TW202031904A - 鋰回收及純化 - Google Patents

鋰回收及純化 Download PDF

Info

Publication number
TW202031904A
TW202031904A TW108145596A TW108145596A TW202031904A TW 202031904 A TW202031904 A TW 202031904A TW 108145596 A TW108145596 A TW 108145596A TW 108145596 A TW108145596 A TW 108145596A TW 202031904 A TW202031904 A TW 202031904A
Authority
TW
Taiwan
Prior art keywords
lithium
aqueous solution
barium
sulfate
metals
Prior art date
Application number
TW108145596A
Other languages
English (en)
Inventor
艾哈邁德 蓋爾曼
葛瑞密 古達爾
拉詹 潘茲
Original Assignee
加拿大商Xps專家工藝解決方案 格倫科加拿大公司
加拿大商Ag水力冶金服務公司
加拿大商前沿鋰業有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商Xps專家工藝解決方案 格倫科加拿大公司, 加拿大商Ag水力冶金服務公司, 加拿大商前沿鋰業有限公司 filed Critical 加拿大商Xps專家工藝解決方案 格倫科加拿大公司
Publication of TW202031904A publication Critical patent/TW202031904A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/06Sulfates; Sulfites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F1/00Methods of preparing compounds of the metals beryllium, magnesium, aluminium, calcium, strontium, barium, radium, thorium, or the rare earths, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/462Sulfates of Sr or Ba
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

揭露用於從各種來源中回收或純化鋰物質的方法。這種來源包括天然來源或沉積物,諸如在採礦應用中,以及合成來源,諸如在電池中鋰物質的再循環中。在實施方式中,所述方法包括通過用硫酸處理起始材料或混合物來製備含硫酸鋰的溶液,然後通過用鋇鹽沉澱去除硫酸根。在實施方式中,可以對所得液體進行進一步處理,例如用於進一步硫酸根去除和/或去除可能存在的其他金屬物質。在實施方式中,隨後可以通過例如去除溶劑和結晶來獲得鋰物質。鋰物質進而可以直接使用或轉化為其他形式,以用於各種應用中。

