TW202043767A - 解析方法、解析裝置、解析程式、及標準形狀之生成方法 - Google Patents

解析方法、解析裝置、解析程式、及標準形狀之生成方法 Download PDF

Info

Publication number
TW202043767A
TW202043767A TW108136870A TW108136870A TW202043767A TW 202043767 A TW202043767 A TW 202043767A TW 108136870 A TW108136870 A TW 108136870A TW 108136870 A TW108136870 A TW 108136870A TW 202043767 A TW202043767 A TW 202043767A
Authority
TW
Taiwan
Prior art keywords
shape
data
target component
standard
analysis
Prior art date
Application number
TW108136870A
Other languages
English (en)
Inventor
池田達彦
三田真史
Original Assignee
日商資生堂股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商資生堂股份有限公司 filed Critical 日商資生堂股份有限公司
Publication of TW202043767A publication Critical patent/TW202043767A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8637Peak shape
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Library & Information Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

提供一種解析方法用於解析由至少2個參數生成之資料,該解析方法包括將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比的對比步驟;基於該對比,識別該測定對象試料中之目標成份的識別步驟。

Description

解析方法、解析裝置、解析程式、及標準形狀之生成方法
本發明係關於一種解析方法、解析裝置、解析程式、及標準形狀之生成方法。
化學分析領域中,對於試料中之規定成份,已知可藉由獲取包含2個以上參數的資料,並對該資料進行解析,來對該規定成份進行識別‧定量。例如,層析法(chromatography)等中,以時間‧空間‧質量對試料進行,使用檢測器對分離後的成份進行檢測,並主要按照每個時間記錄從檢測器獲得的信號強度。由此,可獲得主要包含時間及信號強度這2個參數的資料(例如,層析圖(chromatogram)等)。且,可根據欲進行識別‧定量之目標成份的量參數之大小(例如,層析圖峰值之大小),對該成份進行識別・定量。
按照上述方式進行定量時,需要設定用於決定目標成份相關參數大小的基準,例如,在上述層析圖的例子中,需要設定用於求出目標成份峰值之高度或面積的基準線。然而,資料並非一定具有獨立(分離)的目標成份,因近旁其他成份之影響,有時難以確定參數之大小。因此,技術人員在研究根據非分離資料進行成份定量的方法。例如,非專利文獻1中記載了一種基於層析圖中的非分離峰值進行定量的方法。 <先前技術文獻> <非專利文獻>
非專利文獻1:中村洋主編,日本分析化學會液體層析法研究交流會編緝,“液層析 犬之卷”,平成18年2月2日發行,p96~97
<發明所欲解決之問題>
然,如非專利文獻1中所揭示,基於未分離之資料進行定量的方法中,作為標準並未確立任何事項。因此,無法適當進行目標成份的資料解析,難以確保所獲得的定量值之信賴性等,有時無法進行高信賴性的分析。
鑒於上述問題點,本發明之一形態,提供一種能夠進行信賴性更高的分析的資料解析方法。 <用於解決問題之手段>
本發明之一形態提供一種對由至少2個參數生成的資料進行解析的解析方法,其包括;將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比的對比步驟;基於該對比,識別該測定對象試料中的目標成份的識別步驟。
此外,本發明之一形態提供一種對由至少2個參數生成的資料進行解析的解析方法,其包括:將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比的對比步驟;基於該對比,求出該測定對象試料中目標成份之定量值的定量值計算步驟。該標準形狀包含從分別以不同定量值含有該目標成份之複數個標準試料中分別獲得的該目標成份的形狀群。 <發明之功效>
根據本發明之一形態,提供能夠進行信賴性更高的分析的資料解析方法。
本發明之一形態提供用於解析由至少2個參數生成的資料的解析方法,其包括:將測定對象試料中的目標成份之資料形狀與預先獲取的標準形狀進行對比的對比步驟;基於該對比,識別該測定對象試料中的目標成份的識別步驟。
另外,本發明之一形態提供用於解析由至少2個參數生成的資料的解析方法,其包括:將測定對象試料中的目標成份之資料形狀與預先獲取的標準形狀進行對比的對比步驟;基於該對比,求出該測定對象試料中的目標成份之定量值的定量值計算步驟。且,該標準形狀包含從分別以不同定量值含有該目標成份的複數個標準試料中分別獲得的該目標成份之形狀群。
此外,本發明之一形態提供標準形狀的製作方法,該標準形狀包含從分別以不同定量值含有目標成份的複數個標準試料中獲得的該目標成份之形狀群,且用於對由至少2個參數生成的資料進行解析。
本說明書中,“資料形狀”或“形狀”(“data shape”或“shape”)是指,使用2個以上參數表示試料中的成份特徵的資料形態,亦可使用2個以上參數以某種函數表示。“資料形狀”不限於2維空間(平面)、3維空間等物理空間中的形狀(shape),其概念可擴張至4以上多維空間座標中的形態。在此,求出目標成份之定量值時,參數中的至少1個是該目標成份的相關定量參數(量參數)。
以下,主要根據包含2個參數的分離分析資料,具體而言,根據時間及表示與時間相應的信號強度的資料(表示時序性信號強度的資料)之例,說明本發明的實施形態,而本發明並不限定於說明書中說明的具體形態。
<關於資料形狀> 本發明的發明者們,針對由至少2個參數生成的分離分析資料進行了銳意研究,其結果發現,若在一方向(具體而言,定量參數軸方向)上,按規定倍率拉長在相同條件下獲得的目標成份的資料形狀,可獲得相同形狀。
