的醫藥組合物被指示用於預防和治療由不同的腦功能障礙引起的疾患、治療血栓性疾患及其併發症、以及紅細胞生成的放射後恢復。它也可用於治療被報告為指示G-CSF的所有其他疾病。
因此,可以以有效治療或預防上述疾病中的一種或多種的治療量,將含有通過本文所公開的方法獲得的生物活性G-CSF的醫藥組合物投予患者、兒童或成人。在一些實施例中,本揭示內容的方法適合於治療和/或預防嗜中性粒細胞減少症。
本揭示內容中所提到的所有出版物和專利申請案都通過引用併入本文中,併入程度如同明確且單獨地指示每個單獨出版物或專利申請案通過引用併入一般。
不承認本文引用的任何參考文獻構成先前技術。參考文獻的討論陳述了其作者的主張,並且發明人保留質疑所引用文獻的準確性和針對性的權利。應當清楚理解的是,儘管本文引用了許多資訊源,包括科學期刊文章、專利檔和教科書;但是此參考文獻並不意味著承認這些檔中的任何檔形成了業內公知常識的一部分。
本文給出的一般方法的討論僅旨在用於說明目的。在審閱本揭示內容之後,其他替代方法和替代方案對於熟習此項技術者而言將是清楚的,並且將被包括在本申請案的精神和範圍內。
實例
在以下所述的實例中,評價和優化了許多G-CSF折疊條件。這些實例中描述的G-CSF是具有兩個分子內二硫鍵的重組人粒細胞群落刺激因子(rhG-CSF)。重組rhG-CSF的序列與天然人粒細胞群落刺激因子序列相同,不同之處在於由於在大腸桿菌中表現而包含N端甲硫胺酸。在這些實驗中,rhG-CSF是非糖基化的蛋白。
下文所述的所有按比例縮小的純化實驗均使用AKTA Explorers(GE Healthcare)和Omnifit層析柱執行。使用Agilent UV-Vis或Thermo Nanodrop來確定過程中層析池的濃度。用AKTA Ready和AKTA Pilot,使用BPG層析柱執行對四分之一規模和100 L實驗和工程材料的純化。使用針對四分之一規模的手動系統和針對實驗和工程輪次的自動化Millipore Mobius滑軌來執行超濾/滲濾(UF/DF)。
實例 1
[增溶和折疊過程的開發]
本實例展示了非限制性的示例性工作流程,其中將包涵體中所含有的rhG-CSF增溶,然後折疊以產生生物活性rhG-CSF蛋白。新近描述的方法的主要原理涉及為rhG-CSF開發的多步折疊過程,該多步折疊過程包括:(i) 將含有G-CSF的IB分散在懸浮緩衝液中,(ii) 通過使用變性劑(十二烷基肌胺酸鈉)對IB中含有的rhG-CSF進行增溶,(iii) 使用僅含有硫醇氧化還原對的還原形式的折疊緩衝液來引發增溶的rhG-CSF的折疊,以及 (iv) 通過一系列稀釋步驟降低變性劑濃度。如上文所討論,可以以商業生產規模有利地實施本文公開的多步折疊過程。
在典型的實驗工作流程中,在懸浮階段期間將冷凍的包涵體粒料用共混器在Tris懸浮緩衝液(40 mM的Tris,pH 7.6)以每克粒料品質25克緩衝液破碎。將冷凍的粒料與懸浮緩衝液(25 mL/g冷凍的粒料)共混20秒,之後在室溫下輕輕混合15分鐘。此步驟加速了增溶步驟之前包涵體的解凍。在共混後,將包涵體懸浮液轉移至密閉的一次性容器中,並進行攪拌器混合。
然後,使用用作變性劑的十二烷基肌胺酸鈉來執行隨後的增溶步驟。將包涵體用增溶緩衝液(40 mM Tris,十二烷基肌胺酸鈉,pH 8.4)溶解,該增溶緩衝液是與懸浮緩衝液以1 : 1的體積比添加的。在一些實施例中,將增溶緩衝液以25 mL/g裂解物粒料添加。不受任何特定理論的束縛,認為變性劑可使包涵體展開並降低對聚集的敏感性。在這些實驗中,評價了0.56%、1.0%和2.0%的十二烷基肌胺酸鈉濃度下的增溶。觀察到,通過添加含有0.56%、1.0%或2.0%的十二烷基肌胺酸鈉的增溶緩衝液,約5 g的包涵體在2小時內被完全增溶。
在孵育14小時至24小時後,用WFI以1 : 1的體積比進一步稀釋被增溶物中的增溶緩衝液,並添加折疊緩衝液(40 mM Tris,0.8 mM半胱胺酸,pH 7.8)以使最終半胱胺酸濃度為80 μM以引發折疊。通常,對於1克裂解物粒料,添加10 mL折疊緩衝液。然後將折疊混合物在室溫下混合約15分鐘,之後在不混合的情況下在15ºC-25ºC下孵育22±2小時。然後將折疊混合物用WFI 1 : 1稀釋,並進一步混合約15分鐘。
