TW202027304A - Deep ultraviolet led device and method for manufacturing same - Google Patents

Deep ultraviolet led device and method for manufacturing same Download PDF

Info

Publication number
TW202027304A
TW202027304A TW108130179A TW108130179A TW202027304A TW 202027304 A TW202027304 A TW 202027304A TW 108130179 A TW108130179 A TW 108130179A TW 108130179 A TW108130179 A TW 108130179A TW 202027304 A TW202027304 A TW 202027304A
Authority
TW
Taiwan
Prior art keywords
layer
lee
ultraviolet led
deep ultraviolet
reflective
Prior art date
Application number
TW108130179A
Other languages
Chinese (zh)
Inventor
鹿嶋行雄
松浦恵里子
小久保光典
田代貴晴
平山秀樹
前田哲利
上村隆一郎
長田大和
古田寬治
岩井武
青山洋平
祝迫恭
長野丞益
高木秀樹
倉島優一
松前貴司
Original Assignee
日商丸文股份有限公司
日商東芝機械股份有限公司
國立研究開發法人理化學研究所
日商愛發科股份有限公司
日商東京應化工業股份有限公司
日商日本鎢合金股份有限公司
日商大日本印刷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商丸文股份有限公司, 日商東芝機械股份有限公司, 國立研究開發法人理化學研究所, 日商愛發科股份有限公司, 日商東京應化工業股份有限公司, 日商日本鎢合金股份有限公司, 日商大日本印刷股份有限公司 filed Critical 日商丸文股份有限公司
Publication of TW202027304A publication Critical patent/TW202027304A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a deep ultraviolet LED device comprising: a surface mount-type aluminum nitride ceramic package in which an inorganic coating film having a reflectivity of at least 91% at a deep ultraviolet LED element design wavelength [lambda] (200-355 nm) is coated on the inner bottom surface and inner side walls thereof, the inner side wall angle thereof is 45-60 degrees, and the outermost surface thereof is sealed with a quartz window; and a deep ultraviolet LED element mounted in the package, wherein the deep ultraviolet LED element has a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, a multi-quantum barrier layer (or electron block layer), a multi-quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate in this order from the opposite side from the sapphire substrate, and has a reflective two-dimensional photonic crystal which is located within the range of the metal layer and the p-type GaN contact layer in the thickness direction and which has a plurality vacancies disposed in locations that are not beyond the boundaries of the p-type GaN contact layer and the p-type AlGaN layer. The periodic structure of the reflective two-dimensional photonic crystal has a photonic band gap that opens to a TE-polarized component, wherein the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition for light having the design wavelength [lambda], the order m in the Bragg equation, m[lambda]/neff=2a (m: order, [lambda]: design wavelength, neff: effective refractive index of two-dimensional photonic crystal, and a: period of two-dimensional photonic crystal) satisfies 3 ≤ m ≤ 4, and the ratio of R/a (R is the radius of the vacancies) satisfies 0.30 ≤ R/a ≤ 0.40.

Description

深紫外LED裝置及其製造方法Deep ultraviolet LED device and manufacturing method thereof

本發明係關於一種深紫外LED(light-emitting diode,發光二極體)裝置及其製造方法。The present invention relates to a deep ultraviolet LED (light-emitting diode, light-emitting diode) device and a manufacturing method thereof.

發光波長200 nm〜355 nm之深紫外LED涉及殺菌、淨水、院內感染之殺菌用途、白斑、異位性皮膚炎之醫療用途、樹脂硬化之工業用途等多方面。然而,電力轉換效率(WPE)為幾%,與水銀燈之20%相比較低,實用化上存在較多之問題。其理由在於,由量子井層發光之光被p型GaN接觸層及Ni/Au電極吸收消失,藉由起因於LED元件與空氣之折射率差之內部全反射而將光提取至外部並不容易等,光提取效率(Light Extraction Efficiency:LEE)低為6%以下。進而,亦可列舉於將LED元件搭載於封裝之情形時,無抑制深紫外光之吸收之有效之材料。Deep ultraviolet LEDs with emission wavelengths of 200 nm ~ 355 nm are involved in sterilization, water purification, sterilization of nosocomial infections, medical uses of leukoplakia, atopic dermatitis, and industrial uses of resin hardening. However, the power conversion efficiency (WPE) is several%, which is lower than the 20% of mercury lamps, and there are many problems in practical use. The reason is that the light emitted from the quantum well layer is absorbed and disappeared by the p-type GaN contact layer and Ni/Au electrode, and it is not easy to extract the light to the outside due to the total internal reflection caused by the refractive index difference between the LED element and the air. Etc., the light extraction efficiency (Light Extraction Efficiency: LEE) is as low as 6% or less. Furthermore, when the LED element is mounted in the package, there is no effective material that suppresses the absorption of deep ultraviolet light.

因此,於專利文獻1中,報告有於p型GaN接觸層或p型AlGaN接觸層形成反射型光子結晶而將LEE改善2倍以上。又,於專利文獻2中,報告有於藍寶石基板背面接合相對於上述波長透明之藍寶石半球透鏡而將LEE改善為最大約3倍。 [先前技術文獻] [專利文獻]Therefore, in Patent Document 1, it is reported that a reflection type photonic crystal is formed on a p-type GaN contact layer or a p-type AlGaN contact layer to improve LEE by more than two times. In addition, in Patent Document 2, it is reported that a sapphire hemispherical lens that is transparent to the above-mentioned wavelength is bonded to the back of a sapphire substrate to improve the LEE by a maximum of about 3 times. [Prior Technical Literature] [Patent Literature]

專利文獻1:日本專利第6156898號公報 專利文獻2:日本專利第6230038號公報Patent Document 1: Japanese Patent No. 6156898 Patent Document 2: Japanese Patent No. 623038

[發明所欲解決之問題][The problem to be solved by the invention]

於專利文獻1之表1中,於相對於發光波長透明之p型AlGaN接觸層形成反射型光子結晶而將LEE改善為最大1.82倍之23.8%。於該情形時,前提是裝設深紫外LED元件之氮化鋁陶瓷封裝內壁由波長280 nm時具有92%之反射率之鋁被覆。然而,於在實際之步驟中將上述封裝內壁利用鋁蒸鍍之情形時,氮化鋁表面之激發電子使鋁內部之電場減弱,故而深紫外光入射至內部消失而無法獲得所期望之反射率(參照下述之本申請案之圖1E)。In Table 1 of Patent Document 1, a reflective photonic crystal is formed on a p-type AlGaN contact layer that is transparent to the emission wavelength, and the LEE is improved to 23.8%, which is a maximum of 1.82 times. In this case, the premise is that the inner wall of the aluminum nitride ceramic package with the deep-ultraviolet LED element is covered by aluminum with a reflectivity of 92% at a wavelength of 280 nm. However, in the actual process of using aluminum vapor deposition on the inner wall of the package, the excited electrons on the aluminum nitride surface weaken the electric field inside the aluminum, so the deep ultraviolet light enters the interior and disappears, and the desired reflection cannot be obtained. Rate (refer to Figure 1E of this application below).

又,於專利文獻2之表7中,於具有上述反射型光子結晶之深紫外LED元件之藍寶石基板背面接合藍寶石半球透鏡而將LEE進而改善為最大57.1%,但加入對藍寶石基板背面進行研磨使厚度薄至400 um至100 um之步驟而成本較高,並不實用。進而,於將該深紫外LED元件裝設於市售之散熱特性優異之氮化鋁陶瓷封裝之情形時,深紫外光全部被封裝內側壁吸收、消失,故而產生LEE性能劣化30%以上之問題,故而LEE自57.1%減少至40%左右。In addition, in Table 7 of Patent Document 2, a sapphire hemispherical lens is bonded to the back of the sapphire substrate of the deep ultraviolet LED element with the above-mentioned reflective photonic crystal to improve the LEE to a maximum of 57.1%, but the back of the sapphire substrate is polished to make Steps with a thickness as thin as 400 um to 100 um are costly and not practical. Furthermore, when the deep-ultraviolet LED element is installed in a commercially available aluminum nitride ceramic package with excellent heat dissipation characteristics, all the deep-ultraviolet light is absorbed and disappeared by the inner side wall of the package, resulting in a problem that the LEE performance deteriorates by more than 30% , So LEE decreased from 57.1% to about 40%.

本發明之目的在於提高深紫外LED裝置之LEE。又,本發明之目的在於以低成本實現提高LEE之深紫外LED裝置。 [解決問題之技術手段]The purpose of the present invention is to improve the LEE of a deep ultraviolet LED device. In addition, the purpose of the present invention is to realize a deep ultraviolet LED device with improved LEE at low cost. [Technical means to solve the problem]

根據本發明之第1觀點,提供本發明係一種深紫外LED裝置,其特徵在於具有:封裝,其係於內側底面及內側側壁被覆有對於深紫外LED元件之設計波長λ(200 nm〜355 nm)具有91%以上之反射率之無機塗料且該無機塗料受到硬化處理之(以下將被覆上述無機塗料並硬化處理之行為一併記載為「被覆」,將被覆有上述無機塗料之被膜記載為「無機塗料被覆膜」)表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為45度以上60度以下,且上述封裝之最表面利用石英窗密閉;及深紫外LED元件,其係裝設於上述封裝內,且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足3≦m≦4,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.40。 再者,上述無機塗料之反射率只要於上述紫外線LED裝置之使用時於設計波長λ(200 nm〜355 nm)下為91%以上之反射率即可,即便無機塗料本身未達91%之反射率,亦可為於被覆後成為91%之反射率之無機塗料,或者於被覆後藉由伴隨化學性變化之追加之處理而成為91%以上之反射率之無機塗料。According to the first aspect of the present invention, there is provided a deep ultraviolet LED device of the present invention, which is characterized by having: a package, which is coated on the inner bottom surface and the inner side wall with the design wavelength λ (200 nm~355 nm) for the deep ultraviolet LED element ) Inorganic paint with a reflectance of 91% or more and the inorganic paint is hardened (hereinafter, the act of covering the above-mentioned inorganic paint and hardening is also described as "coating", and the film covered with the above-mentioned inorganic paint is described as " Inorganic coating film") surface-mounted aluminum nitride ceramic package, and the inner side wall angle of the package is 45 degrees to 60 degrees, and the outermost surface of the package is sealed by a quartz window; and deep ultraviolet LED components, which are It is installed in the above package and has a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, and a multiple quantum barrier layer (or electron barrier layer) in order from the side opposite to the sapphire substrate , A multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and the sapphire substrate, and the deep ultraviolet LED element has a reflective two-dimensional photonic crystal, the reflective two-dimensional photonic crystal has the metal layer and the p A plurality of holes within the thickness direction of the p-type GaN contact layer and not exceeding the position of the interface between the p-type GaN contact layer and the p-type AlGaN layer, the reflective two-dimensional photonic crystal periodic structure has a polarization relative to TE For the photonic band gap with open components, relative to the light of the design wavelength λ, the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition and is in the Bragg condition mλ/n eff = 2a (where m: Order, λ: design wavelength, n eff : effective refractive index of two-dimensional photonic crystal, a: period of two-dimensional photonic crystal) The order m satisfies 3≦m≦4, when the radius of the above hole is set to R, The R/a ratio satisfies 0.30≦R/a≦0.40. Furthermore, the reflectance of the above-mentioned inorganic coating only needs to be 91% or more at the design wavelength λ (200 nm~355 nm) when the above-mentioned ultraviolet LED device is used, even if the inorganic coating itself does not reach 91% of the reflectance. The rate may also be an inorganic paint that has a reflectance of 91% after being coated, or an inorganic paint that has a reflectivity of 91% or more after being coated by an additional treatment with chemical changes.

根據本發明之第2觀點,提供本發明係一種深紫外LED裝置,其特徵在於具有:封裝,其係上述無機塗料被覆於內側底面及內側側壁之表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為45度以上60度以下,且上述封裝之最表面利用石英窗密閉;及深紫外LED元件,其係裝設於上述封裝內,且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型AlGaN接觸層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型AlGaN接觸層之厚度方向之範圍內,且不超過上述p型AlGaN接觸層與上述多重量子障壁層(或電子阻擋層)之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足2≦m≦3,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.35。According to a second aspect of the present invention, there is provided a deep-ultraviolet LED device of the present invention, which is characterized by having: a package, which is a surface mount aluminum nitride ceramic package with the above-mentioned inorganic paint coated on the inner bottom surface and the inner side wall, and the package The inner side wall angle is 45 degrees or more and 60 degrees or less, and the outermost surface of the package is sealed by a quartz window; and deep ultraviolet LED elements are installed in the package and have a reflective electrode layer in sequence from the side opposite to the sapphire substrate (Au), metal layer (Ni), p-type AlGaN contact layer, multiple quantum barrier layer (or electron barrier layer), multiple quantum well layer, n-type AlGaN layer, AlN buffer layer, and the above-mentioned sapphire substrate, and the deep ultraviolet The LED element has a reflective two-dimensional photonic crystal that has a thickness that is arranged within the thickness direction of the metal layer and the p-type AlGaN contact layer, and does not exceed the p-type AlGaN contact layer and the multiple quantum A plurality of holes at the interface of the barrier layer (or electron blocking layer), the above-mentioned reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened with respect to the TE polarization component, and the above-mentioned reflection is relative to the light of the above-mentioned design wavelength λ The period a of the two-dimensional photonic crystal periodic structure satisfies the Bragg condition and is in the Bragg condition mλ/n eff = 2a (where m: order, λ: design wavelength, n eff : effective refractive index of the two-dimensional photonic crystal , A: the period of the two-dimensional photonic crystal). The number m satisfies 2≦m≦3. When the radius of the above-mentioned hole is set to R, the R/a ratio satisfies 0.30≦R/a≦0.35.

根據本發明之第3觀點,提供一種深紫外LED裝置,其特徵在於,自上述第2觀點之深紫外LED裝置之構造,將反射電極(Au)替換為反射電極(Rh),且無金屬層(Ni)之構造。According to a third aspect of the present invention, a deep ultraviolet LED device is provided, characterized in that the structure of the deep ultraviolet LED device from the second aspect described above replaces the reflective electrode (Au) with the reflective electrode (Rh) and has no metal layer (Ni) structure.

根據本發明之第4觀點,提供一種深紫外LED裝置,其特徵在於,於上述第1觀點之深紫外LED裝置之構造中,進而具有深紫外LED元件,該深紫外LED元件具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述藍寶石基板之外接圓之半徑以上。According to a fourth aspect of the present invention, a deep ultraviolet LED device is provided, characterized in that, in the structure of the deep ultraviolet LED device of the first aspect, a deep ultraviolet LED element is further provided, and the deep ultraviolet LED element is bonded to the sapphire A sapphire or quartz hemispherical lens transparent to the wavelength λ on the back of the substrate, and the radius of the hemispherical lens is greater than the radius of the outer circle of the sapphire substrate.

根據本發明之第5觀點,提供一種深紫外LED裝置,其特徵在於,於上述第2觀點之深紫外LED裝置之構造中,進而具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述藍寶石基板之外接圓之半徑以上。According to a fifth aspect of the present invention, a deep ultraviolet LED device is provided, characterized in that, in the structure of the deep ultraviolet LED device of the second aspect, there is further a sapphire or sapphire transparent to the wavelength λ bonded to the back of the sapphire substrate. For the quartz hemispherical lens, the radius of the hemispherical lens is greater than the radius of the outer circle of the sapphire substrate.

根據本發明之第6觀點,提供一種深紫外LED裝置,其特徵在於,於上述第3觀點之深紫外LED裝置之構造中,進而具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述藍寶石基板之外接圓之半徑以上。According to the sixth aspect of the present invention, there is provided a deep ultraviolet LED device, characterized in that, in the structure of the deep ultraviolet LED device of the third aspect, there is further a sapphire or a transparent sapphire or a wavelength λ bonded to the back of the sapphire substrate. For the quartz hemispherical lens, the radius of the hemispherical lens is greater than the radius of the outer circle of the sapphire substrate.

根據本發明之第7觀點,提供一種深紫外LED裝置,其特徵在於具有:封裝,其係上述無機塗料被覆於內側底面及內側側壁之表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為60度以上75度以下;及深紫外LED元件,其係裝設於上述封裝內,且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足3≦m≦4,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.40,進而,具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述封裝內壁之外接圓以上,相對於波長λ透明之樹脂膜將上述半球透鏡表面及上述封裝上表面完全被覆密閉。According to a seventh aspect of the present invention, a deep ultraviolet LED device is provided, which is characterized by having a package, which is a surface mount aluminum nitride ceramic package in which the inner bottom surface and the inner side wall are coated with the above-mentioned inorganic paint, and the inner side wall of the package The angle is 60 degrees or more and 75 degrees or less; and a deep ultraviolet LED element, which is installed in the above package, and has a reflective electrode layer (Au), a metal layer (Ni), and a p-type GaN contact in order from the side opposite to the sapphire substrate Layer, p-type AlGaN layer, multiple quantum barrier layer (or electron blocking layer), multiple quantum well layer, n-type AlGaN layer, AlN buffer layer, and the sapphire substrate, and the deep ultraviolet LED element has a reflective two-dimensional photonic crystal , The reflective two-dimensional photonic crystal has a plurality of positions arranged in the thickness direction of the metal layer and the p-type GaN contact layer, and does not exceed the position of the interface between the p-type GaN contact layer and the p-type AlGaN layer Hole, the reflective two-dimensional photonic crystal periodic structure has a photonic band gap open to the TE polarization component, and the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition with respect to the light of the design wavelength λ, And in Bragg's conditional formula mλ/n eff = 2a (where m: order, λ: design wavelength, n eff : effective refractive index of two-dimensional photon crystal, a: period of two-dimensional photon crystal), the order m satisfies 3 ≦m≦4, when the radius of the hole is set to R, the R/a ratio satisfies 0.30≦R/a≦0.40, and furthermore, it has a sapphire or quartz hemisphere that is transparent to the wavelength λ bonded to the back of the sapphire substrate Lens, the radius of the hemispherical lens is larger than the outer circle of the inner wall of the package, and a resin film transparent to the wavelength λ completely covers and seals the surface of the hemispherical lens and the upper surface of the package.

根據本發明之第8觀點,提供一種深紫外LED裝置,其特徵在於具有:封裝,其係上述無機塗料被覆於內側底面及內側側壁之表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為60度以上75度以下;及深紫外LED元件,其係裝設於上述封裝內,且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型AlGaN接觸層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型AlGaN接觸層之厚度方向之範圍內,且不超過上述p型AlGaN接觸層與上述多重量子障壁層(或電子阻擋層)之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足2≦m≦3,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.35;進而,具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述封裝內壁之外接圓以上,相對於波長λ透明之樹脂膜將上述半球透鏡表面及上述封裝上表面完全被覆密閉。According to an eighth aspect of the present invention, a deep ultraviolet LED device is provided, which is characterized by having a package, which is a surface mount aluminum nitride ceramic package in which the inner bottom surface and the inner side wall of the above-mentioned inorganic paint are coated, and the inner side wall of the package The angle is 60 degrees or more and 75 degrees or less; and a deep ultraviolet LED element, which is installed in the above package, and has a reflective electrode layer (Au), a metal layer (Ni), and a p-type AlGaN contact in order from the side opposite to the sapphire substrate Layer, multiple quantum barrier layer (or electron barrier layer), multiple quantum well layer, n-type AlGaN layer, AlN buffer layer, and the above-mentioned sapphire substrate, and the deep ultraviolet LED element has a reflective two-dimensional photonic crystal, the reflective two The dimensional photonic crystal has a plurality of positions located within the thickness direction of the metal layer and the p-type AlGaN contact layer, and does not exceed the position of the interface between the p-type AlGaN contact layer and the multiple quantum barrier layer (or electron barrier layer) The reflective two-dimensional photonic crystal periodic structure has a photonic band gap open to the TE polarization component, and the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition relative to the light of the design wavelength λ , And in Bragg's conditional formula mλ/n eff = 2a (where m: order, λ: design wavelength, n eff : effective refractive index of two-dimensional photon crystal, a: period of two-dimensional photon crystal) the order m satisfies 2≦m≦3, when the radius of the hole is set to R, the R/a ratio satisfies 0.30≦R/a≦0.35; furthermore, it has sapphire or quartz bonded to the back surface of the sapphire substrate that is transparent to the wavelength λ A hemispherical lens, the radius of the hemispherical lens is larger than the outer circle of the inner wall of the package, and a resin film transparent to the wavelength λ completely covers and seals the surface of the hemispherical lens and the upper surface of the package.

根據本發明之第9觀點,提供一種深紫外LED裝置,其特徵在於,自上述第8觀點之深紫外LED裝置之構造,將反射電極(Au)替換為反射電極(Rh),且無金屬層(Ni)之構造。According to a ninth aspect of the present invention, a deep ultraviolet LED device is provided, characterized in that the structure of the deep ultraviolet LED device from the eighth aspect described above replaces the reflective electrode (Au) with the reflective electrode (Rh), and has no metal layer (Ni) structure.

根據本發明之第10觀點,提供一種深紫外LED裝置之製造方法,其係使設計波長為λ(200 nm〜355 nm)之深紫外LED裝置之製造方法,且於形成以藍寶石基板作為生長基板之積層構造體之步驟,且形成自與上述藍寶石基板相反側依次含有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及藍寶石基板之積層構造體之步驟中,具有如下步驟:形成反射型二維光子結晶週期構造,該反射型二維光子結晶週期構造具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔;準備用以形成上述反射型二維光子結晶週期構造之模具;於上述p型GaN接觸層之上形成抗蝕層,利用奈米壓印法轉印上述模具之構造;將轉印有上述構造之抗蝕層作為遮罩對上述p型GaN接觸層進行蝕刻而形成二維光子結晶週期構造;形成上述反射型二維光子結晶,然後利用傾斜蒸鍍法依次形成上述金屬層與反射電極層;切割上述藍寶石基板而製成深紫外LED元件;準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝;於上述封裝之內側底面與內側側壁被覆上述無機塗料;於上述封裝裝設上述深紫外LED元件;及將上述封裝最表面利用石英窗密閉。According to the tenth aspect of the present invention, a method for manufacturing a deep ultraviolet LED device is provided, which is a method for manufacturing a deep ultraviolet LED device with a design wavelength of λ (200 nm~355 nm), and a sapphire substrate is used as the growth substrate. The step of the multilayer structure, and formed from the opposite side of the above-mentioned sapphire substrate, including the reflective electrode layer (Au), metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron blocking Layer), multiple quantum well layer, n-type AlGaN layer, AlN buffer layer, and the sapphire substrate laminated structure step includes the following steps: forming a reflective two-dimensional photonic crystal period structure, the reflective two-dimensional photon crystal period The structure has a plurality of holes arranged in the thickness direction of the metal layer and the p-type GaN contact layer and does not exceed the position of the interface between the p-type GaN contact layer and the p-type AlGaN layer; ready to be formed The above-mentioned reflective two-dimensional photonic crystal periodic structure mold; a resist layer is formed on the p-type GaN contact layer, and the structure of the above mold is transferred by the nanoimprint method; the resist layer with the above structure transferred is used as The mask is etched on the p-type GaN contact layer to form a two-dimensional photonic crystal periodic structure; the reflective two-dimensional photonic crystal is formed, and then the metal layer and the reflective electrode layer are sequentially formed by oblique vapor deposition; the sapphire substrate is cut to form Prepare deep-ultraviolet LED components; prepare a surface-mounted aluminum nitride ceramic package with an inner side wall angle of 45 degrees or more and 60 degrees or less; coat the inner bottom surface and inner side walls of the package with the above-mentioned inorganic paint; install the above-mentioned deep ultraviolet on the package LED components; and the outermost surface of the package is sealed with a quartz window.

