TW202034317A - Current-voltage converting circuit, reference voltage generating circuit and non-volatile semiconductor storage device - Google Patents

Current-voltage converting circuit, reference voltage generating circuit and non-volatile semiconductor storage device Download PDF

Info

Publication number
TW202034317A
TW202034317A TW108115300A TW108115300A TW202034317A TW 202034317 A TW202034317 A TW 202034317A TW 108115300 A TW108115300 A TW 108115300A TW 108115300 A TW108115300 A TW 108115300A TW 202034317 A TW202034317 A TW 202034317A
Authority
TW
Taiwan
Prior art keywords
voltage
current
circuit
mos transistor
metal oxide
Prior art date
Application number
TW108115300A
Other languages
Chinese (zh)
Other versions
TWI690934B (en
Inventor
木谷朋文
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Application granted granted Critical
Publication of TWI690934B publication Critical patent/TWI690934B/en
Publication of TW202034317A publication Critical patent/TW202034317A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Read Only Memory (AREA)
  • Control Of Electrical Variables (AREA)
  • Logic Circuits (AREA)

Abstract

A reference voltage generating circuit supplying stable reference voltage in a layout area smaller than prior art is provided. The reference voltage generating circuit includes a current-voltage converting circuit and outputs a reference voltage based on an output voltage of the current-voltage converting circuit. The current-voltage converting circuit includes a first current mirror circuit including a first MOS transistor and a second MOS transistor, an output resistor, and a depletion type N-channel MOS transistor. The depletion type N-channel MOS transistor is inserted between an inputted first voltage and the first MOS transistor and the second MOS transistor, and has a gate with a feedback output voltage from the output resistor. The current-voltage converting circuit generates the output voltage by a current corresponding to a reference current flowing into the second MOS transistor and the output resistor as the reference current flowed into the first MOS transistor.

Description

電流電壓轉換電路、基準電壓產生電路及非揮發性半導體存儲裝置Current-voltage conversion circuit, reference voltage generating circuit and non-volatile semiconductor storage device

本發明是有關於一種電流電壓轉換電路,使用所述電流電壓轉換電路的基準電壓產生電路,以及使用所述基準電壓產生電路的非揮發性半導體存儲裝置。The present invention relates to a current-voltage conversion circuit, a reference voltage generating circuit using the current-voltage conversion circuit, and a non-volatile semiconductor storage device using the reference voltage generating circuit.

圖1是表示先前技術的用於反及(NAND)型快閃記憶體的電壓產生電路的結構例的方塊圖。反及型快閃記憶體等非揮發性半導體存儲裝置為了進行讀出、編程及消去操作而需要許多種類的電壓。通常,如圖1所示,該些電壓由電荷泵電路(charge pump circuit)21與調節器電路(regulator circuit)22等電壓產生電路生成,並經由字線解碼器電路(word line decoder circuit)11而供給至記憶體陣列10中。 [現有技術文獻] [專利文獻]FIG. 1 is a block diagram showing a configuration example of a voltage generating circuit used in a NAND flash memory in the prior art. Non-volatile semiconductor storage devices such as reverse flash memory require many types of voltages for reading, programming, and erasing operations. Generally, as shown in FIG. 1, these voltages are generated by voltage generating circuits such as a charge pump circuit 21 and a regulator circuit 22, and pass through a word line decoder circuit 11 It is supplied to the memory array 10. [Prior Art Literature] [Patent Literature]

[專利文獻1]日本專利特開2013-196622號公報[Patent Document 1] Japanese Patent Laid-Open No. 2013-196622

[發明所欲解決之課題][The problem to be solved by the invention]

但是,於來自電荷泵電路21的輸出電壓中存在電壓漣波(voltage ripple),其對記憶單元的壓力帶來影響,具有字線的位置依存性(圖1)。為了減少漣波,而自調節器電路22中供給幾種電壓,但其存在消耗多餘的佈局區域這一問題點。However, there is a voltage ripple in the output voltage from the charge pump circuit 21, which affects the pressure of the memory cell and is dependent on the position of the word line (FIG. 1). In order to reduce the ripple, several voltages are supplied to the self-regulator circuit 22, but there is a problem of consuming extra layout area.

本發明的目的在於解決以上的問題點,提供一種可於比先前技術小的佈局區域內供給穩定的基準電壓的電流電壓轉換電路,使用所述電流電壓轉換電路的基準電壓產生電路,以及使用所述基準電壓產生電路的非揮發性半導體存儲裝置。 [解決課題之手段]The purpose of the present invention is to solve the above problems and provide a current-voltage conversion circuit that can supply a stable reference voltage in a smaller layout area than the prior art, a reference voltage generating circuit using the current-voltage conversion circuit, and the use of all The non-volatile semiconductor storage device of the reference voltage generating circuit. [Means to solve the problem]

本發明的電流電壓轉換電路的特徵在於包括: 第一電流鏡電路,包含一對第一金屬氧化物半導體(Metal Oxide Semiconductor,MOS)電晶體與第二MOS電晶體及輸出電阻;以及空乏型N通道MOS電晶體,插入於被輸入的第一電壓與所述第一MOS電晶體及所述第二MOS電晶體之間,且具有被反饋來自所述輸出電阻的輸出電壓的閘極;且當已將基準電流輸入所述第一MOS電晶體中時,藉由流入所述第二MOS電晶體及輸出電阻中的與所述基準電流對應的電流來產生輸出電壓。 [發明的效果]The current-to-voltage conversion circuit of the present invention is characterized by including: The first current mirror circuit includes a pair of first Metal Oxide Semiconductor (MOS) transistors, a second MOS transistor, and an output resistor; and a depletion N-channel MOS transistor, which is inserted into the first input Voltage between the first MOS transistor and the second MOS transistor, and has a gate that is fed back the output voltage from the output resistor; and when a reference current has been input to the first MOS transistor In the middle, the output voltage is generated by the current corresponding to the reference current flowing in the second MOS transistor and the output resistor. [Effects of the invention]