折疊緩衝液的此添加通過分別稀釋至0.5%、0.9%和1.8%而將十二烷基肌胺酸鈉的水準降低以實現折疊。在0小時、4小時、6小時、20小時和24小時處通過逆相HPLC分析樣品的滴定度。 1 中所示的資料指示可以在這些緩衝液的所有三種十二烷基肌胺酸鈉濃度下執行增溶和折疊操作,從而產生相似量的蛋白質和相似的重折疊速率。
進一步觀察到,如通過逆相HPLC(RP-HPLC;參見 2 )所測定的,在0.5%的十二烷基肌胺酸鈉濃度下,半胱胺酸以40 μM、80 μM和160 μM三種濃度有效地發起折疊。
在室溫下使用Dowex 1×8離子交換樹脂(50-100目;54 g/1 kg折疊混合物),採用含有40 mM Tris(pH 7.7)的洗滌緩衝液3小時,以實現從折疊混合物中去除十二烷基肌胺酸鈉。隨後經濾過來去除Dowex 1×8離子交換樹脂。在另一個任選的回收步驟中,使經洗滌的G-CSF蛋白通過深度篩檢程式。
實例 2
[十二烷基肌胺酸鈉含量的連續逐級減少的優化]
本實例描述了根據本揭示內容的一些實施例執行,以優化在rhG-CSF的製備期間十二烷基肌胺酸鈉濃度的連續逐級降低的實驗。在這些實驗中,通過三組細化實驗來評價十二烷基肌胺酸鈉折疊實驗中的幾個參數。這些參數包括 (i) 十二烷基肌胺酸鈉與蛋白質的克數比,(ii) 在增溶步驟處EDTA、谷胱甘肽或半胱胺酸的使用,(iii) 在折疊步驟處半胱胺酸、谷胱甘肽或氧化還原體系的使用,(iv) 在折疊步驟處的十二烷基肌胺酸鈉百分比,(v) 在樹脂去除步驟處的十二烷基肌胺酸鈉百分比,以及 (vi) Dowex的量。
在這些實驗中未改變的參數包括在室溫下折疊,使用1.0%的十二烷基肌胺酸鈉緩衝液進行增溶,增溶時間,折疊時間,以及去污劑樹脂和混合時間。
對於初始折疊研究,使用經洗滌的USU輪次11包涵體粒料。用20 mg IB評價每種條件。在折疊後,分析樣品的RP-HPLC滴定度。使用輪次11 IB進行了若干次研究反覆運算,以評價條件的組合並確保一致性(資料未顯示)。然後用輪次9 IB評價一系列條件,以確認跨各原料的一致性。來自輪次9的實驗組的資料顯示在 1 中。
表1
條件 1 2 3 4 5 6
增溶(混合時間3小時)
十二烷基肌胺酸鈉 1% 1% 1% 1% * 1% 1%
十二烷基肌胺酸鈉(g):蛋白質(g) 10:1 10:1 10:1 5:1 5:1 5:1
添加劑 0 1 mM EDTA 0 0 100 mM GSH 5 mM Cys
折疊(24小時無混合)
十二烷基肌胺酸鈉 1% 1% 0.5% 0.5% 0.5% 0.5%
半胱胺酸 80µM 80µM 0 80µM 0 0
折疊後
稀釋 0 0 0 2x 2x 2x
保持時間 N/A N/A N/A 15 min 15 min 15 min
去除去污劑(混合時間3小時)
Dowex(mg) 54 108 51 108 54 54
不滴定的非還原分析
量(所有峰)mg/mL 1.43 1.25 0.69 0.68 0.69 0.57
量(非還原的)mg/mL 1.00 1.04 0.30 0.54 0.59 0.18
量(還原的)mg/mL 0.03 0.03 0.32 0.02 0.02 0.03
非還原的相對面積% 70.06 83.39 43.39 78.69 84.23 30.98
 
乘數 1 1 1 2 2 2
量(所有峰)mg/mL 1.43 1.25 0.69 1.36 1.38 1.14
量(非還原的)mg/mL 1.00 1.04 0.30 1.08 1.18 0.36
滴定的非還原分析
量(所有峰)mg/mL 0.91 1.19 0.14 0.62 0.66 0.51
量(非還原的)mg/mL 0.68 1.03 0.08 0.53 0.57 0.17
