TW202028494A - 物理氣相沉積設備及其方法 - Google Patents
物理氣相沉積設備及其方法 Download PDFInfo
- Publication number
- TW202028494A TW202028494A TW108135326A TW108135326A TW202028494A TW 202028494 A TW202028494 A TW 202028494A TW 108135326 A TW108135326 A TW 108135326A TW 108135326 A TW108135326 A TW 108135326A TW 202028494 A TW202028494 A TW 202028494A
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic body
- target
- axis
- radial direction
- arm assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3455—Movable magnets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/046—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/3442—Applying energy to the substrate during sputtering using an ion beam
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/351—Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3435—Target holders (includes backing plates and endblocks)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3452—Magnet distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3461—Means for shaping the magnetic field, e.g. magnetic shunts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一種物理氣相沉積方法,包括使靶材之背側上方的第一磁性體傾斜。繞著延伸穿過靶材的軸線移動第一磁性體。隨後,吸引帶電離子以轟擊靶材,使得粒子自靶材射出並沉積在晶圓的表面上方。藉由使磁性體相對於靶材傾斜,磁場的分佈可更加隨機及均勻。
Description
藉由複雜的製造製程形成積體晶片,在此等製程期間工件經受不同的步驟以形成一或更多個半導體元件。處理步驟可包括在半導體基板上形成薄膜。可使用物理氣相沉積在低壓處理腔室中將薄膜沉積至半導體基板上。
100‧‧‧物理氣相沉積設備
110‧‧‧處理腔室
120‧‧‧靶材固持器
130‧‧‧電源
140‧‧‧厚度偵測器
150‧‧‧氣體系統
160‧‧‧基座
170‧‧‧真空系統
180‧‧‧控制器
200‧‧‧靶材
210‧‧‧晶圓
212‧‧‧溝槽
220‧‧‧薄膜
300‧‧‧磁控元件
302‧‧‧旋轉軸線
310‧‧‧磁性體
310a‧‧‧源磁性體
310b‧‧‧輔助磁性體
312‧‧‧磁場
314‧‧‧磁性單元
320‧‧‧馬達
330‧‧‧伸縮臂組件
330a‧‧‧第一伸縮臂組件
330b‧‧‧第二伸縮臂組件
331‧‧‧固定蓋
332‧‧‧第一部分
332a‧‧‧第一部分
332b‧‧‧第一部分
333‧‧‧滑動管
334‧‧‧第二部分
340‧‧‧旋轉軸
350‧‧‧配重
350a‧‧‧第一配重
350b‧‧‧第二配重
360‧‧‧樞接機構
360a‧‧‧第一樞接機構
360b‧‧‧第二樞接機構
370a‧‧‧第一線性致動器
370b‧‧‧第二線性致動器
372‧‧‧螺母
374‧‧‧馬達
376‧‧‧導螺桿
400‧‧‧磁控元件組件
410‧‧‧源磁控元件
420‧‧‧輔助磁控元件
3312‧‧‧狹縫
3722‧‧‧凸緣
S10‧‧‧步驟
S12‧‧‧步驟
S14‧‧‧步驟
S16‧‧‧步驟
S20‧‧‧步驟
S22‧‧‧步驟
S24‧‧‧步驟
S26‧‧‧步驟
當結合隨附圖式閱讀時,將自下文的詳細描述最佳地理解本揭示案之態樣。應注意,根據工業中的標準實務,並未按比例繪製各特徵。事實上,為了論述清楚,可任意增加或減小各特徵之尺寸。
第1圖係根據本揭示案之一些實施例的物理氣相沉積(physical vapor deposition;PVD)設備之示意圖。
第2圖係根據本揭示案之一些實施例的操作下的磁控元件之示意性側視圖。
第3A圖及第3B圖係根據本揭示案之一些實施例的伸縮臂組件之不同橫截面視圖。
第4A圖及第4B圖係根據本揭示案之一些實施例的不同操作狀態下的磁控元件之示意性側視圖。
第5圖係根據本揭示案之一些實施例的用於物理氣相沉積設備中的磁控元件組件之示意性頂視圖。
第6圖及第7圖係根據本揭示案之不同實施例的用於物理氣相沉積設備中的磁控元件組件之示意性側視圖。
第8圖及第9圖係根據本揭示案之不同實施例的操作物理氣相沉積設備之流程圖。