因此,根據本發明,可提供一種可於比先前技術小的佈局區域內供給穩定的基準電壓的電流電壓轉換電路,使用所述電流電壓轉換電路的基準電壓產生電路,以及使用所述基準電壓產生電路的非揮發性半導體存儲裝置。Therefore, according to the present invention, it is possible to provide a current-voltage conversion circuit capable of supplying a stable reference voltage in a smaller layout area than the prior art, a reference voltage generating circuit using the current-voltage conversion circuit, and a reference voltage generating circuit using the reference voltage Circuit of non-volatile semiconductor storage device.

以下,參照圖式對本發明的實施方式進行說明。再者,對同一或相同的構成元件賦予同一符號。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the same or the same constituent elements.

(比較例) 圖2A是表示比較例的電流電壓轉換電路的結構例的電路圖。再者,例如於專利文獻1中揭示有使用電流鏡電路的電流電壓轉換電路。(Comparative example) 2A is a circuit diagram showing a configuration example of a current-voltage conversion circuit of a comparative example. Furthermore, for example, Patent Document 1 discloses a current-voltage conversion circuit using a current mirror circuit.

於圖2A中,表示包括一對P通道MOS電晶體M1、P通道MOS電晶體M2來構成,將電流轉換成電壓的簡單的電流鏡電路。此處,MOS電晶體M1的閘極及源極分別與MOS電晶體M2的閘極及源極連接,MOS電晶體M1、MOS電晶體M2的各閘極與MOS電晶體M1的汲極連接。在MOS電晶體M2的汲極與接地之間,連接調整輸出電壓VOUT的可變電阻R1。再者,於安裝時,可變電阻R1使用能夠以數位方式設定的例如半固定電阻。In FIG. 2A, a simple current mirror circuit including a pair of P-channel MOS transistors M1 and P-channel MOS transistors M2 to convert current into voltage is shown. Here, the gate and source of MOS transistor M1 are respectively connected to the gate and source of MOS transistor M2, and the gates of MOS transistor M1 and MOS transistor M2 are connected to the drain of MOS transistor M1. Between the drain of the MOS transistor M2 and the ground, a variable resistor R1 for adjusting the output voltage VOUT is connected. Furthermore, during installation, the variable resistor R1 uses, for example, a semi-fixed resistor that can be set digitally.

於如以上般構成的電流電壓轉換電路中,MOS電晶體M1、MOS電晶體M2的各源極中被施加電源電壓V1。由於藉由MOS電晶體M1、MOS電晶體M2來構成電流鏡電路,因此若朝MOS電晶體M1中流出基準電流Iref1,則與該基準電流Iref1對應的電流Iref2流入MOS電晶體M2及可變電阻R1中。此時,於作為輸出電阻的可變電阻R1中生成輸出電壓VOUT並將其輸出。In the current-voltage conversion circuit configured as described above, the power supply voltage V1 is applied to each source of the MOS transistor M1 and the MOS transistor M2. Since the MOS transistor M1 and MOS transistor M2 constitute the current mirror circuit, if the reference current Iref1 flows into the MOS transistor M1, the current Iref2 corresponding to the reference current Iref1 flows into the MOS transistor M2 and the variable resistor R1. At this time, the output voltage VOUT is generated and output in the variable resistance R1 as the output resistance.

此處,輸出電壓VOUT必須考慮MOS電晶體M2的汲極-源極間的崩潰電壓(breakdown voltage)BVds2。輸出電壓VOUT有可能被設定成例如0 V,因此必須使電源電壓V1比崩潰電壓BVds2小。Here, the output voltage VOUT must consider the breakdown voltage BVds2 between the drain and the source of the MOS transistor M2. The output voltage VOUT may be set to, for example, 0 V, so the power supply voltage V1 must be made smaller than the breakdown voltage BVds2.

(實施方式1) 圖2B是表示實施方式1的電流電壓轉換電路的結構例的電路圖。與圖2A的電流電壓轉換電路相比,圖2B的電流電壓轉換電路於以下方面不同。 (1)在電源電壓V1與一對MOS電晶體M1、MOS電晶體M2的各源極之間插入有空乏型N通道MOS電晶體DM1。(Embodiment 1) 2B is a circuit diagram showing a configuration example of the current-voltage conversion circuit of the first embodiment. Compared with the current-voltage conversion circuit of FIG. 2A, the current-voltage conversion circuit of FIG. 2B is different in the following aspects. (1) A depletion type N-channel MOS transistor DM1 is inserted between the power supply voltage V1 and each source of a pair of MOS transistors M1 and MOS transistors M2.

於圖2B中,MOS電晶體DM1的汲極與電源電壓V1連接,MOS電晶體DM1的源極與MOS電晶體M1、MOS電晶體M2的各源極連接。MOS電晶體DM1的閘極(控制端子)與可變電阻R1的一端及輸出電壓VOUT的端子連接。再者,將MOS電晶體M1、MOS電晶體M2的各源極的電壓設為V2。In FIG. 2B, the drain of the MOS transistor DM1 is connected to the power supply voltage V1, and the source of the MOS transistor DM1 is connected to the sources of the MOS transistor M1 and the MOS transistor M2. The gate (control terminal) of the MOS transistor DM1 is connected to one end of the variable resistor R1 and the terminal of the output voltage VOUT. Furthermore, the voltage of each source of MOS transistor M1 and MOS transistor M2 is set to V2.