Description

鋰回收及純化
[相關申請的交叉引用]
本申請要求於2018年12月12日提交的序號為62/778,530的美國臨時申請的優先權,其全部內容通過引用併入本文。
本發明關於金屬物質的回收和純化。更具體地說,本發明關於從各種來源中回收或純化鋰(Li)物質。
由於鋰金屬用於各種材料,包括陶瓷玻璃、黏合劑、潤滑劑、金屬合金,並且尤其是用於鋰離子電池的電極材料,因此對鋰金屬的需求在這些年來呈指數增長。鋰存在於幾種天然資源中,包括礦石、黏土、鹽水和海水,並且可以從其中提取。此外,從回收電池的電極材料中回收鋰變得越來越重要。用於鋰提取/回收的方法在本領域中是已知的,並且包括例如火法冶金和濕法冶金方法,後者包括例如浸提、溶劑提取、離子交換和沉澱(在例如Nguyen TH.和Lee MS(2018)Processes 55:1-15中所綜述)。缺點包括例如效率、獲得的純度水平、規模和成本的問題。因此,需要用於鋰回收或純化的新方法。
本發明涉及金屬物質的回收和純化。更具體地,本發明涉及從各種來源中回收或純化鋰(Li)物質。本文發明了用於從混合物中回收鋰(Li)物質的方法的設計與研究。
更具體地,根據本發明的方面,提供了以下項目。
1. 一種用於從包含硫酸鋰(Li2 SO4 )的水溶液中回收鋰物質的方法,所述方法包括: 用一種或多種鋇鹽處理含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物;以及 從BaSO4 沉澱後剩餘的溶液中回收所述鋰物質, 其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自包含鋰物質的天然來源或礦床或來自包含鋰物質的合成或非天然來源。
2. 根據專案1所述的方法,其中,所述鋰物質以氫氧化鋰(LiOH)或其水合物的形式被回收。
3. 根據專案1或2所述的方法,其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自包含鋰物質的天然來源或礦床。
4. 根據專案1至3中任一項所述的方法,其中,所述包含鋰物質的天然來源或礦床是礦石、黏土或鹽水。
5. 根據專案1至4中任一項所述的方法,其中,所述包含鋰物質的天然來源或礦床不是硫化物礦體。
6. 根據專案4或5所述的方法,其中,所述礦石或黏土包括鋰雲母、鋰蒙脫石、翡翠、鋰輝石、透鋰長石和/或鋰磷鋁石。
7. 根據專案4或5所述的方法,其中,所述鹽水包括大陸鹽水、地熱鹽水和/或油田鹽水。
8. 根據專案1或2所述的方法,其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自包含鋰物質的合成或非天然來源。
9. 根據專案7所述的方法,其中,所述包含鋰物質的合成或非天然來源包括鋰離子電池或其他含鋰材料再循環期間產生的材料。
10. 根據專案8所述的方法,其中,在鋰離子電池再循環期間產生的所述材料包括鋰離子電池電極材料。
11. 根據專案9或10所述的方法,其中,在鋰離子電池和/或鋰離子電池電極材料的再循環期間產生的所述材料包括鋰鈷氧化物、鋰錳氧化物、磷酸鐵鋰和/或鋰鎳錳鈷氧化物。
12. 根據專案1至11中任一項所述的方法,還包括通過用硫酸(H2 SO4 )處理含金屬的混合物生產含Li2 SO4 的水溶液。
13. 根據專案12所述的方法,其中,所述含金屬的混合物是包含鋰物質的天然來源或礦床或包含鋰物質的合成或非天然來源,或者是包含鋰物質的天然來源或礦床或包含鋰物質的合成或非天然來源的衍生物。
14. 根據專案12或13所述的方法,其中,所述含金屬的混合物包括氧化鋰(Li2 O)形式的鋰物質。
15. 根據專案1至14中任一項所述的方法,其中,所述一種或多種鋇鹽是氫氧化鋇(Ba(OH)2 )、氧化鋇(BaO)或其組合。
16. 根據專案1至15中任一項所述的方法,還包括用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
17. 根據專案16所述的方法,其中,用所述一種或多種鈣鹽的處理是在用所述一種或多種鋇鹽的處理之前的,並且用所述一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
18. 根據專案1至17中任一項所述的方法,其中,所述含Li2 SO4 的水溶液具有約4.0或更低的pH。
19. 根據專案18所述的方法,其中,所述含Li2 SO4 的水溶液具有約2.0至約3.0的pH。
20. 根據專案1至18中任一項所述的方法,其中,所述含Li2 SO4 的水溶液還包含除鋰以外的一種或多種金屬的一種或多種金屬硫酸鹽。
21. 根據專案12至20中任一項所述的方法,其中,所述含金屬的混合物還包括除鋰以外的一種或多種金屬。
22. 根據專案20或21所述的方法,其中,除鋰以外的所述一種或多種金屬是I族金屬(除鋰以外)、II族金屬、過渡金屬和/或後過渡金屬中的一種或多種。
23. 根據專案20至22中任一項所述的方法,其中,除鋰以外的所述一種或多種金屬是鈣、鈉、鎂、鉀、鋁和鐵中的一種或多種。
24. 根據專案20至23中任一項所述的方法,還包括通過用鹼性材料進行處理提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平。
25. 根據專案24所述的方法,其中,所述鹼性材料包括石灰。
26. 根據專案25所述的方法,其中,所述石灰為石灰漿或固體石灰粉末的形式。
27. 根據專案24至26中任一項所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約3.0或更高。
28. 根據專案27所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約4.0至約5.5。
29. 根據專案24至27中任一項所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約7.0或更高。
30. 根據專案29所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約9.0至約12.0。
31. 根據專案24至27中任一項所述的方法,其中,所述通過提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平在單個步驟中進行。
32. 根據專案31所述的方法,其中,所述單個步驟包括將所述含Li2 SO4 的水溶液的pH調節至約3.0或更高。
33. 根據專案32所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約4.0至約5.5。
34. 根據專案31所述的方法,其中,所述單個步驟包括將所述含Li2 SO4 的水溶液的pH調節至約7.0或更高。
35. 根據專案32所述的方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約9.0至約12.0。
36. 根據專案24至27中任一項所述的方法,其中,通過提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平包括多個步驟。
37. 根據專案36所述的方法,其中,所述多個步驟包括第一步,將所述含Li2 SO4 的水溶液的pH調節至約3.0或更高的pH,以產生第一含Li2 SO4 的水溶液,其中所述第一含Li2 SO4 的水溶液貧乏除鋰以外的金屬,然後調節所述第一含Li2 SO4 的水溶液的pH至約7.0或更高的pH,以產生第二含Li2 SO4 的水溶液,其中所述第二含Li2 SO4 的水溶液貧乏除鋰以外的金屬。
38. 根據專案30至37中任一項所述的方法,其中,用鹼性材料進行處理以降低除鋰以外的所述一種或多種金屬的物質的水平是在用所述一種或多種鈣鹽進行的處理之前的。
39. 根據專案30至37中任一項所述的方法,其中,用於降低除鋰以外的所述一種或多種金屬的物質的水平的、用所述鹼性材料進行的處理與用所述一種或多種鈣鹽進行的處理一起進行。
40. 根據專案30至39中任一項所述的方法,其中,用於降低除鋰以外的所述一種或多種金屬的物質的水平的、用所述鹼性材料進行的處理是在用所述一種或多種鋇鹽進行處理之前的。
41. 根據專案16至40中任一項所述的方法,其中,在約7.0或更高的pH下,用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
42. 根據專案41所述的方法,其中,在約9.0至約12.0的pH下,用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
43. 根據專案1至42中任一項所述的方法,其中,在約6.0或更高的pH下,用一種或多種鋇鹽進行處理以形成包含硫酸鋇(BaSO4 )的沉澱物。
44. 根據專案44所述的方法,其中,在約9.0至約12.0的pH下,用一種或多種鋇鹽進行處理以形成包含硫酸鋇(BaSO4 )的沉澱物。
45. 根據專案1至44中任一項所述的方法,其中,以鋇與硫酸根的莫耳比為約0.8至約1.2,加入所述一種或多種鋇鹽。
46. 根據專案45所述的方法,其中,以鋇與硫酸根的莫耳比為約1.0至約1.2,加入所述一種或多種鋇鹽。
47. 根據專案20至46中任一項所述的方法,包括用碳酸根的來源,諸如CO2 氣體或碳酸鹽,處理BaSO4 沉澱後剩餘的溶液,以形成包含除鋰以外的所述一種或多種金屬中的一種或多種金屬碳酸鹽的沉澱物,其中,從所述一種或多種金屬碳酸鹽沉澱後剩餘的溶液中回收所述鋰物質。
48. 根據專案47所述的方法,其中,所述碳酸鹽是碳酸鈉(Na2 CO3 )或碳酸鋰(Li2 CO3 )中的一種或多種。
49. 根據專案47或48所述的方法,其中,所述一種或多種金屬碳酸鹽是碳酸鈣和碳酸鎂中的一種或多種。
