WO2020040304A1 - Deep ultraviolet led device and method for manufacturing same - Google Patents

Deep ultraviolet led device and method for manufacturing same Download PDF

Info

Publication number
WO2020040304A1
WO2020040304A1 PCT/JP2019/033110 JP2019033110W WO2020040304A1 WO 2020040304 A1 WO2020040304 A1 WO 2020040304A1 JP 2019033110 W JP2019033110 W JP 2019033110W WO 2020040304 A1 WO2020040304 A1 WO 2020040304A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
deep ultraviolet
ultraviolet led
lee
photonic crystal
Prior art date
Application number
PCT/JP2019/033110
Other languages
French (fr)
Japanese (ja)
Inventor
行雄 鹿嶋
恵里子 松浦
小久保 光典
田代 貴晴
秀樹 平山
哲利 前田
隆一郎 上村
大和 長田
寛治 古田
武 岩井
洋平 青山
祝迫 恭
丞益 長野
高木 秀樹
優一 倉島
貴司 松前
Original Assignee
丸文株式会社
東芝機械株式会社
国立研究開発法人理化学研究所
株式会社アルバック
東京応化工業株式会社
日本タングステン株式会社
大日本印刷株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸文株式会社, 東芝機械株式会社, 国立研究開発法人理化学研究所, 株式会社アルバック, 東京応化工業株式会社, 日本タングステン株式会社, 大日本印刷株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 丸文株式会社
Publication of WO2020040304A1 publication Critical patent/WO2020040304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a deep ultraviolet LED device and a method for manufacturing the same.
  • Deep UV LEDs with an emission wavelength of 200 nm to 355 nm are used in a wide variety of applications, including sterilization, water purification, sterilization for hospital infections, medical use for vitiligo and atopic dermatitis, and industrial use for resin curing.
  • the power conversion efficiency (WPE) is several percent, which is low as compared with 20% of a mercury lamp, and there are many problems in practical use. The reason is that the light emitted from the quantum well layer is absorbed and lost by the p-type GaN contact layer and the Ni / Au electrode, and the light can be extracted to the outside by the total internal reflection caused by the refractive index difference between the LED element and air.
  • Light extraction efficiency (Light Extraction Efficiency: LEE) is as low as 6% or less because it is not easy. Furthermore, when an LED element is mounted on a package, there is no effective material for suppressing absorption of deep ultraviolet light.
  • Patent Document 1 reports that LEE has been improved more than twice by forming a reflective photonic crystal on the p-type GaN contact layer or the p-type AlGaN contact layer.
  • Patent Document 2 reports that the LEE has been improved up to about three times at the maximum by bonding a sapphire hemispherical lens transparent to the above wavelength on the back surface of the sapphire substrate.
  • the reflection type photonic crystal is formed on the p-type AlGaN contact layer transparent to the emission wavelength, and the LEE is improved 1.82 times at the maximum to 23.8%.
  • the inner wall of the aluminum nitride ceramic package on which the deep ultraviolet LED element is mounted is covered with aluminum having a reflectance of 92% at a wavelength of 280 nm.
  • excited electrons on the aluminum nitride surface weaken an electric field inside aluminum, so that deep ultraviolet light enters and disappears inside, and a desired reflectance cannot be obtained. (See FIG. 1E of the present application described below).
  • LEE is further improved to 57.1% at the maximum by bonding a sapphire hemispherical lens to the back surface of the sapphire substrate of the deep ultraviolet LED element having the reflective photonic crystal, The process involves polishing the back surface of the sapphire substrate to reduce the thickness from 400 ⁇ m to 100 ⁇ m, which is costly and impractical.
  • this deep ultraviolet LED element is mounted on a commercially available aluminum nitride ceramic package having excellent heat radiation characteristics, all deep ultraviolet light is absorbed / dissipated on the inner wall of the package, causing a problem that LEE deteriorates by 30% or more. Therefore, LEE decreases from 57.1% to about 40%.
  • the present invention aims to improve LEE of a deep ultraviolet LED device. Another object of the present invention is to realize a deep ultraviolet LED device with improved LEE at low cost.
  • an inorganic paint having a reflectance of 91% or more at a design wavelength ⁇ (200 nm to 355 nm) of a deep ultraviolet LED element is coated on an inner bottom surface and an inner side wall and cured (hereinafter referred to as “hardening treatment”).
  • the act of coating and curing the inorganic paint is collectively referred to as "coating", and the coating obtained by coating the inorganic paint is referred to as “inorganic paint coating film.”
  • the inner side wall angle of the package is not less than 45 degrees and not more than 60 degrees
  • the outermost surface of the package is a package sealed with a quartz window, and a deep ultraviolet LED element mounted in the package
  • a reflective electrode layer (Au) a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer,
  • a barrier layer (or an electron block layer) a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate are arranged in this order from the side opposite to the sapphire substrate.