於如以上般構成的電流電壓轉換電路中,藉由一對MOS電晶體M1、MOS電晶體M2來構成電流鏡電路。此處,在電壓V2的節點N2與電壓V1的節點N1之間,插入有空乏型N通道MOS電晶體DM1,MOS電晶體DM1的閘極與輸出電壓VOUT的端子連接,輸出電壓VOUT被反饋至該閘極中。藉此,對應於輸出電壓VOUT而流入MOS電晶體DM1中的電流得到控制,從而控制節點N2的電壓V2。In the current-to-voltage conversion circuit constructed as described above, a pair of MOS transistors M1 and MOS transistors M2 constitute a current mirror circuit. Here, between the node N2 of the voltage V2 and the node N1 of the voltage V1, a depletion N-channel MOS transistor DM1 is inserted. The gate of the MOS transistor DM1 is connected to the terminal of the output voltage VOUT, and the output voltage VOUT is fed back to The gate. Thereby, the current flowing into the MOS transistor DM1 corresponding to the output voltage VOUT is controlled, thereby controlling the voltage V2 of the node N2.

圖2C是表示圖2A及圖2B的電流電壓轉換電路的動作比較的圖表。Fig. 2C is a graph showing a comparison of the operations of the current-voltage conversion circuits of Figs. 2A and 2B.

空乏型N通道MOS電晶體DM1具有負的臨限值電壓Vth,因此如圖2C所示,節點N2的電壓V2以保持MOS電晶體DM1的輸出電壓VOUT+Vth的方式得到控制。其意味著將所述崩潰電壓BVds2始終保持於MOS電晶體DM1的臨限值電壓Vth附近。因此,只要MOS電晶體DM1的臨限值電壓Vth未滿崩潰電壓BVds2,則以比圖2A的電流電壓轉換電路高的電壓供給輸出電壓VOUT。The depleted N-channel MOS transistor DM1 has a negative threshold voltage Vth. Therefore, as shown in FIG. 2C, the voltage V2 of the node N2 is controlled by maintaining the output voltage VOUT+Vth of the MOS transistor DM1. This means that the breakdown voltage BVds2 is always maintained near the threshold voltage Vth of the MOS transistor DM1. Therefore, as long as the threshold voltage Vth of the MOS transistor DM1 is less than the breakdown voltage BVds2, the output voltage VOUT is supplied with a higher voltage than the current-voltage conversion circuit of FIG. 2A.

比所述MOS電晶體DM1的崩潰電壓Vds2高的下一個崩潰電壓是接合崩潰電壓BVj。若以接近接合崩潰電壓BVj的方式設定電壓V1,則輸出電壓VOUT的最大值大概變成V1-Vth。The next breakdown voltage higher than the breakdown voltage Vds2 of the MOS transistor DM1 is the junction breakdown voltage BVj. If the voltage V1 is set close to the junction breakdown voltage BVj, the maximum value of the output voltage VOUT approximately becomes V1-Vth.

如以上所說明般,如根據圖2C而明確般,可知因存在MOS電晶體DM1的臨限值電壓Vth,而導致圖2B的電流電壓轉換電路的電壓範圍VR2比圖2A的電流電壓轉換電路的電壓範圍VR1大幅度地擴大。另外,圖2B的電流電壓轉換電路可構成產生作為與基準電流Iref1對應的基準電壓的輸出電壓VOUT的基準電壓產生電路。As explained above, as is clear from FIG. 2C, it can be seen that the presence of the threshold voltage Vth of the MOS transistor DM1 causes the voltage range VR2 of the current-voltage conversion circuit of FIG. 2B to be greater than that of the current-voltage conversion circuit of FIG. 2A. The voltage range VR1 is greatly expanded. In addition, the current-voltage conversion circuit of FIG. 2B may constitute a reference voltage generating circuit that generates an output voltage VOUT as a reference voltage corresponding to the reference current Iref1.

(實施方式2) 圖3是表示實施方式2的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。(Embodiment 2) FIG. 3 is a block diagram showing a configuration example of a voltage generating circuit for a NAND flash memory according to the second embodiment.

於圖3中,基準電壓產生電路24由使用例如實施方式1的包含電流鏡電路的電流電壓轉換電路的基準電壓產生電路構成,根據來自電荷泵電路23的電壓而產生規定的基準電壓VREF並將其施加至MOS電晶體Q1的閘極中。另一方面,利用由MOS電晶體Q1所進行的箝位動作,將來自電荷泵電路21的電壓箝位成與所述基準電壓VREF對應的規定電壓以下。該箝位方式可稱為箝位MOS方式。可使用圖3的箝位MOS方式的MOS電晶體Q1,供給將供給至字線解碼器電路11及記憶體陣列10的字線中的字線電壓與先前技術相比減輕了漣波而成的規定值電壓。In FIG. 3, the reference voltage generating circuit 24 is constituted by a reference voltage generating circuit using, for example, a current-to-voltage conversion circuit including a current mirror circuit of Embodiment 1, and generates a predetermined reference voltage VREF based on the voltage from the charge pump circuit 23 and It is applied to the gate of MOS transistor Q1. On the other hand, the clamping operation performed by the MOS transistor Q1 clamps the voltage from the charge pump circuit 21 to a predetermined voltage or less corresponding to the reference voltage VREF. This clamping method can be called a clamping MOS method. The MOS transistor Q1 of the clamp MOS method of FIG. 3 can be used to supply the word line voltage to be supplied to the word line of the word line decoder circuit 11 and the memory array 10 with reduced ripples compared with the prior art Specified value voltage.