根據本發明之第11觀點,提供一種深紫外LED裝置之製造方法,其係於上述10觀點之深紫外LED裝置之製造方法中,具有將p型接觸層自p型GaN接觸層替換為p型AlGaN接觸層之步驟,且與上述第16觀點形成上述反射型光子結晶週期構造之位置不同,即具有於上述金屬層與上述p型AlGaN接觸層之厚度方向之範圍內且不超過上述p型AlGaN接觸層與上述多重量子障壁層(或電子阻擋層)之界面之位置設置複數個空孔的步驟,除此以外具有與第10觀點相同之步驟。According to the eleventh aspect of the present invention, there is provided a method of manufacturing a deep ultraviolet LED device, which is based on the method of manufacturing a deep ultraviolet LED device of the above ten viewpoints, which includes replacing the p-type contact layer from the p-type GaN contact layer with the p-type The step of the AlGaN contact layer is different from the position where the reflection type photonic crystal periodic structure is formed in the 16th viewpoint, that is, it is within the range of the thickness direction of the metal layer and the p-type AlGaN contact layer and does not exceed the p-type AlGaN The step of arranging a plurality of holes at the position of the interface between the contact layer and the above-mentioned multiple quantum barrier layer (or electron blocking layer) has the same steps as the tenth viewpoint except for this.

根據本發明之第12觀點,提供一種深紫外LED裝置之製造方法,其係於上述11觀點之深紫外LED裝置之製造方法中,具有將反射電極自Au替換為Rh且不使用金屬層(Ni)之步驟,除該方面以外具有與上述第11觀點相同之步驟。According to a twelfth aspect of the present invention, there is provided a method for manufacturing a deep ultraviolet LED device, which is based on the method for manufacturing a deep ultraviolet LED device in the above-mentioned 11 viewpoints. The reflective electrode is replaced from Au to Rh and no metal layer (Ni The steps of) have the same steps as the eleventh viewpoint above except for this aspect.

根據本發明之第13觀點,提供一種深紫外LED裝置之製造方法,其係於第10觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述LED元件基板外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝;於上述封裝之內側底面與內側側壁被覆上述無機塗料;於上述封裝裝設上述半球透鏡接合LED元件;及將上述封裝最表面利用石英窗密閉。According to a thirteenth aspect of the present invention, there is provided a method for manufacturing a deep ultraviolet LED device, which is in the method for manufacturing a deep ultraviolet LED device of the tenth aspect, and further has the following steps: preparing a radius greater than the circumscribed circle of the LED element substrate The sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; prepare a surface-mounted aluminum nitride ceramic package with an inner side wall angle of 45 degrees or more and 60 degrees or less; coat the inner bottom surface and inner side walls of the package with the inorganic paint; in the package Installing the hemispherical lens bonded LED element; and sealing the outermost surface of the package with a quartz window.

根據本發明之第14觀點,提供一種深紫外LED裝置之製造方法,其係於第11觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述LED元件基板外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝;於上述封裝之內側底面與內側側壁被覆上述無機塗料;於上述封裝裝設上述半球透鏡接合LED元件;及將上述封裝最表面利用石英窗密閉。According to a fourteenth aspect of the present invention, a method for manufacturing a deep ultraviolet LED device is provided, which is in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, and further has the following steps: preparing a radius greater than the circumscribed circle of the LED element substrate The sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; prepare a surface-mounted aluminum nitride ceramic package with an inner side wall angle of 45 degrees or more and 60 degrees or less; coat the inner bottom surface and inner side walls of the package with the inorganic paint; in the package Installing the hemispherical lens bonded LED element; and sealing the outermost surface of the package with a quartz window.

根據本發明之第15觀點,提供一種深紫外LED裝置之製造方法,其係於第12觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述LED元件基板外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝;於上述封裝之內側底面與內側側壁被覆上述無機塗料;於上述封裝裝設上述半球透鏡接合LED元件;及將上述封裝最表面利用石英窗密閉。According to the fifteenth aspect of the present invention, a method for manufacturing a deep ultraviolet LED device is provided, which is in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, and further has the following steps: preparing a radius greater than the circumscribed circle of the LED element substrate The sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; prepare a surface-mounted aluminum nitride ceramic package with an inner side wall angle of 45 degrees or more and 60 degrees or less; coat the inner bottom surface and inner side walls of the package with the inorganic paint; in the package Installing the hemispherical lens bonded LED element; and sealing the outermost surface of the package with a quartz window.

根據本發明之第16觀點,提供一種深紫外LED裝置之製造方法,其係於第10觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述封裝內壁之外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;於上述封裝裝設上述半球透鏡接合LED元件;及將相對於波長λ透明之樹脂膜同時被覆密閉上述半球透鏡表面與上述封裝上表面。According to the 16th aspect of the present invention, there is provided a method for manufacturing a deep ultraviolet LED device, which is based on the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, and further has the following steps: preparing a package with the inner wall of the package above the outer circle Radius sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; will undergo the surface activation treatment The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; the hemispherical lens bonded LED element is mounted on the package; and a resin film transparent to the wavelength λ is simultaneously covered and sealed to seal the surface of the hemispherical lens and the upper surface of the package.

根據本發明之第17觀點,提供一種深紫外LED裝置之製造方法,其係於第11觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述封裝內壁之外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;於上述封裝裝設上述半球透鏡接合LED元件;及將相對於波長λ透明之樹脂膜同時被覆密閉上述半球透鏡表面與上述封裝上表面。According to the 17th aspect of the present invention, there is provided a method for manufacturing a deep ultraviolet LED device, which is based on the method for manufacturing a deep ultraviolet LED device according to the 11th aspect, and further has the following steps: preparing a package with the inner wall of the package above the outer circle Radius sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; will undergo the surface activation treatment The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; the hemispherical lens bonded LED element is mounted on the package; and a resin film transparent to the wavelength λ is simultaneously covered and sealed to seal the surface of the hemispherical lens and the upper surface of the package.

根據本發明之第18觀點,提供一種深紫外LED裝置之製造方法,其係於第12觀點之深紫外LED裝置之製造方法中,進而具有如下步驟:準備具有上述封裝內壁之外接圓以上之半徑之藍寶石或石英半球透鏡;使上述LED元件基板背面及上述半球透鏡背面平坦化;利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化;將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合;於上述封裝裝設上述半球透鏡接合LED元件;及將相對於波長λ透明之樹脂膜同時被覆密閉上述半球透鏡表面與上述封裝上表面。 本說明書包含成為本申請案之優先權之基礎之日本專利申請案編號2018-157332號之揭示內容。 [發明之效果]According to the eighteenth aspect of the present invention, there is provided a method for manufacturing a deep ultraviolet LED device, which is in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, and further has the following steps: preparing a package with an inner wall of the above package Radius sapphire or quartz hemispherical lens; flatten the back surface of the LED element substrate and the back surface of the hemispheric lens; use ion beam or atmospheric pressure to activate the back surface of the hemispheric lens and the back surface of the LED element substrate; will undergo the surface activation treatment The back surface of the hemispherical lens is bonded to the back surface of the LED element substrate; the hemispherical lens bonded LED element is mounted on the package; and a resin film transparent to the wavelength λ is simultaneously covered and sealed to seal the surface of the hemispherical lens and the upper surface of the package. This specification contains the disclosure content of Japanese Patent Application No. 2018-157332, which forms the basis of the priority of this application. [Effects of Invention]

根據本發明,可以低成本提高深紫外LED裝置之LEE。According to the present invention, the LEE of a deep ultraviolet LED device can be improved at low cost.

以下,一面參照圖式,一面對本發明之實施形態之深紫外LED裝置詳細地進行說明。 再者,於實施本發明時,使用日本Tungsten股份有限公司製造之無機塗料NC-RC,作為於深紫外LED元件之設計波長λ(200 nm〜355 nm)下滿足91%以上之反射率之無機塗料,進行被覆獲得NC-RC反射材。無機塗料NC-RC為以有機聚矽氧烷組合物及六方晶氮化硼為主組成之塗料,被覆後之反射率於設計波長λ(200 nm〜355 nm)下為91%以上之反射率。Hereinafter, the deep ultraviolet LED device of the embodiment of the present invention will be described in detail while referring to the drawings. Furthermore, in the implementation of the present invention, the inorganic coating NC-RC manufactured by Tungsten Co., Ltd. of Japan is used as the inorganic coating material that satisfies the reflectance of 91% or more at the design wavelength λ (200 nm~355 nm) of the deep ultraviolet LED element. Paint and coat to obtain NC-RC reflector. The inorganic coating NC-RC is a coating mainly composed of organic polysiloxane composition and hexagonal boron nitride. The reflectivity after coating is 91% or more at the design wavelength λ (200 nm~355 nm) .

(第1實施形態) 作為本發明之第1實施形態之深紫外LED裝置,將作為設計波長λ之一例設為波長280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖1A(a-1)、(a-2)。(First Embodiment) As the deep ultraviolet LED device of the first embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a wavelength of 280 nm as an example of the design wavelength λ is shown in FIG. 1A(a-1), (a-2).

具體而言,自圖1A(a-1)之剖視圖之上起依次,具有石英窗1、藍寶石基板2、AlN緩衝層3、n型AlGaN層4、多重量子井層5、多重量子障壁層(或電子阻擋層)6、p型AlGaN層7、p型GaN接觸層8、金屬層(以下稱為Ni層)9、反射電極層(以下稱為Au反射電極層)10、表面安裝型氮化鋁封裝(以下稱為AlN封裝)15、被覆於AlN封裝內側底面及內側側壁表面之NC-RC反射材17、AlN封裝15之內側側壁角度θ15a、反射型二維光子結晶週期構造100、及空孔101(h)。Specifically, from the top of the cross-sectional view of FIG. 1A(a-1), there are quartz window 1, sapphire substrate 2, AlN buffer layer 3, n-type AlGaN layer 4, multiple quantum well layer 5, multiple quantum barrier layer ( (Or electron blocking layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter referred to as Ni layer) 9, reflective electrode layer (hereinafter referred to as Au reflective electrode layer) 10, surface mount nitride Aluminum package (hereinafter referred to as AlN package) 15, NC-RC reflector 17 coated on the inner bottom surface and inner sidewall surface of AlN package, inner sidewall angle θ15a of AlN package 15, reflective two-dimensional photonic crystal periodic structure 100, and space Hole 101(h).

如圖1A(a-1)所示,於AlN封裝15,安裝有包括藍寶石基板2、AlN緩衝層3、n型AlGaN層4、多重量子井層5、多重量子障壁層(或電子阻擋層)6、p型AlGaN層7、p型GaN接觸層8、金屬層(以下稱為Ni層)9、反射電極層(以下稱為Au反射電極層)10、反射型二維光子結晶週期構造100、及空孔101(h)之深紫外LED元件。於AlN封裝15之內側側壁角度θ15a之角度為45度以上60度以下時,可使自深紫外LED元件之側面出射之光向上部之方向反射,故而LEE提高。又,AlN封裝15將上部利用石英窗1密封。其原因在於,防止深紫外LED元件之經年劣化。As shown in Figure 1A(a-1), the AlN package 15 is equipped with a sapphire substrate 2, an AlN buffer layer 3, an n-type AlGaN layer 4, a multiple quantum well layer 5, and a multiple quantum barrier layer (or electron barrier layer). 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter referred to as Ni layer) 9, reflective electrode layer (hereinafter referred to as Au reflective electrode layer) 10, reflective two-dimensional photonic crystal periodic structure 100, And hollow 101(h) deep ultraviolet LED components. When the inner side wall angle θ15a of the AlN package 15 is 45 degrees or more and 60 degrees or less, the light emitted from the side surface of the deep ultraviolet LED element can be reflected in the upper direction, so the LEE is improved. In addition, the AlN package 15 seals the upper part with the quartz window 1. The reason is to prevent the deterioration of deep ultraviolet LED elements over the years.

其次,於深紫外LED元件中,於Ni層9與p型GaN接觸層8之厚度方向之範圍內,且不超過p型GaN接觸層8與p型AlGaN層7之界面之位置,形成有具有複數個空孔101(h)之反射型二維光子結晶週期構造100。Secondly, in the deep ultraviolet LED element, within the range of the thickness direction of the Ni layer 9 and the p-type GaN contact layer 8, and not exceeding the position of the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7, a A reflective two-dimensional photonic crystal periodic structure 100 with a plurality of holes 101(h).

如圖1A(a-2)中xy俯視圖所示,反射型二維光子結晶週期構造100具有孔構造,該孔構造係圓柱形狀且於折射率較p型GaN接觸層8更小之空氣中將半徑為R之圓設為剖面之空孔101(h)沿著x方向及y方向而以週期a形成為三角格子狀。As shown in the xy top view in FIG. 1A(a-2), the reflective two-dimensional photonic crystal periodic structure 100 has a hole structure. The hole structure is cylindrical and has a lower refractive index than the p-type GaN contact layer 8 in air. A circle with a radius of R is a cross-sectional hole 101 (h) formed in a triangular lattice shape with a period a along the x direction and the y direction.

於上述構造中,由量子井層5發光之波長280 nm之深紫外光一面其TE光與TM光向經向所有方向放射並作橢圓偏振一面於介質中傳播。而且,設置於量子井層5附近之二維光子結晶週期構造100滿足布拉格之條件式(mλ/neff =2a,其中m:次數,λ:發光波長,neff :二維光子結晶之等效折射率,a:二維光子結晶之週期),且於相對於TE偏振成分而光子帶隙(PBG)打開時,入射至二維光子結晶之深紫外光於二維光子結晶面內形成駐波並向藍寶石基板2之方向反射。In the above-mentioned structure, the deep ultraviolet light with a wavelength of 280 nm emitted by the quantum well layer 5 radiates TE light and TM light in all directions along the meridian and propagates in the medium while being elliptically polarized. Moreover, the two-dimensional photonic crystal periodic structure 100 disposed near the quantum well layer 5 satisfies the Bragg conditional expression (mλ/n eff = 2a, where m: order, λ: emission wavelength, n eff : equivalent of two-dimensional photonic crystal Refractive index, a: the period of the two-dimensional photonic crystal), and when the photonic band gap (PBG) is opened relative to the TE polarization component, the deep ultraviolet light incident on the two-dimensional photon crystal forms a standing wave in the plane of the two-dimensional photon crystal And reflect in the direction of the sapphire substrate 2.

於圖1B之(b-1),圖示波長280 nm之深紫外光入射至形成於p型GaN接觸層之二維光子結晶(R/a=0.4)時之TE偏振成分中之光子帶構造,於(b-2)利用平面波展開法求出R/a與PBG值之關係並圖式。再者,所謂PBG值,係指表示第1光子帶(ω1TE)與第2光子帶(ω2TE)之帶隙之大小之值,且由(第2光子帶(ωa/2πc)之最小值)-(第1光子帶(ωa/2πc)之最大值)來計算。根據該圖可知R/a與PBG值具有比例關係。Figure 1B (b-1) shows the photonic band structure in the TE polarization component when deep ultraviolet light with a wavelength of 280 nm is incident on the two-dimensional photonic crystal (R/a=0.4) formed on the p-type GaN contact layer , In (b-2) use the plane wave expansion method to find the relationship between R/a and PBG and the graph. Furthermore, the so-called PBG value refers to the value representing the size of the band gap between the first photon band (ω1TE) and the second photon band (ω2TE), and is calculated from (the minimum value of the second photon band (ωa/2πc)) − (The maximum value of the first photon band (ωa/2πc)). According to the figure, it can be seen that R/a and PBG have a proportional relationship.

又,平面波展開法之計算所需要之參數以如下之方式計算。二維光子結晶之填充率f係利用f=(2π/3)0.5 ×(R/a)2 之式來計算。又,二維光子結晶之等效折射率neff 係利用neff =(n22 +(n12 -n22 )×f)0 . 5 之式來計算。因此,若設為空氣之折射率n1=1,p型GaN接觸層8之折射率n2=2.618,則R/a=0.2、0.3及0.4之等效折射率根據上述2式,分別成為2.45、2.223及1.859。In addition, the parameters required for the calculation of the plane wave expansion method are calculated as follows. The filling rate f of the two-dimensional photonic crystal is calculated using the formula f=(2π/3) 0.5 ×(R/a) 2 . In addition, the equivalent refractive index n eff of the two-dimensional photonic crystal using the system n eff = (n2 2 + ( n1 2 -n2 2) × f) Formula 0.5 of calculation. Therefore, if the refractive index of air is n1=1 and the refractive index of the p-type GaN contact layer 8 is n2=2.618, the equivalent refractive index of R/a=0.2, 0.3, and 0.4 becomes 2.45, 2.223 and 1.859.

其次,藉由利用FDTD法之模擬解析而求出二維光子結晶之反射效果之LEE。FDTD法由於將麥斯威爾方程式於空間及時間上轉換為差分方程式而直接計算電磁場強度,故而適合於nm構造之光子結晶等之波動解析,但無法直接計算LEE。另一方面,光線追蹤法由於直接計算將數萬根光線隨機地放射到達至檢測器之光線數,故而能夠直接求出mm構造中之LEE。然而無法進行nm構造之波動解析。因此,為了求出光子結晶之反射效果之LEE,需要FDTD法與光線追蹤法之交叉模擬。Secondly, the LEE of the reflection effect of the two-dimensional photon crystal is obtained by the simulation analysis using the FDTD method. The FDTD method converts Maxwell's equation into a difference equation in space and time to directly calculate the electromagnetic field intensity. Therefore, it is suitable for the wave analysis of nm structure photon crystals, but cannot directly calculate LEE. On the other hand, the ray tracing method directly calculates the number of rays that randomly radiate tens of thousands of rays to the detector, so it can directly obtain the LEE in the mm structure. However, the wave analysis of nm structure cannot be performed. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal, the cross simulation of the FDTD method and the ray tracing method is required.

[表1] 表1 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 石英窗 200 μm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - p型GaN接觸層 200 nm 2.618 2.3%/200 nm - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 1] Table 1 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - p-type GaN contact layer 200 nm 2.618 2.3%/200 nm - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表2] 表2 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型GaN接觸層 150 nm - 2.618 0.42 1.0 6.7 p型AlGaN層 32 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 2] Table 2 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type GaN contact layer 150 nm - 2.618 0.42 1.0 6.7 p-type AlGaN layer 32 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

[表3] 表3 R/a m(次數) 直徑(nm) 週期(nm) R/a=0.3 m=3 113 nm 189 nm R/a=0.3 m=4 151 nm 252 nm R/a=0.4 m=3 181 nm 226 nm R/a=0.4 m=4 241 nm 301 nm [table 3] table 3 R/a m (frequency) Diameter (nm) Period (nm) R/a=0.3 m=3 113 nm 189 nm R/a=0.3 m=4 151 nm 252 nm R/a=0.4 m=3 181 nm 226 nm R/a=0.4 m=4 241 nm 301 nm

因此,表1表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表2表示深紫外LED裝置之FDTD法之計算模型之各參數,表3表示反射型二維光子結晶之FDTD法之計算模型之各參數。又,圖1C表示光線追蹤法之計算模型,圖1D表示FDTD法之計算模型,而且圖1E表示被覆於AlN封裝15之NC-RC反射材17及鋁塗佈膜之反射率之波長特性。如根據圖明確,NC-RC反射材17之反射率優異。圖1D所示之元件與圖1A相同,與表2對應。Therefore, Table 1 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, Table 2 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device, and Table 3 shows the FDTD method of the reflective two-dimensional photonic crystal Calculate the parameters of the model. Moreover, FIG. 1C shows the calculation model of the ray tracing method, FIG. 1D shows the calculation model of the FDTD method, and FIG. 1E shows the wavelength characteristics of the reflectance of the NC-RC reflector 17 and the aluminum coating film coated on the AlN package 15. As is clear from the figure, the reflectivity of the NC-RC reflector 17 is excellent. The components shown in FIG. 1D are the same as those in FIG. 1A and correspond to Table 2.

(利用光線追蹤法之LEE之計算) 於圖1C之光線追蹤法之計算模型中,將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17(無機塗料被覆膜)而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17之比較,對Al反射膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖1F及表4。(Calculation of LEE using ray tracing method) In the calculation model of the ray tracing method in Figure 1C, the angle θ of the inner side wall of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, so that the inner bottom surface and the inner side walls are NC-RC reflective materials 17 (Inorganic coating film) and calculate the LEE of the deep ultraviolet LED device. In addition, as a comparison of the NC-RC reflector 17, the LEE in the case of an Al reflector, Au reflector, and no reflector was analyzed, and the results are shown in FIG. 1F and Table 4.

[表4] 表4    45 60 75 90 Au反射膜 4.0% 4.0% 3.8% 3.6% 無機塗料被覆膜 4.6% 4.5% 4.3% 3.9% Al塗佈膜 4.3% 4.2% 4.0% 3.8% 無反射膜 3.7% 3.7% 3.6% 3.5% [Table 4] Table 4 45 60 75 90 Au reflective film 4.0% 4.0% 3.8% 3.6% Inorganic coating film 4.6% 4.5% 4.3% 3.9% Al coating film 4.3% 4.2% 4.0% 3.8% Non-reflective film 3.7% 3.7% 3.6% 3.5%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表示較高之LEE。又,關於內側側壁角度,於45度〜60度時表示較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 represents a higher LEE compared to other cases. In addition, with regard to the angle of the inner side wall, the LEE is higher at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 於圖1D之計算模型中,首先,對LEE增長係數(有2D-PhC之輸出/無2D-PhC之輸出)成為最大之二維光子結晶(2D-PhC)之形成位置實施解析。自表3選擇之2D-PhC之計算模型中,為R/a=0.4,次數m=3,直徑181 nm,週期226 nm。又,關於形成位置,將自多重量子井層之井至2D-PhC之最短端面為止之距離G設為變數,於29 nm≦G≦69 nm時以4 nm為單位變化而解析LEE增長係數。又,2D-PhC之最後方端面始終設為p型GaN接觸層8與Ni層9之界面。再者,NC-RC反射材17之角度根據上述光線追蹤法之結果選擇60度。將其結果表示於圖1G及表5。(Calculation of LEE using FDTD method) In the calculation model of Fig. 1D, first, analyze the formation position of the two-dimensional photonic crystal (2D-PhC) where the LEE growth coefficient (with 2D-PhC output/without 2D-PhC output) becomes the largest. In the calculation model of 2D-PhC selected from Table 3, R/a=0.4, the number of times m=3, the diameter of 181 nm, and the period of 226 nm. Regarding the formation position, the distance G from the well of the multiple quantum well layer to the shortest end face of the 2D-PhC was set as a variable, and the LEE growth coefficient was analyzed by changing it in units of 4 nm when 29 nm≦G≦69 nm. In addition, the rearmost end surface of the 2D-PhC is always the interface between the p-type GaN contact layer 8 and the Ni layer 9. Furthermore, the angle of the NC-RC reflector 17 is selected as 60 degrees based on the result of the above-mentioned ray tracing method. The results are shown in Fig. 1G and Table 5.

