TW202035100A - Fin block for a calibrating device with web on the inside - Google Patents
Fin block for a calibrating device with web on the inside Download PDFInfo
- Publication number
- TW202035100A TW202035100A TW108147783A TW108147783A TW202035100A TW 202035100 A TW202035100 A TW 202035100A TW 108147783 A TW108147783 A TW 108147783A TW 108147783 A TW108147783 A TW 108147783A TW 202035100 A TW202035100 A TW 202035100A
- Authority
- TW
- Taiwan
- Prior art keywords
- fin
- shaped block
- web
- shaped
- data set
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/901—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
- B29C48/903—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/904—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/907—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using adjustable calibrators, e.g. the dimensions of the calibrator being changeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/908—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/005—Article surface comprising protrusions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
Description
本發明有關用於校準擠製型材之校準裝置的鰭狀塊。本發明更有關包含複數鰭狀塊之校準裝置及用於生產鰭狀塊的方法、用於積層製造此鰭狀塊之系統及對應電腦程式和資料組。The present invention relates to a fin-shaped block used for calibrating an extruded profile calibration device. The present invention further relates to a calibration device including a plurality of fin-shaped blocks, a method for producing fin-shaped blocks, a system for layered manufacturing of the fin-shaped blocks, and corresponding computer programs and data sets.
校準裝置使用於校準擠製的環形型材、例如管件型材。在生產此等型材時,首先在擠製機中生產用於生產型材之所期望的塑膠熔體。然後將所生產之塑膠熔體壓按經過擠製機的出口噴嘴,所述噴嘴指定型材之形狀。然後,從擠製機的出口噴嘴出來之型材通過校準裝置,所述校準裝置以尺寸精度對仍加熱的型材進行後成形。The calibration device is used to calibrate extruded annular profiles, such as pipe profiles. In the production of such profiles, the desired plastic melt for the production of profiles is first produced in an extruder. The produced plastic melt is then pressed through the exit nozzle of the extruder, which specifies the shape of the profile. Then, the profile from the exit nozzle of the extruder passes through a calibration device, which performs post-forming of the still heated profile with dimensional accuracy.
由DE 198 43 340 C2已知用於決定擠製型材尺寸之此校準裝置。其中,教導一可變能調整的校準裝置,所述校準裝置建構用於校準具有不同管件直徑之擠製塑料管件。校準裝置包含殼體和以圓形的形狀配置在殼體中之複數鰭狀塊,其一起形成具有圓形校準開口的校準筐,待校準之管件引導經過校準開口(特別是參考DE 198 43 340 C2的圖1和2)。再者,每一鰭狀塊與提供用於個別鰭狀塊的各個徑向位移之致動裝置耦接。這樣一來,如需要,可據此調整藉由複數鰭狀塊所形成的圓形校準開口之有效截面。This calibration device for determining the size of extruded profiles is known from DE 198 43 340 C2. Among them, a calibration device with variable energy adjustment is taught. The calibration device is constructed for calibrating extruded plastic pipes with different pipe diameters. The calibration device includes a housing and a plurality of fins arranged in the housing in a circular shape, which together form a calibration basket with a circular calibration opening, and the pipe to be calibrated is guided through the calibration opening (in particular, refer to DE 198 43 340 Figures 1 and 2 of C2). Furthermore, each fin-shaped block is coupled with an actuating device that provides each radial displacement of the individual fin-shaped block. In this way, if necessary, the effective cross-section of the circular calibration opening formed by the plurality of fin-shaped blocks can be adjusted accordingly.
在DE 198 43 340 C2中所敘述的鰭狀塊分別由複數鰭片所組成,所述鰭片串起在二彼此隔開配置之承載桿上。為了在相鄰的鰭片之間維持所期望的距離,使用間隔套(亦參考DE 198 43 340 C2之圖3)。於圖1a中進一步顯示串起的鰭狀塊之範例。在圖1a中所說明的鰭狀塊10包含複數鰭片12和間隔套14,其沿著第二承載桿16交替地串起。此串起之鰭狀塊製造起來很麻煩,且因此成本很高。The fin-shaped blocks described in DE 198 43 340 C2 are respectively composed of a plurality of fins, which are strung together on two load-bearing rods arranged apart from each other. In order to maintain the desired distance between adjacent fins, spacer sleeves are used (see also Figure 3 of DE 198 43 340 C2). An example of strung fins is further shown in FIG. 1a. The
再者,與上述串起的鰭狀塊不同,已知具有封閉式承載件結構(或個別背脊結構)之鰭狀塊。圖1b顯示此鰭狀塊的範例。鰭狀塊20包含複數鰭片22,所述鰭片藉由以塊狀方式所形成之背脊結構24來承載。塊狀背脊結構24在此以單塊式本體(例如,桿狀本體)的形式實現。從WO 2004/103684 A1已知具有封閉式背脊結構之鰭狀塊的其他範例。Furthermore, unlike the above-mentioned stringed fin-shaped blocks, fin-shaped blocks having a closed carrier structure (or individual ridge structure) are known. Figure 1b shows an example of this fin-shaped block. The
於校準過程中,型材之外壁壓抵靠著校準筐的內壁(例如藉著真空)。校準筐之內壁藉由相互嚙合的鰭狀塊之鰭片所形成。經過將此時仍可變形的型材壓抵靠著校準筐之內壁的壓力,在鰭片之中間空間(亦稱為溝槽)中,於型材的表面上不可避免地形成凸起區域。凸起區域之尺寸與溝槽的長度和寬度一致。然而,相對於校準型材之表面,大的凸起區域是不利的。再者,於待經過校準裝置之校準筐校準的型材之進給期間,業已產生的凸起區域“鉤扣”進入鰭狀塊之後續溝槽。凸起部的反複鉤扣進入溝槽導致將在校準筐中進行校準之不期望的型材顫動。於另一方面,經過鰭片結構之反複壓印在型材表面上,增強型材表面上的凸起結構。During the calibration process, the outer wall of the profile is pressed against the inner wall of the calibration basket (for example, by vacuum). The inner wall of the calibration basket is formed by the fins of the fin-shaped blocks that mesh with each other. After pressing the still deformable profile against the inner wall of the calibration basket, a convex area is inevitably formed on the surface of the profile in the intermediate space (also called groove) of the fin. The size of the raised area is consistent with the length and width of the groove. However, relative to the surface of the calibration profile, a large raised area is disadvantageous. Furthermore, during the feeding of the profile to be calibrated by the calibration basket of the calibration device, the already generated raised area "hooks" enter the subsequent groove of the fin-shaped block. The repeated hooking of the protrusion into the groove causes undesirable vibration of the profile that will be calibrated in the calibration basket. On the other hand, the fin structure is repeatedly stamped on the surface of the profile to enhance the convex structure on the surface of the profile.