關於上述發現,以層析圖為例進行說明。層析圖是藉由對試料進行時間性分離的層析法獲得的資料(圖,表),是由時間以及檢測器檢測出的信號強度這2個參數生成的資料。層析圖之2個參數中,信號強度是反映出目標成份量的參數,即,定量參數,時間則是不反映目標成份量的參數,即,非定量參數。
圖1(a)示出利用高速液體層析儀(Chromatograph)解析D-天冬醯胺(D-asparagine)試料所獲得的層析圖之一部分。圖1(a)的各資料(峰值)係在相同分析條件下,僅對試料中的D-天冬醯胺之濃度進行變更而獲得的結果(各峰值的D-天冬醯胺之濃度分別是0.025pmol/inj、0.25pmol/inj、2.5pmol/inj、5.0pmol/inj)。圖示之層析圖中,橫軸為保持時間,縱軸為信號強度。
變更圖1(a)所示各峰值的縱軸(強度軸)方向之倍率,使峰頂(peak top)的強度(峰值高度)成為相同強度,其結果如圖1(b)所示。更具體為,將0.025pmol/inj、0.25pmol/inj、2.5pmol/inj的峰值分別在強度軸方向上進行擴大,以使其峰頂強度成為與5pmol/inj的峰值相同的強度。在圖1(b)中,使各峰值在強度軸方向上移位,以使峰頂位置的強度(縱軸的值)成為零。
如圖1(b)所示,進行上述強度軸方向的倍率變更後,全部峰值相重疊(全部峰值的形狀大致相同)。在此,本說明書中的“實質上相同”、“大致相同”表示其中包含測定時的機械性、電氣性、人為原因產生的誤差所致的些許偏離。此外,“相同分析條件”或“相同分析系統”表示,例如層析法中,柱體(column)的尺寸及形狀、充填劑、固定相(Stationary phase)、移動相(Mobile phase)、載子種類、流送方式、溫度等分析條件實質上相同。
由此可知,相同分析條件下獲得的規定成份的資料形狀,具有該成份固有的特徵。
在上述層析圖的例子中,相同分析條件下獲得的規定成份之峰值,除了受濃度影響的強度軸方向之大小(規模)有所不同之外,其分析條件中的成份示出固有(特有・獨自)的形狀。換言之,對相同分析條件下獲得的,且從含有不同濃度的規定成份的2個試料分別獲得的該成份的2個峰值pA 、pB 進行對比的情形下,共同的任意時間範圍Δt中的強度軸方向的增加量之比ΔIA /ΔIB 大致保持恆定。或,在時間軸方向的相同位置,對兩個峰值分別繪出切線(tangent),並對比兩個峰值的切線傾斜度時,在時間軸方向的任何位置上,兩者之比均相同或實質上相同。
因此,即使在目標成份之相關資料未分離(並非獨立),與鄰接之其他成份(雜質)的資料重疊的情形下,只要未受鄰接之其他成份影響的資料形狀被局部顯示出來,藉由對該局部性形狀與預先獲取的濃度已知的資料形狀(標準形狀)進行對比,能夠識別(確定)目標成份,及,能夠在識別(確定)目標成份的基礎上,對濃度進行推測或定量。
例如,在層析圖中,將測定對象試料的目標成份峰值的一部分或整體形狀重疊在濃度已知的標準峰值形狀(標準形狀)上,使兩者的時間軸方向位置相對應,並求出目標成份的峰值相對於標準峰值在信號強度軸方向上的擴大‧縮小倍率(比率化,scaling),由此可根據重疊程度識別(確定)出目標成份,並能夠預測濃度。使測定對象的峰值與標準峰值重疊時,例如,能夠對峰頂(形狀的頂點)彼此的時間軸方向位置進行對位‧修正。此時,分析條件中的形狀的強度軸方向各點為概率密度函數之情形下,可根據時間軸的修正率來修正強度。例如,在時間軸方向的變化率為ΔT(時間修正量)/T(修正前的時間)時,在強度軸方向也能夠按照ΔT/T比率進行修正。
此外,藉由根據複數個標準峰值的形狀(校準標準形狀),求出峰值的強度軸(定量參數軸)方向的大小與濃度之關係,並作為回歸式預先保存,可將其利用為校準線。且,藉由配合使用至少1個標準峰值的形狀及回歸式,能夠對試料中的目標成份進行定量。
如上所述,本形態中,藉由將測定對象的形狀與預先獲取的標準形狀進行重疊對比(形狀擬合,形狀比率化),可進行識別‧定量。因此,例如,在層析法分析中,無需在層析圖上設定用於求出峰值高度或峰值面積的基準線。由此,相較於因設定任意基準線而造成人為誤差等的歷來方法而言,能夠提高所獲得的定量值的信賴性。
在此,一般而言,若能獲得目標成份完全分離的資料(例如,峰值完全分離),則容易對目標成份進行識別及定量。然而,由於無法對目標成份及其他成份進行化學性分離,或由於物理性原因而需要大量時間等理由,想要獲得目標成份被特別地完全分離的資料,有時不切實際。由此,本發明之一形態,其效果在於能夠縮短分析時間。此外,即使是無法分離目標成份而難以利用歷來方法進行識別‧定量解析的資料,只要資料形狀被局部顯示出來,就能夠採用本形態進行解析。
<解析裝置的功能結構例> 圖2示出用於實施本發明一形態之解析方法的波形資料解析裝置的功能結構之一例。如圖2所示,解析裝置10可具備輸入元件31、輸出元件32、記憶元件33、資料獲取元件11、平滑化元件12、目標成份資料檢測元件13、對比元件14、定量值計算元件15、回歸式生成元件16及控制元件17。
如圖2所示,解析裝置10與分析裝置40連接。分析裝置40是能夠分析試料並輸出定量用資料的化學分析裝置即可。作為分析裝置40,可以舉出以氣體、液體、超臨界流體等作為移動相的層析法;四極(quadrupole)型、雙聚焦(double-focusing)型(磁場型)、飛行時間型(time-of-flight)、離子阱(ion trap)型、離子迴旋共振(ion cyclotron resonance)型等質譜分析法;利用紅外線、可見光、紫外線、X線、螢光等的分光分析法,以及組合這些的方法及裝置。分析裝置40可以包含能夠對試料中的成份進行量性檢測的檢測器。檢測器可以是對成份進行檢測,並能夠輸出該成份相關的光學性或質量性值的結構。
解析裝置10,例如,能夠將測定對象試料中的目標成份的資料形狀(例如,峰值形狀)與預先獲取的目標成份的相關標準形狀進行對比,並基於該對比,識別目標成份(識別處理),求出未知量的目標成份的定量值(定量處理)。
此外,解析裝置10還能夠生成用於上述定量處理的校準線等校準資料(校準資料生成處理)。此時,如下所述,作為標準形狀獲取複數個標準品資料的資料形狀,並獲得表示定量值與標準形狀的大小之間的關係的回歸式。可將標準形狀的至少1個以及回歸式作為校準資料(校準線資料)。此時,複數個標準品資料的資料形狀無需一定是分離狀態。
資料獲取元件11從分析裝置40獲取資料。資料可以是針對1個或複數個試料分別獲得的,包含2個以上參數的資料。且,該2個以上的參數中的至少1個是與目標成份的量相關的定量參數。例如,資料可以是藉由分離分析獲得的,表示相對於時間的信號強度(時序性信號強度)的波形資料。信號強度可以是根據檢測器的種類生成的,表示光學性或質量性的量的信號強度。另外,資料獲取元件11還能夠從複數個分析裝置或複數個檢測器獲取複數個不同的信號強度(定量參數)。在此,作為資料,可從分析裝置40獲取圖像資料,亦可由資料獲取元件11生成圖像資料。