量(還原的)mg/mL 0.01 0.01 0.05 0.01 0.01 0.01
非還原的相對面積% 75.21 86.53 60.65 85.85 86.80 33.58
 
乘數 1 1 1 2 2 2
量(所有峰)mg/mL 0.91 1.19 0.14 1.24 1.32 1.02
量(非還原的)mg/mL 0.68 1.03 0.08 1.06 1.14 0.34
*在添加十二烷基肌胺酸鈉之前在Tris緩衝液中懸浮。
實例 3
[折疊的小規模確認]
在小規模加工中進一步評價如上述實例2所述的以篩選形式鑒定出的最佳折疊條件。使用懸浮液的對照是對實例2中描述的對照條件的輕微修改,其中首先將包涵體懸浮在Tris緩衝液中,並且將Dowex增加至每克十二烷基肌胺酸鈉10 g,但是所有其他處理和比率保持與先前加工中相同。Tris懸浮條件對應於實例2中的條件4。在 2 中描述了研究設計。
表2
  使用懸浮液的對照 Tris懸浮液 Tris懸浮液
USU輪次 6 6 9
懸浮液 Tris緩衝液 Tris緩衝液 Tris緩衝液
增溶 1%十二烷基肌胺酸鈉 10:1的比率 1%十二烷基肌胺酸鈉 5:1的比率 1%十二烷基肌胺酸鈉 5:1的比率
折疊 1%十二烷基肌胺酸鈉 80 μM Cys 0.5%十二烷基肌胺酸鈉 80 μM Cys 0.5%十二烷基肌胺酸鈉 80 μM Cys
折疊後 N/A 2x WFI 2x WFI
Dowex 10 g/g十二烷基肌胺酸鈉 10 g/g十二烷基肌胺酸鈉 10 g/g十二烷基肌胺酸鈉
層析 DEAE DEAE DEAE
小規模加工研究的最終蛋白質產率在下 3 中提供。
表3
  使用懸浮液的對照 Tris懸浮液 Tris懸浮液
所使用的G-CSF品質(mg) 923.9 969.9 736.9
折疊的G-CSF的品質(mg) 454.4 611.5 418.1
DEAE產率(%) 22.5 37.0 43.3
CM產率(%) 56.2 82.0 N/T
總產率(%) 11.1 23.1 24.6
Tris懸浮條件證明了原料之間的產率一致性,並且產率相對于對照條件增加了2倍。選擇此條件是為了推進四分之一規模的生產、實驗和工程輪次。由於對對照的修改,產率的提高最有可能不受使用Tris的初始懸浮液或用於去除十二烷基肌胺酸鈉的Dowex的量的影響。不受任何特定理論的束縛,認為重要的參數包括 (1) 十二烷基肌胺酸鈉與蛋白質的比率,(2) 折疊時十二烷基肌胺酸鈉的百分比,以及 (3) 在去除十二烷基肌胺酸鈉之前折疊混合物的稀釋度。
實例 4
[折疊動力學]
本實例描述了為評價折疊時間對G-CSF產物品質的影響而執行的實驗。在這些實驗中,使用來自兩個大規模工程批次的樣品評價折疊時間。
在這些實驗中,使用來自以下兩個工程輪次的樣品評價了折疊速率:工程1和工程2。這兩個工程輪次的折疊是根據以上實例3中所述的參數進行的。在折疊開始時從大批中取得樣品,並置於22ºC下的自動採樣器中。在選定的時間點執行逆相注入,並且資料呈現在 3 4 中。關於在22小時處批量工程1的終點的逆相資料呈現在圖3上。兩個資料集的資料相似,表明自動採樣器時程方法是代表性的。對於這兩個資料集,折疊過程均在12小時至14小時內完成。由於完成早於22小時持續時間,因此有興趣在工程2中執行小規模實驗,以確定減少折疊時間是否有益處。從工程2中在折疊階段取出樣品,並在15小時的折疊時間後進行到CM分級的過程。從該實驗獲得的資料與較大規模的較長折疊時間是可比的。表4顯示了來自15小時折疊的所得資料。
表4:折疊的動力學
LHS:疏水性較低的物質。MHS:疏水性更高的物質。HMW:高分子量物質。LMW:低分子量物質。IEC:離子交換層析。SEC:尺寸排阻層析。
操作 %產率 逆相 IEC SEC
%LHS %主要 %MHS %酸性 %主要 %鹼性 %HMW %主要 %LMW
DEAE 65 2.35 93.73 3.92 4.45 95.55 0.00 0.5 99.5 0.0