本發明之目的是提供用於校準裝置之鰭狀塊,其減少或分別消除關於先前技術領域所指示的問題。特別地是,本發明之目的係改善待校準之型材的表面結構。再者,關於已知之校準塊所觀察,減少或分別完全避免待校準型材的顫動。The object of the present invention is to provide a fin-shaped block for a calibration device, which reduces or eliminates the problems indicated in the prior art. In particular, the object of the present invention is to improve the surface structure of the profile to be calibrated. Furthermore, the observation of the known calibration block reduces or completely avoids the vibration of the profile to be calibrated.
為了解決上述問題和其他問題,提供用於校準擠製型材之校準裝置的鰭狀塊。鰭狀塊包含具有複數鰭片之鰭片結構,所述複數鰭片藉由溝槽彼此隔開且配置在鰭狀塊的縱長方向中。至少一些溝槽分別具有至少一腹板元件,以致將鰭狀塊之內側上的個別溝槽分成至少二溝槽部分。In order to solve the above problems and other problems, a fin-shaped block for calibrating an extruded profile calibration device is provided. The fin block includes a fin structure having a plurality of fins separated from each other by grooves and arranged in the longitudinal direction of the fin block. At least some of the grooves respectively have at least one web element, so that the individual grooves on the inner side of the fin-shaped block are divided into at least two groove parts.
待校準之型材可為塑料型材。特別地是,待校準的型材可為(塑膠)管件。當將鰭狀塊安裝進入校準裝置時,鰭狀塊之縱長方向對應於待校準的型材之擠製方向(進給方向)。鰭狀板的內側係鰭狀板塊之面向待校準型材的一側。這意指每一鰭片在鰭狀塊之內側上具有與要在校準期間校準的型材之外表面接觸的接觸表面。The profile to be calibrated can be a plastic profile. In particular, the profile to be calibrated can be a (plastic) pipe. When the fin-shaped block is installed into the calibration device, the longitudinal direction of the fin-shaped block corresponds to the extrusion direction (feeding direction) of the profile to be calibrated. The inner side of the fin-shaped plate is the side of the fin-shaped plate facing the profile to be calibrated. This means that each fin has a contact surface on the inside of the fin block that is in contact with the outer surface of the profile to be calibrated during calibration.
配置在個別溝槽中之每一腹板元件可側向地固定於至少一鰭片上(例如,在個別鰭片側腹上),個別溝槽形成於鰭片之間。應當理解,每一腹板元件的寬度(亦即其在鰭狀塊之縱長方向中的範圍)可對應於其中配置個別腹板元件之溝槽的寬度。Each web element arranged in the individual grooves can be laterally fixed on at least one fin (for example, on the side of the individual fin), and the individual grooves are formed between the fins. It should be understood that the width of each web element (that is, its range in the longitudinal direction of the fin-shaped block) may correspond to the width of the groove in which the individual web element is arranged.
每一腹板元件能以使得其(亦即每一腹板元件)終止於與鰭狀塊齊平的內側之方式配置在個別溝槽中。換句話說,每一腹板元件於鰭狀塊的內側上具有接觸表面,所述接觸表面與相鄰鰭片之個別接觸表面齊平地終止。因此,所有腹板元件的接觸表面和所有鰭片之接觸表面形成鰭狀塊的共享接觸表面,所述接觸表面在校準期間將與待校準之型材的外表面接觸。Each web element can be arranged in an individual groove in such a way that it (that is, each web element) terminates on the inner side flush with the fins. In other words, each web element has a contact surface on the inner side of the fin-shaped block, the contact surface terminating flush with the individual contact surface of the adjacent fin. Therefore, the contact surfaces of all the web elements and the contact surfaces of all the fins form a shared contact surface of the fin block, which contact surface will be in contact with the outer surface of the profile to be calibrated during calibration.