[表5] 表5 量子井層與PhC距離 29 33 37 41 45 49 53 57 61 65 69 LEE增長係數 0.64 0.59 0.74 1.05 1.47 1.91 2.30 2.57 2.68 2.40 1.74 [table 5] table 5 Distance between quantum well layer and PhC 29 33 37 41 45 49 53 57 61 65 69 LEE growth factor 0.64 0.59 0.74 1.05 1.47 1.91 2.30 2.57 2.68 2.40 1.74

根據上述結果,2D-PhC之形成位置係於G=61 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=61 nm時之深度為150 nm,故而將該深度固定,利用表3之R/a=0.3(次數m=3)、R/a=0.3(次數m=4)、R/a=0.4(次數m=4)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(4.5%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖1H及表6。According to the above results, the formation position of 2D-PhC is when G=61 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=61 nm, which is the formation position of 2D-PhC, is 150 nm, the depth is fixed, and R/a=0.3 (number of times m=3), R/a=0.3 (number of times m) in Table 3 = 4), R/a = 0.4 (time m = 4) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (4.5%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 1H and Table 6.

[表6] 表6 LEE增長係數 R/a=0.3 R/a=0.4 次數m=3 1.98 2.68 次數m=4 2.20 2.14 LEE(%) R/a=0.3 R/a=0.4 次數m=3 8.9% 12.1% 次數m=4 9.9% 9.6% [Table 6] Table 6 LEE growth factor R/a=0.3 R/a=0.4 Times m=3 1.98 2.68 Times m=4 2.20 2.14 LEE(%) R/a=0.3 R/a=0.4 Times m=3 8.9% 12.1% Times m=4 9.9% 9.6%

(第2實施形態) 作為本發明之第2實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖2A(a-1)、(a-2)。(Second Embodiment) As the deep ultraviolet LED device of the second embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 2A(a-1), (a-2) ).

具體而言,自圖2A(a-1)之剖視圖之上起依次,具有石英窗1、藍寶石基板2、AlN緩衝層3、n型AlGaN層4、多重量子井層5、多重量子障壁層(或電子阻擋層)6、p型AlGaN接觸層8a、Ni層9、Au反射電極層10、AlN封裝15、NC-RC反射材17、AlN封裝15之內側側壁角度θ15a、反射型二維光子結晶週期構造100、及空孔101(h)。Specifically, starting from the cross-sectional view of Fig. 2A(a-1), there are quartz window 1, sapphire substrate 2, AlN buffer layer 3, n-type AlGaN layer 4, multiple quantum well layer 5, multiple quantum barrier layer ( Or electron blocking layer) 6, p-type AlGaN contact layer 8a, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, AlN package 15 inner side wall angle θ15a, reflective two-dimensional photonic crystal Periodic structure 100 and void 101(h).

與第1實施形態之不同在於,關於深紫外LED元件之構造之p型接觸層,自p型GaN接觸層替換為p型AlGaN接觸層,除此以外為相同之構造。The difference from the first embodiment is that the p-type contact layer of the structure of the deep ultraviolet LED element is replaced with a p-type AlGaN contact layer from the p-type GaN contact layer, and the structure is the same except that.

又,於本實施形態中,於Ni層9與p型AlGaN接觸層8a之厚度方向之範圍內,且不超過p型AlGaN接觸層8a與多重量子障壁層(或電子阻擋層)6之界面之位置,形成有具有複數個空孔101(h)之反射型二維光子結晶週期構造100。Moreover, in this embodiment, within the thickness direction of the Ni layer 9 and the p-type AlGaN contact layer 8a, and does not exceed the interface between the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or electron blocking layer) 6 At the position, a reflective two-dimensional photonic crystal periodic structure 100 having a plurality of holes 101(h) is formed.

於圖2B之(b-1),圖示波長280 nm之深紫外光入射至形成於p型AlGaN接觸層8a在二維光子結晶(R/a=0.4)時之TE偏振成分中之光子帶構造,於(b-2)利用平面波展開法求出R/a與PBG值之關係而圖示。根據該圖可知R/a與PBG值具有比例關係。In Figure 2B (b-1), it shows the photon band of the TE polarization component of the p-type AlGaN contact layer 8a when the deep ultraviolet light with a wavelength of 280 nm is incident on the two-dimensional photonic crystal (R/a=0.4) The structure is shown in (b-2) to find the relationship between R/a and PBG value using the plane wave expansion method. According to the figure, it can be seen that R/a and PBG have a proportional relationship.

又,平面波展開法之計算所需要之參數以如下之方式計算。二維光子結晶之填充率f係利用f=(2π/3)0.5 ×(R/a)2 之式來計算。又,二維光子結晶之等效折射率neff 係利用neff =(n22 +(n12 -n22 )×f)0 . 5 之式來計算。因此,若設為空氣之折射率n1=1,p型AlGaN接觸層8a之折射率n2=2.622,則R/a=0.2、0.3及0.4之等效折射率根據上述2式,分別成為2.454、2.226及1.861。In addition, the parameters required for the calculation of the plane wave expansion method are calculated as follows. The filling rate f of the two-dimensional photonic crystal is calculated using the formula f=(2π/3) 0.5 ×(R/a) 2 . In addition, the equivalent refractive index n eff of the two-dimensional photonic crystal using the system n eff = (n2 2 + ( n1 2 -n2 2) × f) Formula 0.5 of calculation. Therefore, if the refractive index of air is n1=1 and the refractive index of the p-type AlGaN contact layer 8a is n2=2.622, the equivalent refractive index of R/a=0.2, 0.3, and 0.4 becomes 2.454, 2.226 and 1.861.

其次,藉由利用FDTD法之模擬解析而求出二維光子結晶之反射效果之LEE。因此,表7表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表8表示深紫外LED裝置之FDTD法之計算模型之各參數,表9表示反射型二維光子結晶之FDTD法之計算模型之各參數。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第1實施形態中之圖1C、圖1D大致相同,故而並不特別圖示。Secondly, the LEE of the reflection effect of the two-dimensional photon crystal is obtained by the simulation analysis using the FDTD method. Therefore, Table 7 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, Table 8 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device, and Table 9 shows the FDTD method of the reflective two-dimensional photon crystal Calculate the parameters of the model. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 1C and FIG. 1D in the first embodiment, so they are not shown in particular.

[表7] 表7 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 石英窗 200 μm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 7] Table 7 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表8] 表8 深紫外LED元件構成 元件尺寸3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型AlGaN接觸層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 8] Table 8 Deep UV LED component component size 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type AlGaN contact layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

[表9] 表9 R/a m(次數) 直徑(nm) 週期(nm) R/a=0.3 m=2 75 nm 126 nm R/a=0.3 m=3 113 nm 189 nm R/a=0.35 m=2 95 nm 136 nm R/a=0.35 m=3 142 nm 203 nm [Table 9] Table 9 R/a m (frequency) Diameter (nm) Period (nm) R/a=0.3 m=2 75 nm 126 nm R/a=0.3 m=3 113 nm 189 nm R/a=0.35 m=2 95 nm 136 nm R/a=0.35 m=3 142 nm 203 nm

(利用光線追蹤法之LEE之計算) 將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖2C及表10。(Calculation of LEE using ray tracing method) The inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and the inner side wall are NC-RC reflectors 17 to calculate the LEE of the deep ultraviolet LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al coating film, Au reflector film, and non-reflective film was analyzed, and the results are shown in FIG. 2C and Table 10.

[表10] 表10 NiAu_pAlGaN 接觸 45 60 75 90 Au反射膜 10.5% 10.0% 9.3% 7.9% 無機塗料被覆膜 15.0% 14.7% 14.0% 11.3% Al塗佈膜 12.6% 12.1% 11.3% 9.3% 無反射膜 8.3% 7.8% 7.3% 6.6% [Table 10] Table 10 NiAu_pAlGaN contact 45 60 75 90 Au reflective film 10.5% 10.0% 9.3% 7.9% Inorganic coating film 15.0% 14.7% 14.0% 11.3% Al coating film 12.6% 12.1% 11.3% 9.3% Non-reflective film 8.3% 7.8% 7.3% 6.6%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 首先,對LEE增長係數成為最大之2D-PhC之形成位置實施解析。自表9選擇之2D-PhC之計算模型中,為R/a=0.3,次數m=3,直徑113 nm,週期189 nm。又,關於形成位置,將自多重量子井層5之井至2D-PhC之最短端面為止之距離G設為變數,於29 nm≦G≦73 nm時以4 nm為單位變化而解析LEE增長係數。又,2DPhC之最後方端面始終設為p型AlGaN接觸層8a與Ni層9之界面。再者,NC-RC反射材17之角度係根據上述光線追蹤法之結果選擇60度。將其結果表示於圖2D及表11。(Calculation of LEE using FDTD method) First, analyze the formation position of the 2D-PhC with the largest LEE growth coefficient. In the 2D-PhC calculation model selected from Table 9, R/a=0.3, the number of times m=3, the diameter of 113 nm, and the period of 189 nm. Regarding the formation position, the distance G from the well of the multiple quantum well layer 5 to the shortest end face of the 2D-PhC is set as a variable, and the LEE growth coefficient is analyzed by changing it in 4 nm units when 29 nm≦G≦73 nm . In addition, the rearmost end surface of 2DPhC is always set as the interface between the p-type AlGaN contact layer 8a and the Ni layer 9. Furthermore, the angle of the NC-RC reflector 17 is selected as 60 degrees based on the result of the above-mentioned ray tracing method. The results are shown in Fig. 2D and Table 11.

[表11] 表11    29 33 37 41 45 49 53 57 61 65 69 73 NCRC60deg_pAlGaN100 nm_m3_Ra0.30 0.63 0.51 0.44 0.44 0.52 0.65 0.82 1.00 1.17 1.28 1.34 1.34 [Table 11] Table 11 29 33 37 41 45 49 53 57 61 65 69 73 NCRC60deg_pAlGaN100 nm_m3_Ra0.30 0.63 0.51 0.44 0.44 0.52 0.65 0.82 1.00 1.17 1.28 1.34 1.34

根據上述結果,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度成為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(14.7%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖2E及表12。According to the above results, the formation position of 2D-PhC is when G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, becomes 60 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.35 (time m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (14.7%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 2E and Table 12.

[表12] 表12 LEE增長係數 R/a=0.3 R/a=0.35 次數m=3 1.24 1.41 次數m=4 1.34 1.45 LEE(%) R/a=0.3 R/a=0.35 次數m=3 18.2% 20.7% 次數m=4 19.7% 21.3% [Table 12] Table 12 LEE growth factor R/a=0.3 R/a=0.35 Times m=3 1.24 1.41 Times m=4 1.34 1.45 LEE(%) R/a=0.3 R/a=0.35 Times m=3 18.2% 20.7% Times m=4 19.7% 21.3%

(第3實施形態) 作為本發明之第3實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖3A(a-1)、(a-2)。(Third Embodiment) As the deep ultraviolet LED device of the third embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device with the design wavelength λ of 280 nm is shown in FIGS. 3A(a-1), (a-2) ).

本實施形態係除了將Ni層9及Au反射電極層10置換為Rh反射電極層16以外,為與第2實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第2實施形態相同。因此,為了求出光子結晶之反射效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。This embodiment has the same structure as the second embodiment except that the Ni layer 9 and the Au reflective electrode layer 10 are replaced with the Rh reflective electrode layer 16. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the second embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal, a cross simulation of the FDTD method and the ray tracing method is implemented.

[表13] 表13 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 石英窗 200 μm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - Rh反射膜 - - - 70% - AlN封裝 - - - - 45度〜90度 [Table 13] Table 13 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - Rh reflective film - - - 70% - AlN package - - - - 45 degrees~90 degrees

[表14] 表14 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Rh反射電極 230 nm - 0.797 2.734 1.0 1.0 p型AlGaN接觸層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 14] Table 14 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Rh reflective electrode 230 nm - 0.797 2.734 1.0 1.0 p-type AlGaN contact layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

表13表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表14表示深紫外LED裝置之FDTD法之計算模型之各參數。反射型二維光子結晶之FDTD法之計算模型之各參數與表9相同。再者,光線追蹤法之計算模型、FDTD法之計算模型並不特別圖示。Table 13 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 14 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the calculation model of the reflective two-dimensional photonic crystal FDTD method are the same as Table 9. Furthermore, the calculation model of the ray tracing method and the calculation model of the FDTD method are not shown in particular.

(利用光線追蹤法之LEE之計算) 首先,將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17(無機塗料被覆)而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17之比較,對Al反射膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖3B及表15。(Calculation of LEE using ray tracing method) First, set the inner side wall angle θ of the AlN package as a variable and change it to 45 degrees, 60 degrees, 75 degrees, and 90 degrees. The inner bottom surface and the inner side wall are NC-RC reflector 17 (coated with inorganic paint) to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of the NC-RC reflector 17, the LEE in the case of Al reflector, Au reflector, and no reflector was analyzed, and the results are shown in FIG. 3B and Table 15.

[表15] 表15 Rh_pAlGaN 接觸 45 60 75 90 Au反射膜 12.1% 11.5% 10.8% 9.4% 無機塗料被覆膜 16.6% 16.3% 15.6% 12.9% Al塗佈膜 14.2% 13.7% 12.9% 10.9% 無反射膜 9.8% 9.3% 8.8% 8.1% [Table 15] Table 15 Rh_pAlGaN contact 45 60 75 90 Au reflective film 12.1% 11.5% 10.8% 9.4% Inorganic coating film 16.6% 16.3% 15.6% 12.9% Al coating film 14.2% 13.7% 12.9% 10.9% Non-reflective film 9.8% 9.3% 8.8% 8.1%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 與第2實施形態相同地,LEE增長係數成為最大之2D-PhC之形成位置係G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.3(次數m=3)R/a=0.35(次數m=2)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(16.3%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖3C及表16。(Calculation of LEE using FDTD method) As in the second embodiment, the formation position of 2D-PhC at which the LEE growth coefficient becomes the largest is G=69 nm, and the LEE growth coefficient becomes the largest. Since the depth at G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (number of times m=2) and R/a=0.3 (number of times m) in Table 9 =3) 2D-PhC calculation model with R/a=0.35 (order m=2) and R/a=0.35 (order m=3) to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (16.3%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model, and then The results are shown in Figure 3C and Table 16.

[表16] 表16 LEE增長係數 R/a=0.3 R/a=0.35 次數m=3 1.14 1.28 次數m=4 1.12 1.21 LEE(%) R/a=0.3 R/a=0.35 次數m=3 18.6% 20.9% 次數m=4 18.3% 19.7% [Table 16] Table 16 LEE growth factor R/a=0.3 R/a=0.35 Times m=3 1.14 1.28 Times m=4 1.12 1.21 LEE(%) R/a=0.3 R/a=0.35 Times m=3 18.6% 20.9% Times m=4 18.3% 19.7%

(第4實施形態) 作為本發明之第4實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖4A(a-1)、(a-2)。(Fourth Embodiment) As the deep ultraviolet LED device of the fourth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 4A(a-1), (a-2) ).

具體而言,自圖4A(a-1)之剖視圖之上起依次,具有石英窗1、藍寶石半球透鏡20a、藍寶石基板2、AlN緩衝層3、n型AlGaN層4、多重量子井層5、多重量子障壁層(或電子阻擋層)6、p型AlGaN層7、p型GaN接觸層8、Ni層9、Au反射電極層10、AlN封裝15、NC-RC反射材17、AlN封裝15之內側側壁角度θ15a、反射型二維光子結晶週期構造100、及空孔101(h)。Specifically, from the top of the cross-sectional view of FIG. 4A(a-1), there are a quartz window 1, a sapphire hemispherical lens 20a, a sapphire substrate 2, an AlN buffer layer 3, an n-type AlGaN layer 4, a multiple quantum well layer 5, Multiple quantum barrier layer (or electron barrier layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, AlN package 15 The inner side wall angle θ15a, the reflective two-dimensional photonic crystal periodic structure 100, and the cavity 101(h).

如圖4A(a-1)所示,於藍寶石基板2之背面接合有具有藍寶石基板2之外接圓以上之半徑之藍寶石半球透鏡20a。於由多重量子井層5發光之深紫外光入射至藍寶石基板2之情形時,深紫外光自藍寶石半球透鏡20a之表面之法線方向朝向外部出射,藉此減輕多重內部全反射,故而提高LEE。As shown in FIG. 4A(a-1), a sapphire hemispherical lens 20a having a radius greater than the outer circle of the sapphire substrate 2 is bonded to the back of the sapphire substrate 2. When the deep ultraviolet light emitted by the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted from the normal direction of the surface of the sapphire hemispherical lens 20a toward the outside, thereby reducing multiple total internal reflections, thereby increasing LEE .

再者,除了藍寶石半球透鏡20a以外為與第1實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第1實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。Furthermore, it has the same structure as the first embodiment except for the sapphire hemispherical lens 20a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the first embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表17表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表18表示深紫外LED裝置之FDTD法之計算模型之各參數。反射型二維光子結晶之FDTD法之計算模型之各參數與表3相同。又,圖4B表示光線追蹤法之計算模型,圖4C表示FDTD法之計算模型。圖4C所示之元件與圖4A相同,與表18對應。Therefore, Table 17 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 18 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the calculation model of the reflective two-dimensional photonic crystal FDTD method are the same as Table 3. In addition, FIG. 4B shows the calculation model of the ray tracing method, and FIG. 4C shows the calculation model of the FDTD method. The components shown in FIG. 4C are the same as those in FIG. 4A and correspond to Table 18.

[表17] 表17 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 石英窗 200 μm 1.494 100% - - 藍寶石半球透鏡(半徑1mm) 1 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - p型GaN接觸層 200 nm 2.618 2.3%/200 nm - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 17] Table 17 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire dome lens (radius 1mm) 1 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - p-type GaN contact layer 200 nm 2.618 2.3%/200 nm - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表18] 表18 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型GaN接觸層 150 nm - 2.618 0.42 1.0 6.7 p型AlGaN層 32 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 18] Table 18 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type GaN contact layer 150 nm - 2.618 0.42 1.0 6.7 p-type AlGaN layer 32 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 於圖4B之光線追蹤法之計算模型中,將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖4D及表19。(Calculation of LEE using ray tracing method) In the calculation model of the ray tracing method in Fig. 4B, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, so that the inner bottom surface and the inner side walls are NC-RC reflectors 17 and calculate the LEE of the deep ultraviolet LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 4D and Table 19.

[表19] 表19 pGaN 接觸 45 60 75 90 Au反射膜 9.1% 8.8% 8.5% 6.7% 無機塗料被覆膜 10.4% 10.2% 9.7% 8.8% Al塗佈膜 9.7% 9.4% 9.0% 7.6% 無反射膜 8.4% 8.2% 8.1% 5.5% [Table 19] Table 19 pGaN contact 45 60 75 90 Au reflective film 9.1% 8.8% 8.5% 6.7% Inorganic coating film 10.4% 10.2% 9.7% 8.8% Al coating film 9.7% 9.4% 9.0% 7.6% Non-reflective film 8.4% 8.2% 8.1% 5.5%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 於圖4C之計算模型中,與實施形態1相同地將NC-RC反射材17之角度設為60度。又,將作為2D-PhC之形成位置之G=61 nm時之深度150 nm固定。然後,利用自表3選擇之R/a=0.3(次數m=3)、R/a=0.3(次數m=4)、R/a=0.4(次數m=3)、R/a=0.4(次數m=4)之2DPhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(10.2%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖4E及表20。(Calculation of LEE using FDTD method) In the calculation model of FIG. 4C, the angle of the NC-RC reflector 17 is set to 60 degrees as in the first embodiment. In addition, the depth of 150 nm when G=61 nm, which is the formation position of 2D-PhC, was fixed. Then, use the selected R/a=0.3 (number of times m=3), R/a=0.3 (number of times m=4), R/a=0.4 (number of times m=3), and R/a=0.4( The calculation model of 2DPhC with times m=4) is used to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (10.2%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 4E and Table 20.

[表20] 表20 LEE增長係數 R/a=0.3 R/a=0.4 次數m=3 1.98 2.7 次數m=4 2.59 2.14 LEE R/a=0.3 R/a=0.4 次數m=3 20.2% 27.5% 次數m=4 26.4% 21.8% [Table 20] Table 20 LEE growth factor R/a=0.3 R/a=0.4 Times m=3 1.98 2.7 Times m=4 2.59 2.14 LEE R/a=0.3 R/a=0.4 Times m=3 20.2% 27.5% Times m=4 26.4% 21.8%

(第5實施形態) 作為本發明之第5實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖5A(a-1)、(a-2)。(Fifth Embodiment) As the deep ultraviolet LED device of the fifth embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device with the design wavelength λ of 280 nm is shown in FIGS. 5A(a-1), (a-2) ).

具體而言,自圖5A(a-1)之剖視圖之上起依次,具有石英窗1、藍寶石半球透鏡20a、藍寶石基板2、AlN緩衝層3、n型AlGaN層4、多重量子井層5、多重量子障壁層(或電子阻擋層)6、p型AlGaN接觸層8a、Ni層9、Au反射電極層10、AlN封裝15、NC-RC反射材17、AlN封裝15之內側側壁角度θ15a、反射型二維光子結晶週期構造100、及空孔101(h)。Specifically, from the top of the cross-sectional view of FIG. 5A (a-1), there are quartz window 1, sapphire hemispherical lens 20a, sapphire substrate 2, AlN buffer layer 3, n-type AlGaN layer 4, multiple quantum well layer 5, Multiple quantum barrier layer (or electron blocking layer) 6, p-type AlGaN contact layer 8a, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, AlN package 15 inner side wall angle θ15a, reflection Type two-dimensional photonic crystal periodic structure 100 and void 101(h).