資料獲取元件11可獲取與濃度未知的試料(測定對象試料)相關的資料,亦可獲取用於製作校準資料(校準器)的資料。另外,資料獲取元件11除了上述資料之外,還能夠獲取與試料及目標成份相關的資料(目標成份的保持時間等)。在校準資料製作處理中,能夠獲取與目標成份的濃度相關的資料。此外,在採用本形態的解析方法一並進行品質管理・品質評價的情形下,資料獲取元件11還獲取品質管理用試料的資料。
平滑化元件12進行平滑化處理,以除去作為圖像等獲取的資料的雜訊。作為平滑化處理,優選Savitzky-Golay法等採用多項式適應的平滑化,也可以使用單純平均、中央值、最大值/最小值、膨脹(opening)/收縮(closing)等的濾波或邊緣保留(edge preservation filter)平滑化、K-最近鄰法、選擇平均法、加權(weight)法等的平滑化處理。
目標成份資料檢測元件13基於目標成份的位置訊息,從資料獲取元件11獲取的、包含目標成份之外的資料的資料中,檢測並提取目標成份的資料。
對比元件14對獲取的資料中的目標成份的資料形狀進行對比。識別處理或定量處理中,將測定對象試料的目標成份的資料形狀(也稱為測定對象形狀)與預先獲取的標準形狀進行對比。在此情形下,將測定對象形狀重疊在標準形狀,對定量參數之大小進行對比。此外,對比元件14,在校準資料生成處理中,還能夠對標準形狀彼此進行對比。此時,複數個標準品資料的資料形狀,無需一定是分離狀態。
如圖2所示,對比元件14可包括局部形狀生成元件14a、重疊元件14b、倍率獲取元件14c。
局部形狀生成元件14a,在非定量參數軸方向(時間軸方向等)上,對測定對象形狀進行分割,生成局部形狀。由此,局部形狀是測定對象形狀(資料形狀)的一部分。另外,該局部形狀可以是資料形狀的一部分,且包含資料形狀的頂點的形狀。分割處理屬於定量處理中的用於提高對比精度的處理(後述)。
重疊元件14b在定量處理中,能夠將測定對象形狀整體或上述局部形狀重疊在標準形狀上。另外,在校準資料生成處理中,還能夠使標準形狀彼此重疊。重疊時,利用預先獲取的目標成份的非定量參數軸方向(時間軸方向)的位置訊息。
倍率獲取元件14c,能夠在非定量參數軸方向(時間軸方向)的任意位置,獲取2個資料形狀的定量參數軸方向的倍率(信號強度軸方向的倍率)。即,定量處理中,能夠獲取目標成份的測定對象形狀相對於標準形狀的倍率。另外,校準資料生成處理中,能夠獲取一方的標準形狀相對於另一方的標準形狀的倍率。且,可基於在時間軸方向的各位置獲取的各倍率,求出倍率代表值。
定量值計算元件15於定量處理中,將對比元件14的倍率獲取元件14c所獲得的測定對象形狀的倍率值,代入預先求出的校準資料的回歸式中。由此,能夠計算出定量值。
回歸式生成元件16在校準資料生成處理中,能夠從複數個標準品資料的標準形狀中,生成表示標準形狀的定量參數軸方向的大小與定量值之間的關係回歸式。
輸入元件31接受由解析裝置10的使用者等進行的,與資料解析相關的各種指示的開始/結束、設定等的輸入。另外,使用者等能夠確認後述輸出元件32顯示出的圖像的同時,利用輸入元件31進行上述輸入。
輸出元件32輸出阱輸入元件31被輸入的內容,及基於輸入內容執行的內容等。輸出元件32,例如,還能夠輸出(顯示)由資料獲取元件11獲取的資料及其圖像。採用本形態的方法進行分析條件的品質管理的情形下,輸出元件32還輸出品質檢查之結果。
記憶元件33用於記憶本形態中必要的各種訊息。具體而言,記憶用於執行本形態之解析處理的各種程式、各種設定訊息等。記憶元件33,除了記憶從資料獲取元件11獲得的所有資料之外,還能夠記憶在解析裝置10內生成獲得的資料,例如,各局部形狀的資料、計算出的標準形狀的定量參數軸方向的倍率等。另外,還能夠記憶通過校準資料生成處理生成的校準資料(標準形狀、回歸式等)。
控制元件17,對解析裝置10的上述各元件11~16、31~33進行控制。
<解析裝置的硬體結構例> 在上述解析裝置10中,生成能夠使電腦執行各功能的執行程式(評價程式),例如,藉由將該執行程式(解析程式)安裝在通用PC或伺服器等中,能夠實現解析處理。
圖3示出可實現本形態的解析處理的電腦硬體結構的一例。解析裝置10具備輸入裝置21、輸出裝置22、驅動裝置23、輔助記憶裝置24、存儲裝置25、進行各種控制的CPU(Central Processing Unit)26、網路連接裝置27,這些裝置被連接成系統。
輸入裝置21可以是供使用者等進行操作的觸控面板、鍵盤、滑鼠等指向裝置(pointing device)。另外,輸入裝置21,例如可以是可利用聲音等輸入的傳聲器等聲音輸入裝置。
輸出裝置22可以是監視器、顯示屏或揚聲器等。另外,輸出裝置22還可以是印刷機等印刷裝置。
輸入裝置21及輸出裝置22是相當於上述輸入元件11及輸出元件12的結構。另外,例如在解析裝置10為智慧型手機或平板終端等的情況下,輸入裝置21及輸出裝置22例如可以是觸控面板那樣輸入輸出一體型的結構。
在此,本形態中被安裝於解析裝置10的執行程式,例如,由USB(Universal Serial Bus)存儲器或CD-ROM等便攜式記録媒體28等提供。記録媒體28可被設置在驅動裝置23,記録媒體28中包含的執行程式自記録媒體28經由驅動裝置23被安裝到輔助記憶裝置24中。
輔助記憶裝置24是硬碟等存儲元件,用於記憶本形態的執行程式,及電腦中設置的控制程式等,並能夠根據需要進行輸入輸出。
存儲裝置25用於存放由CPU26從輔助記憶裝置24讀取到的執行程式等。在此,存儲裝置25是ROM(Read Only Memory)或RAM(Random Access Memory)等。並且,上述輔助記憶裝置24及存儲裝置25也可以是作為1個記憶裝置的一體型結構。
CPU26基於OS(Operating System)等控制程式及存儲裝置25中存放的執行程式,對各種演算、與各硬體結構部的資料輸入輸入等電腦整體的處理進行控制,以實現本形態之解析處理。此外,也可以從輔助記憶裝置24獲取執行程式時必要的各種訊息等,存放執行結果等。
網路連接裝置27藉由連接以網際網路及LAN等為代表的通信網路等,例如,可從連接於通信網路的其他裝置等獲取執行程式及各種資料。此外,網路連接裝置27還能夠將藉由執行程式而獲得的執行結果等提供給其他裝置等。
<資料解析方法> 以下,關於本發明的一形態的資料解析方法進行說明。本解析方法包括將目標成份的相關測定對象形狀與預先獲取的相同目標成份的相關標準形狀進行對比的處理。在此,預先獲取的標準形狀可作為用於計算定量值的校準資料。另外,除了標準形狀之外,藉由預先求出表示定量值與形狀的定量參數軸(強度軸)方向的大小之間的關係的回歸式,可將標準形狀及回歸式作為校準資料,進行目標成份的定量。
以下,首先說明校準資料的生成。