根據較佳之變型,至少一些溝槽的腹板元件可相對於彼此偏移地配置。因此,至少一些溝槽可具有彼此不同(亦即,長度不同)之溝槽部分。腹板元件相對於彼此的偏移可導致遍及鰭狀塊之整個長度而配置的腹板元件形成合成之腹板截面(亦即,側向於所述縱長方向),所述合成的腹板截面大於每一各個腹板元件之截面。合成的腹板截面可意指鰭狀塊之所有腹板元件的截面在側向於鰭狀塊之縱長方向的平面中之突出部份。位於不同溝槽中的二腹板元件相對於彼此之偏移可意指這些腹板元件彼此之間不完全一致地配置。特別地是,腹板元件的接觸表面可相對於彼此偏移地配置,且因此在鰭狀塊的內側順著一路線,於鰭狀塊之整個長度上觀看,所述路線並不全部地平行於鰭狀塊的縱長方向。所有腹板元件之接觸表面可具有相同的大小。經過沿著鰭狀塊之接觸表面在縱長方向中進給待校準的型材,因此於校準期間在型材之表面上出現的凸起區域可遍及寬廣範圍為平滑的。According to a preferred variant, the web elements of at least some of the grooves can be arranged offset relative to each other. Therefore, at least some of the grooves may have groove portions that are different from each other (that is, different in length). The offset of the web elements relative to each other can cause the web elements arranged throughout the entire length of the fin to form a composite web section (ie, lateral to the longitudinal direction), the composite web The cross section is larger than the cross section of each individual web element. The resultant web section may mean the protruding part of the cross section of all web elements of the fin-shaped block in a plane lateral to the longitudinal direction of the fin-shaped block. The offset of the two web elements located in different grooves with respect to each other may mean that these web elements are not arranged completely consistent with each other. In particular, the contact surfaces of the web elements can be arranged offset with respect to each other, and therefore follow a route on the inside of the fin-shaped block, viewed over the entire length of the fin-shaped block, which is not all parallel In the longitudinal direction of the fin-shaped block. The contact surfaces of all web elements can have the same size. The profile to be calibrated is fed in the longitudinal direction along the contact surface of the fin-shaped block, so the convex areas appearing on the surface of the profile during calibration can be smooth across a wide range.
於鰭狀塊之至少一溝槽中,且遍及鰭狀塊的總長度觀看,能以使得腹板元件敘述於縱長方向中之非連續路線的方式,可配置能預定數量之腹板元件。根據在溝槽中配置多少腹板元件,將對應的溝槽分為二(於一腹板元件之案例中)、三(在二腹板元件的案例中)、或三個以上(於超過二腹板元件之案例中)的溝槽部分。一或更多溝槽甚至亦可不具有腹板元件。In at least one groove of the fin-shaped block and viewed across the entire length of the fin-shaped block, a predetermined number of web elements can be arranged in such a manner that the web elements are described in a discontinuous path in the longitudinal direction. According to how many web elements are arranged in the groove, the corresponding groove is divided into two (in the case of one web element), three (in the case of two web elements), or more than three (in the case of more than two web elements). In the case of web elements) the groove part. One or more grooves may not even have web elements.
在鰭狀塊之一些或每一溝槽中,遍及鰭狀塊的總長度觀看,能以使得第一腹板元件敘述於縱長方向中之傾斜或彎曲的路線之方式配置第一腹板元件。替代傾斜或彎曲的路線,第一腹板元件之配置亦可具有鋸齒形或不同的路線。對於第一腹板元件在鰭狀塊之內側上的配置至關重要的是,第一腹板元件的路線不完全地平行於鰭狀塊之縱長方向(且因此平行於待校準型材的進給方向)。In some or each groove of the fin-shaped block, viewed across the total length of the fin-shaped block, the first web element can be arranged in such a way that the first web element describes an inclined or curved route in the longitudinal direction . Instead of an inclined or curved route, the configuration of the first web element can also have a zigzag shape or a different route. For the arrangement of the first web element on the inside of the fin-shaped block, it is essential that the route of the first web element is not completely parallel to the longitudinal direction of the fin-shaped block (and therefore parallel to the progress of the profile to be calibrated). Give directions).
除了第一腹板元件之外,遍及鰭狀塊的整個長度觀看,在一些或每一溝槽中,能以使得第二腹板元件於其內側敘述在縱長方向中傾斜或彎曲之路線的方式配置第二腹板元件,所述第二腹板元件與第一腹板元件隔開地配置。於此,第二腹板元件之路線可為平行於第一腹板元件的路線。對於傾斜或彎曲之路線的另外選擇,第二腹板元件亦可順著鋸齒形或不同之路線。In addition to the first web element, viewed across the entire length of the fin-shaped block, in some or each groove, the second web element can describe the course of the inclined or curved in the longitudinal direction on its inner side. The second web element is arranged in such a way that the second web element is arranged spaced apart from the first web element. Here, the route of the second web element may be parallel to the route of the first web element. For alternatives to inclined or curved routes, the second web element can also follow a zigzag or different route.
再者,鰭狀塊可具有鰭片結構配置在其上之承載件結構。承載件結構和鰭狀塊可為由相同材料或由不同材料所製成。特別地是,承載件結構及/或鰭片可為由金屬材料或由聚合物材料所形成。承載件結構可於面向遠離鰭狀塊的內側之側面上配置在鰭狀塊的鰭片結構上。承載件結構和鰭片結構可形成為單件式部件。另一選擇係,承載結構可包含至少一承載桿,鰭狀塊之個別鰭片沿著所述承載桿於縱長方向中串起。Furthermore, the fin-shaped block may have a carrier structure on which the fin structure is arranged. The carrier structure and the fin-shaped block may be made of the same material or of different materials. In particular, the carrier structure and/or the fins may be formed of metal materials or polymer materials. The carrier structure can be arranged on the fin structure of the fin block on the side facing away from the inner side of the fin block. The carrier structure and the fin structure may be formed as a one-piece component. Alternatively, the carrying structure may include at least one carrying rod, and the individual fins of the fin-shaped block are strung in the longitudinal direction along the carrying rod.