以下揭示內容提供許多不同實施例或實例,以便實施所提供之標的之不同特徵。下文描述部件及佈置之特定實例以簡化本揭示案。當然,此等僅為實例且不欲為限制性。舉例而言,在下文的描述中,第一特徵形成於第二特徵上方或第二特徵上可包括以直接接觸形成第一特徵與第二特徵的實施例,且亦可包括可在第一特徵與第二特徵之間形成額外特徵以使得第一特徵與第二特徵可不處於直接接觸的實施例。另外,本揭示案可在各實例中重複元件符號及/或字母。此重複係出於簡化與清楚目的,且本身並不指示所論述之各實施例及/或配置之間的關係。
此外,為了便於描述,本文可使用空間相對性術語(諸如「之下」、「下方」、「下部」、「上方」、「上部」及類似者)來描述諸圖中所圖示一個元件或特徵與另一元件(或多個元件)或特徵(或多個特徵)之關係。除了諸圖所描繪之定向外,空間相對性術語意欲包含使用或操作中元件之不同定向。設備可經其他方式定向(旋轉90度或處於其他定向上)且因此可類似解讀本文所使用之空間相對性描述詞。
第1圖係根據本揭示案之一些實施例的物理氣相沉積(physical vapor deposition;PVD)設備100之示意圖。如第1圖所示,物理氣相沉積設備100包括處理腔室110、靶材固持器120、電源130、厚度偵測器140、氣體系統150、基座160、真空系統170及控制器180。將靶材固持器120設置在處理腔室110中且靶材固持器120經配置用以固持靶材200。將電源130電連接至靶材200且電源130經配置用以將偏壓施加至靶材200。將厚度偵測器140設置在處理腔室110中且厚度偵測器140經配置用以偵測靶材200之厚度TK。例如,厚度偵測器140可為超音波偵測器、熱偵測器、X射線偵測器、渦流厚度計或類似者。氣體系統150經配置用以將濺射氣體(sputtering gas)G引入處理腔室110中。將基座160設置在處理腔室110中且基座160經配置用以固持晶圓210。控制器180經配置用以管理及控制物理氣相沉積設備100。
靶材200可包括例如單一元素、硼化物、碳化物、氟化物、氧化物、矽化物、硒化物、硫化物、碲化物、貴金屬、合金、金屬間化合物、上述之組合或類似者。例如,靶材200可包括銅(Cu)、矽(Si)、鈦(Ti)、鉭(Ta)、鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鋁(AlN)、氧化鋁(Al2O3)、氧化矽(SiO2)、氮化矽(SiN)、氮化硼(BN)、氧化鈦(TiO2)、氧化鉭(TaOx)、氧化鉿(HfO2)、上述之組合或類似者。
將基座160設置在處理腔室110中且基座160經配置用以支撐晶圓210。在一些實施例中,基座160可為或包括夾盤,此夾盤經配置用以固持晶圓210。例如,基座160可包括機械夾盤、真空夾盤、靜電夾盤(「e夾盤」)、上述之組
合或類似者。機械夾盤可包括一或更多個夾持器以將晶圓210緊固至基座160。真空夾盤可包括耦接至真空源的真空孔以將晶圓210固持至基座160。e夾盤依賴於由直流(direct current;DC)電壓源激勵的電極產生之靜電力,以將晶圓210緊固至夾盤。在一些實施例中,將溫度控制元件連接至基座160且溫度控制元件經配置用以調節基座溫度,且因此調節晶圓溫度。在一些實施例中,基座160可經由軸垂直移動以允許穿過處理腔室110之下部中的負載鎖定閥將晶圓210移送至基座160上,及隨後升高至沉積或處理位置。
由於靶材200的濺射易於受到雜質,特別是諸如氧氣及水分之氧化劑的影響,在靶材200的濺射開始之前,藉由真空系統170將處理腔室110抽真空至低於大氣壓的壓力。以此方式,可移除如氧氣及水分之類的雜質。在一些實施例中,真空系統170藉由抽出處理腔室110內的氣體來產生真空環境。
氣體系統150將濺射氣體G引入處理腔室110中。處理腔室110中的濺射氣體G為一種電漿,實際上為部分離子化的氣體。部分離子化的氣體包括各種電子、離子、不帶電分子及自由基。在操作物理氣相沉積設備100以將氮化鈦沉積至晶圓210上的情況下,濺射氣體G可包括例如氮氣。
當藉由電源130將偏壓施加至靶材200時,靶材200經充電且變成處理腔室110中的陰極。在一些實施例中,電源130為射頻(radio frequency;RF)電源且以極高頻施加,用於自濺射氣體形成電漿及藉由電漿離子化自靶材200濺射的原子或粒子。濺射氣體可包括一或更多種惰性氣體,諸如稀有
氣體或其他惰性氣體。例如,適宜濺射氣體之非限制性實例可包括氬(Ar)、氦(He)、氙(Xe)、氖(Ne)、氫(H2)、氮(N2)、上述之組合或類似者。在一些實施例中,電源130包括額外直流電源,此電源亦可施加至靶材200以增加材料自靶材200濺射的速率。在一些實施例中,可將DC電源施加至靶材200以將電漿導向靶材200。
在一些實施例中,帶負電的靶材200吸引電漿中帶正電的離子以加速及轟擊靶材200。由於帶正電的離子轟擊靶材200,粒子或原子自靶材200射出。將射出的粒子或原子沉積在由基座160固持的晶圓210之表面上方。在物理氣相沉積設備100的操作期間,發生靶材200的濺射且因此靶材200之厚度TK逐漸減小。一旦監測到靶材200之厚度TK小於預定厚度,操作員將終止操作及用新的靶材200替換原有靶材200。
為了實現帶電離子對靶材200的均勻轟擊,物理氣相沉積設備100進一步包括磁控元件(magnetron)300,磁控元件300包括磁性體310及馬達320。在磁控元件300與靶材200之間設置靶材固持器120。在濺射期間,磁性體310經配置用以產生磁場。磁場利用電漿內的離子作用力來捕獲靠近靶材200的離子。捕獲的離子與靶材200附近的中性氣體粒子碰撞,增強靶材200附近的電漿之離子化及導致較高的濺射速率。
馬達320經配置用以旋轉磁性體310,使得由磁性體310產生的磁場在靶材200之頂表面上方移動。在磁場的作用下,可更加均勻地實施離子對靶材200的轟擊。然而,磁性體310之磁場之強度在沿磁性體310上並非均勻。磁場在磁性體310之N極(north pole)與S極(south pole)周圍更強。因此,