圖4是表示包含使用圖2B的電流電壓轉換電路的基準電壓產生電路的電壓產生電路的結構例的電路圖。於圖4中,包括電荷泵電路21、電荷泵電路23,多個基準電壓產生電路24-1~基準電壓產生電路24-4,以及箝位MOS方式的MOS電晶體M41~MOS電晶體M44來構成。4 is a circuit diagram showing a configuration example of a voltage generating circuit including a reference voltage generating circuit using the current-to-voltage conversion circuit of FIG. 2B. In FIG. 4, it includes a charge pump circuit 21, a charge pump circuit 23, a plurality of reference voltage generating circuits 24-1 to a reference voltage generating circuit 24-4, and MOS transistors M41 to M44 of a clamp MOS method. constitute.

於圖4中,各基準電壓產生電路24-1~基準電壓產生電路24-4的特徵在於:於使用圖2B的電流電壓轉換電路的基準電壓產生電路中,在MOS電晶體M2與可變電阻R1之間,插入有用於與箝位MOS方式的MOS電晶體M41~MOS電晶體M44構成電流鏡電路的MOS電晶體M3。此處,MOS電晶體M3的閘極與其汲極連接。In FIG. 4, each of the reference voltage generating circuit 24-1 to the reference voltage generating circuit 24-4 is characterized in that in the reference voltage generating circuit using the current-voltage conversion circuit of FIG. 2B, the MOS transistor M2 and the variable resistor Between R1, a MOS transistor M3 is inserted to form a current mirror circuit with MOS transistor M41 to MOS transistor M44 of the clamp MOS method. Here, the gate of MOS transistor M3 is connected to its drain.

以下對關於基準電壓產生電路24-1與MOS電晶體M41的電路的電路動作進行說明。基準電壓產生電路24-1根據來自電荷泵電路23的電壓V1,將作為與基準電流Iref1對應的輸出電壓VOUT的基準電壓VREF施加至MOS電晶體M41的閘極中。MOS電晶體M3與MOS電晶體M41構成電流鏡電路,且自電荷泵電路21朝MOS電晶體M41的汲極中施加電荷泵電壓VCPOUT。於該些電路中,與流入MOS電晶體M3中的電流Iref2對應的電流流入MOS電晶體M41中,作為MOS電晶體M3的源極電壓的目標電壓VTARGET 可使箝位MOS方式的MOS電晶體M41的源極中出現已被箝位的基準電壓。The circuit operation of the circuit of the reference voltage generating circuit 24-1 and the MOS transistor M41 will be described below. Based on the voltage V1 from the charge pump circuit 23, the reference voltage generating circuit 24-1 applies the reference voltage VREF, which is the output voltage VOUT corresponding to the reference current Iref1, to the gate of the MOS transistor M41. The MOS transistor M3 and the MOS transistor M41 constitute a current mirror circuit, and the charge pump voltage VCPOUT is applied from the charge pump circuit 21 to the drain of the MOS transistor M41. In these circuits, the current corresponding to the current Iref2 flowing into the MOS transistor M3 flows into the MOS transistor M41, and the target voltage V TARGET as the source voltage of the MOS transistor M3 can clamp the MOS transistor of the MOS method The clamped reference voltage appears in the source of M41.

另外,基準電壓產生電路24-2與MOS電晶體M42的電路、基準電壓產生電路24-3與MOS電晶體M43的電路,及基準電壓產生電路24-4與MOS電晶體M44的電路亦與所述電路同樣地進行動作。In addition, the circuit of the reference voltage generating circuit 24-2 and the MOS transistor M42, the circuit of the reference voltage generating circuit 24-3 and the MOS transistor M43, and the circuit of the reference voltage generating circuit 24-4 and the MOS transistor M44 are also similar to those mentioned above. The circuit operates similarly.

根據如以上般構成的圖4的電壓產生電路,由於所述電流鏡電路的鏡像效應(mirror effect),因此目標電壓VTARGET 被正確地傳達至記憶體陣列10中,來自電荷泵電路21、電荷泵電路23的漣波急劇地減少。According to the voltage generating circuit of FIG. 4 configured as described above, due to the mirror effect of the current mirror circuit, the target voltage V TARGET is correctly transmitted to the memory array 10 from the charge pump circuit 21, the charge The ripple of the pump circuit 23 sharply decreases.

(實施方式2) 圖5是表示實施方式2的用於反及型快閃記憶體的電壓產生電路的具體的結構例的方塊圖。(Embodiment 2) FIG. 5 is a block diagram showing a specific configuration example of a voltage generating circuit for a reverse flash memory according to the second embodiment.

於圖5中,電壓產生電路為了產生用於反及型快閃記憶體的以下的各種電壓並將其經由字線解碼器電路11而供給至記憶體陣列10中,包括多個電荷泵電路21-1~電荷泵電路21-4,及多個調節器電路22-1、調節器電路22-2來構成。 (1)編程電壓VPGM ; (2)用於非選擇字線的電壓VPASS1 /電壓VPASS2 /電壓VPASS3 ; (3)讀出或驗證電壓VRD ; (4)選擇閘極電壓VSG ; (5)其他電壓。In FIG. 5, the voltage generating circuit includes a plurality of charge pump circuits 21 in order to generate the following various voltages used in the reverse flash memory and supply them to the memory array 10 through the word line decoder circuit 11 -1 to a charge pump circuit 21-4, and a plurality of regulator circuits 22-1 and 22-2. (1) the programming voltage V PGM; (2) a voltage for unselected word lines V PASS1 / voltage V PASS2 / voltage V PASS3; (3) read or verify voltage V RD; (4) select gate voltage V SG ; (5) Other voltages.