鰭狀塊可藉著3D列印來生產。另一選擇係,鰭狀塊可例如藉由銑削、鑽孔、切割、或藉著鑄造方法來生產。Fin-shaped blocks can be produced by 3D printing. Alternatively, the fins can be produced, for example, by milling, drilling, cutting, or by casting methods.
從各種觀點來看,與先前技術領域相比,根據本發明的鰭狀塊係有利的。在一方面,將溝槽分成溝槽部分使得於校準期間減小擠製型材之表面上的凸起區域。這可改善校準型材之表面條件。再者,相鄰溝槽的腹板元件相對於彼此之偏移導致溝槽部分的長度中之不規則的變動。因此,在校準期間,於待校準型材之表面上出現不規則形成的凸起區域。由此,可防止在前言中所敘述之型材校準期間的顫動,因為至少一些凸起區域由於其不均等性而不再鉤扣進入隨後之溝槽(或個別溝槽部分)中。From various viewpoints, the fin-shaped block system according to the present invention is advantageous compared to the prior art. On the one hand, dividing the groove into groove portions allows the raised area on the surface of the extruded profile to be reduced during calibration. This can improve the surface condition of the calibration profile. Furthermore, the offset of the web elements of adjacent grooves relative to each other results in irregular variations in the length of the groove portion. Therefore, during calibration, irregularly formed convex areas appear on the surface of the profile to be calibrated. As a result, chattering during the calibration of the profile described in the introduction can be prevented, because at least some of the raised areas no longer snap into the subsequent grooves (or individual groove parts) due to their unevenness.
根據本發明之另一態樣,提供用於校準擠製型材的校準裝置,其中所述校準裝置具有根據本發明之複數鰭狀塊,所述鰭狀塊相對於彼此配置以形成校準開口。在此能以使得其形成圓形校準開口的方式配置鰭狀塊。According to another aspect of the present invention, a calibration device for calibrating extruded profiles is provided, wherein the calibration device has a plurality of fin-shaped blocks according to the invention, and the fin-shaped blocks are arranged relative to each other to form a calibration opening. The fins can be arranged in such a way that they form a circular calibration opening.
再者,校準裝置可包含複數致動裝置,其中每一致動裝置分別與鰭狀塊之其中一者耦接。經過致動裝置,每一鰭狀塊可徑向個別地致動至校準開口。由此,校準開口的有效截面可根據需要設計成適於待校準型材之截面(直徑)。Furthermore, the calibration device may include a plurality of actuation devices, wherein each actuation device is respectively coupled to one of the fins. Through the actuation device, each fin-shaped block can be actuated to the calibration opening individually in the radial direction. Therefore, the effective cross section of the calibration opening can be designed to be suitable for the cross section (diameter) of the profile to be calibrated as required.
再者,校準裝置可具有提供用於承接和儲存致動裝置的殼體、及與致動裝置耦接之鰭狀塊。Furthermore, the calibration device may have a housing provided for receiving and storing the actuating device, and a fin-shaped block coupled with the actuating device.
根據本發明的另一態樣,提供用於生產根據本發明之鰭狀塊的方法。用於生產鰭狀塊之方法至少包含藉著3D列印或藉著積層製造方法來生產鰭狀塊的步驟。藉著3D列印方法或積層製造方法來生產鰭狀塊在此可包含逐層雷射燒結/材料層之雷射熔融,其中根據要生產的鰭狀塊的形式連續地(按順序地)施加材料層。According to another aspect of the present invention, a method for producing the fin-shaped block according to the present invention is provided. The method for producing the fin-shaped block at least includes the step of producing the fin-shaped block by 3D printing or by a layered manufacturing method. The production of fins by the 3D printing method or the multi-layer manufacturing method may include layer-by-layer laser sintering/laser melting of material layers, which are applied continuously (in order) according to the form of the fins to be produced Material layer.
再者,所述方法可包含計算鰭狀塊幾何形狀(CAD資料)之步驟,及可選地,包含將3D幾何形狀資料轉換成用於3D列印或積層製造之對應控制命令的步驟。Furthermore, the method may include the step of calculating the geometry of the fins (CAD data), and optionally, the step of converting the 3D geometry data into corresponding control commands for 3D printing or multilayer manufacturing.
所述方法可包含將鰭狀塊生產為單件式部件。應理解的是,根據替代變型,所述方法可包含個別地生產每一鰭片(例如分別具有相鄰的腹板元件),且沿著鰭狀塊之縱長方向中的至少一承載桿串起鰭片。The method may include producing the fin block as a one-piece part. It should be understood that, according to an alternative variant, the method may include producing each fin individually (for example, each having adjacent web elements), and at least one load-bearing rod string along the lengthwise direction of the fin block From the fins.
根據另一態樣,提供用於生產鰭狀塊之方法,所述方法包含以下步驟:建立代表如上所述的鰭狀塊之資料組;及將資料組儲存在儲存裝置或伺服器上。所述方法可更包含:將資料組輸入處理裝置或電腦,所述處理裝置或電腦以使得其製造資料組中所代表的鰭狀塊之方式致動用於積層製造的裝置。According to another aspect, a method for producing fin-shaped blocks is provided. The method includes the following steps: creating a data set representing the fin-shaped blocks as described above; and storing the data set on a storage device or a server. The method may further include: inputting the data set into a processing device or a computer, and the processing device or computer activates the device for multi-layer manufacturing in such a way that the fin-shaped block represented in the data set is manufactured.