如圖5A(a-1)所示,於藍寶石基板2之背面接合有具有藍寶石基板2之外接圓以上之半徑之藍寶石半球透鏡20a。於由多重量子井層5發光之深紫外光入射至藍寶石基板2之情形時,深紫外光自藍寶石半球透鏡20a之表面之法線方向朝向外部出射,藉此減輕多重內部全反射,故而提高LEE。As shown in FIG. 5A(a-1), a sapphire hemispherical lens 20a having a radius greater than the outer circle of the sapphire substrate 2 is bonded to the back surface of the sapphire substrate 2. When the deep ultraviolet light emitted by the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted from the normal direction of the surface of the sapphire hemispherical lens 20a toward the outside, thereby reducing multiple total internal reflections, thereby increasing LEE .

再者,除了藍寶石半球透鏡20a以外,為與第2實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第2實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。In addition, it has the same structure as the second embodiment except for the sapphire hemispherical lens 20a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the second embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表21表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表22表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第4實施形態中之圖4B、圖4C大致相同,故而並不特別圖示。Therefore, Table 21 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 22 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 4B and FIG. 4C in the fourth embodiment, so they are not shown in particular.

[表21] 表21 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 石英窗 200 μm 1.494 100% - - 藍寶石半球透鏡(半徑1 mm) 1 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度~90度 [Table 21] Table 21 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire hemispherical lens (radius 1 mm) 1 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45°~90°

[表22] 表22 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 22] Table 22 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 與第2實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖5B及表23。(Calculation of LEE using ray tracing method) As in the second embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflector 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 5B and Table 23.

[表23] 表23 NiAu_pAlGaN 接觸 45 60 75 90 Au反射膜 19.4% 18.0% 16.6% 11.8% 無機塗料被覆膜 26.3% 25.5% 23.6% 18.4% Al塗佈膜 22.6% 21.2% 19.3% 14.5% AlN 16.2% 15.2% 14.7% 9.2% [Table 23] Table 23 NiAu_pAlGaN contact 45 60 75 90 Au reflective film 19.4% 18.0% 16.6% 11.8% Inorganic coating film 26.3% 25.5% 23.6% 18.4% Al coating film 22.6% 21.2% 19.3% 14.5% AlN 16.2% 15.2% 14.7% 9.2%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 與第2實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為150 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(25.5%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖5C及表24。(Calculation of LEE using FDTD method) As in the second embodiment, the formation position of 2D-PhC is at G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 150 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (25.5%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 5C and Table 24.

[表24] 表24 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.28 1.37 次數m=3 1.17 1.33 LEE R/a=0.3 R/a=0.35 次數m=2 32.6% 34.9% 次數m=3 29.8% 33.9% [Table 24] Table 24 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.28 1.37 Times m=3 1.17 1.33 LEE R/a=0.3 R/a=0.35 Times m=2 32.6% 34.9% Times m=3 29.8% 33.9%

(第6實施形態) 作為本發明之第6實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖6A(a-1)、(a-2)。(The sixth embodiment) As the deep ultraviolet LED device of the sixth embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device with the design wavelength λ of 280 nm is shown in FIGS. 6A(a-1), (a-2) ).

本實施形態中將第5實施形態中之Ni層9及Au反射電極層10置換為Rh反射電極層16。其他構造與第5實施形態相同。又,二維光子結晶之反射效果及最佳化之方法亦與第5實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。In this embodiment, the Ni layer 9 and Au reflective electrode layer 10 in the fifth embodiment are replaced with the Rh reflective electrode layer 16. The other structure is the same as that of the fifth embodiment. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the fifth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表25表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表26表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第4實施形態中之圖4B、圖4C大致相同,故而並不特別圖示。Therefore, Table 25 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 26 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 4B and FIG. 4C in the fourth embodiment, so they are not shown in particular.

[表25] 表25 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 石英窗 200 μm 1.494 100% - - 藍寶石半球透鏡(半徑1 mm) 1 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - Rh反射膜 - - - 70% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 25] Table 25 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Sapphire hemispherical lens (radius 1 mm) 1 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - Rh reflective film - - - 70% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表26] 表26 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Rh反射電極 230 nm - 0.797 2.734 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重童子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 石英窗 100 nm - 1.494 - - - [Table 26] Table 26 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Rh reflective electrode 230 nm - 0.797 2.734 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple boy well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 與第5實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al反射膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖6B及表27。(Calculation of LEE using ray tracing method) As in the fifth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al reflective film, an Au reflective film, and a non-reflective film was analyzed, and the results are shown in FIG. 6B and Table 27.

[表27] 表27 Rh_pAlGaN 接觸 45 60 75 90 Au反射膜 21.0% 19.5% 18.1% 13.3% 無機塗料被覆膜 27.9% 27.0% 25.2% 20.0% Al反射膜 28.0% 27.2% 25.4% 20.2% 無反射膜 17.8% 16.7% 16.1% 10.6% [Table 27] Table 27 Rh_pAlGaN contact 45 60 75 90 Au reflective film 21.0% 19.5% 18.1% 13.3% Inorganic coating film 27.9% 27.0% 25.2% 20.0% Al reflective film 28.0% 27.2% 25.4% 20.2% Non-reflective film 17.8% 16.7% 16.1% 10.6%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 與第5實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=2)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材、角度60度之LEE(27.0%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖6C及表28。(Calculation of LEE using FDTD method) As in the fifth embodiment, the formation position of 2D-PhC is the maximum LEE growth coefficient when G=69 nm. Since the depth at G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (number of times m=2) and R/a=0.3 (number of times m) in Table 9 =3), R/a=0.35 (order m=2), R/a=0.35 (order m=3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector obtained by the ray tracing method and the LEE (27.0%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model, and the result Shown in Figure 6C and Table 28.

[表28] 表28 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.20 1.25 次數m=3 0.94 1.05 LEE R/a=0.3 R/a=0.35 次數m=2 32.4% 33.8% 次數m=3 25.4% 28.4% [Table 28] Table 28 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.20 1.25 Times m=3 0.94 1.05 LEE R/a=0.3 R/a=0.35 Times m=2 32.4% 33.8% Times m=3 25.4% 28.4%

(第7實施形態) 作為本發明之第7實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖7A(a-1)、(a-2)。(The seventh embodiment) As the deep ultraviolet LED device of the seventh embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 7A(a-1), (a-2) ).

本實施形態之深紫外LED元件構造為與第4實施形態相同之構造,The structure of the deep ultraviolet LED element of this embodiment is the same as that of the fourth embodiment.

如圖7A(a-1)所示,於藍寶石基板2之背面接合有藍寶石半球透鏡20a,上述半球透鏡覆蓋AlN封裝15之上表面之內側側壁以上,且於上述半球透鏡之表面貼附有透明樹脂膜21a,而且,將AlN封裝15之上部外周部密封。利用透明樹脂膜21a密封之理由在於,防止深紫外LED元件之經年劣化。再者,藍寶石半球透鏡20a之半徑為AlN封裝15之內側側壁之外接圓之半徑以上。As shown in FIG. 7A(a-1), a sapphire hemispherical lens 20a is bonded to the back of the sapphire substrate 2. The hemispherical lens covers the inner side wall of the upper surface of the AlN package 15 and above, and transparent is attached to the surface of the hemispherical lens. The resin film 21a also seals the upper outer periphery of the AlN package 15. The reason for sealing with the transparent resin film 21a is to prevent the deep ultraviolet LED element from deteriorating over the years. Furthermore, the radius of the sapphire hemispherical lens 20a is greater than the radius of the outer circle of the inner side wall of the AlN package 15.

若為該構造,則於不使用第4實施形態之石英窗1將深紫外光自石英出射至空氣時,抑制界面中之內部全反射,故而可提高LEE。進而,與第4實施形態之深紫外LED裝置相比AlN封裝15之內側側壁全體之表面積成為約1/3左右,故而緩和反射膜之反射率或側壁角度之限制。With this structure, when deep ultraviolet light is emitted from the quartz to the air without using the quartz window 1 of the fourth embodiment, total internal reflection at the interface is suppressed, and LEE can be improved. Furthermore, compared with the deep ultraviolet LED device of the fourth embodiment, the surface area of the entire inner side wall of the AlN package 15 is about 1/3, so the limitation of the reflectance of the reflective film or the side wall angle is relaxed.

再者,深紫外LED元件中之二維光子結晶之反射效果及最佳化之方法與第1實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而需要FDTD法與光線追蹤法之交叉模擬。Furthermore, the reflection effect of the two-dimensional photon crystal in the deep ultraviolet LED device and the optimization method are the same as those in the first embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, the cross simulation of the FDTD method and the ray tracing method is required.

因此,表29表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表30表示深紫外LED裝置之FDTD法之計算模型之各參數。反射型二維光子結晶之FDTD法之計算模型之各參數與表3相同。 又,圖7B表示光線追蹤法之計算模型,圖7C表示FDTD法之計算模型。圖7C所示之元件與圖7A相同,與表30對應。Therefore, Table 29 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 30 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the calculation model of the reflective two-dimensional photonic crystal FDTD method are the same as Table 3. In addition, FIG. 7B shows the calculation model of the ray tracing method, and FIG. 7C shows the calculation model of the FDTD method. The components shown in FIG. 7C are the same as those in FIG. 7A and correspond to Table 30.

[表29] 表29 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 透明樹脂膜 200 μm 1.353 100% - - 藍寶石半球透鏡半徑:1.8 mm〜2.4 mm 1.8 mm〜2.4 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - p型GaN接觸層 200 nm 2.618 2.3%/200 nm - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 29] Table 29 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Sapphire hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - p-type GaN contact layer 200 nm 2.618 2.3%/200 nm - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表30] 表30 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型GaN接觸層 150 nm - 2.618 0.42 1.0 6.7 p型AlGaN層 32 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 30] Table 30 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type GaN contact layer 150 nm - 2.618 0.42 1.0 6.7 p-type AlGaN layer 32 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 於圖7B之光線追蹤法之計算模型中,將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖7D及表31。(Calculation of LEE using ray tracing method) In the calculation model of the ray tracing method in Fig. 7B, the angle θ of the inner side wall of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, so that the inner bottom surface and the inner side walls are NC-RC reflective materials 17 and calculate the LEE of the deep ultraviolet LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 7D and Table 31.

[表31] 表31 pGaN 接觸 45 60 75 90 Au反射膜 11.3% 11.2% 11.2% 11.1% 無機塗料被覆膜 11.5% 11.5% 11.4% 11.3% Al塗佈膜 11.4% 11.4% 11.3% 11.2% 無反射膜 11.2% 11.1% 11.1% 11.1% [Table 31] Table 31 pGaN contact 45 60 75 90 Au reflective film 11.3% 11.2% 11.2% 11.1% Inorganic coating film 11.5% 11.5% 11.4% 11.3% Al coating film 11.4% 11.4% 11.3% 11.2% Non-reflective film 11.2% 11.1% 11.1% 11.1%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表示稍微高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a slightly higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 於圖7C之計算模型中,根據光線追蹤法之結果將NC-RC反射材17之角度設為75度。又,將作為2D-PhC之形成位置之G=61 nm時之深度150 nm固定。然後,利用自表3選擇之R/a=0.3及次數m=3、R/a=0.3及次數m=4、R/a=0.4及次數m=3、R/a=0.4及次數m=4之2DPhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(11.4%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖7E及表32。(Calculation of LEE using FDTD method) In the calculation model of FIG. 7C, the angle of the NC-RC reflector 17 is set to 75 degrees according to the result of the ray tracing method. In addition, the depth of 150 nm when G=61 nm, which is the formation position of 2D-PhC, was fixed. Then, use the selected R/a=0.3 and the number of times m=3, R/a=0.3 and the number of times m=4, R/a=0.4 and the number of times m=3, R/a=0.4 and the number of times m= 4 of 2DPhC calculation model to analyze LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (11.4%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model, and then The results are shown in Figure 7E and Table 32.

[表32] 表32 LEE增長係數 R/a=0.3 R/a=0.4 次數m=3 2.07 2.74 次數m=4 2.40 2.28 LEE R/a=0.3 R/a=0.4 次數m=3 23.6% 31.2% 次數m=4 27.4% 26.0% [Table 32] Table 32 LEE growth factor R/a=0.3 R/a=0.4 Times m=3 2.07 2.74 Times m=4 2.40 2.28 LEE R/a=0.3 R/a=0.4 Times m=3 23.6% 31.2% Times m=4 27.4% 26.0%

(第8實施形態) 作為本發明之第8實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖8A(a-1)、(a-2)。(Eighth Embodiment) As the deep ultraviolet LED device of the eighth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 8A(a-1), (a-2) ).

本實施形態之深紫外LED構造與第5實施形態相同之構造,但如圖8A(a-1)所示,於藍寶石基板2之背面接合有藍寶石半球透鏡20a,上述半球透鏡覆蓋AlN封裝15之上表面之內側側壁以上,且於上述半球透鏡之表面貼附有透明樹脂膜21a,而且,將AlN封裝15之上部外周部密封。利用透明樹脂膜21a密封之理由在於,防止深紫外LED元件之經年劣化。再者,藍寶石半球透鏡20a之半徑為AlN封裝15之內側側壁之外接圓之半徑以上。The structure of the deep ultraviolet LED of this embodiment is the same as that of the fifth embodiment, but as shown in FIG. 8A(a-1), a sapphire hemispherical lens 20a is bonded to the back of the sapphire substrate 2. The hemispherical lens covers the AlN package 15 Above the inner side wall of the upper surface, a transparent resin film 21a is attached to the surface of the hemispherical lens, and the upper outer periphery of the AlN package 15 is sealed. The reason for sealing with the transparent resin film 21a is to prevent the deep ultraviolet LED element from deteriorating over the years. Furthermore, the radius of the sapphire hemispherical lens 20a is greater than the radius of the outer circle of the inner side wall of the AlN package 15.

再者,自藍寶石基板2至Au反射電極層10中之深紫外LED元件之構造為與第2實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第2實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。Furthermore, the structure of the deep ultraviolet LED element from the sapphire substrate 2 to the Au reflective electrode layer 10 is the same as that of the second embodiment. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the second embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表33表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表34表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第7實施形態中之圖7B、圖7C大致相同,故而並不特別圖示。Therefore, Table 33 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 34 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 7B and FIG. 7C in the seventh embodiment, so they are not shown in particular.

[表33] 表33 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 透明樹脂膜 200 μm 1.353 100% - - 藍寶石半球透鏡半徑:1.8 mm〜2.4 mm 1.8 mm〜2.4 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 33] Table 33 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Sapphire hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表34] 表34 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 34] Table 34 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 與第5實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖8B及表35。(Calculation of LEE using ray tracing method) As in the fifth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al coating film, Au reflecting film, and non-reflecting film was analyzed, and the results are shown in FIG. 8B and Table 35.

[表35] 表35 NiAu_pAlGaN 接觸 45 60 75 90 Au反射膜 23.5% 23.4% 24.0% 23.7% 無機塗料被覆膜 28.4% 28.0% 27.3% 26.3% Al塗佈膜 26.4% 25.9% 25.3% 24.8% 無反射膜 22.7% 22.8% 22.8% 22.7% [Table 35] Table 35 NiAu_pAlGaN contact 45 60 75 90 Au reflective film 23.5% 23.4% 24.0% 23.7% Inorganic coating film 28.4% 28.0% 27.3% 26.3% Al coating film 26.4% 25.9% 25.3% 24.8% Non-reflective film 22.7% 22.8% 22.8% 22.7%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 與第5實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(27.3%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖8C及表36。 [表36] 表36 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.31 1.48 次數m=3 1.30 1.45 LEE R/a=0.3 R/a=0.35 次數m=2 35.8% 40.4% 次數m=3 35.5% 39.6% (Calculation of LEE using FDTD method) As in the fifth embodiment, the formation position of 2D-PhC is when G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (27.3%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 8C and Table 36. [Table 36] Table 36 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.31 1.48 Times m=3 1.30 1.45 LEE R/a=0.3 R/a=0.35 Times m=2 35.8% 40.4% Times m=3 35.5% 39.6%

(第9實施形態) 作為本發明之第9實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖9A(a-1)、(a-2)。(Ninth Embodiment) As the deep ultraviolet LED device of the ninth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 9A(a-1), (a-2) ).

本實施形態之深紫外LED元件構造與第6實施形態相同之構造,但如圖9A(a-1)所示,於藍寶石基板2之背面接合有藍寶石半球透鏡20a,上述半球透鏡覆蓋AlN封裝15之上表面之內側側壁以上,且於上述半球透鏡之表面貼附有透明樹脂膜21a,而且,將AlN封裝15之上部外周部密封。利用透明樹脂膜21a密封之理由在於,防止深紫外LED元件之經年劣化。再者,藍寶石半球透鏡20a之半徑為AlN封裝15之內側側壁之外接圓之半徑以上。The structure of the deep ultraviolet LED element of this embodiment is the same as that of the sixth embodiment, but as shown in FIG. 9A(a-1), a sapphire hemispherical lens 20a is bonded to the back surface of the sapphire substrate 2. The hemispherical lens covers the AlN package 15 Above the inner side wall of the upper surface, a transparent resin film 21a is attached to the surface of the hemispherical lens, and the upper outer periphery of the AlN package 15 is sealed. The reason for sealing with the transparent resin film 21a is to prevent the deep ultraviolet LED element from deteriorating over the years. Furthermore, the radius of the sapphire hemispherical lens 20a is greater than the radius of the outer circle of the inner side wall of the AlN package 15.

再者,自藍寶石基板2至Rh反射電極層16中之深紫外LED之構造為與第2實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第2實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。Furthermore, the structure of the deep ultraviolet LED from the sapphire substrate 2 to the Rh reflective electrode layer 16 is the same as that of the second embodiment. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the second embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表37表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表38表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第7實施形態中之圖7B、圖7C大致相同,故而並不特別圖示。Therefore, Table 37 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 38 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 7B and FIG. 7C in the seventh embodiment, so they are not shown in particular.

[表37] 表37 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 透明樹脂膜 200 μm 1.353 100% - - 藍寶石半球透鏡 半徑:1.8 mm~2.4 mm 1.8 mm〜2.4 mm 1.82 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - Rh反射膜 - - - 70% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 37] Table 37 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Sapphire hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.82 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - Rh reflective film - - - 70% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表38] 表38 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Rh反射電極 230 nm - 0.797 2.734 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 藍寶石半球透鏡 3,350 nm - 1.82 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 38] Table 38 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Rh reflective electrode 230 nm - 0.797 2.734 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Sapphire dome lens 3,350 nm - 1.82 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 與第6實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖9B及表39。(Calculation of LEE using ray tracing method) As in the sixth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al coating film, Au reflector film, and non-reflective film was analyzed, and the results are shown in FIG. 9B and Table 39.

[表39] 表39 Rh_pAlGaN 接觸 45 60 75 90 Au反射膜 26.6% 26.1% 25.6% 25.3% 無機塗料被覆膜 30.0% 29.6% 28.9% 27.9% Al塗佈膜 28.0% 27.6% 26.9% 26.3% 無反射膜 25.3% 24.8% 24.4% 24.3% [Table 39] Table 39 Rh_pAlGaN contact 45 60 75 90 Au reflective film 26.6% 26.1% 25.6% 25.3% Inorganic coating film 30.0% 29.6% 28.9% 27.9% Al coating film 28.0% 27.6% 26.9% 26.3% Non-reflective film 25.3% 24.8% 24.4% 24.3%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 與第6實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(28.9%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖9C及表40。(Calculation of LEE using FDTD method) As in the sixth embodiment, the formation position of 2D-PhC is at G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (28.9%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 9C and Table 40.

[表40] 表40 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.22 1.33 次數m=3 1.04 1.16 LEE R/a=0.3 R/a=0.35 次數m=2 35.3% 38.4% 次數m=3 30.1% 33.5% [Table 40] Table 40 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.22 1.33 Times m=3 1.04 1.16 LEE R/a=0.3 R/a=0.35 Times m=2 35.3% 38.4% Times m=3 30.1% 33.5%

(第10實施形態) 作為本發明之第10實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖10A(a-1)、(a-2)。(Tenth Embodiment) As a deep ultraviolet LED device of the tenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 10A(a-1), (a-2) ).

本實施形態如圖10A(a-1)所示,除了石英半球透鏡22a以外,為與第4實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第4實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。As shown in FIG. 10A(a-1), this embodiment has the same structure as the fourth embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the fourth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表41表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表42表示深紫外LED裝置之FDTD法之計算模型之各參數。反射型二維光子結晶之FDTD法之計算模型之各參數與表3相同。又,且,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第4實施形態中之圖4B、圖4C大致相同,故而並不特別圖示。Therefore, Table 41 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 42 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the calculation model of the reflective two-dimensional photonic crystal FDTD method are the same as Table 3. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 4B and FIG. 4C in the fourth embodiment, so they are not shown in particular.

[表41] 表41 深紫外LED元件構成 元件尺寸:l.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 石英窗 200 μm 1.494 100% - - 石英半球透鏡(半徑1 mm) 1 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - p型GaN接觸層 200 nm 2.618 2.3%/200 nm - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 41] Table 41 Deep ultraviolet LED component component size: l.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Quartz hemispherical lens (radius 1 mm) 1 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - p-type GaN contact layer 200 nm 2.618 2.3%/200 nm - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表42] 表42 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型GaN接觸層 150 nm - 2.618 0.42 1.0 6.7 p型AlGaN層 32 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 石英窗 100 nm - 1.494 - - - [Table 42] Table 42 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type GaN contact layer 150 nm - 2.618 0.42 1.0 6.7 p-type AlGaN layer 32 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 與第4實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖10B及表43。(Calculation of LEE using ray tracing method) As in the fourth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and the inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al coating film, Au reflector film, and non-reflective film was analyzed, and the results are shown in FIG. 10B and Table 43.