CM 111 1.98 96.43 1.59 2.01 97.99 0.00 0.2 98.8 0.0
優保津(Neupogen) N/A 2.40 93.64 3.96 1.98 98.02 0.00 N/T N/T N/T
5 是來自 3 4 的逆相HPLC %主要(% main)的資料集的疊加圖,其證明了本文公開的方法的一致性。在工程1和工程2中觀察到了一致的折疊速率,如通過逆相HPLC以%主要的變化所指示的。兩種源材料的折疊過程均在12小時至14小時內完成。
實例 5
[折疊溫度]
在這些實驗中,進行小型研究以評價4ºC下的折疊。在室溫下在折疊開始處從實驗2中取得樣品。將此樣品在4ºC下放置相同的折疊時間。通過逆相分析確定折疊效率。表5中的資料表明在冷凍溫度下折疊略有改善,但該改善可在可變性的範圍內。
表5
  所有峰 (mg/mL) 非還原的 (mg/mL) 還原的 (mg/mL) 非還原的 (%) 還原的 (%)
室溫下重新折疊 0.50 0.38 0.03 75.88 5.73
4ºC下重新折疊 0.43 0.36 0.02 83.78 4.22
實例 6
[半胱胺酸穩定性]
在所有G-CSF生產中,在折疊起始當天製備含40 mM Tris、0.8 mM半胱胺酸,pH 7.8的折疊緩衝液。這在製造中可能具有挑戰性,因此執行了半胱胺酸穩定性研究。半胱胺酸緩衝液的樣品獲自工程輪次1。將此緩衝液在室溫下保存。在某些時間點,使用儲存的緩衝液來發起USU輪次9 IB粒料的折疊。然後通過逆相滴定度測量非還原的百分比。該非還原的百分比用於確定緩衝液的穩定性。研究表明,半胱胺酸緩衝液可以在室溫下保存至少兩周。
儘管已經公開了本揭示內容的具體替代方案,但是應當理解的是,在所附申請專利範圍的真實精神和範圍內各種修改和組合是可以進行和設想的。因此,無意限制本文所呈現的確切摘要和公開內容。
圖1圖解地展示了在增溶和折疊操作期間對蛋白質產量和G-CSF的折疊速率的影響,如針對增溶緩衝液中的三種非限制性示例性濃度的變性劑所證明的。 圖2示出了長條圖,該長條圖展示了在折疊操作期間在半胱胺酸的存在下G-CSF的折疊效率,如針對折疊緩衝液中的三種非限制性示例性濃度的半胱胺酸所證明的。 圖3示出了曲線圖,該曲線圖匯總了根據本揭示內容的一些實施例執行用以評價折疊反應時間對G-CSF產物的產量和品質的影響的實驗的結果。 圖4示出了曲線圖,該曲線圖匯總了根據本揭示內容的一些實施例執行用以評價折疊時間對G-CSF產物的產量和品質的影響的另一實驗的結果。 圖5示出了圖3和圖4中呈現的實驗資料的疊加圖,證明了本文所公開的方法的一致性。

Claims (43)

  1. 一種從包涵體(IB)中分離和/或純化粒細胞群落刺激因子(G-CSF)的方法,其包括: a) 用包含變性劑的增溶緩衝液使該IB中包含的該G-CSF增溶;以及 b) 通過經由連續逐級稀釋過程用僅包含硫醇氧化還原對的還原形式的折疊緩衝液稀釋來自 (a) 的被增溶物來發起所增溶的G-CSF的折疊,以獲得包含折疊的G-CSF的折疊混合物。
  2. 一種用於製備生物活性粒細胞群落刺激因子(G-CSF)的方法,其包括: a) 用包含變性劑的增溶緩衝液使含有G-CSF的包涵體(IB)增溶;以及 b) 通過經由連續逐級稀釋過程用僅包含硫醇氧化還原對的還原形式的折疊緩衝液稀釋來自 (a) 的被增溶物來發起所增溶的G-CSF的折疊,以獲得具有提高的純度和/或功能活性的包含折疊的G-CSF的折疊混合物。
  3. 如請求項2所述的方法,其中所獲得的G-CSF包括具有大於80%的純度的有生物活性的正確折疊的G-CSF。
  4. 如請求項1至2中任一項所述的方法,其還包括回收所折疊的G-CSF。
  5. 如請求項1至4中任一項所述的方法,其中在增溶之前將含有G-CSF的該IB懸浮在懸浮緩衝液中。
  6. 如請求項5所述的方法,其中該懸浮緩衝液包含在約7.0至8.0的範圍內的pH下的約20 mM至60 mM的Tris。
  7. 如請求項6所述的方法,其中該懸浮緩衝液包含在約7.6的pH下的約40 mM的Tris。