根據另一態樣,提供用於鰭狀塊之積層製造的系統,所述系統具有資料組生成裝置,用於生成代表如上所述的鰭狀塊之資料組;儲存裝置,用於儲存所述資料組;及處理裝置,用於接收所述資料組並以使得用於積層製造的裝置製造在資料組中所代表之鰭狀塊的方式致動用於積層製造之裝置。儲存裝置可為USB記憶棒、CD-ROM、DVD、記憶卡、或硬碟。處理裝置可為電腦、伺服器、或處理器。According to another aspect, a system for layered manufacturing of fin-shaped blocks is provided. The system has a data set generating device for generating a data set representing the fin-shaped block as described above; and a storage device for storing the A data set; and a processing device for receiving the data set and actuating the device for layered manufacturing in such a way that the device for layered manufacturing manufactures the fin-shaped block represented in the data set. The storage device can be a USB memory stick, CD-ROM, DVD, memory card, or hard disk. The processing device can be a computer, a server, or a processor.
根據另一態樣,提供電腦程式或分別提供包含資料組的電腦程式產品,並以使得用於積層製造之裝置製造如上所述鰭狀塊的方式,藉由處理裝置或電腦讀取資料組來造成其致動用於積層製造之裝置。According to another aspect, a computer program is provided or a computer program product containing a data set is provided separately, and the device used for multilayer manufacturing is made into the fin-shaped block as described above, and the data set is read by the processing device or the computer. Cause it to actuate the device used for multilayer manufacturing.
根據另一態樣,提供機器可讀的資料載體,在其上儲存上述電腦程式。機器可讀之資料載體可為USB記憶棒、CD-ROM、DVD、記憶卡、或硬碟。According to another aspect, a machine-readable data carrier is provided, on which the computer program is stored. The machine-readable data carrier can be a USB memory stick, CD-ROM, DVD, memory card, or hard disk.
根據另一態樣,提供代表如上所述的鰭狀塊之資料組。資料組可儲存於機器可讀的資料載體上。According to another aspect, a data set representing the fin-shaped block as described above is provided. The data set can be stored on a machine-readable data carrier.
在前言中業已關於先前技術領域討論圖1a和1b。將參考那裡之敘述。Figures 1a and 1b have already been discussed in the preface regarding the prior art field. Will refer to the description there.
關於圖2a至2c,現在進一步敘述根據本發明的用於校準機之鰭狀塊100。With regard to FIGS. 2a to 2c, the fin-shaped
圖2a所說明的鰭狀塊100包含具有複數鰭片112之鰭片結構110。再者,鰭狀塊100包含承載件結構120。所述承載件結構120用作鰭片結構110的承載件。The
再者,鰭狀塊100可具有提供用於與校準裝置之致動裝置(在此同樣未說明)耦接的耦接裝置(在此未說明)。可建構耦接裝置,以致其能夠與承載件結構120牢固地連接。Furthermore, the fin-shaped
承載件結構120(如圖2a所說明)可藉由樑形本體來實現,鰭片112沿著所述樑形本體配置。尤其是,樑形承載件結構120可具有用於減輕鰭狀塊100之重量的孔口。另一選擇係,承載件結構120可具有在其上串起鰭片112之至少一承載桿(為此參考圖1a)。The carrier structure 120 (as illustrated in FIG. 2a) can be realized by a beam-shaped body, and the
鰭片結構110包含複數鰭片112,所述鰭片於鰭狀塊100的縱長方向L中彼此隔開地配置。相鄰鰭片112藉由對應溝槽130彼此分開。根據圖2a中所示之實施方式,每一鰭片112在縱長方向L的截面中具有實質上(等邊)三角形之輪廓。於鰭狀塊100的內側上,每一鰭片在安裝狀態下於面向待校準型材之校準裝置中具有接觸表面114。The
在校準期間,接觸表面114將與待校準型材(例如管件)的外表面接觸。每一鰭片112之接觸表面114具有輕微(凹入的)曲率,其至少部分地代表待校準型材之外側輪廓。根據本申請案,鰭狀塊100亦可具有不同的鰭片形狀,其可不同於在此所敘述之三角形截面型材。同樣地,每一鰭片112的接觸表面114可具有不同之曲率,或可分別建構,以便為平坦或成角度的。During calibration, the
圖2a中所說明之鰭狀塊100更包含配置於鰭狀塊100的溝槽130中之腹板元件140a。腹板元件140a在鰭狀塊100的內側上依序分別具有接觸表面142a,所述接觸表面與鄰接個別腹板元件140a之鰭片112的接觸表面114齊平地終止。這意指鰭片112之接觸表面114和腹板元件140a的接觸表面142a在鰭狀塊100之內側上形成共同的接觸表面。共同之接觸表面可至少部分地再現待校準型材的外側輪廓。The
於圖2b中,說明至鰭片內側上之圖2a中所說明的鰭狀塊100之正垂視圖。在圖2b中的正垂視圖中,沿著其配置鰭片112之承載件結構120指示為位於鰭片112後面的直立樑件。鰭狀塊100相對在縱長方向L中於中心延伸經過鰭狀塊之對稱平面180鏡像對稱地形成。在圖2b中用陰影線說明腹板元件140a的接觸表面142a。以使得每一腹板元件140a將相關聯的溝槽130分成二相等溝槽部分132、134之方式,腹板元件140a於縱長方向L上中心地(亦即,沿著對稱平面180中心地)配置在鰭狀塊100的溝槽130中。配置於溝槽130中之腹板元件142或分別在鰭狀塊內側上的其接觸表面142a造成校準型材表面上所形成之凸起區域的尺寸減小,從而改善所校準型材之表面狀況。In FIG. 2b, a front vertical view of the