50. 根據專案1至49中任一項所述的方法,其中,通過結晶從所述溶液中回收所述鋰物質。
51. 根據專案50所述的方法,包括熱處理以去除所述溶液中的至少一部分水。
52. 根據專案51所述的方法,其中,至少約90%的水被去除。
53. 根據專案52所述的方法,其中,至少約95%的水被去除。
54. 根據專案1至53中任一項所述的方法,其中,所回收的鋰物質是LiOH·H2 O。
55. 根據專案1至54中任一項所述的方法,還包括對所述BaSO4 進行處理以產生包括氧化鋇、氫氧化鋇或碳酸鋇的鋇鹽,並以硫化鈉、硫氫化鈉、硫酸或單質硫的形式回收硫。
56. 根據專案55所述的方法,其中,將所述BaO用作所述一種或多種鋇鹽以形成包含BaSO4 的沉澱物。
57. 根據專案55或56所述的方法,其中,對所述BaO進行水處理以形成Ba(OH)2
58. 根據專案57所述的方法,其中,將所述Ba(OH)2 用作所述一種或多種鋇鹽以形成所述包含BaSO4 的沉澱物。
59. 根據專案55至58中任一項所述的方法,還包括對SO3 進行水處理以形成H2 SO4
60. 根據專案59所述的方法,其中,所述H2 SO4 用於處理根據專案12至59中任一項所限定的混合物。
61. 根據專案1至60中任一項所述的方法,其中,在至少約6、至少約7、約6至約12、約7至約12、約8至約12、約9至約12、約10至約12、約6、約7、約8、約9、約10、約11或約12的pH下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
62. 根據專案16至61中任一項所述的方法,其中,在至少約6、至少約7、約6至約12、約7至約12、約8至約12、約9至約12、約10至約12、約6、約7、約8、約9、約10、約11或約12的pH下,用所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液。
63. 根據專案1至62中任一項所述的方法,其中,以鋇與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
64. 根據專案16至63中任一項所述的方法,其中,以鈣與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液。
65. 根據專案1至64中任一項所述的方法,其中,在約1℃至約100℃、約5℃至約75℃、約5℃至約60℃、約10℃至約60℃、約15℃至約60℃、約20℃至約60℃的溫度下或在室溫下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
66. 根據專案1至65中任一項所述的方法,其中,在約1℃至約100℃、約5℃至約60℃、約5℃至約75℃、約10℃至約60℃、約15℃至約60℃、約20℃至約60℃的溫度下或在室溫下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
67. 根據專案20至66中任一項所述的方法,其中,以碳酸根與除鋰以外的所述一種或多種金屬的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的碳酸鹽處理BaSO4 沉澱後剩餘的溶液。
68. 根據專案1至67中任一項所述的方法,其中,所述含Li2 SO4 的水溶液中的鋰的濃度為約1至約25g/L、約5至約25g/L、約5至約20g/L、約5至約15g/L、約8至約12g/L、約5g/L、約6g/L、約7g/L、約8g/L、約9g/L、約10g/L、約11g/L、約12g/L、約13g/L、約14g/L或約15g/L。
69. 根據專案1至68中任一項所述的方法,其中,從所述含Li2 SO4 的水溶液中回收至少約50%、55%、60%、65%、70%、75%、80%、90%或95%的所述鋰物質。
70. 根據專案1至69中任一項所述的方法,其中,從所述含Li2 SO4 的水溶液中回收約50%至約97%、約55%至約97%、約60%至約97%、約65%至約97%、約70%至約97%、約75%至約97%、約80%至約97%或約90%至約97%的所述鋰物質。
71. 一種用於從包含鋰物質和除鋰以外的一種或多種金屬的物質的混合物中回收鋰(Li)物質的方法,包括: 用硫酸(H2 SO4 )處理所述混合物以提供含Li2 SO4 的水溶液; 用一種或多種鋇鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物; 用碳酸鹽處理BaSO4 沉澱後剩餘的溶液,以形成包含除鋰以外的所述一種或多種金屬的一種或多種金屬碳酸鹽的沉澱物;以及 通過熱處理和結晶,從所述一種或多種金屬碳酸鹽沉澱後剩餘的溶液中回收氫氧化鋰(LiOH)或其水合物的形式的所述鋰物質。
72. 根據專案71所述的方法,還包括: 用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物, 其中,用所述一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
73. 根據專案71或72所述的方法,其中,所述混合物獲自包含鋰物質的天然來源。
74. 根據專案73所述的方法,其中,所述天然來源是礦石、黏土、鹽水或其他礦床。
75. 根據專案74所述的方法,其中,所述礦石或黏土包括鋰雲母、鋰蒙脫石、翡翠、鋰輝石、透鋰長石和/或鋰磷鋁石。
76. 根據專案73至75中任一項所述的方法,其中,所述包含鋰物質的天然來源或礦床不是硫化物礦體。
77. 根據專案76所述的方法,其中,所述鹽水包括大陸鹽水、地熱鹽水和/或油田鹽水。
78. 根據專案71或72所述的方法,其中,所述混合物獲自包含鋰物質的合成或非天然來源。
79. 根據專案78所述的方法,其中,所述包含鋰物質的合成或非天然來源包括鋰離子電池或其他含鋰材料再循環期間產生的材料。
80. 根據專案79所述的方法,其中,在鋰離子電池再循環期間產生的所述材料包括鋰離子電池電極材料。
81. 根據專案80所述的方法,其中,所述鋰離子電池電極材料包括鋰鈷氧化物、鋰錳氧化物、磷酸鐵鋰和/或鋰鎳錳鈷氧化物。
通過閱讀以下僅參考圖式通過示例方式給出的本發明的具體實施方式的非限制性描述,本發明的其他目的、優點和特徵將變得更加明顯。
[定義]
在描述技術的上下文中(尤其是在以下權利要求的上下文中)術語“一(a)”和“一種(an)”和“所述(該)”以及類似的指示物的使用應被解釋為覆蓋單數和複數二者,除非本文另行指出或與上下文明顯矛盾。
在申請專利範圍和/或說明書中,當與術語“包含(comprising,包括)”結合使用時,詞語“一(a)”或“一種(an)”的使用可以表示“一個”,但是它也與“一個或多個”、“至少一個”以及“一個或多於一個”的含義一致。類似地,詞語“另一個”可以表示至少第二個或更多。
如在本說明書和一個或多個請求項中所使用的,詞語“包含(comprising)”(以及“comprising”的任何形式,諸如“comprise”和“comprises”)、“具有(having)”(以及“having”的任何形式,諸如“have”和“has”)、“包括(including)”(以及“including”的任何形式,諸如“include”和“includes”)或“含有(containing)”(以及“containing”的任何形式,諸如“contain”和“contains”)應被解釋為開放式術語(即,意思是“包括,但不限於”),除非另行說明。
本文中的值的範圍的敘述僅旨在用作單獨地提及落入該範圍內的每個單獨值的便捷方法,除非本文另行指出,並且每個單獨值被併入說明書中,如同其在本文中被單獨地敘述。在該範圍內的值的所有子集也被併入說明書中,如同它們在本文中被單獨地敘述。
本文描述的所有方法或過程可以以任何合適的順序進行,除非本文另行指出或與上下文明顯矛盾。此外,在實施方式中,可以重複各種步驟以增加回收和純化。
本文提供的任何和所有示例或示例性語言(例如,“諸如”)的使用僅旨在更好地闡明本發明,而不是對本發明的範圍施加限制,除非另有要求。
說明書中的語言不應被解釋為指示任何未要求保護的元素對於本發明的實踐是必要的。
如本文所用的,當提及數值或百分比時,術語“約”具有其普通含義,並且包括由於用於確定值或百分比的方法、統計方差和人為誤差而產生的變化。此外,本申請中的每個數值參數應當至少根據所記載的有效數字的數目並且通過應用普通的舍入技術來解釋。在實施方式中,其可以意味著合格數值加或減10%。
本文中使用的所有技術和科學術語具有與本發明所屬領域的普通技術人員通常理解的相同的含義,除非另有定義。
應當理解,本發明不限於以下描述的特定實施方式,因為可以對這些實施方式進行變化並且這些變化仍然落入本發明的範圍內。還應當理解,所用的術語是為了描述具體實施方式的目的;而不是限制性的。
為了提供對本說明書中使用的術語的清楚且一致的理解,下面提供了許多定義。此外,除非另行定義,否則如本文所用的所有技術和科學術語具有與本發明所屬領域的普通技術人員通常理解的相同的含義。
如本文所用的,當提及數值或百分比時,術語“約”包括由於用於確定值或百分比的方法、統計方差和人為誤差而產生的變化。此外,本發明中的每個數值參數應當至少根據所記載的有效數字的數目並且通過應用普通的舍入技術來解釋。
本發明記載了從包含硫酸鋰(Li2 SO4 )形式的鋰物質的水溶液中回收鋰物質的方法的設計和研究。在一個方面,該方法包括: 用一種或多種鋇鹽處理含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物;以及 從BaSO4 沉澱後剩餘的溶液中回收鋰物質。