(校準資料生成處理) 圖4示出生成校準資料的處理(校準資料生成處理)的流程圖。以下的例子中,作為資料,使用由作為非定量參數的時間、作為定量參數的信號強度表示的資料。作為這類資料,例如,能夠獲取由時間軸及信號強度軸表示的圖表。在這類圖表中,根據時間軸方向的位置及形狀的一致,能夠確定(識別)成份。
解析裝置10的資料獲取元件11獲取用於生成校準資料的檔案(file)(標準品資料)(S11)。標準品資料是以不同已知量(例如,已知濃度)含有目標成份的複數個試料的資料。該標準品資料還可以包含目標成份的其他定性訊息,例如,目標成份的資料顯現的時間軸方向的位置(保持時間)等訊息。可從連接於解析裝置10的分析裝置40直接獲取標準品資料。在此,為了對規定的目標成份進行定量而準備的標準品資料,是具有不同定量值(濃度等)的資料,且是在分析裝置40的相同分析條件下獲得的資料。
平滑化處理元件12對作為圖像資料獲得的各標準品資料進行平滑化處理(smoothing)(S12)。平滑化處理,如上所述,並無特別限定,優選採用Savitzky-Golay法進行處理。在此情形下,用於平滑化的資料的點數(N值)越多越能提高精度,優選為10以上。
目標成份資料檢測元件13從平滑化之後的複數個標準品資料中分別檢測出目標成份的資料,以目標成份的資料的形狀作為標準形狀。記憶元件33保存標準形狀(S13)。在目標成份的資料的檢測中,能夠利用預先獲取的時間軸方向的位置訊息等。
此外,可選擇標準形狀中的1個作為代表性標準形狀,記憶元件33保存該代表性標準形狀(S14)。代表性標準形狀可以是標準形狀的任1個,可以採用含有最高濃度目標成份的標準品資料的標準形狀。此時,還可以先在各標準試料添加內部標準物質,以內部標準物質修正濃度,並選擇含有最高濃度目標成份的標準品資料的標準形狀。
對比元件14將上述複數個標準形狀與代表性標準形狀進行對比(S15)。在此,對比元件14中的重疊元件14b將上述複數個標準形狀分別重疊在代表性標準形狀上。此時,在各標準形狀與代表性標準形狀之間,可根據預先獲取的目標成份資料的時間軸方向位置訊息,對合時間軸方向的位置。
倍率獲取元件14c獲取各標準形狀相對於代表性標準形狀的倍率,即大小(定量參數軸方向的強度)的倍率(S15)。如上所述,若是由相同分析系統分析的相同目標成份,時間軸方向的各位置會是大致相同的倍率,而該倍率會根據位置而產生誤差。因此,在時間軸方向的複數個位置(例如,形狀的時間軸方向的幅寬為0.001~0.5的每個位置)上分別獲取相對於代表性標準形狀的強度軸方向倍率(也簡稱為倍率)。並且,可將其眾數(mode)作為各標準形狀的強度軸方向倍率代表值(也簡稱為倍率代表值)。
回歸式生成元件16,關於各標準形狀,生成表示目標成份的定量值(濃度)與藉由上述步驟(S15)獲得的倍率代表值之間的關係的回歸式(S16)。例如,針對圖1(a)所示的不同濃度的D-天冬醯胺的層析圖峰值分別求出的D-天冬醯胺濃度與層析圖中的強度軸方向倍率之間的關係如圖5所示。
可對濃度與倍率之關係進行線性近似(linear approximation)。然而,如圖5所示,濃度C與倍率R,在雙對數圖(log-log graph)中示出尤其良好的相関性。即,能夠以乘冪回歸式 logR=alogC+b(a、b為係數) 進行近似。
上述回歸式與代表性標準形狀被一同保存在記憶元件33。此時,可對代表性標準形狀進行修正。例如,可以根據將各標準形狀按其標準形狀之倍率代表值在量性參數軸方向上進行尺寸變更後的形狀,來修正代表性標準形狀。
如上所述,藉由校準資料生成處理,能夠生成包含標準形狀及回歸式的校準資料。基於該校準資料,能夠對定量值未知的成份的資料進行解析、定量。
在此,優選在每次變更分析條件時進行校準資料生成處理。例如,在分析裝置40是層析儀的情形下,優選在每次變更柱體及移動相時進行。另外,更優選在每次對測定對象試料進行分析時進行校準資料生成處理。
(定量處理) 其次,說明對目標成份的定量值未知的試料進行定量的處理(定量處理)。圖6示出本形態中的定量處理的流程圖。
資料獲取元件11獲取藉由上述校準資料生成處理獲得的校準資料(包含標準形狀、回歸式)(S21)。若校準資料被保存在記憶元件33中,也可以從記憶元件33讀取。
資料獲取元件11從分析裝置40獲取包含定量值未知的目標成份的測定對象試料的資料(S22)。該資料的形態與上述用於生成校準資料的資料相同。即,依據校準資料獲得的標準形狀若是由作為非定量參數的時間及作為定量參數的信號強度表示的資料(例如,由時間軸及強度軸表示的圖表),由步驟(S22)獲取的資料也會是由時間及信號強度表示的資料。另外,在與生成校準資料時獲取的資料相同的分析條件下,獲取測定對象試料的資料。
平滑化元件12對資料進行平滑化處理(smoothing)(S23)。關於平滑化處理,與校準資料生成處理中說明的平滑化處理(S12)相同。
目標成份資料檢測元件13,從平滑化後的資料中檢測測定對象試料的目標成份的資料,並檢測目標成份的資料形狀(測定對象形狀)(S24)。此時,能夠利用預先獲取的目標成份的資料位置訊息(時間軸方向位置訊息)。記憶元件33保存測定對象形狀。
其次,對比元件14對測定對象形狀與校準資料生成處理中預先獲得的代表性標準形狀進行對比(S25)。在此,通過對比,獲取測定對象形狀相對於代表性標準形狀的大小(定量參數軸方向的強度)的倍率(S25)。其中,尤其在測定對象試料中包含的目標成份為微量等的情形下,裝置的機械性、電氣性雜訊等引起的誤差會導致對比精度下降。因此,如下所述,為了提高對比精度,能夠從測定對象形狀中提取最適於進行對比的部分,並對該部分與標準形狀進行對比。另外,藉由預先添加標準試料,提高微量的目標成份的測定對象形狀的S/N比,由此能夠防止精度下降。
圖7是更詳細表示對比步驟(S25)的流程圖。
局部形狀生成元件14a在時間軸方向上分割測定對象形狀,形成複數個分割部分(S251)。並且,獲取連續包含1個以上的分割部分的局部形狀。在此情形下,優選獲取複數個包含測定對象形狀的頂點(形狀中,定量參數的大小或其絶對值最大的位置)且連續包含1個以上的分割部分的局部形狀。另外,優選按照全部分割部分的組合,獲取局部形狀。
圖8是用於說明局部形狀生成步驟(S251)的概略圖。對測定對象形狀進行分割時,例如,能夠在形狀的高度h的9成範圍h0.9 ,進行形狀分割(圖8(a))。關於分割後獲得的分割部分的數量m,由於還涉及形狀大小,對此並無特別限定,但優選其相對於形狀的時間軸方向的寬度,達到5以上。
另外,在以形狀頂點位於中央的範圍作為分割範圍的情形下,為了使中央的分割部分包含形狀頂點,m優選為奇數。形成分割部分之後,獲取包含形狀頂點(峰頂)且連續包含1個以上的分割部分的範圍的形狀(局部形狀)。圖8(b)中,以粗線表示局部形狀之例。生成複數個這種局部形狀,並從這些局部形狀中,尋找最適合與標準形狀進行對比的部分。