於圖2c中,在截面A-A(見圖2b)中說明圖2a和2b中所說明之鰭狀塊的截面。腹板元件140a之接觸表面142a與相鄰鰭片112的接觸表面114齊平地終止。再者,腹板元件140a具有腹板元件背面144,腹板元件140a通過背面144突出進入溝槽130之溝槽內部。腹板元件140a於其背面144上具有圓形的形狀,其形狀之截面相對所述對稱平面180係對稱的。應當理解,腹板元件背面144亦可形成為有角度的。In Fig. 2c, the section of the fin-shaped block illustrated in Figs. 2a and 2b is illustrated in section A-A (see Fig. 2b). The
關於圖3a和3b,現在更詳細地敘述根據本發明之用於校準裝置的鰭狀塊200之其他變型。類似根據圖2a至2c的鰭狀塊100,鰭狀塊200具有鰭狀結構110,所述鰭狀結構設有複數鰭片112,這些鰭片112藉由溝槽130彼此隔開。再者,鰭狀塊200具有其上配置鰭狀結構110之承載件結構120。於此,可將承載件結構120建構為正好像圖2a至2c中的鰭狀塊100之承載件結構。將參考圖2a至2c的對應敘述。為了簡化,在結構和功能上與鰭狀塊100之特徵類似或相同的鰭狀塊200之特徵於圖3a和3b中被賦予相同的參考數字。With regard to FIGS. 3a and 3b, other variants of the fin-shaped
根據本發明在根據圖3a和3b中所說明之鰭狀塊200的變型,至少一些腹板元件140a可相對於彼此偏移地配置。因此,至少一些腹板元件140a將配置在其中之溝槽130分成不相等的溝槽部分(132、134)(亦即,不相等之長度)。腹板元件140a的偏移導致接觸表面142a相對於彼此偏移,且具有結果是接觸表面142a之型材的進給沿著鰭狀塊200之縱長方向被校準,與彼此一致地配置的腹板元件140a相比,總體上,腹板元件通過型材之更大的表面區域。藉由沿著鰭狀塊200之接觸表面142a進給待校準的型材,因此於校準期間在型材表面上出現之凸起區域可遍及寬廣範圍為平滑的。According to the present invention in a variant of the
根據圖3a中之變型,遍及鰭狀塊200的整個長度觀看,腹板元件140a相對於對稱平面180順著線性傾斜路線。在另一方面,根據圖3b中之變型,鰭狀塊200的內側上之腹板元件140a描繪出彎曲或個別起伏的路線。根據替代之變型,腹板元件140a亦更順著鋸齒形或不同的路線。換句話說,腹板元件140a以其順著預定路線之方式配置於溝槽130內。According to the variant in FIG. 3a, viewed across the entire length of the
對於每一腹板元件140a,每一腹板元件140a突出進入溝槽130的溝槽內部之厚度可變動。例如,腹板元件140a的厚度可隨著腹板元件140a離對稱平面180之距離的增加而增加。由此,可預防校準裝置中之相鄰鰭狀塊的鰭片與腹板元件140a發生碰撞。For each
關於圖4a和4b,進一步詳細地敘述根據本發明之用於校準裝置的鰭狀塊300之其他變型。為簡化起見,鰭狀塊300的特徵在結構和功能上再次與根據圖2a-2c之鰭狀塊100的特徵相似或相同,並給與相同之參考數字。將參考圖2a-2c的對應敘述。With regard to FIGS. 4a and 4b, other modifications of the
根據圖4a中所示之鰭狀塊300的變型,每一溝槽130包含第一腹板元件140a和第二腹板元件140b。腹板元件140a、140b將每一溝槽分成三個溝槽部分132、133、134。第一腹板元件140a和第二腹板元件140b於此以使得至少一些溝槽130之所形成的溝槽部分132、133、134具有不相等之長度的方式配置。藉此,可減少或甚至防止在前言中所敘述之校準擠壓型材期間的顫動。在遍及鰭狀塊300之總長度上觀看,第一腹板元件140a的配置和第二腹板元件140b之配置分別順著預定的路線。第一腹板元件140a之配置相對於對稱平面180順著線性傾斜的路線。第二腹板元件140b之路線同樣相對於對稱平面180呈線性地傾斜且平行於第一腹板元件140a的路線。與其中每一溝槽130僅藉由一腹板元件140a分開之變型相比(參見圖3a和3b),藉由二腹板元件140a、140b分開的優點在於,各個溝槽部分132、133、134和因此型材表面上之凸起區域亦再一次減小,從而進一步改善待校準型材的表面條件。According to the modification of the
根據圖4b所示之鰭狀塊300的變型,一些溝槽130具有一腹板元件140a或二腹板元件140a和140b,而其他溝槽130沒有腹板元件140a、140b。遍及鰭狀塊300之總長度觀看,腹板元件140a、140b的配置(位移)於此可順著非恆定功能。因此,可在校準型材之表面上達成不同長度的凸起區域之隨機分佈。隨著圖4b中所示的腹板元件140a、140b之隨機且至少部分偏移的配置,再次可得出,與在同等配置之腹板元件的案例下相比,於校準期間通過型材之表面的更大區域。According to the variant of the
關於圖5,現在進一步詳細敘述根據本發明的校準裝置500之實施方式。校準裝置500包含如上所述的根據本發明之複數鰭狀塊100、200,以使得鰭片112的接觸表面114和鰭狀塊100、200之腹板元件140a、240的接觸表面142a、242一起形成校準開口510之方式,這些鰭狀塊相對於彼此配置在圓周方向中。校準開口510對應於待校準型材的期望之外側輪廓(管件515)。With regard to FIG. 5, the embodiment of the calibration device 500 according to the present invention will now be described in further detail. The calibration device 500 includes the plurality of fin blocks 100 and 200 according to the present invention as described above, so that the
在每一鰭狀塊100、200的承載件結構120上配置有耦接裝置150。每一耦接裝置150再次分別與致動裝置520連接,其固定於校準裝置500的內殼圓柱體530和外殼圓柱體540之間。藉由相關聯的致動裝置520致動鰭狀塊100、200使鰭狀塊100、200能夠徑向移動。以此方式,能以可變之方式調整校準開口510的直徑,因為每一鰭狀塊100、200之鰭片112嚙合進入分別鄰接鰭狀塊100、200的溝槽130。A coupling device 150 is arranged on the
基本上,根據圖5之校準裝置500的結構類似於如在DE 198 43 340 C2中業已敘述之校準裝置的結構。Basically, the structure of the calibration device 500 according to FIG. 5 is similar to the structure of the calibration device as described in DE 198 43 340 C2.