在化學領域中,沉澱被理解為涉及一種狀態從另一種狀態析出或形成的過程,諸如從溶液中產生固體,例如經由產生不溶性產物的反應。所得到的沉澱物或固體可保留在溶液中,可通過重力沉降,或者可通過其他方式,諸如通過沉積/離心或過濾從溶液中分離。沉積/離心後剩餘的所得液體或溶液通常被稱為上層清液或上清液;過濾後剩餘的所得液體或溶液通常被稱為濾液。在本文所描述的實施方式中,沉澱後剩餘的這種所得液體或溶液可以在逐步回收或純化過程中經過進一步處理。類似地,在實施方式中,可以處理沉澱物以生成用於各種用途的化合物,諸如本文所描述的再循環步驟。在實施方式中,沉澱物可以經過一次或多次洗滌(例如用水),並且洗滌液體也可以在逐步回收或純化過程中經過進一步處理(例如與沉澱後剩餘的所得液體或溶液組合)。
在實施方式中,鋰物質可以以氫氧化鋰(LiOH)或其水合物諸如LiOH·H2 O的形式被回收。
[含Li2 SO4 的水溶液的製備]
在實施方式中,該方法還包括通過用硫酸(H2 SO4 )處理含金屬的混合物(例如,通過硫酸浸提)製備含Li2 SO4 的水溶液。在實施方式中,含金屬的混合物包含除鋰物質以外的金屬物質,並且從這種混合物中回收鋰物質包括獲得相對於起始混合物而言富集鋰物質並且具有減少量的除鋰物質以外的金屬物質的製劑。在實施方式中,這種除鋰以外的金屬物質包括I族金屬(除鋰以外)、II族金屬、過渡金屬和/或後過渡金屬中的一種或多種。在實施方式中,除鋰以外的這種金屬包括鈣、鈉、鎂、鉀、鋁和鐵中的一種或多種。
在實施方式中,含Li2 SO4 的水溶液的pH為約4.0或更低,在另一種實施方式中為約3.5或更低,在另一種實施方式中為約3.0或更低,在另一種實施方式中為約2.9或更低,2.8或更低,2.7或更低,2.6或更低,或2.5或更低。在另外的實施方式中,含Li2 SO4 的水溶液的pH為約2.0至約3.0、約2.1至約2.9、約2.2至約2.8、約2.3至約2.7、約2.4至約2.6或約2.5。
[除鋰物質以外的金屬物質的去除]
在實施方式中,存在於含Li2 SO4 的水溶液中的除鋰物質以外的金屬物質的量的減少/去除可以通過用鹼性材料(例如石灰,例如作為石灰漿或固體石灰粉末)進行處理提高含Li2 SO4 的水溶液的pH來實現。在實施方式中,將含Li2 SO4 的水溶液的pH調節至約3.0或更高,在另一種實施方式中至約3.0至約7.0,在另一種實施方式中至約3.0至約6.0,在另一種實施方式中至約3.5至約5.5,在另一種實施方式中至約4.0至約5.5,在另一種實施方式中至約4.5至約5.0,在另一種實施方式中至約4.5、約4.75或約5.0。
在實施方式中,在通過pH調節去除之前,如果是還原形式的,則可以用氧氣或其他氧化劑處理除鋰以外的金屬物質,以被氧化成更氧化的形式。
在實施方式中,除鋰物質以外的金屬物質的量的減少/去除可以在環境溫度(例如約25℃)或更高下進行,在另一種實施方式中,在約25℃至約100℃下進行,在另一種實施方式中,在約30℃或更高下進行,在另一種實施方式中,在約30℃至約100℃下進行,在另一種實施方式中,在約35℃或更高下進行,在另一種實施方式中,在約35℃至約100℃下進行,在另一種實施方式中,在約40℃或更高下進行,在另一種實施方式中,在約40℃至約100℃下進行,在另一種實施方式中,在約45℃或更高下進行,在另一種實施方式中,在約45℃至約100℃下進行,在另一種實施方式中,在約50℃或更高下進行,在另一種實施方式中,在約50℃至約100℃下進行,在另一種實施方式中,在約55℃或更高下進行,在另一種實施方式中,在約55℃至約100℃下進行,在另一種實施方式中,在約60℃或更高下進行,在另一種實施方式中,在約60℃至約100℃下進行,在另一種實施方式中,在約65℃或更高下進行,在另一種實施方式中,在約65℃至約100℃下進行,在另一種實施方式中,在約70℃或更高下進行,在另一種實施方式中,在約70℃至約100℃下進行,在另一種實施方式中,在約75℃或更高下進行,在另一種實施方式中,在約75℃至約100℃下進行,在另一種實施方式中,在約80℃或更高下進行,在另一種實施方式中,在約80℃至約100℃下進行,在另一種實施方式中,在約85℃或更高下進行,在另一種實施方式中,在約85℃至約100℃下進行,在另一種實施方式中,在約90℃或更高下進行,在另一種實施方式中,在約90℃至約100℃下進行,在另一種實施方式中,在約95℃或更高下進行,在另一種實施方式中,在約95℃至約100℃下進行。
在實施方式中,除鋰物質以外的金屬物質的量的減少/去除導致去除至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%的除鋰物質以外的金屬物質。
在實施方式中,除鋰物質以外的金屬物質的量的減少/去除的步驟導致少於約10%、少於約9%、少於約8%、少於約7%、少於約6%、少於約5%、少於約4%、少於約3%、少於約2%或少於約1%的鋰物質。
[除鋰物質以外的金屬物質的進一步去除]
在實施方式中,可以進行用於除鋰物質以外的金屬物質的量的減少/去除的進一步步驟,以例如去除除鋰物質以外的其他金屬,例如,通過用鹼性材料(例如石灰,例如作為石灰漿或固體石灰粉末)進行處理,以提高溶液的pH,例如提高至約7.0或更高,在另一種實施方式中提高至約7.5或更高,在另一種實施方式中提高至約8.0或更高,在另一種實施方式中提高至約8.5或更高,在另一種實施方式中提高至約9或更高,在另一種實施方式中提高至約9.5至約12.5,在另一種實施方式中提高至約9.0至約12.0,在另一種實施方式中提高至約9.2至約12.0,在另一種實施方式中提高至約9.0、約9.5、約10.0、約10.5、約11.0、約11.5或約12.0。
在實施方式中,在本文描述的方法中可以使用這種含金屬的混合物的不同來源。例如,可以使用天然來源或礦床,諸如包含鋰物質的礦石、黏土或鹽水。在實施方式中,這種礦石或黏土包含例如礦物,諸如鋰雲母、鋰蒙脫石、翡翠、鋰輝石、透鋰長石和/或鋰磷鋁石。鹽水包括例如大陸鹽水、地熱鹽水和油田鹽水。
在實施方式中,天然來源或礦床不是硫化物礦體。
在另一種實施方式中,合成的、非天然的、加工的或人造的來源可以用作本文描述的方法的原始材料,諸如在鋰離子電池的再循環期間產生的材料,例如來自其電極材料(在實施方式中,其包含鋰物質,諸如鋰鈷氧化物(LiCoO2 )、鋰錳氧化物(LiMn2 O4 )、磷酸鐵鋰(LiFePO4 )、鋰鎳錳鈷(NMC;Li(NiMnCo)O2 ))。
在實施方式中,可以通過濕法冶金、火法冶金和/或電冶金方法處理這種天然的或合成的/非天然的來源。在實施方式中,可以通過諸如煆燒、焙燒、堿或酸處理和浸提(用水以生成包含金屬鹽的水溶液)等方法處理這種天然的或合成的/非天然的來源。
在實施方式中,起始混合物不是通過電解獲得的。
在實施方式中,起始混合物包含氧化鋰(Li2 O)形式的鋰物質。
在實施方式中,硫酸鋇的沉澱可以使用一種或多種鋇鹽,諸如可溶性或微溶性鋇鹽和化合物,諸如氫氧化鋇(Ba(OH)2 )、氧化鋇(BaO)、碳酸鋇(BaCO3 )或其組合,或它們的水合物,諸如Ba (OH)2 ·H2 O至Ba (OH)2 ·8H2 O。
[初級硫酸根(sulfate)去除]
在實施方式中,可以通過用除鋇鹽以外的鹽(諸如一種或多種鈣鹽)沉澱來進行進一步硫酸根沉澱,例如初級硫酸根去除。在實施方式中,本文描述的方法還包括用一種或多種鈣鹽處理含Li2 SO4 的水溶液,以形成包含硫酸鈣(CaSO4 )的沉澱物。該步驟優選地在用一種或多種鋇鹽沉澱之前進行,在這種情況下,用一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
在實施方式中,在用一種或多種鋇鹽處理之前,通過用除鋇鹽以外的鹽處理,諸如一種或多種鈣鹽,諸如以鹼性材料(例如石灰,例如作為石灰漿或固體石灰粉末)的形式,以提高溶液的pH,例如提高至約7.0或更高,在另一種實施方式中提高至約7.5或更高,在另一種實施方式中提高至約8.0或更高,在另一種實施方式中提高至約8.5或更高,在另一種實施方式中提高至約9或更高,在另一種實施方式中提高至約9.5至約12.5,在另一種實施方式中提高至約9.0至約12.0,在另一種實施方式中提高至約9.2至約12.0,在另外的實施方式中提高至約9.0、約9.5、約10.0、約10.5、約11.0、約11.5或約12.0,來進行這種硫酸根去除的初級步驟。在實施方式中,這種硫酸根去除的初級步驟還導致除鋰物質以外的金屬物質的進一步的量的減少/去除。
在實施方式中,除鋰物質以外的金屬物質的進一步去除和初級硫酸根去除的步驟可以合併為一個步驟。
在實施方式中,通過用鋇鹽以外的鹽,諸如鹼性材料(例如石灰,例如作為石灰漿或固體石灰粉末)形式的一種或多種鈣鹽,直接處理含Li2 SO4 的水溶液以增加如上所述的溶液的pH,除鋰物質以外的金屬物質的去除、除鋰物質以外的金屬物質的進一步去除以及初級硫酸根去除的步驟可以合併為一個步驟,從而導致在單個步驟中除鋰物質以外的金屬物質的去除和初級硫酸根沉澱。
在用一種或多種鈣鹽處理之後,產生作為副產物的石膏。在實施方式中,可以回收石膏用於其他目的。在這種情況下,優選的是在分開的步驟中進行除鋰物質以外的金屬物質的去除和初級硫酸根去除,使得所產生的石膏具有較少的金屬污染物。
在實施方式中,在pH為約6.0或更高下,在另一種實施方式中為約7.0或更高,在另一種實施方式中為約7.5或更高,在另一種實施方式中為約8.0或更高,在另一種實施方式中為約8.5或更高,在另一種實施方式中為約9或更高,在另一種實施方式中為約9.5至約12.5,在另一種實施方式中為約9.0至約12.0,在另一種實施方式中為約9.2至約12.0,在另外的實施方式中為約9.0、約9.5、約10.0、約10.5、約11.0、約11.5或約12.0,用一種或多種鋇鹽和/或一種或多種鈣鹽處理含Li2 SO4 的水溶液。在實施方式中,當在上述初級硫酸根去除(用除鋇鹽以外的鹽,諸如一種或多種鈣鹽)之後進行該步驟時,可以進行BaSO4 沉澱,而不需要在加入一種或多種鋇鹽之前調節混合物的pH。