[表43] 表43 pGaN 接觸 45 60 75 90 Au反射膜 7.9% 7.2% 6.3% 4.9% 無機塗料被覆膜 9.3% 9.0% 8.5% 7.1% Al塗佈膜 8.6% 8.0% 7.3% 5.9% 無反射膜 7.0% 6.3% 5.2% 3.8% [Table 43] Table 43 pGaN contact 45 60 75 90 Au reflective film 7.9% 7.2% 6.3% 4.9% Inorganic coating film 9.3% 9.0% 8.5% 7.1% Al coating film 8.6% 8.0% 7.3% 5.9% Non-reflective film 7.0% 6.3% 5.2% 3.8%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 於圖4C之計算模型中,與實施形態1相同地將NC-RC反射材17之角度設為60度。又,將作為2D-PhC之形成位置之G=61 nm時之深度150 nm固定。然後,利用自表3選擇之R/a=0.3(次數m=3)、R/a=0.3(次數m=4)、R/a=0.4(次數m=3)、R/a=0.4(次數m=4)之2DPhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(9.0%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖10C及表44。(Calculation of LEE using FDTD method) In the calculation model of FIG. 4C, the angle of the NC-RC reflector 17 is set to 60 degrees as in the first embodiment. In addition, the depth of 150 nm when G=61 nm, which is the formation position of 2D-PhC, was fixed. Then, use the selected R/a=0.3 (number of times m=3), R/a=0.3 (number of times m=4), R/a=0.4 (number of times m=3), and R/a=0.4( The calculation model of 2DPhC with times m=4) is used to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (9.0%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 10C and Table 44.

[表44] 表44 LEE增長係數 R/a=0.3 R/a=0.4 次數m=3 2.11 2.82 次數m=4 2.41 2.32 LEE(%) R/a=0.3 R/a=0.4 次數m=3 19% 25.4% 次數m=4 21.7% 20.9% [Table 44] Table 44 LEE growth factor R/a=0.3 R/a=0.4 Times m=3 2.11 2.82 Times m=4 2.41 2.32 LEE(%) R/a=0.3 R/a=0.4 Times m=3 19% 25.4% Times m=4 21.7% 20.9%

(第11實施形態) 作為本發明之第11實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖11A(a-1)、(a-2)。(Eleventh embodiment) As the deep ultraviolet LED device of the eleventh embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 11A(a-1), (a-2) ).

本實施形態如圖11A(a-1)所示,除了石英半球透鏡22a以外,為與第5實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第5實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。As shown in FIG. 11A(a-1), this embodiment has the same structure as the fifth embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the fifth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表45表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表46表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第4實施形態中之圖4B、圖4C大致相同,故而並不特別圖示。Therefore, Table 45 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 46 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 4B and FIG. 4C in the fourth embodiment, so they are not shown in particular.

[表45] 表45 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 石英窗 200 μm 1.494 100% - - 石英半球透鏡(半徑1 mm) 1 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 45] Table 45 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Quartz hemispherical lens (radius 1 mm) 1 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表46] 表46 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 石英窗 100 nm - 1.494 - - - [Table 46] Table 46 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 與第5實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖11B及表47。(Calculation of LEE using ray tracing method) As in the fifth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of the NC-RC reflector 17, the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 11B and Table 47.

[表47] 表47 NiAu_pAlGaN 接觸 45 60 75 90 Au反射膜 16.5% 14.4% 11.9% 8.0% 無機塗料被覆膜 23.6% 22.8% 21.0% 14.8% Al塗佈膜 19.7% 18.1% 15.7% 10.7% AlN 13.0% 10.8% 8.4% 5.5% [Table 47] Table 47 NiAu_pAlGaN contact 45 60 75 90 Au reflective film 16.5% 14.4% 11.9% 8.0% Inorganic coating film 23.6% 22.8% 21.0% 14.8% Al coating film 19.7% 18.1% 15.7% 10.7% AlN 13.0% 10.8% 8.4% 5.5%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 與第5實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為150 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(22.8%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖11C及表48。(Calculation of LEE using FDTD method) As in the fifth embodiment, the formation position of 2D-PhC is the maximum LEE growth coefficient when G=69 nm. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 150 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (22.8%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 11C and Table 48.

[表48] 表48 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.27 1.39 次數m=3 1.36 1.46 LEE R/a=0.3 R/a=0.35 次數m=2 29% 31.7% 次數m=3 31% 33.3% [Table 48] Table 48 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.27 1.39 Times m=3 1.36 1.46 LEE R/a=0.3 R/a=0.35 Times m=2 29% 31.7% Times m=3 31% 33.3%

(第12實施形態) 作為本發明之第12實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖12A(a-1)、(a-2)。(12th embodiment) As a deep ultraviolet LED device of the twelfth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 12A(a-1), (a-2) ).

本實施形態如圖12A(a-1)所示,除了石英半球透鏡22a以外,為與第6實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第6實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。As shown in FIG. 12A(a-1), this embodiment has the same structure as the sixth embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the sixth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表49表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表50表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第4實施形態中之圖4B、圖4C大致相同,故而並不特別圖示。Therefore, Table 49 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 50 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 4B and FIG. 4C in the fourth embodiment, so they are not shown in particular.

[表49] 表49 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 石英窗 200 μm 1.494 100% - - 石英半球透鏡(半徑1 mm) 1 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - Rh反射膜 - - - 70% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 49] Table 49 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Quartz window 200 μm 1.494 100% - - Quartz hemispherical lens (radius 1 mm) 1 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - Rh reflective film - - - 70% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表50] 表50 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Rh反射電極 230 nm - 0.797 2.734 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 石英窗 100 nm - 1.494 - - - [Table 50] Table 50 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Rh reflective electrode 230 nm - 0.797 2.734 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Quartz window 100 nm - 1.494 - - -

(利用光線追蹤法之LEE之計算) 與第6實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al反射膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖12B及表51。(Calculation of LEE using ray tracing method) As in the sixth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al reflector, Au reflector, and non-reflective film was analyzed, and the results are shown in FIG. 12B and Table 51.

[表51] 表51 Rh_pAlGaN 接觸 45 60 75 90 Au反射膜 18.0% 15.9% 13.4% 9.4% 無機塗料被覆膜 25.2% 24.3% 22.5% 16.4% Al塗佈膜 21.3% 19.6% 17.2% 12.2% 無反射膜 14.5% 12.3% 9.9% 6.9% [Table 51] Table 51 Rh_pAlGaN contact 45 60 75 90 Au reflective film 18.0% 15.9% 13.4% 9.4% Inorganic coating film 25.2% 24.3% 22.5% 16.4% Al coating film 21.3% 19.6% 17.2% 12.2% Non-reflective film 14.5% 12.3% 9.9% 6.9%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,於45度〜60度時表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, a higher LEE is shown at 45 degrees to 60 degrees.

(利用FDTD法之LEE之計算) 與第6實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=2)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度60度之LEE(24.3%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖12C及表52。(Calculation of LEE using FDTD method) As in the sixth embodiment, the formation position of 2D-PhC is at G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth at G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (number of times m=2) and R/a=0.3 (number of times m) in Table 9 =3), R/a=0.35 (order m=2), R/a=0.35 (order m=3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the NC-RC reflector 17 obtained by the ray tracing method and the LEE (24.3%) at an angle of 60 degrees to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 12C and Table 52.

[表52] 表52 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.16 1.25 次數m=3 1.11 1.17 LEE R/a=0.3 R/a=0.35 次數m=2 28.2% 30.4% 次數m=3 27.0% 28.4% [Table 52] Table 52 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.16 1.25 Times m=3 1.11 1.17 LEE R/a=0.3 R/a=0.35 Times m=2 28.2% 30.4% Times m=3 27.0% 28.4%

(第13實施形態) 作為本發明之第13實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖13A(a-1)、(a-2)。(13th embodiment) As the deep ultraviolet LED device of the thirteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device whose design wavelength λ is 280 nm is shown in FIGS. 13A(a-1), (a-2) ).

本實施形態如圖13A(a-1)所示,除了石英半球透鏡22a以外,為與第7實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第7實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。As shown in FIG. 13A(a-1), this embodiment has the same structure as the seventh embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the seventh embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表53表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表54表示深紫外LED裝置之FDTD法之計算模型之各參數。反射型二維光子結晶之FDTD法之計算模型之各參數與表3相同。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第7實施形態中之圖7B、圖7C大致相同,故而並不特別圖示。Therefore, Table 53 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 54 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the calculation model of the reflective two-dimensional photonic crystal FDTD method are the same as Table 3. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 7B and FIG. 7C in the seventh embodiment, so they are not shown in particular.

[表53] 表53 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度 (θ) 透明樹脂膜 200 μm 1.353 100% - - 石英半球透鏡 半徑:1.8 mm〜2.4 mm 1.8 mm〜2.4 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - p型GaN接觸層 200 nm 2.618 2.3%/200 nm - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 53] Table 53 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Quartz hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - p-type GaN contact layer 200 nm 2.618 2.3%/200 nm - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表54] 表54 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型GaN接觸層 150 nm - 2.618 0.42 1.0 6.7 p型AlGaN層 32 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 54] Table 54 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type GaN contact layer 150 nm - 2.618 0.42 1.0 6.7 p-type AlGaN layer 32 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 於圖7B之光線追蹤法之計算模型中,將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖13B及表55。(Calculation of LEE using ray tracing method) In the calculation model of the ray tracing method in Fig. 7B, the angle θ of the inner side wall of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, so that the inner bottom surface and the inner side walls are NC-RC reflective materials 17 and calculate the LEE of the deep ultraviolet LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 13B and Table 55.

[表55] 表55 pGaN 接觸 45 60 75 90 Au反射膜 9.5% 9.5% 9.4% 9.3% 無機塗料被覆膜 9.8% 9.8% 9.7% 9.5% Al塗佈膜 9.7% 9.6% 9.5% 9.4% 無反射膜 9.3% 9.3% 9.3% 9.3% [Table 55] Table 55 pGaN contact 45 60 75 90 Au reflective film 9.5% 9.5% 9.4% 9.3% Inorganic coating film 9.8% 9.8% 9.7% 9.5% Al coating film 9.7% 9.6% 9.5% 9.4% Non-reflective film 9.3% 9.3% 9.3% 9.3%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表示稍微高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a slightly higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 於圖7C之計算模型中,根據光線追蹤法之結果將NC-RC反射材17之角度設為75度。又,將作為2D-PhC之形成位置之G=61 nm時之深度150 nm固定。然後,利用自表3選擇之R/a=0.3及次數m=3、R/a=0.3及次數m=4、R/a=0.4及次數m=3、R/a=0.4及次數m=4之2DPhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(9.7%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖13C及表56。(Calculation of LEE using FDTD method) In the calculation model of FIG. 7C, the angle of the NC-RC reflector 17 is set to 75 degrees according to the result of the ray tracing method. In addition, the depth of 150 nm when G=61 nm, which is the formation position of 2D-PhC, was fixed. Then, use the selected R/a=0.3 and the number of times m=3, R/a=0.3 and the number of times m=4, R/a=0.4 and the number of times m=3, R/a=0.4 and the number of times m= 4 of 2DPhC calculation model to analyze LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (9.7%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 13C and Table 56.

[表56] 表56 LEE增長係數 R/a=0.3 R/a=0.4 次數m=3 1.88 2.51 次數m=4 2.15 2.04 LEE R/a=0.3 R/a=0.4 次數m=3 18.2% 24.3% 次數m=4 20.9% 19.8% [Table 56] Table 56 LEE growth factor R/a=0.3 R/a=0.4 Times m=3 1.88 2.51 Times m=4 2.15 2.04 LEE R/a=0.3 R/a=0.4 Times m=3 18.2% 24.3% Times m=4 20.9% 19.8%

(第14實施形態) 作為本發明之第14實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖14A(a-1)、(a-2)。(14th embodiment) As the deep ultraviolet LED device of the fourteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device with a design wavelength λ of 280 nm is shown in FIGS. 14A(a-1), (a-2) ).

本實施形態如圖14A(a-1)所示,除了石英半球透鏡22a以外,為與第8實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第8實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。This embodiment, as shown in Fig. 14A(a-1), has the same structure as the eighth embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the eighth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表57表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表58表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第7實施形態中之圖7B、圖7C大致相同,故而並不特別圖示。Therefore, Table 57 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 58 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 7B and FIG. 7C in the seventh embodiment, so they are not shown in particular.

[表57] 表57 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 透明樹脂膜 200 μm 1.353 100% - - 石英半球透鏡 半徑:1.8 mm〜2.4 mm 1.8 mm〜2.4 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - NiAu反射膜 - - - 30% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度~90度 [Table 57] Table 57 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Quartz hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - NiAu reflective film - - - 30% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45°~90°

[表58] 表58 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Au反射電極 200 nm - 1.678 1.873 1.0 1.0 Ni層 30 nm - 1.681 2.067 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 58] Table 58 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Au reflective electrode 200 nm - 1.678 1.873 1.0 1.0 Ni layer 30 nm - 1.681 2.067 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 與第8實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖14B及表59。(Calculation of LEE using ray tracing method) As in the eighth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and the inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflecting film, and a non-reflecting film was analyzed, and the results are shown in FIG. 14B and Table 59.

[表59] 表59 NiAu_pAlGaN 接觸 45 60 75 90 Au反射膜 21.8% 21.3% 20.9% 20.0% 無機塗料被覆膜 25.6% 25.0% 24.6% 22.7% Al塗佈膜 23.5% 23.0% 22.5% 21.2% 無反射膜 20.0% 19.7% 19.3% 18.9% [Table 59] Table 59 NiAu_pAlGaN contact 45 60 75 90 Au reflective film 21.8% 21.3% 20.9% 20.0% Inorganic coating film 25.6% 25.0% 24.6% 22.7% Al coating film 23.5% 23.0% 22.5% 21.2% Non-reflective film 20.0% 19.7% 19.3% 18.9%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 與第8實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(24.6%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖14C及表60。(Calculation of LEE using FDTD method) As in the eighth embodiment, the formation position of 2D-PhC is at G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (24.6%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model. The results are shown in Fig. 14C and Table 60.

[表60] 表60 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.42 1.63 次數m=3 1.31 1.47 LEE R/a=0.3 R/a=0.35 次數m=2 34.9% 40.1% 次數m=3 32.2% 36.2% [Table 60] Table 60 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.42 1.63 Times m=3 1.31 1.47 LEE R/a=0.3 R/a=0.35 Times m=2 34.9% 40.1% Times m=3 32.2% 36.2%

(第15實施形態) 作為本發明之第15實施形態之深紫外LED裝置,將使設計波長λ為280 nm之AlGaN系深紫外LED裝置之構造(剖視圖與俯視圖)表示於圖15A(a-1)、(a-2)。(Fifteenth embodiment) As the deep ultraviolet LED device of the fifteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of the AlGaN-based deep ultraviolet LED device whose design wavelength λ is 280 nm is shown in FIGS. 15A(a-1), (a-2) ).

本實施形態如圖15A(a-1)所示,除了石英半球透鏡22a以外,為與第9實施形態相同之構造。又,二維光子結晶之反射效果及最佳化之方法亦與第9實施形態相同。因此,為了求出光子結晶之反射效果及半球透鏡效果之LEE,而實施FDTD法與光線追蹤法之交叉模擬。As shown in FIG. 15A(a-1), this embodiment has the same structure as the ninth embodiment except for the quartz hemispherical lens 22a. In addition, the reflection effect of the two-dimensional photon crystal and the optimization method are also the same as in the ninth embodiment. Therefore, in order to obtain the LEE of the reflection effect of the photon crystal and the hemispherical lens effect, a cross simulation of the FDTD method and the ray tracing method was implemented.

因此,表61表示深紫外LED裝置之光線追蹤法之計算模型之各參數,表62表示深紫外LED裝置之FDTD法之計算模型之各參數。再者,反射型二維光子結晶之FDTD法之計算模型之參數引用表9。又,關於光線追蹤法之計算模型、FDTD法之計算模型,由於與第7實施形態中之圖7B、圖7C大致相同,故而並不特別圖示。Therefore, Table 61 shows the parameters of the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 62 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. In addition, the parameters of the calculation model of the FDTD method of the reflective two-dimensional photon crystal refer to Table 9. In addition, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIG. 7B and FIG. 7C in the seventh embodiment, so they are not shown in particular.

[表61] 表61 深紫外LED元件構成 元件尺寸:1.2 mm□ 厚度 折射率 透過率 反射率 側壁角度(θ) 透明樹脂膜 200 μm 1.353 100% - - 石英半球透鏡半徑:1.8 mm〜2.4 mm 1.8 mm〜2.4 mm 1.494 100% - - 藍寶石基板 430 μm 1.82 100% - - AlN緩衝層 2 μm 2.285 100% - - AlGaN層 2 μm 2.579 100% - - Rh反射膜 - - - 70% - 無機塗料被覆膜 - - - 91% - Au反射膜 - - - 38% - Al塗佈膜 - - - 65% - AlN封裝 - - - - 45度〜90度 [Table 61] Table 61 Deep ultraviolet LED component component size: 1.2 mm□ thickness Refractive index Transmittance Reflectivity Side wall angle (θ) Transparent resin film 200 μm 1.353 100% - - Quartz hemispherical lens radius: 1.8 mm~2.4 mm 1.8 mm~2.4 mm 1.494 100% - - Sapphire substrate 430 μm 1.82 100% - - AlN buffer layer 2 μm 2.285 100% - - AlGaN layer 2 μm 2.579 100% - - Rh reflective film - - - 70% - Inorganic coating film - - - 91% - Au reflective film - - - 38% - Al coating film - - - 65% - AlN package - - - - 45 degrees~90 degrees

[表62] 表62 深紫外LED元件構成 元件尺寸:3,003 nm□ 膜厚(nm) Al組成 (%) 折射率 消光 係數 相對磁導率 瞬間相對介電常數 無機塗料被覆膜 »200 nm - 1.8 0.06 1.0 3.3 Rh反射電極 230 nm - 0.797 2.734 1.0 1.0 p型AlGaN層 100 nm 60% 2.622 - - - 多重量子障壁層:2對 塊 穀 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 - - - - - - 多重量子井層:3對 井 障壁 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 - - - - - - n型AlGaN層 300 nm 65% 2.579 - - - AlN緩衝層 400 nm 100% 2.285 - - - 藍寶石基板 1,300 nm - 1.82 - - - 石英半球透鏡 3,350 nm - 1.494 - - - 透明樹脂膜 100 nm - 1.353 - - - [Table 62] Table 62 Deep ultraviolet LED component component size: 3,003 nm□ Film thickness (nm) Al composition (%) Refractive index Extinction coefficient Relative permeability Instant relative permittivity Inorganic coating film »200 nm - 1.8 0.06 1.0 3.3 Rh reflective electrode 230 nm - 0.797 2.734 1.0 1.0 p-type AlGaN layer 100 nm 60% 2.622 - - - Multiple quantum barrier layers: 2 pairs of block valleys 11 nm/6 nm 6 nm/6 nm 80% 65% 2.444 2.579 -- -- -- Multiple quantum well layers: 3 pairs of well barriers 2 nm/2 nm/2 nm 10 nm/10 nm/10 nm 50% 65% 2.779 2.579 -- -- -- n-type AlGaN layer 300 nm 65% 2.579 - - - AlN buffer layer 400 nm 100% 2.285 - - - Sapphire substrate 1,300 nm - 1.82 - - - Quartz dome lens 3,350 nm - 1.494 - - - Transparent resin film 100 nm - 1.353 - - -

(利用光線追蹤法之LEE之計算) 與第9實施形態相同地將AlN封裝之內側側壁角度θ設為變數而變化為45度、60度、75度、90度,使內側底面及內側側壁為NC-RC反射材17而計算深紫外LED裝置之LEE。又,作為NC-RC反射材17(無機塗料被覆)之比較,對Al塗佈膜、Au反射膜、無反射膜之情形時之LEE進行解析,將其結果表示於圖15B及表63。(Calculation of LEE using ray tracing method) As in the ninth embodiment, the inner side wall angle θ of the AlN package is set as a variable and changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees, and the inner bottom surface and inner side wall are NC-RC reflectors 17 to calculate the deep ultraviolet LEE of LED device. In addition, as a comparison of NC-RC reflector 17 (inorganic paint coating), LEE in the case of Al coating film, Au reflector film, and non-reflective film was analyzed, and the results are shown in FIG. 15B and Table 63.

[表63] 表63 Rh_pAlGaN 接觸 45 60 75 90 Au反射膜 23.4% 22.9% 22.5% 21.6% 無機塗料被覆膜 27.2% 26.7% 26.2% 24.3% Al塗佈膜 25.1% 24.6% 24.1% 22.8% 無反射膜 21.6% 21.3% 20.9% 20.6% [Table 63] Table 63 Rh_pAlGaN contact 45 60 75 90 Au reflective film 23.4% 22.9% 22.5% 21.6% Inorganic coating film 27.2% 26.7% 26.2% 24.3% Al coating film 25.1% 24.6% 24.1% 22.8% Non-reflective film 21.6% 21.3% 20.9% 20.6%

根據上述結果,具有NC-RC反射材17之深紫外LED裝置之LEE與其他情形時相比表現出較高之LEE。又,關於內側側壁角度,不怎麼有角度依存性但於45度〜75度中表現出較高之LEE。According to the above results, the LEE of the deep ultraviolet LED device with the NC-RC reflector 17 shows a higher LEE compared to other cases. In addition, regarding the angle of the inner side wall, there is not much angular dependence but a higher LEE is shown in the range of 45 degrees to 75 degrees.

(利用FDTD法之LEE之計算) 與第9實施形態相同地,2D-PhC之形成位置係於G=69 nm時LEE增長係數成為最大。由於作為2D-PhC之形成位置之G=69 nm時之深度為60 nm,故而將該深度固定,利用表9之R/a=0.3(次數m=2)、R/a=0.35(次數m=2)、R/a=0.3(次數m=3)、R/a=0.35(次數m=3)之2D-PhC之計算模型來解析LEE增長係數。然後,將上述所獲得之各LEE增長係數乘以利用上述光線追蹤法所獲得之NC-RC反射材17、角度75度之LEE(26.2%)來計算各2D-PhC計算模型之LEE,將其結果表示於圖15C及表64。(Calculation of LEE using FDTD method) As in the ninth embodiment, the formation position of 2D-PhC is at G=69 nm, the LEE growth coefficient becomes the maximum. Since the depth when G=69 nm, which is the formation position of 2D-PhC, is 60 nm, the depth is fixed, and R/a=0.3 (time m=2) and R/a=0.35 (time m = 2), R/a = 0.3 (number of times m = 3), R/a = 0.35 (number of times m = 3) 2D-PhC calculation model to analyze the LEE growth coefficient. Then, multiply the LEE growth coefficients obtained above by the LEE (26.2%) of the NC-RC reflector 17 and angle 75 degrees obtained by the ray tracing method to calculate the LEE of each 2D-PhC calculation model. The results are shown in Figure 15C and Table 64.