為了生產根據本發明之鰭狀塊100、200,較佳地係可使用生成的或個別地積層製造的方法。此生產方法600在圖6中顯示。因此,使用3D列印方法。於此,在第一步驟610中,計算與待製造之鰭狀塊100、200的幾何形狀對應之3D幾何形狀(CAD資料)。於第二步驟620中,將計算出的3D幾何形狀轉換成用於3D列印之控制命令。最後,在第三步驟630中,基於所生成的控制命令,藉著3D列印方法(例如,雷射燒結、雷射熔融)逐層地建立鰭狀塊100、200。金屬材料或聚合物材料可用作3D列印之材料。In order to produce the fin-shaped
應當理解,根據替代變型,所述方法可包含個別地生產每一鰭片112(例如分別具有相鄰的腹板元件140a、240)、及沿著鰭狀塊100、200之縱長方向中的至少一承載桿串起鰭片112。It should be understood that according to alternative variants, the method may include individually producing each fin 112 (for example, having
除了藉著3D列印生產之外,亦可設想例如藉由銑削、鑽孔、切割、或藉著鑄造方法來各個生產鰭狀塊100、200或個別地生產每一鰭片112。In addition to production by 3D printing, it is also conceivable to individually produce the fin blocks 100 and 200 or to produce each
經過在此所敘述的鰭狀塊與腹板元件之使用,與先前技術領域相比,可改善環形型材、尤其是塑料型材的校準。特別地是,可達成於型材表面上之凸起區域的有利減小。再者,如上所述,經過腹板元件於鰭狀塊之縱長方向中的至少部分偏移配置,可實現不規則之溝槽部分圖案及因此可實現型材表面上的不規則凸起區域,從而消除或至少大幅減少型材校準期間之顫動。經過腹板元件的至少部分偏移配置,甚至當各個腹板元件或其個別接觸表面相同地建構時,可在型材表面上實現不規則之凸起區域。The use of the fin-shaped blocks and web elements described here can improve the alignment of ring profiles, especially plastic profiles, compared with the prior art. In particular, it is possible to achieve a favorable reduction of the raised area on the surface of the profile. Furthermore, as described above, through the at least partial offset arrangement of the web elements in the longitudinal direction of the fin-shaped block, irregular groove partial patterns and therefore irregular convex areas on the surface of the profile can be realized, This eliminates or at least greatly reduces vibration during profile calibration. Through the at least partial offset configuration of the web elements, even when the individual web elements or their individual contact surfaces are constructed identically, irregular raised areas can be realized on the surface of the profile.
100:鰭狀塊
110:鰭片結構
112:鰭片
114:接觸表面
120:承載件結構
130:溝槽
132:溝槽部分
133:溝槽部分
134:溝槽部分
140a:腹板元件
140b:腹板元件
142:腹板元件
142a:接觸表面
144:腹板元件背面
150:耦接裝置
180:對稱平面
200:鰭狀塊
240:腹板元件
242:接觸表面
300:鰭狀塊
500:校準裝置
510:校準開口
515:管件
520:致動裝置
530:內殼圓柱體
540:外殼圓柱體100: fins
110: Fin structure
112: Fins
114: contact surface
120: Bearing structure
130: groove
132: groove part
133: groove part
134:
借助於以下附圖解釋本發明之其他優點、細節、和態樣。顯示有:The other advantages, details, and aspects of the present invention are explained with the aid of the following drawings. Shown as:
[圖1a]係根據先前技術領域的用於校準裝置之鰭狀塊;[Figure 1a] A fin-shaped block used for calibrating a device according to the prior art;
[圖1b]係根據先前技術領域的用於校準裝置之另一鰭狀塊;[Fig. 1b] Another fin-shaped block used for calibrating the device according to the prior art;
[圖2a]係根據本發明的鰭狀塊之3D視圖;[Figure 2a] is a 3D view of the fin-shaped block according to the present invention;
[圖2b]係至圖2a中所說明的鰭狀塊之內側上的正垂視圖;[Figure 2b] is a front vertical view on the inside of the fin-shaped block illustrated in Figure 2a;
[圖2c]係圖2a和2b中所說明之鰭狀塊的A-A剖視圖(見圖2b);[Figure 2c] A-A sectional view of the fin-shaped block illustrated in Figures 2a and 2b (see Figure 2b);
[圖3a-b]係根據本發明之鰭狀塊的替代變型之視圖;[Figure 3a-b] is a view of an alternative variant of the fin-shaped block according to the present invention;
[圖4a-b]係根據本發明的鰭狀塊之其他替代變型的視圖;[Figure 4a-b] is a view of other alternative variants of the fin-shaped block according to the present invention;
[圖5]係根據本發明之具有複數鰭狀塊的校準裝置之視圖;[Figure 5] is a view of a calibration device with a plurality of fins according to the present invention;
[圖6]係根據本發明的用於生產鰭狀塊之方法的方塊圖。[Figure 6] is a block diagram of the method for producing fin-shaped blocks according to the present invention.