此處,調節器電路22-1、調節器電路22-2例如可使用所述基準電壓產生電路來構成,尤其,更正確且必須減輕漣波的電壓VPASS1 及電壓VRD 藉由調節器電路22-1、調節器電路22-2來產生。Here, the regulator circuit 22-1 and the regulator circuit 22-2 can be constructed using the reference voltage generating circuit, for example, and in particular, the more accurate voltage V PASS1 and the voltage V RD that must reduce the ripple are provided by the regulator circuit 22-1. The regulator circuit 22-2 is generated.

圖6A是用於說明於實施方式2中在字線的低電壓側施加各動作電壓的條件的電路圖。另外,圖6B是用於說明於實施方式2中在字線的高電壓側施加各動作電壓的條件的電路圖。6A is a circuit diagram for explaining conditions for applying operating voltages to the low voltage side of a word line in the second embodiment. In addition, FIG. 6B is a circuit diagram for explaining the conditions for applying each operating voltage to the high voltage side of the word line in the second embodiment.

圖6A是說明於字線的低電壓側施加各動作電壓的條件的圖,於電壓VPASS3 的電路中最承受負荷。相對於此,若選擇字線朝高電壓側移動,則如圖6B所示,於電壓VPASS3 的電路中承受的負荷顯著地減少,於電壓VPASS2 的電路中承受最重的負荷。尤其,於未選擇的電壓的電路中,各電荷泵電路的電路規模變大,必須覆蓋大範圍的負荷。FIG. 6A is a diagram illustrating the conditions for applying various operating voltages to the low voltage side of the word line, and the circuit with the voltage V PASS3 bears the most load. In contrast, if the selected word line moves toward the high voltage side, as shown in FIG. 6B, the load on the circuit of voltage V PASS3 is significantly reduced, and the heaviest load is received on the circuit of voltage V PASS2 . In particular, in circuits of unselected voltages, the circuit scale of each charge pump circuit becomes larger, and it is necessary to cover a wide range of loads.

(實施方式3) 圖7是表示實施方式3的用於反及型快閃記憶體的電壓產生電路的具體結構例的方塊圖。(Embodiment 3) FIG. 7 is a block diagram showing a specific configuration example of a voltage generating circuit for a NAND flash memory of the third embodiment.

於圖7中,基準電壓產生電路24使用圖4的電路來構成,根據來自電荷泵電路23的電壓V1而產生規定的基準電壓VREF,並將其分別施加至箝位MOS方式的MOS電晶體M51~MOS電晶體M55的各閘極中。另一方面,使用箝位MOS方式的MOS電晶體M51~MOS電晶體M55,針對來自電荷泵電路21的電荷泵電壓VCPOUT分別產生規定的必要的電壓並經由字線解碼器電路11而供給至記憶體陣列10中。In FIG. 7, the reference voltage generating circuit 24 is configured using the circuit of FIG. 4, and generates a predetermined reference voltage VREF based on the voltage V1 from the charge pump circuit 23, and applies it to the clamped MOS method MOS transistor M51. ~ In each gate of MOS transistor M55. On the other hand, MOS transistors M51 to M55 of the clamp MOS method are used to generate predetermined and necessary voltages for the charge pump voltage VCPOUT from the charge pump circuit 21 and supply them to the memory via the word line decoder circuit 11.体array10中。 Volume array 10.

圖7的電壓產生電路包括電荷泵電路21,若使用電荷泵電路,則總負荷相同,不論已選擇的字線的位置,均可產生各種電壓,而可節約佈局面積。The voltage generating circuit of FIG. 7 includes a charge pump circuit 21. If the charge pump circuit is used, the total load is the same, and various voltages can be generated regardless of the position of the selected word line, and the layout area can be saved.

圖8是表示利用圖7的電壓產生電路的電壓產生例的圖表。如根據圖8而明確般,來自電荷泵電路的電荷泵電壓VCPOUT仍然存在若干漣波,但穿過箝位MOS方式的MOS電晶體M51~MOS電晶體M55後,漣波充分地減少。Fig. 8 is a graph showing an example of voltage generation by the voltage generation circuit of Fig. 7. As is clear from FIG. 8, there are still some ripples in the charge pump voltage VCPOUT from the charge pump circuit, but after passing through the clamp MOS method MOS transistor M51 to MOS transistor M55, the ripple is sufficiently reduced.

(實施方式4) 圖9是表示實施方式4的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。圖7的電壓產生電路雖然可減少雜訊,但使輸出電壓變得正確的精度仍然不高。為了解決該問題點,而提出圖9的電壓產生電路。(Embodiment 4) FIG. 9 is a block diagram showing a configuration example of a voltage generating circuit for a NAND flash memory according to the fourth embodiment. Although the voltage generating circuit of Fig. 7 can reduce noise, the accuracy of correcting the output voltage is still not high. In order to solve this problem, the voltage generating circuit of FIG. 9 is proposed.

於圖9中,藉由MOS電晶體M3與MOS電晶體M4來構成電流鏡電路50,且構成有用於對記憶體陣列10的各節點施加適當的各電壓的源極隨耦電路(source follower circuit)60。為了強制地使各電壓分別變成適當的電壓,而將藉由施加了規定的偏置閘極電壓VBIAS的MOS電晶體M5來流出尾電流ITC 的源極隨耦電路60的MOS電晶體M5與MOS電晶體M4串聯連接。再者,CLOAD 表示電壓供給線的寄生電容。In FIG. 9, a current mirror circuit 50 is formed by MOS transistor M3 and MOS transistor M4, and a source follower circuit for applying appropriate voltages to each node of the memory array 10 is formed. ) 60. In order to forcibly change the respective voltages to appropriate voltages, the MOS transistor M5 of the source follower circuit 60 through which the tail current I TC flows by applying a predetermined bias gate voltage VBIAS to the MOS transistor M5 of the source follower circuit 60 and The MOS transistor M4 is connected in series. Furthermore, C LOAD represents the parasitic capacitance of the voltage supply line.