在實施方式中,以鋇與硫酸根的莫耳比為0.8的比率至約1.2的比率,在另一種實施方式中以約0.9的比率至約1.2的比率,在另一種實施方式中以約0.9的比率至約1.2的比率,在另一種實施方式中以約0.9的比率至約1.1的比率,在另一種實施方式中以約0.95的比率至約1.05的比率,在另一種實施方式中以約1.0的比率至約1.2的比率,在另一種實施方式中以約1.0的比率至約1.1的比率,在另一種實施方式中以約1.0的比率至約1.05的比率,在另外的實施方式中以約0.9、0.95、0.98、1.0、1.02、1.05、1.08或1.10的比率,加入一種或多種鋇鹽。
在實施方式中,以鋇與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的一種或多種鋇鹽處理含Li2 SO4 的水溶液。
在實施方式中,以鈣與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的一種或多種鈣鹽處理含Li2 SO4 的水溶液。
在實施方式中,在約1℃至約100℃、約5℃至約75℃、約5℃至約60℃、約10℃至約60℃、約15℃至約60℃、約20℃至約60℃的溫度下或在室溫下,用一種或多種鋇鹽和/或一種或多種鈣鹽處理含Li2 SO4 的水溶液。
在實施方式中,以碳酸根與除鋰以外的一種或多種金屬的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的碳酸鹽處理BaSO4 沉澱後剩餘的溶液。
在實施方式中,含Li2 SO4 的水溶液中的鋰的濃度為約1至約25g/L、約5至約25g/L、約5至約20g/L、約5至約15g/L、約8至約12g/L、約5g/L、約6g/L、約7g/L、約8g/L、約9g/L、約10g/L、約11g/L、約12g/L、約13g/L、約14g/L或約15g/L。
在實施方式中,從含Li2 SO4 的水溶液中回收至少約50%、55%、60%、65%、70%、75%、80%、90%或95%的鋰物質。在實施方式中,從含Li2 SO4 的水溶液中回收約50%至約97%、約55%至約97%、約60%至約97%、約65%至約97%、約70%至約97%、約75%至約97%、約80%至約97%或約90%至約97%的鋰物質。
在實施方式中,本發明涉及從包含鋰物質和除鋰以外的一種或多種金屬的物質的混合物中回收鋰(Li)物質的方法,包括: 用硫酸(H2 SO4 )處理混合物以提供含Li2 SO4 的水溶液; 用一種或多種鋇鹽處理含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物; 用碳酸鹽處理BaSO4 沉澱後剩餘的溶液,以形成包含除鋰以外的一種或多種金屬的一種或多種金屬碳酸鹽的沉澱物; 通過熱處理和結晶,從一種或多種金屬碳酸鹽沉澱後剩餘的溶液中回收氫氧化鋰(LiOH)或其水合物的形式的鋰物質。
在實施方式中,所述方法還包括: 用一種或多種鈣鹽處理含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物, 其中,用一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
在實施方式中,本文描述的方法還包括一個或多個步驟以去除在該方法期間獲得的溶液或濾液中存在的非鋰金屬物質或降低其水平。在實施方式中,這些步驟可以在BaSO4 沉澱(以及任選地,CaSO4 沉澱)之前或之後進行,但是在鋰物質的回收(例如通過沉澱或結晶)之前。在實施方式中,這種進一步處理包括用碳酸根的任何來源,諸如CO2 氣體和/或碳酸鹽,處理BaSO4 沉澱(以及任選地,CaSO4 沉澱)後剩餘的溶液,以形成包含除鋰以外的一種或多種金屬的一種或多種金屬碳酸鹽的沉澱物。在實施方式中,碳酸鹽是碳酸鈉(Na2 CO3 )或碳酸鋰(Li2 CO3 ),或其組合。在實施方式中,非鋰金屬包括鈣和/或鎂,在這種情況下,用碳酸根(例如CO2 氣體和/或碳酸鹽)的來源進行處理將生成碳酸鈣和/或碳酸鎂。
在實施方式中,該方法還包括例如通過結晶從溶液中回收鋰物質的步驟。在實施方式中,這種步驟還包括熱處理以去除或蒸發溶液中的至少一部分水。在實施方式中,去除至少約90%的水,在另一種實施方式中,去除至少約95%的水。
在實施方式中,在該方法的一個或多個步驟中獲得的各種產物可以再循環回到用於該方法的形式。例如,在實施方式中,可以通過例如煆燒處理BaSO4 ,以形成BaO和SO3 。在實施方式中,BaO可以被用作鋇鹽,以形成包含BaSO4 的沉澱物。在另一種實施方式中,BaO可以被轉化成Ba(OH)2 (通過水處理),然後Ba(OH)2 可以被用作鋇鹽,以形成包含BaSO4 的沉澱物。類似地,在實施方式中,再生的SO3 可經過水處理以形成H2 SO4 ,然後H2 SO4 可以用於製備含Li2 SO4 的水溶液,例如,用於處理本文描述的起始混合物。
當向硫酸鹽溶液中加入一種或多種鋇鹽時生成BaSO4 。例如,通過過濾、離心或通過在增稠器中沉降,將固體硫酸鋇沉澱從鋰溶液中分離。
存在若干種將硫酸鋇轉化為適於硫酸根去除的鋇鹽的商業化方法。這有效地再生了鋇鹽並提高了該方法的經濟性。將鋇鹽再生步驟與例如氫氧化鋰沉澱相結合降低了運輸成本,並且可以與鋰方法協同。
將硫化鋇轉化為鋇鹽的方法是已知的。例如,美國專利號1648870(1925)建立了BaS的生產。例如,硫酸鋇可以在1000℃下用碳還原以產生硫化鋇 BaSO4 + 4C → BaS + 4CO
美國專利號1615515A(1922)建立了用於生產碳酸鋇的方法。硫化鋇是高度可溶的並且溶於水。硫化鋇溶液可以隨後與例如蘇打粉或二氧化碳反應以產生碳酸鋇。 BaS + Na2 CO3 → BaCO3 + Na2 S BaS + CO2 + H2 O → BaCO3 + H2 S
用蘇打粉處理,BaCO3 被過濾和再循環,同時Na2 S可以在溶液中回收並結晶為副產物。用二氧化碳沉澱,碳酸鋇以類似方式過濾,同時H2 S氣體使用克勞斯(Claus)方法回收並轉化為單質硫或在空氣中燃燒以產生SO2 氣體,SO2 氣體可以在制酸廠中以硫酸的形式容易地回收。在此,優點是鋰加工廠需要硫酸用於從鋰輝石中提取,並且這減少了大量的操作成本。
美國專利號779210A(1904)建立了通過煆燒將碳酸鋇轉化為氧化鋇。在1000℃下使用煆燒可以進一步處理碳酸鋇以產生氧化鋇。氧化鋇與水反應以形成氫氧化鋇。
通過以下非限制性實施例進一步詳細地說明本發明。
[實施例1:鋰純化過程-直接氫氧化鋰試驗1]
下面的階段1-5描述了金屬硫酸鹽的混合物的模型合成溶液的製備以及隨後LiOH·H2 O形式的Li的回收。表1中示出了樣品的分析和結果。
[階段1-合成溶液的製備]
1. 在2L浸提釜中合併以下物質: a.   500 mL去離子水 b.   50.7g Li2 SO4 •H2 O c.   680 mg CaSO4 (無水) d.   725 mg Na2 SO4 (無水) e.   200 mg MgSO4 (無水) f.    1450 mg K2 SO4
2. 在25°C下以350至400 rpm混合。
3. 取溶液的樣品進行化學分析,並驗證所有固體均已溶解。
[階段2-硫酸根去除1]
4. 在室溫下,加入固體Ca(OH)2 ,以將階段1的濾液的pH升高至pH11。記錄加入到溶液中的Ca(OH)2 的總量,從而可以計算溶液中的Ca濃度。在室溫下在攪拌反應器中保持60分鐘。
5. 真空過濾漿料,並且用至少1000 mL去離子水洗滌固體。
6. 將濾液和洗滌水稱重,並測量其比重。
7. 取溶液和洗滌水的樣品,並進行Li、Al、Fe、Na、K、Ca、Mg、 Si的分析。
8. 將固體在烘箱中在40℃下乾燥過夜。稱重乾燥的固體。
9. 測定固體中的Li、S、Al、Ca、Fe、K、Mg、Mn、Si。
[ 階段 3- 硫酸根去除2]
10. 在室溫下,加入Ba(OH)2 以從溶液中去除剩餘的硫酸根。Ba(OH)2 的加入量基於溶液的估計硫酸根含量,並且Ba:SO4 的莫耳比為1:1。在室溫下在攪拌反應器中保持60分鐘。記錄加入到溶液中的Ba(OH)2 的總量。
11. 形成固體BaSO4
12. 真空過濾漿料,並且用去離子水洗滌固體。
13. 將濾液和洗滌水稱重,並測量其比重。
14.     取溶液和洗滌水的樣品,並進行Li、Al、Fe、Na、K、Ca、Mg、Si的分析。
15. 將固體在烘箱中在40℃下乾燥過夜。稱重乾燥的固體。
[階段4-Ca/Mg去除]
16. 將45g/L Na2 CO3 溶液加入到溶液中,以CO3 :Ca 莫耳比為1:1加入Na2 CO3
17. 在室溫下在攪拌的浸提釜中保持1小時以從溶液中去除Ca。
18. 真空過濾漿料,並且用去離子水洗滌固體。
19. 將濾液和洗滌水稱重,並且測量其比重。
20. 取溶液和洗滌水的樣品,並進行Li、Al、Fe、Na、K、Ca、Mg、Si的分析。
21. 將固體在烘箱中在40℃下乾燥過夜。稱重乾燥的固體。
22. 測定固體中的Li、S、Al、Ca、Fe、K、Mg、Mn、Si。
[階段5-LiOH·H2 O沉澱]
23. 將階段2 Ca/Mg去除的濾液中的水的質量的約95%蒸發。
24. 結晶出白色LiOH晶體。
25. 測定固體的樣品。記錄固體的質量。
26. 測定殘留物中的Na、Li、S、Al、Ca、Fe、K、Mg、Mn、Si。
27. 測定溶液中的Li、Al、Fe、Na、K、Ca、Mg、Si。
表1:直接氫氧化鋰-試驗1質量平衡
Figure 02_image001
Figure 02_image003
Figure 02_image005
[實施例2:從帶有5g/L鋰的硫酸鋰溶液中結晶LiOH·H2 O]
該試驗研究了從帶有5g/L鋰的硫酸鋰溶液中結晶LiOH·H2 O。用硫酸將Li溶液的初始pH調節至2。圖1概述了硫酸根的沉澱和結晶的LiOH·H2 O中涉及的主要步驟。在表2中示出了實驗結果。