110:鰭片結構 110: Fin structure
112:鰭片 112: Fins
120:承載件結構 120: Bearing structure
130:溝槽 130: groove
132:溝槽部分 132: groove part
133:溝槽部分 133: groove part
134:溝槽部分 134: groove part
140a:腹板元件 140a: web element
140b:腹板元件 140b: Web element
142a:接觸表面 142a: contact surface
180:對稱平面 180: plane of symmetry
300:鰭狀塊 300: fins
L:縱長方向 L: Longitudinal direction
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019002007.3 | 2019-03-21 | ||
DE102019002007.3A DE102019002007A1 (en) | 2019-03-21 | 2019-03-21 | Lamellar block for a calibration device with internal bar |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202035100A true TW202035100A (en) | 2020-10-01 |
Family
ID=68841123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108147783A TW202035100A (en) | 2019-03-21 | 2019-12-26 | Fin block for a calibrating device with web on the inside |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE102019002007A1 (en) |
TW (1) | TW202035100A (en) |
WO (1) | WO2020187439A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2221186C (en) * | 1995-05-17 | 2006-07-25 | Knud Kristian Pedersen | A tubular calibration unit for machines for extruding plastic strings such as pipes |
DE19843340C2 (en) * | 1998-09-22 | 2001-11-22 | Strumann Werner Egeplast | Device for the production of plastic pipes |
US6730998B1 (en) * | 2000-02-10 | 2004-05-04 | Micron Technology, Inc. | Stereolithographic method for fabricating heat sinks, stereolithographically fabricated heat sinks, and semiconductor devices including same |
DE10315125B3 (en) * | 2003-04-03 | 2004-09-09 | Krauss-Maffei Kunststofftechnik Gmbh | Calibration unit for endless extruded profiles, comprises numerous segment crown sections formed from individual segments, and a carrier structure |
DE10323543B4 (en) * | 2003-05-24 | 2005-02-10 | Krauss-Maffei Kunststofftechnik Gmbh | calibration |
DE102005002820B3 (en) * | 2005-01-20 | 2006-05-11 | Inoex Gmbh | Stepless adjustable calibration sleeve for extruded plastic pipe comprises overlapping toothed radial segments and variable braid and segment ends contact pipe and connect to segments with flush joints |
DE102009016100A1 (en) * | 2009-04-03 | 2010-10-07 | Egeplast Werner Strumann Gmbh & Co. Kg | Calibrating device for plastic pipe extruding system, has calibrating tools formed as hollow body, where tools have slots in area of sliding surfaces that are attached to pipe circumference, and slots are connected with cavity in body |
DE102015007791A1 (en) * | 2015-06-19 | 2016-12-22 | Airbus Defence and Space GmbH | Production of heat sinks for electrical or electronic components |
DE102015009528B3 (en) * | 2015-07-27 | 2016-09-22 | Inoex Gmbh | Infinitely adjustable calibration sleeve for extruded plastic pipes |
DE102016211479A1 (en) * | 2016-06-27 | 2017-12-28 | Siemens Aktiengesellschaft | power module |
-
2019
- 2019-03-21 DE DE102019002007.3A patent/DE102019002007A1/en not_active Withdrawn
- 2019-12-09 WO PCT/EP2019/084238 patent/WO2020187439A1/en active Application Filing
- 2019-12-26 TW TW108147783A patent/TW202035100A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE102019002007A1 (en) | 2020-09-24 |
WO2020187439A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104028759B (en) | For manufacturing lamination manufacture method and the three dimensional object of three dimensional object | |
JP2018138348A5 (en) | ||
US11059200B2 (en) | Honeycomb structure forming die and method of manufacturing honeycomb structure forming die | |
CN104028756A (en) | Additive layer manufacturing method for producing three-dimensional object and three-dimensional object | |
NL1041597B1 (en) | Method for optimized manufacturing. | |
JP3883504B2 (en) | Metal bent pipe and metal bent bar manufacturing apparatus having arbitrary cross-sectional shape | |
CA3064717A1 (en) | Method of manufacturing a fluid pressure reduction device | |
TW202035100A (en) | Fin block for a calibrating device with web on the inside | |
CN105579208A (en) | Honeycomb ceramic substrates, honeycomb extrusion dies, and methods of making honeycomb ceramic substrates | |
TW202039212A (en) | Lamella block with continuously varied lamella division | |
US20170225419A1 (en) | Textured die having blocks for manufacturing a textured mould for moulding and vulcanizing tires | |
JP2008213008A (en) | Extrusion molding die for metallic material | |
TW202037476A (en) | Fin block for a calibrating device with web on the inside | |
US20220143891A1 (en) | Lamella Block with Lamella Openings | |
US20220055278A1 (en) | Lamella Block with Laterally Offset Lamellae | |
EP3233337A1 (en) | Laser sintering method for manufacturing a tread molding element | |
TW202039214A (en) | Lamella block with offset lamellae | |
TW202039210A (en) | Fin block with continuously varied fin width | |
TW202035104A (en) | Fin block for a calibrating device | |
TW202035101A (en) | Calibration basket with offset intersections | |
Hawaldar et al. | Optimization of Printing Parameters for 3-D Printed PLA | |
TW202035103A (en) | Fin block with internal temperature control | |
JPH0794051B2 (en) | Method for manufacturing porous extrusion mold material and manufacturing die | |
JP2007276487A (en) | Design method for extrusion die |