[表64] 表64 LEE增長係數 R/a=0.3 R/a=0.35 次數m=2 1.32 1.48 次數m=3 1.08 1.20 LEE R/a=0.3 R/a=0.35 次數m=2 34.6% 38.8% 次數m=3 28.3% 31.4% [Table 64] Table 64 LEE growth factor R/a=0.3 R/a=0.35 Times m=2 1.32 1.48 Times m=3 1.08 1.20 LEE R/a=0.3 R/a=0.35 Times m=2 34.6% 38.8% Times m=3 28.3% 31.4%

作為自第1實施形態至第15實施形態之比較例,使藍寶石基板2之厚度變化為130 um,280 um,430 um,利用光線追蹤法進行解析求出藍寶石基板2之厚度與無PhC之LED之LEE的關係。由於除了藍寶石基板2之厚度以外與上述實施形態中之圖不變,故而並不特別圖示。將結果表示於圖16A〜16C及表65〜69。As a comparative example from the first embodiment to the fifteenth embodiment, the thickness of the sapphire substrate 2 was changed to 130 um, 280 um, and 430 um, and the thickness of the sapphire substrate 2 and the PhC-free LED were analyzed by ray tracing method The relationship between LEE. Except for the thickness of the sapphire substrate 2, it is the same as the figure in the above embodiment, so it is not shown in particular. The results are shown in FIGS. 16A to 16C and Tables 65 to 69.

此處,圖16A係作為比較例表示之使藍寶石基板之厚度變化為130 μm、280 μ、430 μm,利用光線追蹤法進行解析求出藍寶石基板厚度與無PhC之LED之LEE之關係的圖。圖16B係作為比較例表示之使用帶有石英窗之藍寶石透鏡與石英透鏡之情形時之LEE之解析結果。圖16C係作為比較例表示之使用帶有透明樹脂膜之藍寶石透鏡與石英透鏡之情形時之光提取效率的解析結果。Here, FIG. 16A is a diagram showing, as a comparative example, the thickness of the sapphire substrate was changed to 130 μm, 280 μ, and 430 μm, and the relationship between the thickness of the sapphire substrate and the LEE of the PhC-free LED was obtained by analyzing the ray tracing method. Fig. 16B is the analysis result of LEE when a sapphire lens with a quartz window and a quartz lens are used as a comparative example. FIG. 16C is the analysis result of the light extraction efficiency when using a sapphire lens with a transparent resin film and a quartz lens as a comparative example.

[表65] 表65    130 280 430 pGaN 接觸 4.0% 4.5% 4.5% NiAu_pAlGaN 接觸 14.5% 14.8% 14.7% Rh_pAlGaN 接觸 16.2% 16.5% 16.3% [Table 65] Table 65 130 280 430 pGaN contact 4.0% 4.5% 4.5% NiAu_pAlGaN contact 14.5% 14.8% 14.7% Rh_pAlGaN contact 16.2% 16.5% 16.3%

[表66] 表66 Sapphire Lenz 130 280 430 pGaN 接觸 12.1% 11.4% 10.2% NiAu_pAlGaN 接觸 30.2% 28.0% 25.5% Rh_pAlGaN 接觸 31.8% 29.7% 27.0% [Table 66] Table 66 Sapphire Lenz 130 280 430 pGaN contact 12.1% 11.4% 10.2% NiAu_pAlGaN contact 30.2% 28.0% 25.5% Rh_pAlGaN contact 31.8% 29.7% 27.0%

[表67] 表67 Quartz Lenz 130 280 430 pGaN 接觸 8.5% 9.0% 9.0% NiAu_pAlGaN 接觸 22.2% 22.4% 22.8% Rh_pAlGaN 接觸 23.9% 24.0% 24.3% [Table 67] Table 67 Quartz Lenz 130 280 430 pGaN contact 8.5% 9.0% 9.0% NiAu_pAlGaN contact 22.2% 22.4% 22.8% Rh_pAlGaN contact 23.9% 24.0% 24.3%

[表68] 表68 Sapphire Lenz 130 280 430 pGaN 接觸 13.3% 12.6% 11.4% NiAu_pAlGaN 接觸 34.7% 31.0% 27.3% Rh_pAlGaN 接觸 36.4% 32.6% 28.9% [Table 68] Table 68 Sapphire Lenz 130 280 430 pGaN contact 13.3% 12.6% 11.4% NiAu_pAlGaN contact 34.7% 31.0% 27.3% Rh_pAlGaN contact 36.4% 32.6% 28.9%

[表69] 表69 Quartz Lenz 130 280 430 pGaN 接觸 9.3% 9.7% 9.7% NiAu_pAlGaN 接觸 27.5% 25.1% 24.6% Rh_pAlGaN 接觸 25.9% 26.8% 26.2% [Table 69] Table 69 Quartz Lenz 130 280 430 pGaN contact 9.3% 9.7% 9.7% NiAu_pAlGaN contact 27.5% 25.1% 24.6% Rh_pAlGaN contact 25.9% 26.8% 26.2%

又,將第1〜第15實施形態中之LEE之增長係數及LEE最大值(藍寶石基板2之厚度全部為430 um且有PhC)與上述比較例之無PhC之LED與有PhC之LED之LEE最大值彙總於表70。再者,上述比較例之有PhC之LED之LEE最大值=上述比較例之無PhC之LED之LEE最大值×LEE增長係數最大值。In addition, the LEE growth coefficient and the maximum value of LEE in the first to fifteenth embodiments (the thickness of the sapphire substrate 2 is all 430 um and PhC) is compared with the LEE of the LED without PhC and the LED with PhC in the above comparative example The maximum values are summarized in Table 70. Furthermore, the maximum LEE of the LED with PhC in the above comparative example = the maximum LEE of the LED without PhC in the above comparative example x the maximum LEE growth coefficient.

[表70] 表70 實施形態 半球透鏡材質 P型接觸層 P型電極 LEE增長係數最大值 LEE(%)最大值 比較例_無PhC之LEE(%)最大值 比較例_有PhC之LEE(%)最大值 藍寶石基板厚度 第1 - GaN NiAu 2.68 12.1% 4.5% 12.1% 430 μm 第2 - AlGaN NiAu 1.45 21.3% 14.8% 21.5% 280 μm 第3 - AlGaN Rh 1.28 20.9% 16.5% 21.1% 280 μm 第4 藍寶石 GaN NiAu 2.7 27.5% 12.1% 32.7% 130 μm 第5 藍寶石 AlGaN NiAu 1.37 34.9% 30.2% 41.4% 130 μm 第6 藍寶石 AlGaN Rh 1.25 33.8% 31.8% 39.8% 130 μm 第7 藍寶石 GaN NiAu 2.74 31.2% 13.3% 36.4% 130 μm 第8 藍寶石 AlGaN NiAu 1.48 40.4% 34.7% 51.4% 130 μm 第9 藍寶石 AlGaN Rh 1.33 38.4% 36.4% 48.4% 130 μm 第10 石英 GaN NiAu 2.82 25.4% 9.0% 25.4% 430 μm 第11 石英 AlGaN NiAu 1.46 33.3% 22.8% 33.3% 430 μm 第12 石英 AlGaN Rh 1.25 30.4% 24.3% 30.4% 430 μm 第13 石英 GaN NiAu 2.51 24.3% 9.7% 24.3% 280 μm 第14 石英 AlGaN NiAu 1.63 40.1% 27.5% 44.8% 130 μm 第15 石英 AlGaN Rh 1.48 38.8% 26.8% 40.7% 280 μm [Table 70] Table 70 Implementation form Hemispherical lens material P-type contact layer P-type electrode Maximum LEE growth coefficient LEE (%) maximum Comparative example_Maximum value of LEE (%) without PhC Comparative example_Maximum value of LEE(%) with PhC Sapphire substrate thickness No. 1 - GaN NiAu 2.68 12.1% 4.5% 12.1% 430 μm 2nd - AlGaN NiAu 1.45 21.3% 14.8% 21.5% 280 μm 3rd - AlGaN Rh 1.28 20.9% 16.5% 21.1% 280 μm 4th sapphire GaN NiAu 2.7 27.5% 12.1% 32.7% 130 μm number 5 sapphire AlGaN NiAu 1.37 34.9% 30.2% 41.4% 130 μm number 6 sapphire AlGaN Rh 1.25 33.8% 31.8% 39.8% 130 μm 7th sapphire GaN NiAu 2.74 31.2% 13.3% 36.4% 130 μm number 8 sapphire AlGaN NiAu 1.48 40.4% 34.7% 51.4% 130 μm 9th sapphire AlGaN Rh 1.33 38.4% 36.4% 48.4% 130 μm the 10th quartz GaN NiAu 2.82 25.4% 9.0% 25.4% 430 μm number 11 quartz AlGaN NiAu 1.46 33.3% 22.8% 33.3% 430 μm 12th quartz AlGaN Rh 1.25 30.4% 24.3% 30.4% 430 μm 13th quartz GaN NiAu 2.51 24.3% 9.7% 24.3% 280 μm 14th quartz AlGaN NiAu 1.63 40.1% 27.5% 44.8% 130 μm 15th quartz AlGaN Rh 1.48 38.8% 26.8% 40.7% 280 μm

將表70之結果進行比較可確認,p型GaN接觸LED中,藉由反射型PhC之反射效果使得LEE因增長係數成為約2.8倍。又,藉由藍寶石半球透鏡接合進而使LEE之增長係數成為2.7倍,從而,由反射型PhC及半球透鏡接合所獲得之集成光子效果最大為7倍以上。Comparing the results in Table 70, it can be confirmed that in the p-type GaN contact LED, the LEE growth factor becomes approximately 2.8 times due to the reflection effect of the reflective PhC. In addition, the sapphire hemispherical lens is joined to increase the growth factor of LEE by 2.7 times, so that the integrated photon effect obtained by the reflective PhC and hemispherical lens is 7 times or more at the maximum.

確認到,p型AlGaN接觸LED中,藉由反射型PhC之反射效果使得LEE之增長係數成為1.28〜1.45倍。又,藉由藍寶石半球透鏡接合進而使LEE之增長係數成為2.0倍,從而,由反射型PhC及半球透鏡接合所獲得之集成光子效果最大為不到3倍。再者,此時之LEE最大為51.4%。 於一部分藍寶石半球透鏡接合之情形時,藉由使藍寶石基板2之厚度變薄而使得LEE因增長係數增大1.2倍,但並不足以補償對藍寶石基板2之背面進行研削研磨之成本增加。It is confirmed that in the p-type AlGaN contact LED, the growth factor of LEE becomes 1.28~1.45 times due to the reflection effect of the reflective PhC. In addition, the sapphire hemispherical lens is joined to increase the growth factor of LEE to 2.0 times, so that the integrated photonic effect obtained by the reflective PhC and hemispherical lens joining is less than 3 times at most. Furthermore, the maximum LEE at this time is 51.4%. When a part of the sapphire hemispherical lens is bonded, the LEE growth factor is increased by 1.2 times by making the thickness of the sapphire substrate 2 thinner, but this is not enough to compensate for the increase in the cost of grinding the back of the sapphire substrate 2.

(第16實施形態) 關於深紫外LED之製造方法,如圖1A所示,係形成使設計波長為λ(200 nm〜355 nm)、以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型GaN接觸層8、p型AlGaN層7、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。(16th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 1A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side contains a reflective electrode layer (Au) 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron barrier layer) 6, a multiple quantum well layer 5 , Steps of the laminated structure of n-type AlGaN layer 4, AlN buffer layer 3, and sapphire substrate 2.

於該步驟中,具有如下步驟: 1)形成反射型二維光子結晶週期構造100,該反射型二維光子結晶週期構造100具有設置於金屬層9與p型GaN接觸層8之厚度方向之範圍內且不超過p型GaN接觸層8與p型AlGaN層7之界面之位置之複數個空孔101(h); 2)準備用以形成反射型二維光子結晶週期構造100之模具; 3)於p型GaN接觸層8之上形成抗蝕層,利用奈米壓印法轉印模具之構造; 4)將轉印有上述構造之抗蝕層作為遮罩對p型GaN接觸層8進行蝕刻而形成二維光子結晶週期構造; 5)形成反射型二維光子結晶100,然後利用傾斜蒸鍍法依次形成金屬層9與反射電極層10; 6)切割藍寶石基板2後製成深紫外LED元件; 7)準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝; 8)於上述封裝15之內側底面與內側側壁被覆相對於設計波長λ具有91%以上之反射率之NC-RC反射材17; 9)於上述封裝15裝設深紫外LED元件;及 10)將上述封裝15之最表面利用石英窗密閉。In this step, there are the following steps: 1) Forming a reflective two-dimensional photonic crystal periodic structure 100, which has a range of the thickness direction of the metal layer 9 and the p-type GaN contact layer 8 and does not exceed the p-type GaN contact layer A plurality of holes 101(h) at the location of the interface between 8 and the p-type AlGaN layer 7; 2) Prepare a mold for forming the reflective two-dimensional photonic crystal periodic structure 100; 3) A resist layer is formed on the p-type GaN contact layer 8, and the structure of the mold is transferred by the nanoimprint method; 4) The p-type GaN contact layer 8 is etched using the resist layer with the above structure transferred as a mask to form a two-dimensional photonic crystal periodic structure; 5) Forming the reflective two-dimensional photonic crystal 100, and then sequentially forming the metal layer 9 and the reflective electrode layer 10 by the oblique evaporation method; 6) After cutting the sapphire substrate 2, deep ultraviolet LED components are made; 7) Prepare a surface mount aluminum nitride ceramic package with an inner side wall angle of 45 degrees to 60 degrees; 8) The inner bottom surface and inner side wall of the above-mentioned package 15 are coated with NC-RC reflector 17 with a reflectance of 91% or more relative to the design wavelength λ; 9) Install deep ultraviolet LED components in the above package 15; and 10) Seal the outermost surface of the package 15 with a quartz window.

奈米壓印為將模具之光子結晶圖案一起轉印至大面積被加工面之技術。又,藉由利用樹脂鑄模,從而即便被加工面翹曲數百微米左右,亦可轉印。進而,若使用兩層抗蝕劑則可獲得流動性與相對於被加工體之蝕刻選擇比,故而能夠高精度地加工光子結晶。Nanoimprinting is a technology that transfers the photonic crystal pattern of the mold to a large area to be processed. In addition, by using a resin mold, transfer can be performed even if the processed surface is warped by about several hundred microns. Furthermore, if a two-layer resist is used, the fluidity and the etching selection ratio with respect to the object to be processed can be obtained, so the photonic crystal can be processed with high precision.

(第17實施形態) 關於深紫外LED之製造方法,如圖2A所示,係形成使設計波長為λ(200 nm〜355 nm)、以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。(17th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 2A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Au) 10, the metal layer (Ni) 9, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, and the n-type AlGaN layer 4 , AlN buffer layer 3, and the step of the laminated structure of the sapphire substrate 2.

於該步驟中,與第16實施形態之不同點在於,將p型GaN接觸層替換為p型AlGaN接觸層,以下僅具體地表示與第16實施形態之不同點。 1)於形成二維光子結晶週期構造100之步驟中,於金屬層9與p型AlGaN接觸層8a之厚度方向之範圍內,且不超過p型AlGaN接觸層8a與多重量子障壁層(或電子阻擋層)6之界面之位置設置複數個空孔101(h)。 於第16實施形態中所記載之2)至10)之步驟中,除了將p型GaN接觸層置換為p型AlGaN接觸層以外,與第16實施形態相同。In this step, the difference from the sixteenth embodiment is that the p-type GaN contact layer is replaced with a p-type AlGaN contact layer, and only the differences from the sixteenth embodiment are specifically shown below. 1) In the step of forming the two-dimensional photonic crystal periodic structure 100, within the thickness direction of the metal layer 9 and the p-type AlGaN contact layer 8a, and not exceed the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or electronic The position of the interface of the barrier layer) 6 is provided with a plurality of holes 101 (h). In the steps 2) to 10) described in the sixteenth embodiment, the p-type GaN contact layer is replaced with a p-type AlGaN contact layer, which is the same as the sixteenth embodiment.

(第18實施形態) 關於深紫外LED之製造方法,如圖3A所示,係形成使設計波長為λ(200 nm〜355 nm)、以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Rh)16、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。(18th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 3A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Rh) 16, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, the n-type AlGaN layer 4, the AlN buffer layer 3, and The step of the laminated structure of the sapphire substrate 2.

於該步驟中,與第17實施形態之不同點僅在於,於本構造中無金屬層(Ni)9,且將反射電極層(Au)10替換為反射電極層(Rh)16。 因此,可藉由將第17實施形態中所記載之1)至10)之步驟之反射電極(Au)及金屬層(Ni)9置換為反射電極(Rh)16而進行說明。In this step, the only difference from the seventeenth embodiment is that there is no metal layer (Ni) 9 in this structure, and the reflective electrode layer (Au) 10 is replaced with a reflective electrode layer (Rh) 16. Therefore, it can be explained by replacing the reflective electrode (Au) and the metal layer (Ni) 9 of the steps 1) to 10) described in the seventeenth embodiment with the reflective electrode (Rh) 16.

(第19實施形態) 關於深紫外LED之製造方法,如圖4A所示,係形成使設計波長為λ(200 nm〜355 nm)、以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型GaN接觸層8、p型AlGaN層7、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(19th embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 4A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side contains a reflective electrode layer (Au) 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron barrier layer) 6, a multiple quantum well layer 5 , Steps of the laminated structure of n-type AlGaN layer 4, AlN buffer layer 3, and sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,製成上述積層構造體及LED元件之步驟與第16實施形態之1)至6)中所記載之步驟相同。上述步驟6)之LED元件製成後,經過以下所記載之接合藍寶石半球透鏡20a之步驟,藍寶石半球透鏡20a接合後,再次具有第16實施形態之7)至10)中所記載之步驟相同之步驟。 具有: 1)與第16實施形態之1)之步驟相同, 2)與第16實施形態之2)之步驟相同, 3)與第16實施形態之3)之步驟相同, 4)與第16實施形態之4)之步驟相同, 5)與第16實施形態之5)之步驟相同, 6)與第16實施形態之6)之步驟相同, 7)準備具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟, 8)使LED元件基板背面及藍寶石半球透鏡20a之背面平坦化之步驟, 9)利用離子束或大氣壓電漿而使藍寶石半球透鏡20a之背面與LED元件基板背面表面活化之步驟, 10)將經表面活化處理之藍寶石半球透鏡20a之背面與LED元件基板背面接合之步驟, 11)與第16實施形態之7)之步驟相同, 12)與第16實施形態之8)之步驟相同, 13)與第16實施形態之9)之步驟相同, 14)與第16實施形態之10)之步驟相同。 又,奈米壓印、樹脂鑄模、兩層抗蝕劑之效用亦與第16實施形態相同。In this step, the steps for producing the above-mentioned laminated structure and LED elements are the same as the steps described in 1) to 6) of the 16th embodiment. After the LED element of the above step 6) is manufactured, the steps described below are used to join the sapphire hemispherical lens 20a. After the sapphire hemispherical lens 20a is joined, the steps described in 7) to 10) of the 16th embodiment are the same step. have: 1) The same procedure as 1) of the 16th embodiment, 2) The same procedure as 2) of the 16th embodiment, 3) The same procedure as 3) of the 16th embodiment, 4) The same procedure as 4) of the 16th embodiment, 5) Same procedure as 5) of the 16th embodiment, 6) The same procedure as 6) of the 16th embodiment, 7) The step of preparing a sapphire hemispherical lens 20a with a radius greater than the circumscribed circle of the LED element substrate, 8) The step of flattening the back surface of the LED element substrate and the back surface of the sapphire hemispherical lens 20a, 9) The step of activating the back surface of the sapphire hemispherical lens 20a and the back surface of the LED element substrate by using ion beam or atmospheric piezoelectric slurry, 10) The step of bonding the back surface of the surface-activated sapphire hemispherical lens 20a to the back surface of the LED element substrate, 11) The same procedure as 7) of the 16th embodiment, 12) The same procedure as 8) of the 16th embodiment, 13) The same procedure as 9) of the 16th embodiment, 14) The procedure is the same as 10) of the 16th embodiment. In addition, the effects of nanoimprint, resin mold, and two-layer resist are also the same as in the sixteenth embodiment.

(第20實施形態) 關於深紫外LED之製造方法,如圖5A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(20th embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 5A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Au) 10, the metal layer (Ni) 9, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, and the n-type AlGaN layer 4 , AlN buffer layer 3, and the step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,製成上述積層構造體及LED元件之步驟與第17實施形態之1)至6)中所記載之步驟相同。上述步驟6)之LED元件製成後,經過第19實施形態中所記載之接合藍寶石半球透鏡20a之步驟7)至10),藍寶石半球透鏡20a接合後,再次具有第17實施形態中所記載之7)至10)中所記載之步驟相同之步驟。 具有: 1)與第17實施形態之1)之步驟相同, 2)與第17實施形態之2)之步驟相同, 3)與第17實施形態之3)之步驟相同, 4)與第17實施形態之4)之步驟相同, 5)與第17實施形態之5)之步驟相同, 6)與第17實施形態之6)之步驟相同, 7)與第19實施形態之7)之步驟相同, 8)與第19實施形態之8)之步驟相同, 9)與第19實施形態之9)之步驟相同, 10)與第19實施形態之10)之步驟相同, 11)與第17實施形態之7)之步驟相同, 12)與第17實施形態之8)之步驟相同, 13)與第17實施形態之9)之步驟相同, 14)與第17實施形態之10)之步驟相同。 又,奈米壓印、樹脂鑄模、兩層抗蝕劑之效用亦與第16實施形態相同。In this step, the steps for producing the above-mentioned laminated structure and LED elements are the same as the steps described in 1) to 6) of the seventeenth embodiment. After the LED element of the above step 6) is produced, after the steps 7) to 10) of bonding the sapphire hemispherical lens 20a described in the 19th embodiment, the sapphire hemispherical lens 20a is bonded again to have the same as described in the 17th embodiment The steps described in 7) to 10) are the same. have: 1) The same procedure as 1) of the 17th embodiment, 2) The procedure is the same as 2) of the 17th embodiment, 3) The procedure is the same as 3) of the 17th embodiment, 4) The procedure is the same as 4) of the 17th embodiment, 5) The same procedure as 5) of the 17th embodiment, 6) The same procedure as 6) of the 17th embodiment, 7) The same procedure as 7) of the 19th embodiment, 8) The same procedure as 8) of the 19th embodiment, 9) The same procedure as 9) of the 19th embodiment, 10) The same procedure as 10) of the 19th embodiment, 11) The same procedure as 7) of the 17th embodiment, 12) The same procedure as 8) of the 17th embodiment, 13) The same procedure as 9) of the 17th embodiment, 14) The procedure is the same as 10) of the seventeenth embodiment. In addition, the effects of nanoimprint, resin mold, and two-layer resist are also the same as in the sixteenth embodiment.