  8. 如請求項1至7中任一項所述的方法,其中該增溶緩衝液中的該變性劑包括溫和變性去污劑、強變性去污劑、離子型去污劑、或其任何組合。
  9. 如請求項1至8中任一項所述的方法,其中該增溶緩衝液中的該變性劑包括N-月桂醯肌胺酸(十二烷基肌胺酸鈉)、十二烷基硫酸鈉(SDS)、月桂基硫酸鈉、聚氧乙烯聚氧丙二醇、椰油醯兩性基乙酸鹽、十二烷基硫酸鋰、辛基硫酸鈉、去氧膽酸、水合膽酸鈉、去氧膽酸鈉、甘胺膽酸鈉、牛磺去氧膽酸鈉、或其任何組合。
  10. 如請求項1至9中任一項所述的方法,其中該變性劑包括陰離子型去污劑。
  11. 如請求項10所述的方法,其中該增溶緩衝液中的該陰離子型去污劑是十二烷基肌胺酸鈉。
  12. 如請求項11所述的方法,其中該十二烷基肌胺酸鈉以按重量計約0.2%至約5.0%範圍內的量存在於該增溶緩衝液中。
  13. 如請求項11至12中任一項所述的方法,其中十二烷基肌胺酸鈉以按重量計約0.2%、約0.56%、約1.0%或約2.0%的量存在於該增溶緩衝液中。
  14. 如請求項1至13中任一項所述的方法,其中該增溶緩衝液包含在約7.5至約9.0的範圍內的pH下的約20 mM至60 mM的Tris、約0.2%至約5.0%的十二烷基肌胺酸鈉。
  15. 如請求項14所述的方法,其中該增溶緩衝液包含在約8.4的pH下的約40 mM、約2.0%的十二烷基肌胺酸鈉。
  16. 如請求項5至15中任一項所述的方法,其中調節該懸浮緩衝液與該增溶緩衝液的體積比,使得最終pH為約7.5至約7.8。
  17. 如請求項1至16中任一項所述的方法,其中該連續逐級稀釋過程包括逐漸降低來自 (a) 的被增溶物中的該變性劑的濃度。
  18. 如請求項17所述的方法,其中逐漸降低該變性劑濃度的過程包括以下中的一項或多項: (i) 將該增溶緩衝液與該懸浮緩衝液混合,該懸浮緩衝液懸浮有該含有G-CSF的IB; (ii) 用注射用水(WFI)稀釋來自 (i) 的被增溶物,以形成稀釋的被增溶物; (iii) 將該折疊緩衝液添加到來自 (ii) 的所稀釋的被增溶物中,以獲得折疊混合物;以及 (iv) 用WFI進一步稀釋來自 (iii) 的該折疊混合物。
  19. 如請求項18所述的方法,其中 (i) 中的該增溶緩衝液與該懸浮緩衝液的體積比為約1 : 1。
  20. 如請求項18至19中任一項所述的方法,其中來自 (i) 的該被增溶物與WFI的體積比為約1 : 1。
  21. 如請求項18至20中任一項所述的方法,其中該折疊緩衝液與來自 (ii) 的所稀釋的被增溶物的體積比為約1 : 1。
  22. 如請求項18至21中任一項所述的方法,其中來自 (iii) 的該折疊混合物與WFI的體積比為約1 : 1。
  23. 如請求項1至22中任一項所述的方法,其中該硫醇氧化還原對的還原形式是還原形式的半胱胺酸、谷胱甘肽、青黴胺、N-乙醯基-青黴胺、2-巰基乙酸、2-巰基丙酸、3-巰基丙酸、巰基琥珀酸、巰基丙酮酸、巰基乙醇、單硫代甘油、γ-麩胺醯半胱胺酸、半胱胺醯甘胺酸、半胱胺、N-乙醯基-L-半胱胺酸、同型半胱胺酸、或硫辛酸(二氫硫辛醯胺)。
  24. 如請求項1至23中任一項所述的方法,其中該硫醇氧化還原對的還原形式是還原型谷胱甘肽(GSH)。
  25. 如請求項1至23中任一項所述的方法,其中該硫醇氧化還原對的還原形式是半胱胺酸。
  26. 如請求項24所述的方法,其中該半胱胺酸以在約20 μM至200 μM範圍內的濃度存在於該折疊緩衝液中。
  27. 如請求項25至26中任一項所述的方法,其中該半胱胺酸以約40 μM、約50 μM、約80 μM或約160 μM的濃度存在於該折疊緩衝液中。
  28. 如請求項25至27中任一項所述的方法,其中將該折疊緩衝液添加到該被增溶物中以使該折疊混合物中的半胱胺酸最終濃度為約80 μM。