由於較強的磁場,轟擊在靶材200上較強磁場生效的相應位置處更加猛烈。因此,靶材200在靶材200上最強磁場生效的相應位置處消耗最多。換言之,由於磁性體310之非均勻的磁場分佈,靶材200之厚度TK並非均勻。
參看第2圖,此係根據本揭示案之一些實施例的操作中的磁控元件300之示意性側視圖。磁控元件300包括磁性體310、馬達320、伸縮臂組件330、旋轉軸340、配重350及樞接機構360。磁性體310位於伸縮臂組件330的一端,且經由旋轉軸340將伸縮臂組件330連接至馬達320並藉由馬達320旋轉。
旋轉軸340實質上沿旋轉軸線302延伸,旋轉軸線實質上延伸穿過靶材200之中心C。將馬達320連接至旋轉軸340且馬達320經配置用以轉動旋轉軸340。磁控元件300位於靶材200之背側上(亦即,靶材200背離晶圓210的一側),使得磁性體310經配置用以產生一或更多個磁場312,磁場延伸穿過靶材200至靶材200下方的區域。磁場312作用於處理腔室內的離子以增強靶材200附近的電漿之離子化,導致較高濺射速率。
磁性體310可包括任何類型或數目的磁性單元。在一些實施例中,磁性體310包括一或更多個永磁體(例如,釹永磁體)。此外,磁性體310可包括任何大小的磁性單元。如第2圖所示,在一些實施例中,磁性體310包括複數個磁性單元314,各個具有N極及S極。
藉由將具有相反極性的磁性單元314彼此相鄰置放,可在靶材200下方實現具有高密度的磁場312。高密度的
磁場312在晶圓210之表面上方提供良好的階梯覆蓋及良好的沉積對稱性。例如,晶圓210具有複數個溝槽212,且沉積薄膜220以在溝槽212之相對側壁上的沉積膜之間具有對稱性,及在溝槽側壁上具有薄膜厚度大致等於溝槽212之底部處的膜厚度。在一些實施例中,薄膜220可為功函數金屬層。
伸縮臂組件330經配置用以具有可調節的長度。將磁性體310連接至伸縮臂組件330。伸縮臂組件330將磁性體310連接至旋轉軸340,旋轉軸340大致位於靶材200之中心C處且藉由馬達320驅動。伸縮臂組件330經配置為長度可調節的,從而改變自旋轉軸340至磁性體310的距離。
在一些實施例中,伸縮臂組件330包括線性致動器,線性致動器經配置用以控制伸縮臂組件330之長度變化。藉由改變伸縮臂組件330之長度,改變磁性體310相對於旋轉軸340之位置。
在一些實施例中,配重350位於沿伸縮臂組件330延伸的位置處,此位置與磁性體310的位置相對。例如,如第2圖所示,配重350及磁性體310在旋轉軸340之相對側上。配重350經配置用以藉由平衡磁性體310之負載來穩定磁性體310。此補償了磁性體310之重量且維持了磁控元件300之旋轉平面中的平衡。
在一些實施例中,藉由樞接機構360連接伸縮臂組件330與旋轉軸340,使得伸縮臂組件330樞接至旋轉軸340。在一些實施例中,伸縮臂組件330包括第一部分332及第二部分334,其中將磁性體310連接至第一部分332,將配重350連接至第二部分334,並藉由樞接機構360連接第一部分332
與第二部分334。藉由樞接機構360調節第一部分332與第二部分334之間的角度,進而調節磁性體310相對於靶材200之位置及定向(orientation)。例如,伸縮臂組件330之第一部分332與磁性體310可相對於靶材200之頂(背)表面以非零角度傾斜。當磁控元件300之磁性體310相對於靶材200傾斜時,磁場之迴路亦相對於靶材200傾斜,使得由靶材200接收的磁場強度可更加均勻。
將伸縮臂組件330及樞接機構360電連接至控制器180(如第1圖所示)且由控制器180控制。控制器180為具有軟體的電腦,此軟體用於控制磁性體310之運動,諸如磁性體310相對於旋轉軸340的徑向運動。此外,控制器180控制磁性體310及伸縮臂組件330的傾斜。藉由改變旋轉速度、伸縮臂組件330之長度及磁性體310之傾斜角,可實現靶材200之實質均勻的消耗。
參看第3A圖及第3B圖,其分別為根據本揭示案之一些實施例的沿不同方向截取的伸縮臂組件330之橫截面視圖。在一些實施例中,線性致動器包括第一線性致動器370a及第二線性致動器370b,第一線性致動器370a經設置在伸縮臂組件330之第一部分332中且第二線性致動器370b經設置在伸縮臂組件330之第二部分334中。第一線性致動器370a經配置用以產生針對磁性體310的線性運動,及第二線性致動器370b經配置用以產生針對配重350的線性運動。
在一些實施例中,第一線性致動器370a及第二線性致動器370b各個包括螺母372、馬達374及導螺桿376。第一部分332及第二部分334之每一者具有固定蓋331及滑動管
333。將螺母372擰到導螺桿376上。將螺母372連接至滑動管333。將馬達374連接至固定蓋331。將磁性體310或配重350設置在滑動管333上。馬達374經配置用以旋轉導螺桿376。
在第一線性致動器370a及第二線性致動器370b之每一者中,馬達374可為例如DC電刷馬達、DC無電刷馬達、步進馬達、感應馬達或類似者。導螺桿376具有在圓周上機械加工的沿長度行進的連續螺旋螺紋。螺母372可為具有相應螺旋螺紋的導螺母或球螺母。將螺母372進一步耦接至固定蓋331且螺母372能夠相對於固定蓋331滑動。例如,螺母372包括兩個凸緣3722,且固定蓋331包括兩個狹縫3312。將螺母372之凸緣3722耦接至固定蓋331之狹縫3312,使得螺母372與固定蓋331互鎖以防止螺母372與導螺桿376一起旋轉。因此,當旋轉導螺桿376時,沿螺紋驅動螺母372。螺母372之運動方向取決於導螺桿376之旋轉方向。當導螺桿376由馬達374驅動時,將導螺桿376之旋轉運動轉換成滑動管333之線性運動。在一些其他實施例中,第一線性致動器370a及/或第二線性致動器370b可包括其他適宜線性致動器,諸如機械致動器、液壓致動器、氣動致動器、壓電致動器、扭轉與捲曲聚合物(twisted and coiled polymer;TCP)致動器、電動機械致動器或類似者。在一些實施例中,第一線性致動器370a及第二線性致動器370b由控制器180(如第1圖所示)控制。