根據如以上般構成的圖9的電壓產生電路,MOS電晶體M3與MOS電晶體M4的電流密度相互變成相同。由於電流密度相同,因此MOS電晶體M4的臨限值電壓Vth與MOS電晶體M3的臨限值電壓Vth相同,因此目標電壓VTARGET 作為各電壓VRD 、電壓VPASS1 ~電壓VPASS3 ,及電壓VPGM 而被正確地轉送至記憶體陣列10中。According to the voltage generating circuit of FIG. 9 configured as described above, the current densities of the MOS transistor M3 and the MOS transistor M4 become the same. Since the same current density, the same threshold voltage Vth of the threshold voltage of the MOS transistor of the MOS transistors M3 and M4 Vth, target voltage V TARGET so as each voltage V RD, the voltage V PASS1 ~ voltage V PASS3, and the voltage The V PGM is transferred to the memory array 10 correctly.

(變形例) 於以上的實施方式中,對用於反及型快閃記憶體的電壓產生電路進行了說明,但本發明並不限於此,亦可應用於其他各種非揮發性半導體存儲裝置。(Modification) In the above embodiments, the voltage generating circuit used in the NAND flash memory has been described, but the present invention is not limited to this, and can also be applied to other various non-volatile semiconductor storage devices.

10:記憶體陣列 11:字線解碼器電路 21、23、21-1~21-4:電荷泵電路 22、22-1、22-2:調節器電路 24、24-1~24-4:基準電壓產生電路 50:電流鏡電路 60:源極隨耦電路 BVds2、Vds2:崩潰電壓 BVj:接合崩潰電壓 CLOAD:寄生電容 D:汲極 DM1、M1~M55、Q1:MOS電晶體 G:閘極 Iref1:基準電流 Iref2:電流 ITC:尾電流 N1、N2:節點 R1:可變電阻 S:源極 V1:電源電壓 V2、VPASS1、VPASS2、VPASS3:電壓 VBIAS:偏置閘極電壓 VCPOUT:電荷泵電壓 VOUT:輸出電壓 VPGM:編程電壓 VRD:讀出或驗證電壓; VR1、VR2:電壓範圍 VREF:基準電壓 Vth:臨限值電壓 VTARGET:目標電壓10: Memory array 11: Word line decoder circuit 21, 23, 21-1~21-4: Charge pump circuit 22, 22-1, 22-2: Regulator circuit 24, 24-1~24-4: Reference voltage generating circuit 50: current mirror circuit 60: source follower circuit BVds2, Vds2: breakdown voltage BVj: junction breakdown voltage C LOAD : parasitic capacitance D: drain DM1, M1 ~ M55, Q1: MOS transistor G: gate pole Iref1: a reference current Iref2: current I TC: tail current N1, N2: node R1: variable resistor S: source V1: mains voltage V2, V PASS1, V PASS2, V PASS3: voltage VBIAS: gate bias voltage VCPOUT: charge pump voltage VOUT: output voltage V PGM : programming voltage V RD : read or verify voltage; VR1, VR2: voltage range VREF: reference voltage Vth: threshold voltage V TARGET : target voltage

圖1是表示先前技術的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。 圖2A是表示比較例的電流電壓轉換電路的結構例的電路圖。 圖2B是表示實施方式1的電流電壓轉換電路的結構例的電路圖。 圖2C是表示圖2A及圖2B的電流電壓轉換電路的動作比較的圖表。 圖3是表示實施方式2的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。 圖4是表示包含使用圖2B的電流電壓轉換電路的基準電壓產生電路的電壓產生電路的結構例的電路圖。 圖5是表示實施方式2的用於反及型快閃記憶體的電壓產生電路的具體的結構例的方塊圖。 圖6A是用於說明於實施方式2中在字線的低電壓側施加各動作電壓的條件的電路圖。 圖6B是用於說明於實施方式2中在字線的高電壓側施加各動作電壓的條件的電路圖。 圖7是表示實施方式3的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。 圖8是表示利用圖7的電壓產生電路的電壓產生例的圖表。 圖9是表示實施方式4的用於反及型快閃記憶體的電壓產生電路的結構例的方塊圖。FIG. 1 is a block diagram showing an example of the structure of a voltage generating circuit for a NAND flash memory in the prior art. 2A is a circuit diagram showing a configuration example of a current-voltage conversion circuit of a comparative example. 2B is a circuit diagram showing a configuration example of the current-voltage conversion circuit of the first embodiment. Fig. 2C is a graph showing a comparison of the operations of the current-voltage conversion circuits of Figs. 2A and 2B. FIG. 3 is a block diagram showing a configuration example of a voltage generating circuit for a NAND flash memory according to the second embodiment. 4 is a circuit diagram showing a configuration example of a voltage generating circuit including a reference voltage generating circuit using the current-to-voltage conversion circuit of FIG. 2B. FIG. 5 is a block diagram showing a specific configuration example of a voltage generating circuit for a reverse flash memory according to the second embodiment. 6A is a circuit diagram for explaining conditions for applying operating voltages to the low voltage side of a word line in the second embodiment. 6B is a circuit diagram for explaining the conditions for applying each operating voltage to the high voltage side of the word line in the second embodiment. FIG. 7 is a block diagram showing a configuration example of a voltage generating circuit for a NAND flash memory according to the third embodiment. Fig. 8 is a graph showing an example of voltage generation by the voltage generation circuit of Fig. 7. FIG. 9 is a block diagram showing a configuration example of a voltage generating circuit for a NAND flash memory according to the fourth embodiment.