(第21實施形態) 關於深紫外LED之製造方法,如圖6A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Rh)16、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(21st embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 6A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Rh) 16, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, the n-type AlGaN layer 4, the AlN buffer layer 3, and The step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第20實施形態之不同點僅在於,於本構造中無金屬層(Ni)9,且將反射電極層(Au)10替換為反射電極層(Rh)16。 因此,由於可藉由將第20實施形態中所記載之1)至14)之步驟之反射電極(Au)及金屬層(Ni)9置換為反射電極(Rh)16而進行說明,故而省略詳細情況。In this step, the only difference from the twentieth embodiment is that there is no metal layer (Ni) 9 in this structure, and the reflective electrode layer (Au) 10 is replaced with a reflective electrode layer (Rh) 16. Therefore, since the reflective electrode (Au) and the metal layer (Ni) 9 of the steps 1) to 14) described in the twentieth embodiment can be described by replacing the reflective electrode (Rh) 16, the details are omitted. Happening.

(第22實施形態) 關於深紫外LED之製造方法,如圖7A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型GaN接觸層8、p型AlGaN層7、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(22nd embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 7A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side contains a reflective electrode layer (Au) 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron barrier layer) 6, a multiple quantum well layer 5 , Steps of the laminated structure of n-type AlGaN layer 4, AlN buffer layer 3, and sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,上述積層構造體與LED元件之製成及於表面安裝型陶瓷封裝15被覆NR-RC反射材17之步驟係與第16實施形態之1)至8)中所記載之步驟相同。上述步驟8)之被覆步驟結束後,如以下所記載,具有接合藍寶石半球透鏡20a,於上述藍寶石半球透鏡20a之表面被覆透明樹脂膜21a之步驟。 具有: 1)與第16實施形態之1)之步驟相同, 2)與第16實施形態之2)之步驟相同, 3)與第16實施形態之3)之步驟相同, 4)與第16實施形態之4)之步驟相同, 5)與第16實施形態之5)之步驟相同, 6)與第16實施形態之6)之步驟相同, 7)與第16實施形態之7)之步驟相同, 8)與第16實施形態之8)之步驟相同, 9)準備具有上述封裝內壁之外接圓以上之半徑之藍寶石半球透鏡20a之步驟, 10)使上述LED元件基板背面及藍寶石半球透鏡20a之背面平坦化之步驟, 11)利用離子束或大氣壓電漿而使藍寶石半球透鏡20a之背面與LED元件基板背面表面活化之步驟, 12)將經上述表面活化處理之藍寶石半球透鏡20a之背面與LED元件基板背面接合之步驟, 13)於上述封裝15裝設藍寶石半球透鏡20a接合LED元件之步驟, 14)將相對於波長λ透明之樹脂膜21a同時被覆密閉藍寶石半球透鏡20a之表面與上述封裝上表面之步驟。 奈米壓印、樹脂鑄模、兩層抗蝕劑之效用與第16實施形態相同。In this step, the steps of making the above-mentioned laminated structure and LED element and coating the surface mount ceramic package 15 with the NR-RC reflector 17 are the same as the steps described in 1) to 8) of the 16th embodiment . After the coating step of step 8) is completed, as described below, there is a step of bonding the sapphire hemispherical lens 20a and coating the surface of the sapphire hemispherical lens 20a with a transparent resin film 21a. have: 1) The same procedure as 1) of the 16th embodiment, 2) The same procedure as 2) of the 16th embodiment, 3) The same procedure as 3) of the 16th embodiment, 4) The same procedure as 4) of the 16th embodiment, 5) Same procedure as 5) of the 16th embodiment, 6) The same procedure as 6) of the 16th embodiment, 7) The same procedure as 7) of the 16th embodiment, 8) The same procedure as 8) of the 16th embodiment, 9) The step of preparing a sapphire hemispherical lens 20a with a radius greater than the outer circle of the inner wall of the package, 10) A step of flattening the back surface of the above-mentioned LED element substrate and the back surface of the sapphire hemispherical lens 20a, 11) The step of activating the back surface of the sapphire hemispherical lens 20a and the back surface of the LED element substrate by using ion beam or atmospheric piezoelectric slurry, 12) The step of bonding the back surface of the sapphire hemispherical lens 20a subjected to the surface activation treatment to the back surface of the LED element substrate, 13) The step of mounting the sapphire hemispherical lens 20a on the above-mentioned package 15 to join the LED element, 14) A step of simultaneously covering the surface of the sealed sapphire hemispherical lens 20a and the upper surface of the package with a resin film 21a that is transparent to the wavelength λ. The effects of nanoimprint, resin mold, and two-layer resist are the same as those of the 16th embodiment.

(第23實施形態) 關於深紫外LED之製造方法,如圖8A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(23rd Embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 8A, a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Au) 10, the metal layer (Ni) 9, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, and the n-type AlGaN layer 4 , AlN buffer layer 3, and the step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,上述積層構造體及LED元件之製成、及於表面安裝型陶瓷封裝15被覆NR-RC反射材17之步驟與第17實施形態之1)至8)中所記載之步驟相同。上述步驟8)之被覆步驟結束後,接合藍寶石半球透鏡20a,於上述藍寶石半球透鏡20a之表面被覆透明樹脂膜21a之步驟與第22實施形態之9)至14)中所記載之步驟相同。因此,省略詳細情況。In this step, the steps of making the above-mentioned laminated structure and LED elements and coating the surface mount ceramic package 15 with the NR-RC reflector 17 are the same as the steps described in 1) to 8) of the 17th embodiment . After the coating step of step 8) is completed, the step of bonding the sapphire hemispherical lens 20a and coating the surface of the sapphire hemispherical lens 20a with the transparent resin film 21a is the same as the steps described in 9) to 14) of the 22nd embodiment. Therefore, the details are omitted.

(第24實施形態) 關於深紫外LED之製造方法,如圖9A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Rh)16、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之藍寶石半球透鏡20a之步驟。(24th embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 9A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm ~ 355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Rh) 16, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, the n-type AlGaN layer 4, the AlN buffer layer 3, and The step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a sapphire hemispherical lens 20a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第23實施形態之不同點僅在於,於本構造中無金屬層(Ni)9,且將反射電極層(Au)10替換為反射電極層(Rh)16。 因此,由於可藉由將第23實施形態中所記載之步驟之反射電極(Au)及金屬層(Ni)9置換為反射電極(Rh)16而進行說明,故而省略詳細情況。In this step, the only difference from the 23rd embodiment is that there is no metal layer (Ni) 9 in this structure, and the reflective electrode layer (Au) 10 is replaced with a reflective electrode layer (Rh) 16. Therefore, since the reflective electrode (Au) and the metal layer (Ni) 9 of the steps described in the 23rd embodiment can be described by replacing the reflective electrode (Rh) 16, the details are omitted.

(第25實施形態) 關於深紫外LED之製造方法,如圖10A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型GaN接觸層8、p型AlGaN層7、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(25th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 10A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side contains a reflective electrode layer (Au) 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron barrier layer) 6, a multiple quantum well layer 5 , Steps of the laminated structure of n-type AlGaN layer 4, AlN buffer layer 3, and sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第19實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第19實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the nineteenth embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a of the procedure described in the nineteenth embodiment with the quartz hemispherical lens 22a, and therefore the details are omitted.

(第26實施形態) 關於深紫外LED之製造方法,如圖11A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(26th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 11A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Au) 10, the metal layer (Ni) 9, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, and the n-type AlGaN layer 4 , AlN buffer layer 3, and the step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第20實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第20實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the twentieth embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a of the procedure described in the twentieth embodiment with the quartz hemispherical lens 22a, and therefore the details are omitted.

(第27實施形態) 關於深紫外LED之製造方法,如圖12A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Rh)16、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(27th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 12A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Rh) 16, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, the n-type AlGaN layer 4, the AlN buffer layer 3, and The step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第21實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第21實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the twenty-first embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a of the procedure described in the twenty-first embodiment with the quartz hemispherical lens 22a, so the details are omitted.

(第28實施形態) 關於深紫外LED之製造方法,如圖13A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型GaN接觸層8、p型AlGaN層7、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(28th embodiment) Regarding the manufacturing method of the deep ultraviolet LED, as shown in FIG. 13A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side contains a reflective electrode layer (Au) 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron barrier layer) 6, a multiple quantum well layer 5 , Steps of the laminated structure of n-type AlGaN layer 4, AlN buffer layer 3, and sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第22實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第22實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the 22nd embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a of the steps described in the 22nd embodiment with the quartz hemispherical lens 22a, so the details are omitted.

(第29實施形態) 關於深紫外LED之製造方法,如圖14A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Au)10、金屬層(Ni)9、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(29th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 14A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Au) 10, the metal layer (Ni) 9, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, and the n-type AlGaN layer 4 , AlN buffer layer 3, and the step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第23實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第23實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the 23rd embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a of the procedure described in the twenty-third embodiment with the quartz hemispherical lens 22a, so the details are omitted.

(第30實施形態) 關於深紫外LED之製造方法,如圖14A所示,係形成使設計波長為λ(200 nm〜355 nm),以藍寶石基板2作為生長基板之積層構造體之步驟,且係形成自與藍寶石基板2相反側依次含有反射電極層(Rh)16、p型AlGaN接觸層8a、多重量子障壁層(或電子阻擋層)6、多重量子井層5、n型AlGaN層4、AlN緩衝層3、及藍寶石基板2之積層構造體之步驟。 進而,具有於藍寶石基板2之背面接合具有LED元件基板外接圓以上之半徑之石英半球透鏡22a之步驟。(30th embodiment) Regarding the manufacturing method of the deep-ultraviolet LED, as shown in FIG. 14A, it is a step of forming a laminated structure with a design wavelength of λ (200 nm~355 nm) and a sapphire substrate 2 as a growth substrate, and is formed from a sapphire substrate 2 The opposite side sequentially contains the reflective electrode layer (Rh) 16, the p-type AlGaN contact layer 8a, the multiple quantum barrier layer (or electron barrier layer) 6, the multiple quantum well layer 5, the n-type AlGaN layer 4, the AlN buffer layer 3, and The step of the laminated structure of the sapphire substrate 2. Furthermore, there is a step of bonding a quartz hemispherical lens 22a having a radius greater than the circumscribed circle of the LED element substrate on the back surface of the sapphire substrate 2.

於該步驟中,與第24實施形態之不同點僅在於,於本構造中將藍寶石半球透鏡20a替換為石英半球透鏡22a。因此,可藉由將第24實施形態中所記載之步驟之藍寶石半球透鏡20a置換為石英半球透鏡22a而進行說明,故而省略詳細情況。In this step, the only difference from the twenty-fourth embodiment is that the sapphire hemispherical lens 20a is replaced with a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a in the procedure described in the twenty-fourth embodiment with the quartz hemispherical lens 22a, and therefore the details are omitted.

(第31實施形態) 於第31實施形態中,作為(第1實施形態)及(第10實施形態)之變化例,表示於氮化鋁陶瓷封裝之內壁蒸鍍Au之形態。(31st embodiment) In the thirty-first embodiment, as a variation of (the first embodiment) and (the tenth embodiment), a mode in which Au is vapor-deposited on the inner wall of an aluminum nitride ceramic package is shown.

本實施形態之目的在於實現低成本、且高LEE之深紫外LED裝置。因此,較無機塗料NC-RC而反射率較差,但是相對廉價地使用之Au被覆膜之效果亦藉由模擬而比較驗證。The purpose of this embodiment is to realize a low-cost, high LEE deep ultraviolet LED device. Therefore, the reflectance is lower than that of the inorganic coating NC-RC, but the effect of the Au coating film, which is used relatively cheaply, is also verified by simulation.

本實施形態之深紫外LED裝置之構造係將(第1實施形態)及(第10實施形態)之構造中無機塗料被覆膜17變更為Au被覆膜18。作為參考,將作為(第10實施形態)之變化例之構造表示於圖17。(第1實施形態)之變化例由於為自圖17將石英半球透鏡22a除外之構造,故而省略圖。The structure of the deep ultraviolet LED device of this embodiment is changed from the inorganic paint coating film 17 to the Au coating film 18 in the structures of the (first embodiment) and (tenth embodiment). For reference, a structure as a modification of (the tenth embodiment) is shown in FIG. 17. The modified example of the (first embodiment) has a structure in which the quartz hemispherical lens 22a is excluded from FIG. 17, so the drawing is omitted.

Au被覆膜18之參數係膜厚200 nm,折射率1.678,消光係數1.873,相對磁導率1.0,瞬間相對介電常數1.0。The parameters of the Au coating film 18 are the film thickness of 200 nm, the refractive index of 1.678, the extinction coefficient of 1.873, the relative permeability of 1.0, and the instantaneous relative permittivity of 1.0.

又,反射型二維光子結晶100係以將多重井層5之井與該反射型二維光子結晶100之最短端面之距離G設為61 nm,次數m=3,R/a為R/a=0.30、0.35、0.40之3個條件確認。再者,該反射型二維光子結晶100以不超過p型GaN接觸層8與p型AlGaN層7之界面,且填埋於p型GaN接觸層8之內部之方式設置。其係考慮,藉由於該反射型二維光子結晶形成後,於電極(Ni電極9及Au反射電極10)形成之前,進行GaN之橫方向之結晶生長,而將二維光子結晶之空孔101(h)殘留於p型GaN接觸層8內,且藉由將空孔101(h)上部被覆,使p型GaN接觸層8與Ni電極9之界面平坦化,而容易進行電極形成製程。In addition, the reflective two-dimensional photonic crystal 100 is based on the distance G between the wells of the multiple well layer 5 and the shortest end face of the reflective two-dimensional photonic crystal 100 as 61 nm, the order m=3, and R/a is R/a =0.30, 0.35, 0.40 3 conditions confirmed. Furthermore, the reflective two-dimensional photonic crystal 100 is arranged in such a way that it does not exceed the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7 and is embedded in the p-type GaN contact layer 8. It is considered that, after the reflective two-dimensional photonic crystal is formed, before the electrodes (Ni electrode 9 and Au reflective electrode 10) are formed, GaN is grown in the lateral direction, and the voids 101 of the two-dimensional photonic crystal (h) It remains in the p-type GaN contact layer 8, and by covering the upper part of the hole 101(h), the interface between the p-type GaN contact layer 8 and the Ni electrode 9 is flattened, and the electrode formation process is easy.

將結果表示於表71及表72。The results are shown in Table 71 and Table 72.

表71係使用(第1實施形態)所示之未接合石英半球透鏡之構造之光線追蹤法之LEE計算結果表4,將表4之結果乘以設置有Au被覆膜之構造之FDTD之LEE增長係數而算出的結果。Table 71 is the LEE calculation result of the ray tracing method using the structure of the unbonded quartz hemispherical lens shown in (the first embodiment). Table 4, multiply the result of Table 4 by the LEE of the FDTD of the structure with the Au coating The result calculated by the growth factor.

又,表72係使用(第10實施形態)所示之接合有石英半球透鏡之構造之光線追蹤法之LEE計算結果表43,將表43之結果乘以設置有Au被覆膜之構造之FDTD之LEE增長係數而算出的結果。In addition, Table 72 is the LEE calculation result table 43 of the ray tracing method using the structure shown in the (10th embodiment) with the quartz hemispherical lens attached, and the result of Table 43 is multiplied by the FDTD of the structure provided with the Au coating. Calculated result of the LEE growth coefficient.

[表71] 表71 LEE增長係數/側壁角度 60° 75° 90° R/a=0.30 1.83 1.86 1.99 R/a=0.35 2.23 2.28 2.45 R/a=0.40 2.66 2.69 2.9 LEE(%)          R/a=0.30 7.3% 7.1% 7.2% R/a=0.35 8.9% 8.7% 8.8% R/a=0.40 10.6% 10.2% 10.4% [Table 71] Table 71 LEE growth factor/side wall angle 60° 75° 90° R/a=0.30 1.83 1.86 1.99 R/a=0.35 2.23 2.28 2.45 R/a=0.40 2.66 2.69 2.9 LEE(%) R/a=0.30 7.3% 7.1% 7.2% R/a=0.35 8.9% 8.7% 8.8% R/a=0.40 10.6% 10.2% 10.4%

[表72] 表72 LEE增長係數/側壁角度 60° 75° 90° R/a=0.30 2.03 2.02 2.09 R/a=0.35 2.49 2.48 2.56 R/a=0.40 2.9 2.86 2.96 LEE(%)          R/a=0.30 14.6% 12.7% 10.2% R/a=0.35 17.9% 15.6% 12.5% R/a=0.40 20.9% 18.0% 14.5% [Table 72] Table 72 LEE growth factor/side wall angle 60° 75° 90° R/a=0.30 2.03 2.02 2.09 R/a=0.35 2.49 2.48 2.56 R/a=0.40 2.9 2.86 2.96 LEE(%) R/a=0.30 14.6% 12.7% 10.2% R/a=0.35 17.9% 15.6% 12.5% R/a=0.40 20.9% 18.0% 14.5%

將上述結果與(第1實施形態)及(第10實施形態)之結果進行比較。The above results are compared with the results of (First Embodiment) and (Tenth Embodiment).

首先,於(第1實施形態)之表4中,Au反射膜之LEE相對於封裝側壁角度60度之情形時4.0%,於上述表71之側壁角度60度之例如二維光子結晶為R/a=0.40之情形時為LEE 10.6%,於二維光子結晶形成後提高2.66倍。又,於與無機塗料被覆膜之比較中,於表6中,相對於R/a=0.3時之LEE 8.9%,於上述表71中為LEE 7.3%,同樣地相對於[表6]之R/a=0.4中為LEE 12.1%,於表71中為LEE 10.6%,雖然不及無機塗料被覆膜,但是相對地獲得接近無機塗料被覆膜之LEE。First, in Table 4 of (First Embodiment), the LEE of the Au reflective film is 4.0% when the angle of the sidewall of the package is 60 degrees, and the two-dimensional photonic crystal of 60 degrees in the above Table 71 is R/ When a=0.40, LEE is 10.6%, which is increased by 2.66 times after the formation of the two-dimensional photonic crystal. In addition, in comparison with the inorganic coating film, in Table 6, relative to LEE 8.9% when R/a = 0.3, in the above-mentioned Table 71, it is LEE 7.3%, and similarly relative to [Table 6] R/a=0.4 is LEE 12.1% and in Table 71 it is LEE 10.6%. Although it is not as good as the inorganic coating film, it is relatively close to the inorganic coating film.

又,於(第10實施形態)之表43中,Au反射膜之LEE相對於封裝側壁角度60度之情形時7.2%,於上述表72之側壁角度60度之例如R/a=0.40中為20.9%,於二維光子結晶形成後提高2.9倍。又,於與無機塗料被覆膜之比較中,於表44中,相對於R/a=0.3之LEE 19%,於上述表72中為LEE 14.6%,同樣地相對於表44之R/a=0.4中為LEE 25.4%,於表72中為LEE 20.9%,雖然仍然不及無機塗料被覆膜,但是獲得接近無機塗料被覆膜之LEE。In addition, in Table 43 of (Tenth Embodiment), the LEE of the Au reflective film is 7.2% when the angle of the side wall of the package is 60 degrees, and the side wall angle of 60 degrees in Table 72 is, for example, R/a=0.40 20.9%, increased by 2.9 times after the formation of two-dimensional photonic crystals. In addition, in comparison with the inorganic coating film, in Table 44, it is 19% of LEE with R/a=0.3, and LEE is 14.6% in Table 72, which is similar to R/a of Table 44 = 0.4 is LEE 25.4%, and in Table 72 it is LEE 20.9%. Although it is still not as good as the inorganic coating film, the LEE close to the inorganic coating film is obtained.

該等之結果表示於本發明中,於氮化鋁陶瓷封裝內壁材料除了無機塗料被覆膜以外使用Au蒸鍍之構造亦可作為選擇項而有效。These results show that in the present invention, in addition to the inorganic paint coating film for the aluminum nitride ceramic package inner wall material, the structure using Au vapor deposition is also effective as an option.

於上述實施形態中,關於圖示之構成等,並不限定於該等,能夠於發揮本發明之效果之範圍內進行適宜變更。另外,只要不脫離本發明之目的之範圍則能夠適宜變更而實施。 又,本發明之各構成要素可任意地取捨選擇,具備取捨選擇之構成之發明亦包含於本發明。 [產業上之可利用性]In the above-mentioned embodiment, the structure of the figure etc. are not limited to these, and can be changed suitably within the range which exhibits the effect of this invention. Moreover, as long as it does not deviate from the range of the objective of this invention, it can change suitably and implement. In addition, the various constituent elements of the present invention can be arbitrarily selected and selected, and inventions having the configuration of the selection options are also included in the present invention. [Industrial availability]

本發明能夠利用於深紫外LED。The present invention can be used in deep ultraviolet LEDs.

1:石英窗 2:藍寶石基板 3:AlN緩衝層 4:n型AlGaN層 5:多重量子井層 6:多重量子障壁層(或電子阻擋層) 7:p型AlGaN層 8:p型GaN接觸層 8a:p型AlGaN接觸層 9:金屬層(Ni、Ni層) 10:反射電極層(Au、Au反射電極層) 15:表面安裝型氮化鋁陶瓷封裝、AlN封裝 15a:AlN封裝內側側壁角度θ 16:Rh反射電極層 17:無機塗料被覆膜(NC-RC反射材) 18:Au被覆膜 20a:藍寶石半球透鏡 21a:透明樹脂膜 22a:石英半球透鏡 100:反射型二維光子結晶 101(h):空孔(柱狀構造體、孔) 本說明書中所引用之所有刊物、專利及專利申請案直接藉由引用而併入本說明書中。1: Quartz window 2: Sapphire substrate 3: AlN buffer layer 4: n-type AlGaN layer 5: Multiple quantum well layer 6: Multiple quantum barrier layer (or electron barrier layer) 7: p-type AlGaN layer 8: p-type GaN contact layer 8a: p-type AlGaN contact layer 9: Metal layer (Ni, Ni layer) 10: Reflective electrode layer (Au, Au reflective electrode layer) 15: Surface mount aluminum nitride ceramic package, AlN package 15a: AlN package inner side wall angle θ 16: Rh reflective electrode layer 17: Inorganic coating film (NC-RC reflective material) 18: Au coating 20a: Sapphire hemispherical lens 21a: Transparent resin film 22a: Quartz hemispherical lens 100: Reflective two-dimensional photonic crystal 101(h): Hole (columnar structure, hole) All publications, patents and patent applications cited in this specification are directly incorporated into this specification by reference.