參看第4A圖及第4B圖,此係根據本揭示案之一些實施例的不同操作狀態下的磁控元件300之示意性側視圖。在第4A圖中,伸縮臂組件之第一部分332及磁性體310相對於靶材固持器120之頂(背)表面以傾斜角θ傾斜。亦即,磁控
元件300之伸縮臂組件之第一部分332(或磁性體310之底表面)與靶材固持器120之頂(背)表面之間具有傾斜角θ。傾斜角θ大於約0度且小於或等於約2度。若傾斜角θ大於約2度,則磁控元件300可能撞擊製程腔室;若傾斜角θ等於約0度,則由磁控元件300產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若傾斜角θ小於約0度,則磁控元件300可能撞擊靶材固持器120。磁性體310之底表面與靶材固持器120之頂(背)表面之間的距離d大於約0mm且小於或等於約3mm。若距離d大於約3mm,則磁控元件300可能撞擊製程腔室;若距離d等於約0mm,則由磁控元件300產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若距離d小於約0mm,則磁控元件300可能撞擊靶材固持器120。
隨後,在第4B圖中,在軸線的徑向上移動磁性體310。例如,軸線可為延伸穿過靶材200之中心C的旋轉軸線302。因此,增加或減小自軸線至磁性體310的距離。在相對方向上移動配重350以平衡磁性體310。在一些實施例中,在軸線的徑向上移動磁性體310之步驟可在使磁性體310傾斜之前或之後執行。在使磁性體310傾斜且在軸線的徑向上移動之後,繞著旋轉軸線302移動磁性體310。在一些實施例中,當繞著旋轉軸線302移動磁性體310時,自旋轉軸線302至磁性體310的距離及磁性體310之傾斜角為固定的。
藉由改變自旋轉軸線302至磁性體310的距離及磁性體310之傾斜角,可改變磁性體310繞著旋轉軸線302之移動路徑。此可調節的磁力線軌跡可以進而提供靶材的良好消耗均勻性及較短的沉積時間。
參看第5圖,此係根據本揭示案之一些實施例的物理氣相沉積設備之磁控元件組件400之示意性頂視圖。在一些實施例中,物理氣相沉積設備之磁控元件組件400包括源磁控元件(source magnetron)410及輔助磁控元件(auxiliary magnetron)420。源磁控元件410包括源磁性體310a、第一伸縮臂組件330a、第一配重350a及第一樞接機構360a。源磁性體310a、第一伸縮臂組件330a、第一配重350a及第一樞接機構360a分別類似於第2圖之磁性體310、伸縮臂組件330、配重350及樞接機構360,且因此在此不再贅述。
輔助磁控元件420包括輔助磁性體310b、第二伸縮臂組件330b、第二配重350b及第二樞接機構360b。輔助磁性體310b、第二伸縮臂組件330b、第二配重350b及第二樞接機構360b分別類似於第2圖之磁性體310、伸縮臂組件330、配重350及樞接機構360,且因此在此不再贅述。
物理氣相沉積設備亦包括處理腔室、經配置用以固持靶材的靶材固持器、電源、厚度偵測器、氣體系統、基座、真空系統及控制器。物理氣相沉積設備之處理腔室、靶材固持器、電源、厚度偵測器、氣體系統、基座、真空系統及控制器以及靶材分別類似於第1圖之物理氣相沉積設備100之處理腔室110、靶材固持器120、電源130、厚度偵測器140、氣體系統150、基座160、真空系統170及控制器180以及靶材200,且因此在此不再贅述。
磁控元件組件400的一個應用係在通孔之側面及底部上方濺射阻障層或襯墊層。為了實現對通孔的深穿透,RF對晶圓施加偏壓以吸引通孔內深處的離子來濺射蝕刻通孔之
底部處的阻障層。如此,可平衡通孔之底部處的濺射蝕刻與沉積。
可藉由使用源磁控元件410與輔助磁控元件420兩者來改良濺射蝕刻及/或沉積之均勻性。在一些實施例中,源磁控元件410與輔助磁控元件420具有相似但仍然不同的結構。例如,源磁控元件410比輔助磁控元件420小,磁性比輔助磁控元件420強,且設置在更靠近靶材200之邊緣處。輔助磁控元件420比源磁控元件410大,磁性比源磁控元件410弱,且位於更靠近旋轉軸340處。繞著旋轉軸340旋轉源磁控元件410及輔助磁控元件420以使徑向離子通量分佈平坦化。經平坦化的徑向離子通量分佈增加了濺射蝕刻及/或沉積之均勻性。
在一些實施例中,如第6圖所示,第一伸縮臂組件330a之第一部分332a及源磁性體310a相對於靶材固持器120之頂(背)表面以第一傾斜角θ 1傾斜。亦即,第一伸縮臂組件330a之第一部分332a(或源磁性體310a之底表面)與靶材固持器120之頂(背)表面之間具有第一傾斜角θ 1。第一傾斜角θ 1大於約0度且小於或等於約2度。若第一傾斜角θ 1大於約2度,則源磁控元件410可能撞擊製程腔室;若第一傾斜角θ 1等於約0度,則由源磁控元件410產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若第一傾斜角θ 1小於約0度,則源磁控元件410可能撞擊靶材固持器120。源磁控元件410之源磁性體310a之底表面與靶材固持器120之頂(背)表面之間的第一距離d1大於約0mm且小於或等於約3mm。若第一距離d1大於約3mm,則源磁控元件410可能撞擊製程腔