表2:實驗條件和結果
原始溶液 pH (加入石灰之後) SO4 濃度 (加入石灰之後) Ca 濃度 (加入Ba(OH)2 之後) LiOH.H2 O 形式的 Li 的質量百分比 (蒸發之後)
Li 濃度 pH
4.89 g/L 2.1 11.2 0.583 g/L 0.147 g/L 14.97%
[實施例3:各種參數對鋰回收的影響]
本研究研究了以下條件:(a)各種濃度的Ba(Ba/SO4 莫耳比:80-120%)、Na(0-30g/L)、Li(5-15g/L)下的鋰的回收;(b)pH為6至10;(c)溫度為5-60℃,時間為0-120min。
首先將Ba(OH)2 或BaO溶解在50ml蒸餾水中,製成Ba(OH)2 漿料。然後,將漿料逐滴加入到100ml Li2 SO4 溶液中(10ml漿料/10min),再反應2小時,然後過濾。每50min取一個樣本。
圖2進一步示出了Ba(OH)2 和H2 SO4 的再生。可以看出,在約600-800℃的溫度下,煆燒階段3後得到的BaSO4 。形成BaO和SO3 。用水處理BaO,產生Ba(OH)2 ,將Ba(OH)2 再循環以用於階段3的過程。SO3 也用水處理,產生H2 SO4 ,將H2 SO4 再循環以用於再生金屬硫酸鹽(包括Li2 SO4 )。
表3中示出了所進行的各種實驗的條件和質量平衡(mass balance)。圖2概述了鋰的沉澱和結晶的LiOH·H2 O中涉及的主要步驟。圖3以圖表形式示出了表3中所示的鋰的分佈值,其中條的下部對應於濾液,而條的上部對應於洗滌水。圖4以圖表形式示出了表3中所示的鈉的分佈值,其中條的下部對應於濾液,而條的上部對應於洗滌水。洗滌水中鋰和鈉的存在可能是因為真空泵不用於促進固體和液體的分離。過濾後,一些液體殘留在固體中。當用蒸餾水洗滌固體時,殘留液體進入洗滌水中,導致洗滌水中鋰和鈉的濃度更高。
表3 實驗條件和結果
Figure 02_image007
[實施例4:從Li PLS中去除Al和Fe]
在最終pH為約2.5的硫酸溶液中浸提經處理而變得易於硫酸浸提的含鋰材料。富集浸提溶液(PLS)具有11g/L鋰、2.7g/L鋁、300mg/L鐵以及其他雜質。
如果鐵和其他陽離子為還原形式,則在以氧化物和/或氫氧化物形式調節pH以去除雜質之前,PLS可以被充氧或者通過氧氣或其他氧化劑提高PLS的電位以將物質氧化成更氧化的形式。或者,可以在沒有充氧或氧化過程的情況下處理PLS。
在該實施例(實施例4)中,在一系列試驗(參見表4)中,石灰用作鹼性材料,以將pH提高到3.0至6.0的範圍,並去除部分雜質,該雜質主要包括Fe和Al。該方法可以在環境T至接近沸點的寬溫度範圍內進行。在環境溫度下,通過加入石灰漿或固體細石灰粉末提高PLS的pH已經去除90%以上的Al和Fe雜質(表4)。在pH 4.5至5下,幾乎100%的鐵和鋁被去除(表4)。為了簡單起見假定為氫氧化物沉澱的雜質去除反應如下: Fe2+ + 2OH- → Fe(OH)2 Fe3+ + 3OH- → Fe(OH)3 Al3+ + 3OH- → Al(OH)3
在高達接近PLS的沸點的高溫(45、65、85和95℃)下去除Al和Fe,均表現出同樣可接受的結果,其中去除99.8%以上的Al和100%的Fe,產生幾乎不含Fe和Al的溶液。
理想地,石灰的添加可以通過作為石灰漿或通過固體石灰粉末實現,然而在我們的實施例中,固體礦漿密度為5%的石灰漿表現出優異的結果,其中大部分Al和Fe被去除,並且殘留物中的Li損失小於0.6%,大部分更接近0.3%或更少。
表 4-實施例4的試驗:Al-Fe去除-試驗時間:2h-試驗溶液:每次試驗750 mL 溶液
試驗# 參數 效率結果
終點pH 石灰漿PD T(°C) Al去除(%) Fe去除(%) Li損失(%)
1 4.5 5% 25 > 97.0 100.0 1.9
2 4.75 5% 25 100.0 100.0 > 1.0
3 5 5% 25 100.0 100.0 > 5.0
4 4.75 5% 45 > 99.5 100.0 0.3
5 4.75 5% 65 > 99.3 100.0 0.6
6 4.75 5% 85 > 99.8 100.0 0.0
7 4.75 10% 65 > 99.9 100.0 > 0.5
[實施例5:初級硫酸根去除]
去除Al和Fe後的PLS(實施例1試驗的產品)主要含有Li、硫酸根、Mg、Na和一些其他鹼金屬諸如Ni、Co等。可以用石灰提高溶液的pH,以去除大部分硫酸根以及諸如Mg等一些其他雜質。採用這種方法,大部分或幾乎全部Ni、Co、Mg將以氧化物/氫氧化物的形式沉澱,並且溶液中的一部分硫酸根將以硫酸鈣的形式沉澱,如以石膏(CaSO4 ·2H2 O)的形式沉澱。
在我們的試驗中(參見下表5),不含Al-Fe的溶液(實施例1的溶液產物)具有約10g/L鋰、600mg/L Ca、100mg/L Mg和90g/L硫酸根。其他陽離子是無關緊要的或非常低的。
在多次試驗中,將溶液pH提高到9.2至12的範圍中(石灰飽和水平)。通過將pH提高到超過9.5,大部分Mg和其餘的鹼金屬沉澱。固體中鋰損失低,幾乎可忽略。在約11或更高的較高pH下,接近或高於40%的硫酸根被去除,從而將溶液硫酸根濃度降低到低於60g/L。在45至95℃的較高溫度下,該方法表現出相對高的或同樣高的硫酸根去除效率。
通過添加石灰,用於硫酸根和鎂去除的可能的反應是: Ca2+ + SO4 2- + 2H2 O → CaSO4 .2H2 O CaO + MgSO4 + 2H2 O → MgO + CaSO4 .2H2 O
表5-實施例5的試驗:初級硫酸根去除-試驗時間:2h-試驗溶液:每次試驗400至750 mL 溶液
參數 效率結果
終點pH 石灰漿PD T(°C) 硫酸根去除(%) Mg去除(%) Li損失(%)
10 5% 25 22.0 90.0 0.0
10.5 5% 25 22.0 > 97.0 > 0.1
11 5% 25 > 20.0 > 97.0 0.0
11.5 5% 25 23.0 > 97.0 0.1
12 5% 25 41.0 > 97.0 0.0
12 5% 45 > 32.0 > 97.0 0.0
12 5% 65 > 33.0 > 97.0 0.0
12 5% 85 > 28.0 > 97.0 0.0
[實施例6:在一個步驟中實現鋁和鐵的去除和初級硫酸根去除]
向實施例4的PLS中加入足夠的石灰以便將pH從酸性pH直接提高到約12,在該一步法中,去除100%的Al、100%的Fe、>97%的Mg和40%以上的硫酸根。在pH調節後,在溶液中沒有檢測到鹼金屬。因此,實施例4和實施例5的兩個過程可以合併為一個單元操作。但應注意的是,實施例5中產生的石膏質量高,並且可能是可銷售產品,但實施例4和實施例6的石膏由於作為主要雜質的Al和Fe的存在而質量低。
[實施例7:用鋇去除硫酸根]
用不同的鋇鹽接觸實施例5(或實施例6)的產物溶液,以使溶液的硫酸根沉澱為硫酸鋇。在表6中示出了結果。該方法中可能的反應可以是: Ba2+ + SO4 2- → BaSO4 BaO + Li2 SO4 + H2 O → BaSO4 + 2LiOH Ba(OH)2 + Li2 SO4 → BaSO4 + 2LiOH BaCO3 + Li2 SO4 → BaSO4 + LiOH + CO2
可以以接近Ba:硫酸根化學計量比(1:1,如以上反應所示)加入鋇,以降低方法成本並增加硫酸根沉澱。Ba可以以固體鹽或漿料的形式加入,因為大多數上述鋇鹽可溶於水。在溶液的pH下(即不需要降低pH),硫酸根被有效地去除,並且當以Ba:硫酸根之比略高於1:1,接近1.05:1加入Ba時,幾乎可以去除溶液中所有硫酸根。
例如,在溶液pH為11.5至12,Ba:硫酸根之比為1.08,且溫度為65℃的情況下,加入Ba(OH)2 鹽可以有效地去除100%的溶液硫酸根,並且溶液中剩餘的鈣濃度降低94.5%至小於36mg/L。在溶液中未檢測到鎂,並且Ba濃度小於1mg/L(檢測極限)。鈉濃度接近500 mg/L。在25℃下的類似試驗導致98.5%的硫酸根去除、93%的Ca以及100%的Mg去除。在鋇鹽用量較高時,可以預期完全去除硫酸根和溶液中一些殘留的Ba。在大多數試驗中,鋇法(實施例7)的鋰損失為0%。
Figure 02_image009
[實施例8:LiOH.H2 O結晶]
實施例4中產生的溶液是帶有約10g/L鋰、約500mg/LNa、30mg/LCa的高質量溶液;Mg、Fe和Al在檢測極限以下。
溶液可以用離子交換樹脂或類似方法處理以去除剩餘的Ca和Na。然而,溶液已經具有高質量,因此替代選擇將是如氫氧化鋰結晶一樣處理溶液。
通過在低於、接近或高於溶液沸點的溫度下蒸發去除水,或在低於、接近或高於溶液沸點的溫度下真空處理溶液,或兩者的組合,可以從溶液中結晶氫氧化鋰。可以進行用於氫氧化鋰結晶的替代方法,諸如向溶液中加入有機物以置換溶液中的鋰,或其他方法。
在我們的實驗中,該方法的氫氧化鋰結晶通過XRD鑒定為氫氧化鋰,並且樣品呈現大於16.6%的LiOH.H2 O形式的Li。
本說明書涉及許多文獻,其內容通過引用整體併入本文。
申請專利範圍的範圍不應被實施例中闡述的優選實施方式限制,而應給予與整個說明書一致的最寬泛的解釋。
無。
以下說明圖式。
圖1示出了闡述根據本發明的實施方式的從含Li2 SO4 的溶液中以LiOH·H2 O的形式回收鋰的方法的流程圖。
圖2示出了闡述根據本發明的實施方式的從含Li2 SO4 的溶液中以LiOH·H2 O的形式回收鋰的方法的流程圖,還示出了Ba(OH)2 和H2 SO4 的再循環。
圖3示出了表3中所示的鋰的分佈值的圖解結果,其中條的下部對應於濾液,而條的上部對應於洗滌水。
圖4示出了表3中所示的鈉的分佈值的圖解結果,其中條的下部對應於濾液,而條的上部對應於洗滌水。