對比元件14將獲得的各局部形狀與代表性標準形狀進行對比(S252)。在此,對比元件14中的重疊元件14b將各局部形狀重疊在代表性標準形狀上。此時,在各局部形狀與代表性標準形狀之間,可根據預先獲取的目標成份資料的時間軸方向位置訊息,對合時間軸方向的位置(頂點位置)。
此外,本形態的方法中還進行品質管理(後述)的情形下,對比元件14能夠將標準形狀與根據品質管理用試料的資料獲得的資料形狀進行對比。
倍率獲取元件14c,在各局部形狀的時間軸方向的複數個位置(點)分別獲取相對於代表性標準形狀的強度軸方向倍率(S252)。此時,獲取倍率的時間軸方向的位置,例如時間軸方向的幅寬可以是0.01~0.5。此外,以獲得的倍率的眾數作為各局部形狀的強度軸方向倍率。
此後,按照各局部形狀的強度軸方向倍率,對各局部形狀進行尺寸變更(擴大或縮小)(S253)。此時,重疊元件14b,使尺寸變更後的局部形狀與代表性標準形狀重疊。然後,倍率獲取元件14c求出時間軸方向的各位置的倍率,並求出該倍率相對於各局部形狀的強度軸方向倍率的誤差,按各局部形狀計算出每1個點(求出倍率的每1個位置)的平均誤差(S254)。
在此,為了進一步提高精度,在各局部形狀與代表性標準形狀的對比中使兩者重疊時,還可以使局部形狀的頂點及代表性標準形狀的頂點的時間軸方向位置移位,來獲取各位置的倍率。計算平均誤差時,可將這種頂點移位的情形下的誤差包含在內。
將複數個局部形狀中的平均誤差最小的局部形狀作為最適於對比的形狀,將其他局部形狀的強度軸方向倍率作為測定對象形狀的強度軸倍率代表值(S255)。
返回圖6,定量值計算元件15能夠將強度軸方向倍率代表值代入通過校準資料生成處理預先獲得的回歸式中,求出測定對象試料中的目標成份的定量值(S26)。
以上說明中,主要說明了由時間與信號強度的2個參數表示的2維資料,此外本發明的一形態可用於對由n個參數表示的資料,即,對n維資料進行解析。
例如,圖9所示的3維資料。圖9資料是採用HPLC-SPE-NMR處理市售製劑銀杏(Ginkgo biloba)後獲得的圖表。圖9所示的資料中,除了採用HPLC(高速液體層析法)獲得的保持時間及來自檢測器的信號強度的訊息(參數)之外,還追加了進行1 H-NMR(核磁共振)獲得的訊息(參數),由共計3個參數表示試料中的成份特徵。
並且,本形態的解析方法中,還能夠進行解析條件的品質管理(quality control:QC)。即,本形態的解析方法還可以包含對解析條件進行品質管理的品質管理步驟。在此,上述解析條件中包含校準線的精度、間隔雜訊(blank noise)・殘留(carry over)、定量精度、製備精度(Preparative accuracy)等。另外,品質管理能夠利用預先準備的品質管理用資料。該品質管理用資料是基於標準品調製的驗證試料的資料。
一個解析方法中,除了用於製作校準線(calibration)資料(標準品資料)、及測定對象試料的資料(實際試料資料)之外,還輸入品質管理用資料,根據這些資料,能夠一並進行校準線的製作、品質管理、以及測定對象試料中的目標成份的識別及定量。
例如,包含品質管理步驟的解析方法的程序例如流程圖圖9a所示。可利用專用軟體執行圖示的一系列程序。如圖9a所示,本方法中,輸入校準線製作用資料、品質管理用資料及測定對象試料資料(實際試料資料)。可基於輸入的資料,製作校準線,計算出定量下限值。另外,可根據校準線製作用資料,獲取標準形狀。關於標準形狀或代表性標準形狀的獲取,可按照校準資料生成處理中說明的上述方法進行。
然後,可對從校準線製作用資料取得的標準形狀及品質管理用資料的資料形狀進行對比,即,對品質管理用資料進行形狀擬合。另外,可對標準形狀與實際試料資料的資料形狀進行對比,即,對實際試料資料進行形狀擬合。
利用軟體的自動解析・報告功能,能夠將品質及形狀擬合的結果作為品質檢查表輸出。品質檢查表中,可以表示校準線精度、間隔雜訊・殘留、製備精度、定量精度的結果等。(參照圖15A及圖15B,詳見後述)。
如上所述,本形態的解析方法中,能夠同時進行分析系統的精度品質評價與定量分析,因此,能夠以更高精度進行解析。 [實施例]
(實施例1) 使用人的標準血漿試料A,採用高速液體層析儀-蛍光檢測法進行了分離分析。根據所獲得的層析圖,確認到試料A中不包含D-麩氨酸(glutamic acid)(圖10(a)中的箭頭)。在此,關於相同分析條件下的D-麩氨酸的峰值顯現的時間軸方向位置(保持時間),事先已作確認。
接下來,向試料A中添加19.75fmol/inj的D-麩氨酸,並在相同的分析條件下進行分離分析,獲得層析圖(資料)(圖10(b))。根據獲得的層析圖中的D-麩氨酸之峰值,採用參照圖4、6、7說明的上述解析方法,對D-麩氨酸進行了定量。
本實施例中,在校準資料生成處理中,獲取標準形狀(標準峰值)相對於代表性標準形狀(代表性標準峰值)的倍率(S15)時,按時間軸方向的每0.2秒獲取倍率,並以其眾數作為代表性倍率。
定量處理中,生成局部形狀(局部峰值)時(S251),將形狀頂點(峰頂)為止的高度範圍分割成21個部分,且,將連續包含該21個分割部分中的1個以上並且包含峰頂的局部形狀(局部峰值)的全部模式,作為局部形狀。此外,獲取局部形狀(局部峰值)相對於代表性標準形狀(代表性標準峰值)的倍率時(S252),按時間軸方向的每0.2秒獲取倍率,並求出眾數。
本實施例中的校準資料生成處理及定量處理之詳細內容,分別如圖13及圖14的流程圖所示。
根據上述解析方法,計算出濃度18.86fmol/inj。與試料A中實際添加的量19.75fmol/inj相比,其誤差為(18.86/19.75×100)大致4.5%。
(實施例2) 使用人的標準血漿試料B,與實施例1同樣,利用高速液體層析儀進行了分離分析。根據獲得的層析圖(圖11(a)),採用與實施例1相同的解析方法,對目標成份D-絲氨酸(serine)進行定量的結果,其濃度為14.93fmol/inj。
接下來,向試料B中添加16.46fmol/inj的D-絲氨酸,然後在相同的分析條件下進行分離分析,獲得了層析圖(圖11(b))。根據獲得的層析圖,再次採用與實施例1相同的解析方法,對D-絲氨酸進行定量的結果,其濃度為30.33fmol/inj。
根據本發明形態的解析方法計算出的添加前及添加後的D-絲氨酸的濃度之差為,30.33-14.93=13.87fmol/inj,將該差值與添加所增的D-絲氨酸的濃度16.46fmol/inj進行對比,其誤差為(13.87/14.93×100)大致7%。
(實施例3) 使用人的標準血漿試料C,與實施例1同樣,利用高速液體層析儀進行分離分析,獲得了層析圖。根據預先確認的相同分析條件下的目標成份D-天冬醯胺的時間軸方向位置(保持時間),確認到D-天冬醯胺具有微小峰值,峰值雖然存在,但難以對其進行定量(圖12(a))。