室;若第一距離d1等於約0mm,則由源磁控元件410產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若第一距離d1小於約0mm,則源磁控元件410可能撞擊靶材固持器120。
在一些實施例中,如第7圖所示,第二伸縮臂組件330b之第一部分332b及輔助磁性體310b相對於靶材固持器120之頂(背)表面以第二傾斜角θ 2傾斜。亦即,第二伸縮臂組件330b之第一部分332b(或輔助磁性體310b之底表面)與靶材固持器120之頂(背)表面之間具有第二傾斜角θ 2。第二傾斜角θ 2大於約0度且小於或等於約2度。若第二傾斜角θ 2大於約2度,則輔助磁控元件420可能撞擊製程腔室;若第二傾斜角θ 2等於約0度,則由輔助磁控元件420產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若第二傾斜角θ 2小於約0度,則輔助磁控元件420可能撞擊靶材固持器120。在一些實施例中,第二傾斜角θ 2大於第一傾斜角θ 1以確保輔助磁性體310b比源磁性體310a更靠近旋轉軸線302。輔助磁控元件420之輔助磁性體310b之底表面與靶材200之頂(背)表面之間的第二距離d2大於約0mm且小於或等於約3mm。若第二距離d2大於約3mm,則輔助磁控元件420可能撞擊製程腔室;若第二距離d2等於約0mm,則由輔助磁控元件420產生的磁場未傾斜,且因此無法改良靶材200的消耗均勻性;若第二距離d2小於約0mm,則輔助磁控元件420可能撞擊靶材固持器120。在一些實施例中,第二距離d2大於第一距離d1以確保輔助磁性體310b比源磁性體310a更靠近旋轉軸線302。
參看第6圖。在旋轉軸線302的第一徑向方向上移動源磁性體310a。在一些實施例中,在旋轉軸線302的第一徑向方向上移動源磁性體310a之步驟可在使源磁性體310a傾斜之前或之後執行。在使源磁性體310a傾斜且在旋轉軸線302的第一徑向方向上移動之後,繞著旋轉軸線302移動源磁性體310a。在一些實施例中,當繞著旋轉軸線302移動源磁性體310a時,自旋轉軸線302至源磁性體310a的距離及源磁性體310a之傾斜角為固定的。
參看第7圖。在旋轉軸線302的第二徑向方向上移動輔助磁性體310b。在一些實施例中,在旋轉軸線302的第二徑向方向上移動輔助磁性體310b之步驟可在使輔助磁性體310b傾斜之前或之後執行。在使輔助磁性體310b傾斜且在旋轉軸線302的第二徑向方向上移動之後,繞著旋轉軸線302移動輔助磁性體310b。在一些實施例中,當繞著旋轉軸線302移動輔助磁性體310b時,自旋轉軸線302至輔助磁性體310b的距離及輔助磁性體310b之傾斜角為固定的。
參看第6圖。在旋轉軸線302且與第一徑向方向相對的第三徑向方向上移動第一配重350a以平衡源磁性體310a。參看第7圖。在旋轉軸線302且與第二徑向方向相對的第四徑向方向上移動第二配重350b以平衡輔助磁性體310b。在一些實施例中,在第三徑向方向上移動第一配重350a及在第四徑向方向上移動第二配重350b之步驟可分別與在第一徑向方向上移動源磁性體310a及在第二徑向方向上移動輔助磁性體310b同時執行。在一些實施例中,在第三徑向方向上移動第一配重350a及在第四徑向方向上移動第二配重350b之步驟
可在繞著旋轉軸線302移動源磁性體310a及輔助磁性體310b之前執行。在一些實施例中,當繞著旋轉軸線302移動源磁性體310a及輔助磁性體310b時,自旋轉軸線302至第一配重350a的距離及自旋轉軸線302至第二配重350b的距離為固定的。
參看第8圖,此係根據本揭示案之一些實施例的操作物理氣相沉積設備之流程圖。方法開始於步驟S10,在此步驟中,使靶材之背側上方的第一磁性體傾斜。在一些實施例中,經由臂將第一磁性體連接至樞接機構,以及藉由使用樞接機構使第一磁性體傾斜。
在步驟S12中,繞著延伸穿過靶材的軸線移動第一磁性體。在一些實施例中,將樞接機構連接至旋轉軸,且軸線為旋轉軸之旋轉軸線。在一些實施例中,在繞著軸線移動第一磁性體之前使第一磁性體傾斜。在一些實施例中,在繞著軸線移動第一磁性體時,第一磁性體相對於靶材的傾斜角為固定的。
在步驟S14中,產生包括帶電離子的電漿,及隨後在步驟S16中,吸引帶電離子以轟擊靶材,使得粒子自靶材射出並沉積在晶圓的表面上方。在一些實施例中,當吸引帶電離子以轟擊靶材時,第一磁性體相對於靶材的傾斜角亦為固定的。
參看第9圖,此係根據本揭示案之一些其他實施例的操作物理氣相沉積設備之流程圖。方法開始於步驟S20,在此步驟中,在軸線的第一徑向方向上移動靶材之背側上方的第一磁性體,其中軸線延伸穿過靶材。
在步驟S22中,在軸線的第二徑向方向上移動靶材之背側上方的第二磁性體。在一些實施例中,第二磁性體比第一磁性體更靠近軸線。
在步驟S24中,在第一徑向方向上移動第一磁性體及在第二徑向方向上移動第二磁性體之後,繞著軸線移動第一磁性體及第二磁性體。
在步驟S26中,產生包括帶電離子的電漿,及隨後吸引帶電離子以轟擊靶材,使得粒子自靶材射出並沉積在晶圓的表面上方。
由於靶材的消耗,每次物理氣相沉積製程之後的靶材輪廓皆發生變化。藉由使磁性體相對於靶材固持器或靶材傾斜及/或改變自旋轉軸線至磁性體的距離,磁場的分佈可更加均勻,且因此靶材的消耗亦可更加均勻。
根據本揭示案之一些實施例,方法包括使靶材之背側上方的第一磁性體傾斜。繞著延伸穿過靶材的軸線移動第一磁性體。產生包括帶電離子的電漿。吸引帶電離子以轟擊靶材,使得粒子自靶材射出並沉積在晶圓的表面上方。