  29. 如請求項4至28中任一項所述的方法,其中所折疊的G-CSF的回收包括選自以下的一種或多種技術:親和層析、陰離子交換層析(AEX)、陽離子交換層析(CEX)、羥基磷灰石層析、尺寸排阻層析(SEC)、疏水相互作用層析(HIC)、金屬親和層析、混合模式層析(MMC)、離心、滲濾和超濾。
  30. 如請求項29所述的方法,其中該陰離子交換層析包括DEAE Sepharose層析。
  31. 如請求項29所述的方法,其中該陽離子交換層析包括CM Sepharose層析。
  32. 如請求項29所述的方法,其中該滲濾和/或超濾包括聚醚碸膜。
  33. 如請求項1至32中任一項所述的方法,其中該G-CSF是人G-CSF(hG-CSF)。
  34. 如請求項1至33中任一項所述的方法,其中該IB是從表現G-CSF的重組細胞獲得的,其中所表現的G-CSF在該細胞中形成該IB。
  35. 如請求項34所述的方法,其中該重組細胞是原核細胞或真核細胞。
  36. 如請求項1至35中任一項所述的方法,其中該方法不包含強變性劑、強還原劑、氧化還原反應和/或重金屬。
  37. 如請求項36所述的方法,其中該強還原劑是尿素或二硫蘇糖醇(DTT)。
  38. 如請求項36所述的方法,其中該重金屬是銅。
  39. 一種通過如請求項1至38中任一項所述的方法純化或分離的粒細胞群落刺激因子(G-CSF)。
  40. 一種醫藥組合物,其包含治療有效量的請求項39所述的G-CSF,以及醫藥上可接受的輔助物質。
  41. 如請求項40所述的醫藥組合物,其中該醫藥組合物是液體組合物、凍幹物或粉末。
  42. 一種用於治療或預防受試者的疾病的方法,其包括向該受試者投予治療有效量的請求項39所述的G-CSF和/或請求項40至41中任一項所述的醫藥組合物。
  43. 如請求項42所述的方法,其中該疾病是嗜中性粒細胞減少症。
TW109113444A 2019-04-24 2020-04-22 用於製備粒細胞群落刺激因子的方法 TW202106698A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962838226P 2019-04-24 2019-04-24
US62/838,226 2019-04-24

Publications (1)

Publication Number Publication Date
TW202106698A true TW202106698A (zh) 2021-02-16

Family

ID=72941799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113444A TW202106698A (zh) 2019-04-24 2020-04-22 用於製備粒細胞群落刺激因子的方法

Country Status (6)

Country Link
US (1) US20220195002A1 (zh)
EP (1) EP3959222A4 (zh)
JP (1) JP2022529811A (zh)
AU (1) AU2020261942A1 (zh)
TW (1) TW202106698A (zh)
WO (1) WO2020219395A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923967A (en) * 1988-09-26 1990-05-08 Eli Lilly And Company Purification and refolding of recombinant proteins
AU2007272412B2 (en) * 2006-07-14 2013-11-07 Genentech, Inc. Refolding of recombinant proteins
EP2281827B1 (en) * 2008-05-08 2013-08-21 Ajinomoto Co., Inc. Protein refolding method