Claims (81)

  1. 一種用於從包含硫酸鋰(Li2 SO4 )的水溶液中回收鋰物質的方法,所述方法包括以下步驟: 用一種或多種鋇鹽處理含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物;以及 從BaSO4 沉澱後剩餘的溶液中回收所述鋰物質, 其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自包含鋰物質的天然來源或礦床或來自包含鋰物質的合成或非天然來源。
  2. 如請求項1所述之方法,其中,所述鋰物質以氫氧化鋰(LiOH)或其水合物的形式被回收。
  3. 如請求項1或2所述之方法,其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自所述包含鋰物質的天然來源或礦床。
  4. 如請求項1至3中任一項所述之方法,其中,所述包含鋰物質的天然來源或礦床是礦石、黏土或鹽水。
  5. 如請求項1至4中任一項所述之方法,其中,所述包含鋰物質的天然來源或礦床不是硫化物礦體。
  6. 如請求項4或5所述之方法,其中,所述礦石或黏土包括鋰雲母、鋰蒙脫石、翡翠、鋰輝石、透鋰長石和/或鋰磷鋁石。
  7. 如請求項4或5所述之方法,其中,所述鹽水包括大陸鹽水、地熱鹽水和/或油田鹽水。
  8. 如請求項1或2所述之方法,其中,所述包含硫酸鋰(Li2 SO4 )的水溶液來自所述包含鋰物質的合成或非天然來源。
  9. 如請求項7所述之方法,其中,所述包含鋰物質的合成或非天然來源包括鋰離子電池或其他含鋰材料再循環期間產生的材料。
  10. 如請求項8所述之方法,其中,在鋰離子電池再循環期間產生的所述材料包括鋰離子電池電極材料。
  11. 如請求項9或10所述之方法,其中,在鋰離子電池和/或鋰離子電池電極材料的再循環期間產生的所述材料包括鋰鈷氧化物、鋰錳氧化物、磷酸鐵鋰和/或鋰鎳錳鈷氧化物。
  12. 如請求項1至11中任一項所述之方法,還包括通過用硫酸(H2 SO4 )處理含金屬的混合物生產所述含Li2 SO4 的水溶液。
  13. 如請求項12所述之方法,其中,所述含金屬的混合物是所述包含鋰物質的天然來源或礦床或所述包含鋰物質的合成或非天然來源,或者是所述包含鋰物質的天然來源或礦床或所述包含鋰物質的合成或非天然來源的衍生物。
  14. 如請求項12或13所述之方法,其中,所述含金屬的混合物包括氧化鋰(Li2 O)形式的鋰物質。
  15. 如請求項1至14中任一項所述之方法,其中,所述一種或多種鋇鹽是氫氧化鋇(Ba(OH)2 )、氧化鋇(BaO)或其組合。
  16. 如請求項1至15中任一項所述之方法,還包括用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
  17. 如請求項16所述之方法,其中,用所述一種或多種鈣鹽的處理是在用所述一種或多種鋇鹽的處理之前的,並且用所述一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
  18. 如請求項1至17中任一項所述之方法,其中,所述含Li2 SO4 的水溶液的pH約為4.0或更低。
  19. 如請求項18所述之方法,其中,所述含Li2 SO4 的水溶液的pH為約2.0至約3.0。
  20. 如請求項1至18中任一項所述之方法,其中,所述含Li2 SO4 的水溶液還包含除鋰以外的一種或多種金屬的一種或多種金屬硫酸鹽。
  21. 如請求項12至20中任一項所述之方法,其中,所述含金屬的混合物還包括除鋰以外的一種或多種金屬。
  22. 如請求項20或21所述之方法,其中,除鋰以外的所述一種或多種金屬是I族金屬(除鋰以外)、II族金屬、過渡金屬和/或後過渡金屬中的一種或多種。
  23. 如請求項20至22中任一項所述之方法,其中,除鋰以外的所述一種或多種金屬是鈣、鈉、鎂、鉀、鋁和鐵中的一種或多種。
  24. 如請求項20至23中任一項所述之方法,還包括通過用鹼性材料進行處理提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平。
  25. 如請求項24所述之方法,其中,所述鹼性材料包括石灰。
  26. 如請求項25所述之方法,其中,所述石灰為石灰漿或固體石灰粉末的形式。
  27. 如請求項24至26中任一項所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約3.0或更高。
  28. 如請求項27所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約4.0至約5.5。
  29. 如請求項24至27中任一項所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約7.0或更高。
  30. 如請求項29所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約9.0至約12.0。
  31. 如請求項24至27中任一項所述之方法,其中,所述通過提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平在單個步驟中進行。
  32. 如請求項31所述之方法,其中,所述單個步驟包括將所述含Li2 SO4 的水溶液的pH調節至約3.0或更高。
  33. 如請求項32所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約4.0至約5.5。
  34. 如請求項31所述之方法,其中,所述單個步驟包括將所述含Li2 SO4 的水溶液的pH調節至約7.0或更高。
  35. 如請求項32所述之方法,其中,所述含Li2 SO4 的水溶液的pH被調節至約9.0至約12.0。
  36. 如請求項24至27中任一項所述之方法,其中,所述通過提高所述含Li2 SO4 的水溶液的pH來降低除鋰以外的所述一種或多種金屬的物質的水平包括多個步驟。
  37. 如請求項36所述之方法,其中,所述多個步驟包括第一步,將所述含Li2 SO4 的水溶液的pH調節至約3.0或更高的pH,以產生第一含Li2 SO4 的水溶液,其中所述第一含Li2 SO4 的水溶液貧乏除鋰以外的金屬,然後調節所述第一含Li2 SO4 的水溶液的pH至約7.0或更高的pH,以產生第二含Li2 SO4 的水溶液,其中所述第二含Li2 SO4 的水溶液貧乏除鋰以外的金屬。
  38. 如請求項30至37中任一項所述之方法,其中,用所述鹼性材料進行處理以降低除鋰以外的所述一種或多種金屬的物質的水平是在用所述一種或多種鈣鹽進行的處理之前的。
  39. 如請求項30至37中任一項所述之方法,其中,用於降低除鋰以外的所述一種或多種金屬的物質的水平的、用所述鹼性材料進行的處理與用所述一種或多種鈣鹽進行的處理一起進行。
  40. 如請求項30至39中任一項所述之方法,其中,用於降低除鋰以外的所述一種或多種金屬的物質的水平的、用所述鹼性材料進行的處理是在用所述一種或多種鋇鹽進行處理之前的。
  41. 如請求項16至40中任一項所述之方法,其中,在約7.0或更高的pH下,用所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
  42. 如請求項41所述之方法,其中,在約9.0至約12.0的pH下,用所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物。
  43. 如請求項1至42中任一項所述之方法,其中,在約6.0或更高的pH下,用所述一種或多種鋇鹽進行處理以形成包含硫酸鋇(BaSO4 )的沉澱物。
  44. 如請求項44所述之方法,其中,在約9.0至約12.0的pH下,用所述一種或多種鋇鹽進行處理以形成包含硫酸鋇(BaSO4 )的沉澱物。
  45. 如請求項1至44中任一項所述之方法,其中,以鋇與硫酸根的莫耳比為約0.8至約1.2,加入所述一種或多種鋇鹽。
  46. 如請求項45所述之方法,其中,以鋇與硫酸根的莫耳比為約1.0至約1.2,加入所述一種或多種鋇鹽。
  47. 如請求項20至46中任一項所述之方法,包括用碳酸根的來源,諸如CO2 氣體或碳酸鹽,處理BaSO4 沉澱後剩餘的溶液,以形成包含除鋰以外的所述一種或多種金屬的一種或多種金屬碳酸鹽的沉澱物,其中,從所述一種或多種金屬碳酸鹽沉澱後剩餘的溶液中回收所述鋰物質。
  48. 如請求項47所述之方法,其中,所述碳酸鹽是碳酸鈉(Na2 CO3 )或碳酸鋰(Li2 CO3 )中的一種或多種。
  49. 如請求項47或48所述之方法,其中,所述一種或多種金屬碳酸鹽是碳酸鈣和碳酸鎂中的一種或多種。
  50. 如請求項1至49中任一項所述之方法,其中,通過結晶從所述溶液中回收所述鋰物質。
  51. 如請求項50所述之方法,還包括熱處理以去除所述溶液中的至少一部分水。
  52. 如請求項51所述之方法,其中,至少約90%的水被去除。
  53. 如請求項52所述之方法,其中,至少約95%的水被去除。
  54. 如請求項1至53中任一項所述之方法,其中,所回收的鋰物質是LiOH·H2 O。
  55. 如請求項1至54中任一項所述之方法,還包括對所述BaSO4 進行處理以產生包括氧化鋇、氫氧化鋇或碳酸鋇的鋇鹽,並以硫化鈉、硫氫化鈉、硫酸或單質硫的形式回收硫。
  56. 如請求項55所述之方法,其中,將BaO用作所述一種或多種鋇鹽以形成包含BaSO4 的沉澱物。
  57. 如請求項55或56所述之方法,其中,對所述BaO進行水處理以形成Ba(OH)2
  58. 如請求項57所述之方法,其中,將所述Ba(OH)2 用作所述一種或多種鋇鹽以形成所述包含BaSO4 的沉澱物。
  59. 如請求項55至58中任一項所述之方法,還包括對SO3 進行水處理以形成H2 SO4
  60. 如請求項59所述之方法,其中,所述H2 SO4 用於處理如請求項12至59中任一項所限定的混合物。
  61. 如請求項1至60中任一項所述之方法,其中,在至少約6、至少約7、約6至約12、約7至約12、約8至約12、約9至約12、約10至約12、約6、約7、約8、約9、約10、約11或約12的pH下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
  62. 如請求項16至61中任一項所述之方法,其中,在至少約6、至少約7、約6至約12、約7至約12、約8至約12、約9至約12、約10至約12、約6、約7、約8、約9、約10、約11或約12的pH下,用所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液。
  63. 如請求項1至62中任一項所述之方法,其中,以鋇與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
  64. 如請求項16至63中任一項所述之方法,其中,以鈣與硫酸根的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的所述一種或多種鈣鹽處理所述含Li2 SO4 的水溶液。
  65. 如請求項1至64中任一項所述之方法,其中,在約1℃至約100℃、約5℃至約75℃、約5℃至約60℃、約10℃至約60℃、約15℃至約60℃、約20℃至約60℃的溫度下或在室溫下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
  66. 如請求項1至65中任一項所述之方法,其中,在約1℃至約100℃、約5℃至約60℃、約5℃至約75℃、約10℃至約60℃、約15℃至約60℃、約20℃至約60℃的溫度下或在室溫下,用所述一種或多種鋇鹽處理所述含Li2 SO4 的水溶液。
  67. 如請求項20至66中任一項所述之方法,其中,以碳酸根與除鋰以外的所述一種或多種金屬的莫耳比為約80%至約120%、約90%至約120%、約100%至約120%、約90%至約110%、約80%、約90%、約100%、約110%或約120%的碳酸鹽處理BaSO4 沉澱後剩餘的溶液。
  68. 如請求項1至67中任一項所述之方法,其中,所述含Li2 SO4 的水溶液中的鋰的濃度為約1至約25g/L、約5至約25g/L、約5至約20g/L、約5至約15g/L、約8至約12g/L、約5g/L、約6g/L、約7g/L、約8g/L、約9g/L、約10g/L、約11g/L、約12g/L、約13g/L、約14g/L或約15g/L。
  69. 如請求項1至68中任一項所述之方法,其中,從所述含Li2 SO4 的水溶液中回收至少約50%、55%、60%、65%、70%、75%、80%、90%或95%的所述鋰物質。
  70. 如請求項1至69中任一項所述之方法,其中,從所述含Li2 SO4 的水溶液中回收約50%至約97%、約55%至約97%、約60%至約97%、約65%至約97%、約70%至約97%、約75%至約97%、約80%至約97%或約90%至約97%的所述鋰物質。
  71. 一種用於從包含鋰物質和除鋰以外的一種或多種金屬的物質的混合物中回收鋰(Li)物質的方法,包括以下步驟: 用硫酸(H2 SO4 )處理所述混合物以提供含Li2 SO4 的水溶液; 用一種或多種鋇鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鋇(BaSO4 )的沉澱物; 用碳酸鹽處理BaSO4 沉澱後剩餘的溶液,以形成包含除鋰以外的所述一種或多種金屬的一種或多種金屬碳酸鹽的沉澱物;以及 通過熱處理和結晶,從所述一種或多種金屬碳酸鹽沉澱後剩餘的溶液中回收氫氧化鋰(LiOH)或其水合物的形式的所述鋰物質。
  72. 如請求項71所述之方法,還包括: 用一種或多種鈣鹽處理所述含Li2 SO4 的水溶液以形成包含硫酸鈣(CaSO4 )的沉澱物, 其中,用所述一種或多種鋇鹽處理CaSO4 沉澱後剩餘的溶液,以形成包含BaSO4 的沉澱物。
  73. 如請求項71或72所述之方法,其中,所述混合物獲自包含鋰物質的天然來源。
  74. 如請求項73所述之方法,其中,所述天然來源是礦石、黏土、鹽水或其他礦床。
  75. 如請求項74所述之方法,其中,所述礦石或黏土包括鋰雲母、鋰蒙脫石、翡翠、鋰輝石、透鋰長石和/或鋰磷鋁石。
  76. 如請求項73至75中任一項所述之方法,其中,所述包含鋰物質的天然來源或礦床不是硫化物礦體。
  77. 如請求項76所述之方法,其中,所述鹽水包括大陸鹽水、地熱鹽水和/或油田鹽水。
  78. 如請求項71或72所述之方法,其中,所述混合物獲自包含鋰物質的合成或非天然來源。
  79. 如請求項78所述之方法,其中,所述包含鋰物質的合成或非天然來源包括鋰離子電池或其他含鋰材料再循環期間產生的材料。
  80. 如請求項79所述之方法,其中,在鋰離子電池再循環期間產生的所述材料包括鋰離子電池電極材料。
  81. 如請求項80所述之方法,其中,所述鋰離子電池電極材料包括鋰鈷氧化物、鋰錳氧化物、磷酸鐵鋰和/或鋰鎳錳鈷氧化物。
TW108145596A 2018-12-12 2019-12-12 鋰回收及純化 TW202031904A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862778530P 2018-12-12 2018-12-12
US62/778,530 2018-12-12