根據本揭示案之一些實施例,方法包括在軸線的第一徑向方向上移動靶材之背側上方的第一磁性體,其中軸線延伸穿過靶材。方法包括在軸線的第二徑向方向上移動靶材之背側上方的第二磁性體。在第一徑向方向上移動第一磁性體及在第二徑向方向上移動第二磁性體之後,繞著軸線移動第一磁性體及第二磁性體。產生包括帶電離子的電漿。吸引帶電離子以轟擊靶材,使得粒子自靶材射出並沉積在晶圓的表面上方。
根據本揭示案之一些實施例,設備包括處理腔室、靶材固持器、第一磁性體、第一臂組件、旋轉軸、第一樞接機構。處理腔室經配置用以安放工件。靶材固持器位於處理腔室中。第一磁性體設置在靶材固持器之背側上方。第一臂組件連接至第一磁性體。第一樞接機構連接旋轉軸與第一臂組件。
前文概述了數個實施例之特徵,使得熟習此項技術者可更好地理解本揭示案之態樣。熟習此項技術者應瞭解,可易於使用本揭示案作為設計或修改其他製程及結構的基礎以便實施本文所介紹的實施例之相同目的及/或實現相同優勢。熟習此項技術者亦應認識到,此類等效結構並未脫離本揭示案之精神及範疇,並且可在不脫離本揭示案之精神及範疇的情況下在本文中實施各種變化、取代及修改。
120‧‧‧靶材固持器
200‧‧‧靶材
210‧‧‧晶圓
212‧‧‧溝槽
220‧‧‧薄膜
300‧‧‧磁控元件
302‧‧‧旋轉軸線
310‧‧‧磁性體
312‧‧‧磁場
314‧‧‧磁性單元
320‧‧‧馬達
330‧‧‧伸縮臂組件
332‧‧‧第一部分
334‧‧‧第二部分
340‧‧‧旋轉軸
350‧‧‧配重
360‧‧‧樞接機構
Claims (20)
- 一種方法,該方法包含以下步驟:使一靶材之一背側上方的一第一磁性體傾斜;繞著延伸穿過該靶材的一軸線移動該第一磁性體;產生包括帶電離子的一電漿;以及吸引該等帶電離子以轟擊該靶材,使得粒子自該靶材射出並沉積在一晶圓的一表面上方。
- 如請求項1所述之方法,更包含以下步驟:在該軸線的徑向上移動該第一磁性體。
- 如請求項2所述之方法,其中在該軸線的徑向上移動該第一磁性體之步驟係在繞著該軸線移動該第一磁性體之前執行。
- 如請求項1所述之方法,更包含以下步驟:繞著該軸線移動該靶材之該背側上方的一第二磁性體。
- 如請求項1所述之方法,更包含以下步驟:在該軸線的徑向上移動該靶材之該背側上方的一第二磁性體。
- 如請求項1所述之方法,更包含以下步驟:使該靶材之該背側上方的一第二磁性體傾斜。
- 如請求項1所述之方法,更包含以下步驟:在該軸線的徑向上移動一配重,其中經由一臂將該配重連接至該第一磁性體。
- 如請求項1所述之方法,其中藉由一靶材固持器固持該靶材,且執行使該第一磁性體傾斜,使得在使該第一磁性體傾斜之後該第一磁性體之一底表面與該靶材固持器之一頂表面之間的一角度大於約0度且小於或等於約2度。
- 如請求項1所述之方法,其中藉由一靶材固持器固持該靶材,且執行使該第一磁性體傾斜,使得在該第一磁性體傾斜之後該第一磁性體之一底表面與該靶材固持器之一頂表面之間的一距離大於約0mm且小於或等於約3mm。
- 如請求項1所述之方法,其中使該第一磁性體傾斜之步驟係在繞著該軸線移動該第一磁性體之前執行。
- 一種方法,該方法包含以下步驟:在一軸線的一第一徑向方向上移動一靶材之一背側上方的一第一磁性體,其中該軸線延伸穿過該靶材;在該軸線在一第二徑向方向上移動該靶材之該背側上方的一第二磁性體;在該第一徑向方向上移動該第一磁性體及在該第二徑向方向上移動該第二磁性體之後,繞著該軸線移動該第一磁性體及該第二磁性體;產生包括帶電離子的一電漿;以及吸引該等帶電離子以轟擊該靶材,使得粒子自該靶材射出並沉積在一晶圓的一表面上方。
- 如請求項11所述之方法,更包含以下步驟:在與該第一徑向方向相對的一第三徑向方向上移動連接至該第一磁性體的一第一配重。
- 如請求項12所述之方法,更包含以下步驟:在與該第二徑向方向相對的一第四徑向方向上移動連接至該第二磁性體的一第二配重。
- 一種設備,包含:一處理腔室,經配置用以安放一工件;一靶材固持器,位於該處理腔室中;一第一磁性體,位於該靶材固持器之一背側上方;一第一臂組件,經連接至該第一磁性體;一旋轉軸;以及一第一樞接機構,連接該旋轉軸與該第一臂組件。
- 如請求項14所述之設備,其中該第一臂組件為伸縮的。
- 如請求項15所述之設備,更包含:一配重,其中該第一臂組件具有連接至該第一磁性體的一第一部分及連接至該配重的一第二部分。
- 如請求項16所述之設備,其中該第一樞接機構連接該旋轉軸與該第一臂組件之該第一部分。
- 如請求項14所述之設備,更包含:一第二磁性體,位於該靶材固持器之該背側上方;以及一第二臂組件,連接該第二磁性體與該旋轉軸。
- 如請求項18所述之設備,更包含:一第二樞接機構,連接該旋轉軸與該第二臂組件。
- 如請求項19所述之設備,更包含:一配重,經連接至該第二臂組件。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862738725P | 2018-09-28 | 2018-09-28 | |
US62/738,725 | 2018-09-28 | ||
US16/572,186 US11462394B2 (en) | 2018-09-28 | 2019-09-16 | Physical vapor deposition apparatus and method thereof |
US16/572,186 | 2019-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202028494A true TW202028494A (zh) | 2020-08-01 |
TWI726428B TWI726428B (zh) | 2021-05-01 |