向試料C中添加4.12fmol/inj的D-天冬醯胺之後,在相同分析條件下進行分離分析,獲得了層析圖(圖12(b))。根據獲得的層析圖,再次採用與實施例1相同的解析方法,對D-天冬醯胺進行定量的結果,其濃度為4.22fmol/inj。根據該結果,可推定出試料C中包含的D-天冬醯胺的含量為4.22-4.12=0.1fmol/inj。
如上所述,針對目標成份之峰值設定基準線時,尚無規定的劃線方法或基準,可以任意設定基準線,加之與周邊雜質成份進行分離的程度有限,因此會出現誤差超過100%的情形。對此,本發明一形態的解析方法中,藉由使用基於形狀的分離元件,針對峰值與相鄰不同成份之峰值重疊的目標成份,也能夠以誤差20%以下、10%程度或更低的誤差進行定量。
根據本發明的形態,即使對採用通常的分離分析方法獲得的資料中的難以進行解析的微量成份的資料,也能夠進行解析。由此,本發明的形態能夠應用於1fmol/inj以下的微量成份的定量,優選應用於100amol/inj以下的微量成份的定量。例如,本發明的形態,適合利用於試料中包含的微量的生物體內D-胺基酸(amino acid)、縮氨酸(peptide)或藥物代謝物等的解析等。
(實施例4) 作為實施例4,說明與定量分析一並進行分析系統的品質評價的例子。本例中,使用標準形狀‧校準線製作用試料、品質管理(QC)用試料、作為解析對象的人血液(血清實際試料)試料及人尿試料(實際試料),採用2維高速液體層析法蛍光檢測法,對D-絲氨酸及L-絲氨酸進行了分離分析。
上述分離分析之後,根據上述標準形狀・校準線製作用試料的資料,分別製作成人血液試料及人尿試料的校準線,並計算出定量值下限。此外,獲取了標準形狀。將獲得的標準形狀及校準線,分別應用於QC用試料、人血液試料及人尿試料的層析圖。由此,對解析條件的品質(校準線精度、間隔雜訊・殘留、定量精度、1維製備精度)進行檢查的同時,計算出作為解析對象的D-絲氨酸與L-絲氨酸的定量值。
品質評價中利用專用軟體之自動解析‧報告功能,輸出品質檢查表。血液試料之品質檢查表如圖15A及圖15B所示,尿液之品質檢查表如圖16A及圖16B所示。如圖15A及圖15B所示,品質檢查表中對(a)校準線之精度、(b)間隔雜訊‧殘留、(c)定量精度、(d)製備精度分別進行了評價。
並且,2維高速液體層析法的各維分離條件如下。 <1維> 柱體:KSAARP(3μm)1.0mm內徑×50 mm,40℃ 移動相:2% MeCN 0.1% Formic acid in H2 O,400μL/min <2維> 柱體:KSAACSP-001S(5μm) 1.5 mm內徑×75 mm,40℃ 移動相:0.075% Formic acid in MeOH/MeCN(90/10, v/v),1000μL/min
血液試料的解析條件的校準誤差範圍為D-絲氨酸3.65%以內,L-絲氨酸3.84%以內,定量下限值為D-絲氨酸0.2nmol/mL、L-絲氨酸10nmol/mL,間隔雜訊為D-絲氨酸4.22%以內、L-絲氨酸0.438%以內,相對於已知濃度的QC用試料的誤差為D-絲氨酸7.35%以內、L-絲氨酸3.35%以內。
此外,對48個檢體進行了血液試料的定量分析。其結果如圖17A~圖17H所示。如圖17A~圖17H所示,將標準形狀(虛線)重疊在層析圖上,(重疊部:粗虛線),根據其大小計算出D-絲氨酸與L-絲氨酸的定量值。各定量值(nmol/mL)被標注在各層析圖上段。
尿試料的解析條件的校準誤差範圍為D-絲氨酸2.23%以內、L-絲氨酸4.95%以內,定量下限值為D-絲氨酸2nmol/mL、L-絲氨酸2nmol/mL,間隔雜訊為D-絲氨酸2.58%以內、L-絲氨酸3.3%以內,相對於已知濃度的QC用試料的誤差為D-絲氨酸7.6%以內、L-絲氨酸為7.07%以內。
另外,對32各檢體進行了尿試料的定量分析。其結果如圖18A~18F所示。如圖18A~18F所示,將標準形狀(虛線)重疊在層析圖上(重疊部:粗虛線),根據其大小計算出D-絲氨酸與L-絲氨酸的定量值。各定量值(nmol/mL)被標注在各層析圖的上段。
如上所述,藉由利用形狀擬合法,相較於歷來方法,能夠以更高的產量,同時進行分析系統的精度・品質評價及定量分析。
本申請基於2018年10月11日向日本國專利廳提交的專利申請2018-192980號請求優先權,並引用其全部內容。
10:解析裝置 11:資料獲取元件 12:平滑化元件 13:目標成份資料檢測元件 14:對比元件 14a:局部形狀生成元件 14b:重疊元件 14c:倍率獲取元件 15:定量值計算元件 16:回歸式生成元件 17:控制元件 21:輸入裝置 22:輸出裝置 23:驅動裝置 24:輔助記憶裝置 25:存儲裝置 26:CPU 27:網路連接裝置 28:記錄媒體 31:輸入元件 32:輸出元件 33:記憶元件 40:解析裝置
圖1(a)、(b)是說明資料形狀之特徵的圖。 圖2示出本發明一形態之解析裝置的功能結構之一例。 圖3示出本發明一形態之解析裝置的硬體結構之一例。 圖4是本發明一形態之解析方法中的校準資料生成處理之流程圖。 圖5是示出定量值(濃度)與資料形狀相對於代表性標準形狀的倍率之間的關係的一例的圖。 圖6是本發明一形態之解析方法中的定量處理之流程圖。 圖7是詳示本發明一形態之解析方法中的對比處理之流程圖。 圖8(a)、(b)是示出局部形狀生成的圖。 圖9是示出3維資料之一例的圖。 圖9a是示出本發明一形態之解析方法之變形例的流程圖。 圖10(a)、(b)是示出實施例1之資料的圖。 圖11(a)、(b)是示出實施例2之資料的圖。 圖12(a)、(b)是示出實施例3之資料的圖。 圖13是詳示實施例中的校準資料生成處理的流程圖。 圖14是詳示實施例中的定量處理的流程圖。 圖15A(a)示出根據實施例4的血液試料解析條件輸出的品質檢查表。 圖15B(b)~(d)示出根據實施例4的血液試料解析條件輸出的品質檢查表。 圖16A示出根據實施例4的尿試料解析條件輸出的品質檢查表。 圖16B示出根據實施例4的尿試料解析條件輸出的品質檢查表。 圖17A示出實施例4的血液試料的相關形狀擬合(shape fitting)結果。 圖17B示出實施例4的血液試料的相關形狀擬合結果。 圖17C示出實施例4的血液試料的相關形狀擬合結果。 圖17D示出實施例4的血液試料的相關形狀擬合結果。 圖17E示出實施例4的血液試料的相關形狀擬合結果。 圖17F示出實施例4的血液試料的相關形狀擬合結果。 圖17G示出實施例4的血液試料的相關形狀擬合結果。 圖17H示出實施例4的血液試料的相關形狀擬合結果。 圖18A示出實施例4的尿試料的相關形狀擬合結果。 圖18B示出實施例4的尿試料的相關形狀擬合結果。 圖18C示出實施例4的尿試料的相關形狀擬合結果。 圖18D示出實施例4的尿試料的相關形狀擬合結果。 圖18E示出實施例4的尿試料的相關形狀擬合結果。 圖18F示出實施例4的尿試料的相關形狀擬合結果。