D:汲極 D: Dip pole

DM1:MOS電晶體 DM1: MOS transistor

G:閘極 G: Gate

Iref1:基準電流 Iref1: Reference current

Iref2:電流 Iref2: current

M1、M2:MOS電晶體 M1, M2: MOS transistor

N1、N2:節點 N1, N2: Node

R1:可變電阻 R1: Variable resistor

S:源極 S: source

V1:電源電壓 V1: Power supply voltage

V2:電壓 V2: Voltage

Vds2:崩潰電壓 Vds2: breakdown voltage

VOUT:輸出電壓 VOUT: output voltage

Claims (6)

一種電流電壓轉換電路,其特徵在於包括: 第一電流鏡電路,包含一對第一金屬氧化物半導體電晶體與第二金屬氧化物半導體電晶體及輸出電阻;以及 空乏型N通道金屬氧化物半導體電晶體,插入於被輸入的第一電壓與所述第一金屬氧化物半導體電晶體及所述第二金屬氧化物半導體電晶體之間,且具有被反饋來自所述輸出電阻的輸出電壓的閘極;且 當已將基準電流輸入所述第一金屬氧化物半導體電晶體中時,藉由流入所述第二金屬氧化物半導體電晶體及所述輸出電阻中的與所述基準電流對應的電流來產生輸出電壓。A current-to-voltage conversion circuit is characterized by comprising: The first current mirror circuit includes a pair of a first metal oxide semiconductor transistor and a second metal oxide semiconductor transistor and an output resistor; and The depleted N-channel metal oxide semiconductor transistor is inserted between the input first voltage and the first metal oxide semiconductor transistor and the second metal oxide semiconductor transistor, and has the feedback from all The gate of the output voltage of the output resistance; and When a reference current has been input to the first metal oxide semiconductor transistor, an output is generated by a current corresponding to the reference current flowing in the second metal oxide semiconductor transistor and the output resistor Voltage. 一種基準電壓產生電路,其是包括如申請專利範圍第1項所述的所述電流電壓轉換電路的基準電壓產生電路,其特徵在於: 將所述電流電壓轉換電路的輸出電壓作為基準電壓而輸出。A reference voltage generating circuit, which is a reference voltage generating circuit including the current-to-voltage conversion circuit as described in item 1 of the scope of patent application, characterized in that: The output voltage of the current-voltage conversion circuit is output as a reference voltage. 如申請專利範圍第2項所述的基準電壓產生電路,其包括: 第三金屬氧化物半導體電晶體,插入於所述第二金屬氧化物半導體電晶體與所述輸出電阻之間,具有相互連接的閘極及汲極;以及 第四金屬氧化物半導體電晶體,根據所述基準電壓,箝位被輸入的第二電壓; 將所述第三金屬氧化物半導體電晶體及所述第四金屬氧化物半導體電晶體作為第二電流鏡電路來構成,且 將來自所述第四金屬氧化物半導體電晶體的輸出電壓作為基準電壓而輸出。The reference voltage generating circuit as described in item 2 of the scope of the patent application includes: A third metal oxide semiconductor transistor is inserted between the second metal oxide semiconductor transistor and the output resistor, and has a gate and a drain connected to each other; and The fourth metal oxide semiconductor transistor clamps the input second voltage according to the reference voltage; The third metal oxide semiconductor transistor and the fourth metal oxide semiconductor transistor are constructed as a second current mirror circuit, and The output voltage from the fourth metal oxide semiconductor transistor is output as a reference voltage. 如申請專利範圍第3項所述的基準電壓產生電路,其包括源極隨耦電路,所述源極隨耦電路輸出所述輸出電壓,與所述第四金屬氧化物半導體電晶體的源極連接,並流出規定電流。The reference voltage generating circuit according to the third item of the scope of patent application, which includes a source follower circuit that outputs the output voltage, and the source of the fourth metal oxide semiconductor transistor Connect and flow the specified current. 如申請專利範圍第4項所述的基準電壓產生電路,其中所述源極隨耦電路包括具有已被施加規定的偏置電壓的閘極的第五金屬氧化物半導體電晶體。According to the reference voltage generating circuit described in claim 4, the source follower circuit includes a fifth metal oxide semiconductor transistor having a gate to which a prescribed bias voltage has been applied. 一種非揮發性半導體存儲裝置,其是包括記憶體陣列的非揮發性半導體存儲裝置,其特徵在於: 包括如申請專利範圍第2項至第5項中任一項所述的基準電壓產生電路,且 將來自所述基準電壓產生電路的輸出電壓供給至非揮發性半導體存儲裝置的記憶體陣列中。A non-volatile semiconductor storage device, which is a non-volatile semiconductor storage device including a memory array, is characterized in that: Including the reference voltage generating circuit described in any one of items 2 to 5 of the scope of the patent application, and The output voltage from the reference voltage generating circuit is supplied to the memory array of the non-volatile semiconductor storage device.
TW108115300A 2019-03-01 2019-05-02 Current-voltage converting circuit, reference voltage generating circuit and non-volatile semiconductor storage device TWI690934B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037526 2019-03-01
JP2019037526A JP6887457B2 (en) 2019-03-01 2019-03-01 Reference voltage generation circuit and non-volatile semiconductor storage device

Publications (2)

Publication Number Publication Date
TWI690934B TWI690934B (en) 2020-04-11
TW202034317A true TW202034317A (en) 2020-09-16

Family

ID=71132560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108115300A TWI690934B (en) 2019-03-01 2019-05-02 Current-voltage converting circuit, reference voltage generating circuit and non-volatile semiconductor storage device