Family
ID=69946496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135326A TWI726428B (zh) | 2018-09-28 | 2019-09-27 | 物理氣相沉積設備及其方法 |
Country Status (3)
Country | Link |
---|---|
US (3) | US11462394B2 (zh) |
CN (1) | CN110965033B (zh) |
TW (1) | TWI726428B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102616067B1 (ko) * | 2018-11-14 | 2023-12-19 | 어플라이드 머티어리얼스, 인코포레이티드 | Pvd 스퍼터링 증착 챔버의 경사형 마그네트론 |
US11728226B2 (en) | 2020-08-14 | 2023-08-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Deposition system and method |
CN113718219B (zh) * | 2021-08-30 | 2023-11-14 | 长江先进存储产业创新中心有限责任公司 | 薄膜沉积方法及薄膜沉积设备 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4714536A (en) * | 1985-08-26 | 1987-12-22 | Varian Associates, Inc. | Planar magnetron sputtering device with combined circumferential and radial movement of magnetic fields |
JPH03243762A (ja) * | 1990-02-20 | 1991-10-30 | Fujitsu Ltd | マグネトロンスパッタリング装置 |
JPH04235278A (ja) | 1991-01-08 | 1992-08-24 | Ube Ind Ltd | スパッタリング方法及び装置 |
US5855744A (en) * | 1996-07-19 | 1999-01-05 | Applied Komatsu Technology, Inc. | Non-planar magnet tracking during magnetron sputtering |
US5873989A (en) * | 1997-02-06 | 1999-02-23 | Intevac, Inc. | Methods and apparatus for linear scan magnetron sputtering |
US20020046945A1 (en) | 1999-10-28 | 2002-04-25 | Applied Materials, Inc. | High performance magnetron for DC sputtering systems |
US6841050B2 (en) * | 2002-05-21 | 2005-01-11 | Applied Materials, Inc. | Small planetary magnetron |
KR100497933B1 (ko) | 2003-01-09 | 2005-06-29 | 주식회사 선익시스템 | 요동자석방식 마그네트론 스퍼터링장치 및 방법 |
US7018515B2 (en) * | 2004-03-24 | 2006-03-28 | Applied Materials, Inc. | Selectable dual position magnetron |
US20050274610A1 (en) * | 2004-05-25 | 2005-12-15 | Victor Company Of Japan, Limited | Magnetron sputtering apparatus |
US20060081459A1 (en) * | 2004-10-18 | 2006-04-20 | Applied Materials, Inc. | In-situ monitoring of target erosion |
US7767064B2 (en) * | 2006-10-27 | 2010-08-03 | Applied Materials, Inc. | Position controlled dual magnetron |
US8992741B2 (en) * | 2008-08-08 | 2015-03-31 | Applied Materials, Inc. | Method for ultra-uniform sputter deposition using simultaneous RF and DC power on target |
CN101775588B (zh) | 2010-02-01 | 2011-09-07 | 中国电子科技集团公司第四十八研究所 | 一种高靶材利用率的矩形靶 |
US9093252B2 (en) * | 2012-02-16 | 2015-07-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Rotation plus vibration magnet for magnetron sputtering apparatus |