圖1A係本發明之第1實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖1B係利用平面波展開法求出入射至形成於p型GaN接觸層之二維光子結晶之TE偏振成分中之光子帶構造及R/a與PBG值之關係的圖。 圖1C係第1實施形態之深紫外LED裝置之光線追蹤法中之計算模型。 圖1D係第1實施形態之深紫外LED裝置之FDTD(Finite-Difference Time-Domain,時域有限差分)法中之計算模型。 圖1E係表示使用日本Tungsten股份有限公司製造之無機塗料NC-RC作為滿足上述無機塗料之特性條件之無機塗料被覆於AlN封裝(以下稱為「NC-RC反射材」)之情形時與塗佈鋁塗佈膜之情形時之反射率之波長特性的圖。 圖1F係第1實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖1G係將自第1實施形態之多重量子井層之井至2D-PhC之最短端面為止之距離G設為變數的LEE增長係數解析結果。 圖1H係第1實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖2A係第2實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖2B係利用平面波展開法求出入射至形成於p型AlGaN接觸層之二維光子結晶之TE偏振成分中之光子帶構造及R/a與PBG值之關係的圖。 圖2C係第2實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖2D係將自第2實施形態之多重量子井層之井至2D-PhC之最短端面為止之距離G設為變數的LEE增長係數解析結果。 圖2E係第2實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖3A係第3實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖3B係第3實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖3C係第3實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖4A係第4實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖4B係第4實施形態之深紫外LED裝置之光線追蹤法中之計算模型。 圖4C係第4實施形態之深紫外LED裝置之FDTD法中之計算模型。 圖4D係第4實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖4E係第4實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖5A係第5實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖5B係第5實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖5C係第5實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖6A係第6實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖6B係第6實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖6C係第6實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖7A係第7實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖7B係第7實施形態之深紫外LED裝置之光線追蹤法之計算模型。 圖7C係第7實施形態之深紫外LED裝置之FDTD法之計算模型。 圖7D係第7實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖7E係第7實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖8A係第8實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖8B係第8實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖8C係第8實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖9A係第9實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖9B係第9實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖9C係第9實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖10A係第10實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖10B係第10實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖10C係第10實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖11A係第11實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖11B係第11實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖11C係第11實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖12A係第12實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖12B係第12實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖12C係第12實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖13A係第13實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖13B係第13實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖13C係第13實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖14A係第14實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖14B係第14實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖14C係第14實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖15A係第15實施形態之深紫外LED裝置之剖視圖與俯視圖。 圖15B係第15實施形態之作為無機塗料被覆膜之NC-RC反射材、Al反射膜、Au反射膜、無反射膜之情形時之LEE解析結果。 圖15C係第15實施形態之2D-PhC之計算模型之LEE增長係數解析結果。 圖16A係作為比較例使藍寶石基板之厚度變化為130 um、280 um、430 um,利用光線追蹤法進行解析求出藍寶石基板厚度與無PhC之LED之LEE之關係的圖。 圖16B係使用作為比較例表示之帶有石英窗之藍寶石透鏡與石英透鏡之情形時之LEE的解析結果。 圖16C係使用作為比較例表示之帶有透明樹脂膜之藍寶石透鏡與石英透鏡之情形時之光提取效率的解析結果。 圖17係第31實施形態之深紫外LED裝置之剖視圖與俯視圖。1A is a cross-sectional view and a top view of the deep ultraviolet LED device according to the first embodiment of the present invention. Fig. 1B is a diagram showing the relationship between the R/a and the PBG value of the photon band structure incident on the TE polarization component of the two-dimensional photonic crystal formed on the p-type GaN contact layer using the plane wave expansion method. Fig. 1C is a calculation model in the ray tracing method of the deep ultraviolet LED device of the first embodiment. Fig. 1D is the calculation model in the FDTD (Finite-Difference Time-Domain) method of the deep ultraviolet LED device of the first embodiment. Figure 1E shows the use of the inorganic coating NC-RC manufactured by Tungsten Co., Ltd. of Japan as an inorganic coating that satisfies the characteristics of the above-mentioned inorganic coating and is applied to the AlN package (hereinafter referred to as "NC-RC reflector"). A graph showing the wavelength characteristics of reflectance in the case of an aluminum coating film. Fig. 1F is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the first embodiment. Fig. 1G is an analysis result of the LEE growth coefficient using the distance G from the well of the multiple quantum well layer of the first embodiment to the shortest end face of the 2D-PhC as a variable. Figure 1H is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the first embodiment. 2A is a cross-sectional view and a top view of the deep ultraviolet LED device of the second embodiment. FIG. 2B is a diagram showing the relationship between the R/a and the PBG value of the photon band structure incident on the TE polarization component of the two-dimensional photonic crystal formed on the p-type AlGaN contact layer using the plane wave expansion method. 2C is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the second embodiment. Fig. 2D is an analysis result of the LEE growth coefficient using the distance G from the well of the multiple quantum well layer of the second embodiment to the shortest end face of the 2D-PhC as a variable. Figure 2E is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the second embodiment. 3A is a cross-sectional view and a top view of the deep ultraviolet LED device of the third embodiment. Fig. 3B is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the third embodiment. Fig. 3C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the third embodiment. 4A is a cross-sectional view and a top view of the deep ultraviolet LED device of the fourth embodiment. 4B is a calculation model in the ray tracing method of the deep ultraviolet LED device of the fourth embodiment. Fig. 4C is a calculation model in the FDTD method of the deep ultraviolet LED device of the fourth embodiment. Fig. 4D is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the fourth embodiment. Figure 4E is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the fourth embodiment. 5A is a cross-sectional view and a top view of the deep ultraviolet LED device of the fifth embodiment. Fig. 5B is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the fifth embodiment. Fig. 5C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the fifth embodiment. 6A is a cross-sectional view and a top view of the deep ultraviolet LED device of the sixth embodiment. Fig. 6B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the sixth embodiment. Fig. 6C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the sixth embodiment. 7A is a cross-sectional view and a top view of the deep ultraviolet LED device of the seventh embodiment. Fig. 7B is a calculation model of the ray tracing method of the deep ultraviolet LED device of the seventh embodiment. Fig. 7C is a calculation model of the FDTD method of the deep ultraviolet LED device of the seventh embodiment. Fig. 7D is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the seventh embodiment. Fig. 7E is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the seventh embodiment. 8A is a cross-sectional view and a top view of the deep ultraviolet LED device of the eighth embodiment. Fig. 8B is the LEE analysis result in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the eighth embodiment. Fig. 8C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the eighth embodiment. 9A is a cross-sectional view and a top view of the deep ultraviolet LED device of the ninth embodiment. Fig. 9B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the ninth embodiment. Fig. 9C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the ninth embodiment. 10A is a cross-sectional view and a top view of the deep ultraviolet LED device of the tenth embodiment. Fig. 10B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the tenth embodiment. Fig. 10C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the tenth embodiment. 11A is a cross-sectional view and a top view of the deep ultraviolet LED device of the eleventh embodiment. Fig. 11B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the 11th embodiment. Fig. 11C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the 11th embodiment. 12A is a cross-sectional view and a top view of the deep ultraviolet LED device of the twelfth embodiment. Fig. 12B is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the 12th embodiment. Fig. 12C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the twelfth embodiment. 13A is a cross-sectional view and a top view of the deep ultraviolet LED device of the 13th embodiment. Fig. 13B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the 13th embodiment. Fig. 13C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the 13th embodiment. 14A is a cross-sectional view and a top view of the deep ultraviolet LED device of the fourteenth embodiment. Fig. 14B is the LEE analysis result in the case of the NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the fourteenth embodiment. Fig. 14C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the 14th embodiment. 15A is a cross-sectional view and a top view of the deep ultraviolet LED device of the fifteenth embodiment. Fig. 15B is the result of LEE analysis in the case of NC-RC reflector, Al reflector, Au reflector, and non-reflective film as the inorganic paint coating film of the fifteenth embodiment. Fig. 15C is the analysis result of the LEE growth coefficient of the 2D-PhC calculation model of the 15th embodiment. FIG. 16A is a diagram showing the relationship between the thickness of the sapphire substrate and the LEE of the PhC-free LED by analyzing the thickness of the sapphire substrate as a comparative example by changing the thickness of the sapphire substrate to 130 um, 280 um, and 430 um using the ray tracing method. FIG. 16B is the analysis result of LEE when the sapphire lens with quartz window and the quartz lens shown as a comparative example are used. Fig. 16C is an analysis result of light extraction efficiency when using a sapphire lens with a transparent resin film and a quartz lens shown as a comparative example. 17 is a cross-sectional view and a plan view of the deep ultraviolet LED device of the 31st embodiment.

1:石英窗 1: Quartz window

2:藍寶石基板 2: Sapphire substrate

3:AlN緩衝層 3: AlN buffer layer

4:n型AlGaN層 4: n-type AlGaN layer

5:多重量子井層 5: Multiple quantum well layer

6:多重量子障壁層(或電子阻擋層) 6: Multiple quantum barrier layer (or electron barrier layer)

7:p型AlGaN層 7: p-type AlGaN layer

8:p型GaN接觸層 8: p-type GaN contact layer

9:金屬層(Ni、Ni層) 9: Metal layer (Ni, Ni layer)

10:反射電極層(Au、Au反射電極層) 10: Reflective electrode layer (Au, Au reflective electrode layer)

15:表面安裝型氮化鋁陶瓷封裝、AlN封裝 15: Surface mount aluminum nitride ceramic package, AlN package

15a:AlN封裝內側側壁角度θ 15a: AlN package inner side wall angle θ

17:無機塗料被覆膜(NC-RC反射材) 17: Inorganic coating film (NC-RC reflective material)

100:反射型二維光子結晶 100: Reflective two-dimensional photonic crystal

101(h):空孔(柱狀構造體、孔) 101(h): Hole (columnar structure, hole)

Claims (6)

一種深紫外LED裝置,其特徵在於具有: 封裝,其係於內側底面及內側側壁被覆有對於深紫外LED元件之設計波長λ(200 nm〜355 nm)具有91%以上之反射率之無機被覆膜之表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為45度以上60度以下,且上述封裝之最表面利用石英窗密閉;及 深紫外LED元件,其係裝設於上述封裝內,且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且 該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足3≦m≦4,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.40。A deep-ultraviolet LED device, characterized by: a package, which is covered on the inner bottom surface and inner side wall with an inorganic coating with a reflectance of 91% or more for the design wavelength λ (200 nm~355 nm) of the deep ultraviolet LED element Film surface mount aluminum nitride ceramic package, and the inside sidewall angle of the package is 45 degrees or more and 60 degrees or less, and the outermost surface of the package is sealed by a quartz window; and deep ultraviolet LED components are installed in the package Reflective electrode layer (Au), metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron barrier layer), multiple quantum well layer in order from the side opposite to the sapphire substrate , N-type AlGaN layer, AlN buffer layer, and the above-mentioned sapphire substrate, and the deep ultraviolet LED element has a reflective two-dimensional photonic crystal, the reflective two-dimensional photonic crystal has a contact layer between the metal layer and the p-type GaN A plurality of holes within the thickness direction and not exceeding the position of the interface between the p-type GaN contact layer and the p-type AlGaN layer, the reflective two-dimensional photonic crystal periodic structure has a photon band opened with respect to the TE polarization component Relative to the light of the design wavelength λ, the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition and is in the Bragg condition mλ/n eff = 2a (where m: order, λ: design Wavelength, n eff : the effective refractive index of the two-dimensional photonic crystal, a: the period of the two-dimensional photonic crystal) m satisfies 3≦m≦4, when the radius of the above-mentioned hole is set to R, the R/a ratio satisfies 0.30≦R/a≦0.40. 如請求項1之深紫外LED裝置,其進而具有接合於上述藍寶石基板背面之相對於波長λ透明之藍寶石或石英半球透鏡,上述半球透鏡之半徑具有上述藍寶石基板之外接圓之半徑以上。According to claim 1, the deep ultraviolet LED device further has a sapphire or quartz hemispherical lens that is transparent to the wavelength λ bonded to the back of the sapphire substrate, and the radius of the hemispherical lens is greater than the radius of the circle outside the sapphire substrate. 一種深紫外LED裝置之製造方法,其係使設計波長為λ(200 nm〜355 nm)之深紫外LED裝置之製造方法,於形成以藍寶石基板作為生長基板之積層構造體之步驟,且為形成自與上述藍寶石基板相反側依次含有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及藍寶石基板之積層構造體之步驟中,具有如下步驟: 形成反射型二維光子結晶週期構造,該反射型二維光子結晶週期構造具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔; 準備用以形成上述反射型二維光子結晶週期構造之模具; 於上述p型GaN接觸層之上形成抗蝕層,利用奈米壓印法轉印上述模具之構造; 將轉印有上述構造之抗蝕層作為遮罩對上述p型GaN接觸層進行蝕刻而形成二維光子結晶週期構造; 形成上述反射型二維光子結晶,然後利用傾斜蒸鍍法依次形成上述金屬層與反射電極層; 切割上述藍寶石基板而製成深紫外LED元件; 準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝; 於上述封裝之內側底面與內側側壁被覆上述無機被覆膜; 於上述封裝裝設上述深紫外LED元件;及將上述封裝最表面利用石英窗密閉。A method for manufacturing a deep ultraviolet LED device, which is a method for manufacturing a deep ultraviolet LED device with a design wavelength of λ (200 nm ~ 355 nm), in the step of forming a layered structure with a sapphire substrate as a growth substrate, and forming Contains a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, a multiple quantum barrier layer (or electron barrier layer), a multiple quantum well layer, n In the step of the laminated structure of the type AlGaN layer, the AlN buffer layer, and the sapphire substrate, there are the following steps: A reflective two-dimensional photonic crystal periodic structure is formed. The reflective two-dimensional photonic crystal periodic structure has a range in the thickness direction of the metal layer and the p-type GaN contact layer, and does not exceed the thickness of the p-type GaN contact layer and the p-type GaN contact layer. Multiple holes at the interface of the p-type AlGaN layer; Prepare a mold for forming the above-mentioned reflective two-dimensional photonic crystal periodic structure; A resist layer is formed on the p-type GaN contact layer, and the structure of the mold is transferred using the nanoimprint method; Etching the p-type GaN contact layer with the resist layer transferred with the above structure as a mask to form a two-dimensional photonic crystal periodic structure; Forming the above-mentioned reflective two-dimensional photonic crystal, and then sequentially forming the above-mentioned metal layer and the reflective electrode layer by an oblique evaporation method; Cutting the sapphire substrate to make a deep ultraviolet LED element; Prepare the surface mount aluminum nitride ceramic package with the inner side wall angle of 45 degrees to 60 degrees; Covering the inner bottom surface and inner side wall of the package with the above-mentioned inorganic coating film; Installing the deep ultraviolet LED element in the package; and sealing the outermost surface of the package with a quartz window. 如請求項3之深紫外LED裝置之製造方法,其進而具有如下步驟: 準備具有上述LED元件基板外接圓以上之半徑之藍寶石或石英半球透鏡; 使上述LED元件基板背面及上述半球透鏡背面平坦化; 利用離子束或大氣壓電漿而使上述半球透鏡背面與上述LED元件基板背面表面活化; 將經上述表面活化處理之上述半球透鏡背面與上述LED元件基板背面接合; 準備內側側壁角度為45度以上60度以下之表面安裝型氮化鋁陶瓷封裝; 於上述封裝之內側底面與內側側壁被覆上述無機被覆膜; 於上述封裝裝設上述半球透鏡接合LED元件;及 將上述封裝最表面利用石英窗密閉。For example, the manufacturing method of a deep ultraviolet LED device of claim 3, which further has the following steps: Prepare a sapphire or quartz hemispherical lens with a radius above the circumscribed circle of the LED element substrate; Flattening the back surface of the LED element substrate and the back surface of the hemispherical lens; Use ion beam or atmospheric pressure to activate the back surface of the hemispherical lens and the back surface of the LED element substrate; Joining the back surface of the hemispherical lens subjected to the surface activation treatment with the back surface of the LED element substrate; Prepare the surface mount aluminum nitride ceramic package with the inner side wall angle of 45 degrees to 60 degrees; Covering the inner bottom surface and inner side wall of the package with the above-mentioned inorganic coating film; Installing the hemispherical lens-bonded LED element on the package; and The outermost surface of the package is sealed with a quartz window. 一種深紫外LED裝置,其特徵在於具有: 封裝,其係設為於深紫外LED元件之設計波長λ(200 nm〜355 nm)下,Au被覆膜被覆於內側底面及內側側壁之表面安裝型氮化鋁陶瓷封裝,且上述封裝之內側側壁角度為60度以上90度以下,且上述封裝之最表面利用石英窗密閉;及 深紫外LED元件,其係裝設於上述封裝內, 且自與藍寶石基板相反側依次具有反射電極層(Au)、金屬層(Ni)、p型GaN接觸層、p型AlGaN層、多重量子障壁層(或電子阻擋層)、多重量子井層、n型AlGaN層、AlN緩衝層、及上述藍寶石基板,且 該深紫外LED元件具有反射型二維光子結晶,該反射型二維光子結晶具有設置於上述金屬層與上述p型GaN接觸層之厚度方向之範圍內,且不超過上述p型GaN接觸層與上述p型AlGaN層之界面之位置之複數個空孔,上述反射型二維光子結晶週期構造具有相對於TE偏振成分打開之光子帶隙,相對於上述設計波長λ之光,上述反射型二維光子結晶週期構造之週期a滿足布拉格之條件,且處於布拉格之條件式mλ/neff =2a(其中,m:次數,λ:設計波長,neff :二維光子結晶之實效折射率,a:二維光子結晶之週期)之次數m滿足m=3,於將上述空孔之半徑設為R時,R/a比滿足0.30≦R/a≦0.40。A deep-ultraviolet LED device, characterized by: a package, which is set at the design wavelength λ (200 nm~355 nm) of the deep-ultraviolet LED element, and an Au coating film is covered on the inner bottom surface and the inner side wall of the surface mount type Aluminum nitride ceramic package, and the angle of the inner side wall of the package is 60 degrees or more and 90 degrees or less, and the outermost surface of the package is sealed by a quartz window; and the deep ultraviolet LED element is installed in the package and is free The opposite side of the sapphire substrate sequentially has a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, a multiple quantum barrier layer (or electron barrier layer), a multiple quantum well layer, and an n-type AlGaN layer , AlN buffer layer, and the sapphire substrate, and the deep ultraviolet LED element has a reflective two-dimensional photonic crystal, the reflective two-dimensional photonic crystal has a thickness set in the range of the metal layer and the p-type GaN contact layer , And no more than a plurality of pores at the position of the interface between the p-type GaN contact layer and the p-type AlGaN layer, the reflective two-dimensional photonic crystal periodic structure has a photonic band gap open to the TE polarization component, relative to the above For light of design wavelength λ, the period a of the above-mentioned reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition and is in the Bragg condition mλ/n eff = 2a (where m: order, λ: design wavelength, n eff : The effective refractive index of the two-dimensional photonic crystal, a: the period of the two-dimensional photonic crystal) m satisfies m=3, when the radius of the above-mentioned hole is set to R, the R/a ratio satisfies 0.30≦R/a≦0.40 . 如請求項5之深紫外LED裝置,其進而具有接合於上述藍寶石基板背面之相對於波長λ透明之石英半球透鏡,上述半球透鏡之半徑具有上述藍寶石基板之外接圓之半徑以上。According to claim 5, the deep ultraviolet LED device further has a quartz hemispherical lens transparent to the wavelength λ bonded to the back of the sapphire substrate, and the radius of the hemispherical lens is greater than the radius of the outer circle of the sapphire substrate.
TW108130179A 2018-08-24 2019-08-23 Deep ultraviolet led device and method for manufacturing same TW202027304A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157332 2018-08-24
JP2018-157332 2018-08-24

Publications (1)

Publication Number Publication Date
TW202027304A true TW202027304A (en) 2020-07-16

Family

ID=69593033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108130179A TW202027304A (en) 2018-08-24 2019-08-23 Deep ultraviolet led device and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW202027304A (en)
WO (1) WO2020040304A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312877B (en) * 2020-03-25 2022-02-22 苏州紫灿科技有限公司 Inverted deep ultraviolet LED with double-layer photonic crystal structure and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157744B2 (en) * 2003-10-29 2007-01-02 M/A-Com, Inc. Surface mount package for a high power light emitting diode
JP4776175B2 (en) * 2004-04-27 2011-09-21 京セラ株式会社 Light emitting element storage package, method for manufacturing the same, light emitting device, and lighting device
WO2006013899A1 (en) * 2004-08-03 2006-02-09 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element
CN101894901B (en) * 2009-04-08 2013-11-20 硅谷光擎 Package for multiple light emitting diodes
JP5968674B2 (en) * 2011-05-13 2016-08-10 エルジー イノテック カンパニー リミテッド Light emitting device package and ultraviolet lamp provided with the same
JP2013042079A (en) * 2011-08-19 2013-02-28 Sharp Corp Semiconductor light emitting device
KR102056414B1 (en) * 2015-09-03 2020-01-22 마루분 가부시키가이샤 Deep ultraviolet LED and manufacturing method
JP6627495B2 (en) * 2015-12-25 2020-01-08 Agc株式会社 Substrate for deep ultraviolet light emitting element, connecting substrate for deep ultraviolet light emitting element, and deep ultraviolet light emitting device
EP3249701B1 (en) * 2016-03-30 2020-07-08 Marubun Corporation Deep ultraviolet led and production method therefor

Also Published As

Publication number Publication date
WO2020040304A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5479582B2 (en) Organic light emitting diode
US7755097B2 (en) Light emitting device having light extraction structure and method for manufacturing the same
TWI634674B (en) Deep ultraviolet LED and its manufacturing method
JP4231880B2 (en) Three-dimensional structure, light emitting device having the same, and method for manufacturing the same
JP2010534931A5 (en)
US9513415B2 (en) Optical filter configured to transmit light of a predetermined wavelength
TW201622978A (en) Organic electroluminescence element, substrate and lighting device
EP1883977A1 (en) Electroluminescence light source
JP2011510512A (en) Light emitting element
JP6230038B2 (en) Deep ultraviolet LED and manufacturing method thereof
KR20140116119A (en) Radiation-emitting organic component
JP2009238932A (en) Semiconductor light emitting device and lighting device using the same
WO2020138146A1 (en) Deep ultraviolet led device and manufacturing method therefor
TW202027304A (en) Deep ultraviolet led device and method for manufacturing same
TW201427084A (en) Light emitting diode and method for manufacturing the same
TW201935715A (en) Deep ultraviolet led and production method for same
KR20080093556A (en) Nitride light emitting device and method of making the same
WO2023130794A1 (en) Gallium nitride nano-superstructure, preparation methods therefor and gallium nitride-based laser
JP2008166311A5 (en)
WO2007031929A1 (en) Method for manufacturing led wafer with light extracting layer
US11294195B2 (en) Aperiodic nano-optical array for angular shaping of incoherent emissions
JPWO2019009151A1 (en) Optical member and optical system device using the same
WO2024090391A1 (en) Deep ultraviolet led
CN1702926A (en) Mini single-photon light source
US20230086879A1 (en) Semiconductor Light Source, Cover Body and Method