Country Status (4)

Country Link
US (1) US10795397B2 (en)
JP (1) JP6887457B2 (en)
CN (1) CN111638743B (en)
TW (1) TWI690934B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11170864B2 (en) * 2019-02-19 2021-11-09 Texas Instruments Incorporated Methods and apparatus to improve performance while reading a one-time-programmable memory
CN113489314B (en) * 2021-08-03 2022-07-15 北京紫光青藤微系统有限公司 Device for adjusting output voltage of charge pump and electronic equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304539B2 (en) * 1993-08-31 2002-07-22 富士通株式会社 Reference voltage generation circuit
JP2002328732A (en) * 2001-05-07 2002-11-15 Texas Instr Japan Ltd Reference voltage generating circuit
JP2005099322A (en) * 2003-09-24 2005-04-14 Casio Comput Co Ltd Output circuit and display driving apparatus
JP2005267712A (en) * 2004-03-17 2005-09-29 Toshiba Microelectronics Corp Nonvolatile semiconductor memory device
JP4295680B2 (en) * 2004-06-15 2009-07-15 シャープ株式会社 Semiconductor memory device
KR100748553B1 (en) * 2004-12-20 2007-08-10 삼성전자주식회사 Apparatus and method for generating ripple-free high voltage and semiconductor memory device having the same
JP4836125B2 (en) * 2006-04-20 2011-12-14 ルネサスエレクトロニクス株式会社 Semiconductor device
US7554311B2 (en) 2006-07-31 2009-06-30 Sandisk Corporation Hybrid charge pump regulation
JP5028972B2 (en) * 2006-11-27 2012-09-19 富士通セミコンダクター株式会社 Operational amplifier circuit
TWI449050B (en) * 2009-12-31 2014-08-11 Ind Tech Res Inst Method for verifying resistive random-access memory and verifying device thereof
JP2011141649A (en) * 2010-01-06 2011-07-21 Elpida Memory Inc Semiconductor circuit and computer system
JP2012038930A (en) * 2010-08-06 2012-02-23 Ricoh Co Ltd Semiconductor integrated circuit device
CN101964212B (en) * 2010-08-11 2015-06-17 上海华虹宏力半导体制造有限公司 Negative voltage slope control circuit
JP5706653B2 (en) * 2010-09-14 2015-04-22 セイコーインスツル株式会社 Constant current circuit
JP5950647B2 (en) * 2012-03-22 2016-07-13 エスアイアイ・セミコンダクタ株式会社 Reference voltage circuit
CN103036411B (en) 2012-11-30 2017-03-08 上海华虹宏力半导体制造有限公司 Charge pump circuit
WO2015103768A1 (en) 2014-01-10 2015-07-16 Silicon Image, Inc. Linear regulator with improved power supply ripple rejection
TWI688951B (en) * 2014-10-30 2020-03-21 日商索尼半導體解決方案公司 Non-volatile memory device
CN104779948A (en) * 2015-03-11 2015-07-15 上海华虹宏力半导体制造有限公司 Square law expander circuit
US10192626B1 (en) * 2017-08-31 2019-01-29 Micro Technology, Inc. Responding to power loss
JP7000187B2 (en) * 2018-02-08 2022-01-19 エイブリック株式会社 Reference voltage circuit and semiconductor device

Also Published As

Publication number Publication date
CN111638743B (en) 2022-03-18
CN111638743A (en) 2020-09-08
JP6887457B2 (en) 2021-06-16
TWI690934B (en) 2020-04-11
US20200278714A1 (en) 2020-09-03
US10795397B2 (en) 2020-10-06
JP2020141366A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US7880531B2 (en) System, apparatus, and method for selectable voltage regulation
US20100264899A1 (en) Semiconductor device generating voltage for temperature compensation
US7269092B1 (en) Circuitry and device for generating and adjusting selected word line voltage
CN101257300A (en) Adjustable transistor body bias circuit
US20170076800A1 (en) Voltage generating circuit and semiconductor memory device
US6771200B2 (en) DAC-based voltage regulator for flash memory array
US11829174B2 (en) High voltage regulator
TWI690934B (en) Current-voltage converting circuit, reference voltage generating circuit and non-volatile semiconductor storage device
US9360877B2 (en) Negative voltage regulation circuit and voltage generation circuit including the same
KR100897286B1 (en) Negative potential discharge circuit
US9257194B1 (en) Drain regulator for NOR flash memory
JP4284343B2 (en) Semiconductor integrated circuit
KR100660875B1 (en) Semiconductor memory device having trimmed voltage generator and method for generating trimmed voltage of semiconductor memory device
JP7061179B2 (en) Current-voltage conversion circuit, reference voltage generation circuit and non-volatile semiconductor storage device
ITTO980961A1 (en) DEVICE AND METHOD OF PROGRAMMING OF NONVOLATILE MEMORY CELLS WITH AUTOMATIC GENERATION OF THE PROGRAMMING VOLTAGE.
TW201910958A (en) Regulator circuit and method for providing regulated voltage to target circuit thereof
KR20150000114A (en) Semiconductor device for offset compensation of reference current
US8988138B1 (en) Semiconductor device
JP2004164746A (en) Internal power source circuit of nonvolatile semiconductor memory and nonvolatile semiconductor memory device
US7221138B2 (en) Method and apparatus for measuring charge pump output current
WO2004025389A2 (en) Dac-based voltage regulator for flash memory array
US8619489B2 (en) Driving circuit for memory device
JP2005538678A6 (en) DAC-based voltage regulator for flash memory arrays
KR20050040940A (en) Dac-based voltage regulator for flash memory array
WO2015136680A1 (en) Voltage control circuit and semiconductor storage device