Claims (11)

  1. 一種解析方法,用於解析由至少2個參數生成之資料,該解析方法包括:  對比步驟,將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比;及  識別步驟,基於該對比,識別該測定對象試料中之目標成份。
  2. 一種解析方法,用於解析由至少2個參數生成之資料,該解析方法包括:  對比步驟,將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比;及  定量值計算步驟,基於該對比,求出該測定對象試料中目標成份之定量值,  該標準形狀包含從複數個標準試料中分別獲得的該目標成份之形狀群,該複數個標準試料分別以不同定量值含有該目標成份。
  3. 根據請求項1或2之解析方法,其中,  該資料是分離分析資料,並且是表示相對於時間的定量參數大小的資料。
  4. 根據請求項1至3中的任一項之解析方法,其中,  於該對比步驟中,獲取作為該資料形狀整體或該資料形狀之一部分的局部資料形狀,並將該局部資料形狀與該標準形狀進行對比。
  5. 根據請求項4之解析方法,其中,  該局部資料形狀是該資料形狀之一部分,且包含資料形狀之頂點。
  6. 根據請求項2之解析方法,其中,  於該定量值計算步驟中,基於預先獲取之回歸式,求出該目標成份之定量值,  該回歸式表示,該資料形狀相對於從該標準形狀中選擇的代表性標準形狀之定量參數軸方向倍率與該目標成份之定量值之間的關係。
  7. 根據請求項6之解析方法,其中,  於該對比步驟中,求出該資料形狀相對於該代表性標準形狀的定量參數軸方向倍率,  於該定量值計算步驟中,藉由將該定量參數軸方向倍率代入該回歸式中,求出該目標成份之定量值。
  8. 一種解析裝置,用於解析由至少2個參數生成之資料,該解析裝置包括:  對比元件,將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比;及  識別元件,基於該對比,識別該測定對象試料中的目標成份。
  9. 一種解析裝置,用於解析由至少2個參數生成之資料,該解析裝置包括:  對比元件,將測定對象試料中目標成份之資料形狀與預先獲取之標準形狀進行對比,且該標準形狀包含從複數個標準試料中分別獲得的該目標成份之形狀群,該複數個標準試料分別以不同定量值含有該目標成份;及  定量值計算元件,基於該對比,求出該測定對象試料中目標成份之定量值。
  10. 一種解析程式,  用於使電腦作為根據請求項8或9之解析裝置所具備的各元件發揮功能。
  11. 一種標準形狀之製作方法,  該標準形狀包含從分別以不同定量值含有目標成份的複數個標準試料中獲得的該目標成份之形狀群,並用於對由至少2個參數表示的資料進行解析。
TW108136870A 2018-10-11 2019-10-14 解析方法、解析裝置、解析程式、及標準形狀之生成方法 TW202043767A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-192980 2018-10-11
JP2018192980 2018-10-11