US9249500B2 (en) * | 2013-02-07 | 2016-02-02 | Applied Materials, Inc. | PVD RF DC open/closed loop selectable magnetron |
CN105452522B (zh) * | 2013-08-14 | 2018-07-24 | 应用材料公司 | 封装的磁控管 |
DE102015221211A1 (de) * | 2015-10-29 | 2015-12-24 | Carl Zeiss Smt Gmbh | Beschichtungsvorrichtung und beschichtungsverfahren |
CN108884556B (zh) | 2016-04-21 | 2020-11-03 | 应用材料公司 | 用于涂布基板的方法及涂布机 |
CN110205592B (zh) * | 2018-02-28 | 2020-06-19 | 北京北方华创微电子装备有限公司 | 磁控管驱动机构、磁控源和磁控溅射设备 |
-
2019
- 2019-09-16 US US16/572,186 patent/US11462394B2/en active Active
- 2019-09-27 CN CN201910926708.2A patent/CN110965033B/zh active Active
- 2019-09-27 TW TW108135326A patent/TWI726428B/zh active
-
2022
- 2022-07-28 US US17/876,489 patent/US11688591B2/en active Active
-
2023
- 2023-05-12 US US18/317,009 patent/US12094698B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI726428B (zh) | 2021-05-01 |
US20230307218A1 (en) | 2023-09-28 |
US12094698B2 (en) | 2024-09-17 |
US11688591B2 (en) | 2023-06-27 |
CN110965033A (zh) | 2020-04-07 |
US20220367161A1 (en) | 2022-11-17 |
US11462394B2 (en) | 2022-10-04 |
US20200105511A1 (en) | 2020-04-02 |
CN110965033B (zh) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11688591B2 (en) | Physical vapor deposition apparatus and method thereof | |
US8460519B2 (en) | Protective offset sputtering | |
TWI499682B (zh) | 電漿處理腔室以及沉積薄膜的方法 | |
US5114556A (en) | Deposition apparatus and method for enhancing step coverage and planarization on semiconductor wafers | |
US20070012558A1 (en) | Magnetron sputtering system for large-area substrates | |
WO2011002058A1 (ja) | 薄膜の成膜方法 | |
EP3880862B1 (en) | Tilted magnetron in a pvd sputtering deposition chamber | |
US8454804B2 (en) | Protective offset sputtering | |
WO2013179548A1 (ja) | マグネトロンスパッタ装置、マグネトロンスパッタ方法及び記憶媒体 | |
US7935393B2 (en) | Method and system for improving sidewall coverage in a deposition system | |
JP4762187B2 (ja) | マグネトロンスパッタリング装置および半導体装置の製造方法 | |
TW201945567A (zh) | 用環境控制進行線性掃描的物理氣相沉積方法和裝置 | |
US6620301B1 (en) | Method for forming a sputtered layer and apparatus therefor | |
TW202321484A (zh) | 具有旋轉底座的傾斜pvd源 | |
JP2020122211A (ja) | スパッタリング装置及びスパッタリング方法 | |
TWI834028B (zh) | 物理氣相沉積裝置、沉積薄膜的方法和形成半導體結構的方法 | |
JP7438853B2 (ja) | マグネトロンスパッタリング装置 | |
US20240170269A1 (en) | System and methods for depositing material on a substrate | |
TW202307927A (zh) | 物理氣相沉積設備的腔體 | |
CN115074679A (zh) | 形成半导体结构的方法和物理气相沉积装置及方法 |