Publications (1)

Publication Number Publication Date
TW202031904A true TW202031904A (zh) 2020-09-01

Family

ID=71076710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108145596A TW202031904A (zh) 2018-12-12 2019-12-12 鋰回收及純化

Country Status (9)

Country Link
US (1) US20220064757A1 (zh)
EP (1) EP3894605A4 (zh)
KR (1) KR20210135479A (zh)
CN (1) CN113677813A (zh)
AR (1) AR117308A1 (zh)
AU (1) AU2019399676A1 (zh)
CA (1) CA3122588A1 (zh)
TW (1) TW202031904A (zh)
WO (1) WO2020118436A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256903A1 (en) * 2021-06-11 2022-12-15 Xps Expert Process Solutions - Glencore Canada Corporation Lithium recovery and purification
DE102021123151A1 (de) * 2021-09-07 2023-03-09 Aurubis Ag Verfahren und Anlage zur Rückgewinnung von Metallen aus schwarzer Masse
CN114229872A (zh) * 2022-01-12 2022-03-25 赣州虔博新材料科技有限公司 一种锂云母冶炼渣高效清洁资源化综合利用方法
KR102632803B1 (ko) * 2022-01-28 2024-02-01 전남대학교산학협력단 황산리튬 및 산화바륨을 이용한 수산화리튬 제조방법
GB202217313D0 (en) * 2022-11-18 2023-01-04 Watercycle Tech Ltd Method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017243A (en) * 1958-08-11 1962-01-16 Dept Of Mines Method of producing lithium carbonate from spodumene
US3653829A (en) * 1970-01-29 1972-04-04 Catalytic Construction Co Recovery of sulfur values from brine
US6921522B2 (en) * 1998-07-16 2005-07-26 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
CN1229059A (zh) * 1999-03-05 1999-09-22 四川省绵阳锂盐厂 锂辉石生产单水氢氧化锂工艺
JP5077788B2 (ja) * 2001-07-18 2012-11-21 ティーエムシー株式会社 電池用電極材料の回収方法
DE102007033460A1 (de) * 2007-07-18 2009-01-22 Süd-Chemie AG Kreisprozess zur Herstellung von Bariumsulfat und Lithiummetallphosphatverbindungen
CN103318925B (zh) * 2013-06-19 2015-01-21 海门容汇通用锂业有限公司 一种用锂精矿生产高纯碳酸锂的方法
CN104495880A (zh) * 2014-12-29 2015-04-08 宜春市科远化工有限公司 一种利用锂云母制备氯化锂及其副产品的方法
CN104787784B (zh) * 2015-03-18 2017-06-09 江西赣锋锂业股份有限公司 一种回收含氟化锂废料制备锂盐的方法
CN106745097B (zh) * 2017-02-17 2017-12-22 谭春波 一种从锂云母精矿提取锂的方法
CN107032372B (zh) * 2017-04-21 2018-03-27 谭春波 一种从锂云母精矿提取锂的方法
CN107937733B (zh) * 2017-11-28 2020-07-24 中国地质科学院郑州矿产综合利用研究所 从铁锂云母中提取锂钾铷铯的工艺

Also Published As

Publication number Publication date
WO2020118436A1 (en) 2020-06-18
CA3122588A1 (en) 2020-06-18
EP3894605A4 (en) 2022-09-28
CN113677813A (zh) 2021-11-19
AU2019399676A1 (en) 2021-07-15
AR117308A1 (es) 2021-07-28
EP3894605A1 (en) 2021-10-20
US20220064757A1 (en) 2022-03-03
KR20210135479A (ko) 2021-11-15

Similar Documents

Publication Publication Date Title
TW202031904A (zh) 鋰回收及純化
US9458038B2 (en) Wastewater treatment process
US9938158B2 (en) Hematite manufacturing process and hematite manufactured by same
JP5447595B2 (ja) ニッケル酸化鉱石の湿式製錬における操業方法
AU2017357001A1 (en) Processing of cobaltous sulphate/dithionate liquors derived from cobalt resource
CN107406906A (zh) 在HCl回收回路中使用硫酸生产镁化合物和各种副产物的方法
WO2011120272A1 (zh) 一种制备一水合硫酸锰的方法
JP6986997B2 (ja) 炭酸リチウムの製造方法及び、炭酸リチウム
CN115849415A (zh) 制备电池级碳酸锂的方法
US20240270591A1 (en) Lithium recovery and purification
WO2010096862A1 (en) Zinc oxide purification
RU2356836C1 (ru) Способ комплексной переработки серпентинита
RU2560802C1 (ru) Способ переработки природного фосфата для извлечения редкоземельных элементов
EA024717B1 (ru) Способ получения оксида цинка из руды
KR101519861B1 (ko) 저순도 망간 및 칼륨 함유물로부터 망간화합물 및 황산칼륨의 제조방법
KR20150010683A (ko) 저순도 망간 및 칼륨 함유물로부터 망간화합물 및 황산칼륨의 제조방법