HUP1200172A2 (en) * 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
WO2016009451A2 (en) * 2014-07-14 2016-01-21 Gennova Biopharmaceuticals Limited A novel process for purification of rhu-gcsf
US20180086808A1 (en) * 2015-03-16 2018-03-29 Arven Ilac Sanayi Ve Ticaret A.S. A process for preparing g-csf (granulocyte colony stimulating factor)

Also Published As

Publication number Publication date
WO2020219395A1 (en) 2020-10-29
US20220195002A1 (en) 2022-06-23
JP2022529811A (ja) 2022-06-24
AU2020261942A1 (en) 2021-11-04
EP3959222A1 (en) 2022-03-02
EP3959222A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
Mukhopadhyay Inclusion bodies and purification of proteins in biologically active forms
JP5517991B2 (ja) 遊離システイン残基を含有するタンパク質をリフォールディングする方法
JP5964757B2 (ja) 生物学的活性型組換えヒトg−csfを得るための方法
CN104540846B (zh) 重新折叠来自包涵体的g‑csf的方法
DK2421901T3 (en) Compositions comprising HC-HA complex, and methods of use thereof
SK9872000A3 (en) Erythropoietin conjugate
US20140309175A1 (en) Polymeric conjugates of c1-inhibitors
WO2010146599A1 (en) Process for purification of recombinant human granulocyte colony stimulating factor
JP2000504325A (ja) 新規なトロンボポエチンの投与
EP2341061A1 (en) A novel process for preparing G-CSF (granulocyte colony stimulating factor)
TW202106698A (zh) 用於製備粒細胞群落刺激因子的方法
US20180086808A1 (en) A process for preparing g-csf (granulocyte colony stimulating factor)
KR20040083268A (ko) 안정성이 증가된 인간 과립구 콜로니 자극인자 융합체 및이의 제조방법
Tiwari et al. Efficient Purification of rhG-CSF and its PEGylated Forms and Evaluation for In Vitro Activities
US9895420B2 (en) IL-1beta propeptide and IL-1Ra chimera and methods of using the same
TW200922614A (en) N-terminal modified interferon-alpha
KR20120093870A (ko) 호모다이머 폼의 plgf-1