Publications (1)

Publication Number Publication Date
TW202043767A true TW202043767A (zh) 2020-12-01

Family

ID=70164572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136870A TW202043767A (zh) 2018-10-11 2019-10-14 解析方法、解析裝置、解析程式、及標準形狀之生成方法

Country Status (4)

Country Link
US (1) US20210318277A1 (zh)
JP (1) JP2020064060A (zh)
TW (1) TW202043767A (zh)
WO (1) WO2020075850A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754434A (en) * 1971-02-22 1973-08-28 Scient Kit Corp Inc Chemical analysis
JPS60200166A (ja) * 1984-03-26 1985-10-09 Hitachi Ltd 液体クロマトグラムの同定方法
JPH08313533A (ja) * 1995-05-16 1996-11-29 Daikin Ind Ltd 検量線更新方法およびその装置
EP1623351B1 (en) * 2003-04-28 2012-04-18 Cerno Bioscience LLC Computational method and system for mass spectral analysis
US10755905B2 (en) * 2004-10-28 2020-08-25 Cerno Bioscience Llc Qualitative and quantitative mass spectral analysis
CA2616164A1 (en) * 2005-07-25 2007-02-01 Metanomics Gmbh Means and methods for analyzing a sample by means of chromatography-mass spectrometry
US7904253B2 (en) * 2006-07-29 2011-03-08 Cerno Bioscience Llc Determination of chemical composition and isotope distribution with mass spectrometry
JP7069537B2 (ja) * 2016-05-02 2022-05-18 株式会社島津製作所 スペクトルデータ処理装置
EP3505923A4 (en) * 2016-08-26 2019-08-07 Shimadzu Corporation MASS SPECTROMETRY IMPORTER DATA PROCESSING DEVICE AND METHOD

Also Published As

Publication number Publication date
WO2020075850A1 (ja) 2020-04-16
US20210318277A1 (en) 2021-10-14
JP2020064060A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
González et al. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect
Sajic et al. Using data‐independent, high‐resolution mass spectrometry in protein biomarker research: perspectives and clinical applications
Rozet et al. Advances in validation, risk and uncertainty assessment of bioanalytical methods
Sandin et al. Data processing methods and quality control strategies for label-free LC–MS protein quantification
US8532348B2 (en) Iterative processing
JP6036304B2 (ja) クロマトグラフ質量分析用データ処理装置
Milac et al. Analyzing LC-MS/MS data by spectral count and ion abundance: two case studies
JP6132067B2 (ja) クロマトグラフ質量分析装置用データ処理装置及びプログラム
JPWO2008053530A1 (ja) 測定物質定量方法
Morris et al. Pinnacle: a fast, automatic and accurate method for detecting and quantifying protein spots in 2-dimensional gel electrophoresis data
JP6573028B2 (ja) データ処理装置
Suits et al. Two-Dimensional Method for Time Aligning Liquid Chromatography− Mass Spectrometry Data
Sens et al. Pre-analytical sample handling standardization for reliable measurement of metabolites and lipids in LC-MS-based clinical research
US7680606B2 (en) Two-step method to align three dimensional LC-MS chromatographic surfaces
CN107209151B (zh) 干扰检测及所关注峰值解卷积
JP2006177877A (ja) 質量分析方法、質量分析システム、診断システム、検査システム及び質量分析プログラム
Wille et al. Liquid chromatography high-resolution mass spectrometry in forensic toxicology: what are the specifics of method development, validation and quality assurance for comprehensive screening approaches?
Karaman et al. Metabolomics data preprocessing: from raw data to features for statistical analysis
JP2005221276A (ja) クロマトグラフ質量分析用データ処理装置
Domingo-Almenara et al. Automated resolution of chromatographic signals by independent component analysis–orthogonal signal deconvolution in comprehensive gas chromatography/mass spectrometry-based metabolomics
TW202043767A (zh) 解析方法、解析裝置、解析程式、及標準形狀之生成方法
Domingo-Almenara et al. Avoiding hard chromatographic segmentation: A moving window approach for the automated resolution of gas chromatography–mass spectrometry-based metabolomics signals by multivariate methods
van der Kloet et al. A new approach to untargeted integration of high resolution liquid chromatography–mass spectrometry data
WO2015189696A1 (ja) クロマトグラフ質量分析装置及びその制御方法
JP2013506843A5 (zh)