  • a reflection type two-dimensional photo having a plurality of holes provided in a range in a thickness direction of the p-type GaN contact layer and not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer.
  • the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened for a TE polarization component
  • the reflective two-dimensional photonic crystal has a photonic band gap for light of the design wavelength ⁇ .
  • the effective refractive index of the crystal, a: the period of the two-dimensional photonic crystal) satisfies 3 ⁇ m ⁇ 4, and when the radius of the hole is R, the R / a ratio is 0.30 ⁇
  • the reflectance of the inorganic paint may be at least 91% at a design wavelength ⁇ (200 nm to 355 nm) when the ultraviolet LED device is used.
  • an inorganic paint that has a reflectance of 91% after coating, or an inorganic paint that has a reflectance of 91% or more by an additional process involving a chemical change after coating may be used.
  • the inorganic paint is a surface-mounted aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 45 degrees or more and 60 degrees.
  • the package is a package sealed with a quartz window on the outermost surface, and a deep ultraviolet LED element mounted in the package.
  • the package includes a reflective electrode layer (Au) and a metal layer (Ni). , A p-type AlGaN contact layer, a multiple quantum barrier layer (or an electron blocking layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate from the opposite side to the sapphire substrate.
  • a reflection type two-dimensional photonic crystal having a plurality of holes provided at a position not exceeding an interface with a quantum barrier layer (or an electron block layer); It has a photonic band gap opened to the polarization component, and the period a of the reflection type two-dimensional photonic crystal periodic structure satisfies the Bragg condition for light of the design wavelength ⁇ , and the Bragg condition formula
  • a deep ultraviolet LED device comprising: a deep ultraviolet LED element that satisfies the condition 3 and the radius of the hole is R, and the R / a ratio satisfies 0.30 ⁇ R / a ⁇ 0.35. I will provide a.
  • the reflective electrode (Au) is replaced with the reflective electrode (Rh) and the metal layer (Ni) is eliminated from the structure of the deep ultraviolet LED device of the second aspect.
  • a deep ultraviolet LED device having a structure is provided.
  • the structure of the deep ultraviolet LED device according to the first aspect further includes a sapphire or quartz hemispherical lens transparent to a wavelength ⁇ bonded to the back surface of the sapphire substrate.
  • the present invention provides a deep ultraviolet LED device comprising a deep ultraviolet LED element having a radius of the hemispheric lens equal to or larger than a radius of a circumcircle of the sapphire substrate.
  • the structure of the deep ultraviolet LED device according to the second aspect further includes a sapphire or quartz hemispherical lens transparent to a wavelength ⁇ bonded to the back surface of the sapphire substrate.
  • the radius of the hemispherical lens is equal to or larger than the radius of a circumcircle of the sapphire substrate.
  • a sapphire or quartz hemispherical lens transparent to a wavelength ⁇ to be bonded to the back surface of the sapphire substrate.
  • the radius of the hemispherical lens is equal to or larger than the radius of a circumcircle of the sapphire substrate.
  • the inorganic paint is a surface-mounted aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 60 degrees or more and 75 degrees.
  • the p-type GaN contact layer is provided at a position within the thickness direction of the p-type GaN contact layer and at a position not exceeding the interface between the p-type GaN contact layer and the p-type AlGaN layer.
  • Reflective two-dimensional photonic crystal having a plurality of holes the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarized light component, and the design wavelength ⁇ ,
  • the inorganic paint is a surface mount type aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 60 degrees or more and 75 degrees.
  • a package and a deep ultraviolet LED element mounted in the package wherein the package includes a reflective electrode layer (Au), a metal layer (Ni), a p-type AlGaN contact layer, and a multiple quantum barrier layer (or an electron A block layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate in this order from the side opposite to the sapphire substrate, wherein the metal layer and the p-type AlGaN contact layer Within the range of the thickness direction, and not exceeding the interface between the p-type AlGaN contact layer and the multiple quantum barrier layer (or electron blocking layer).
  • a deep ultraviolet LED device wherein a radius of the hemispheric lens is equal to or larger than a circumcircle of the inner wall of the package, and a resin film transparent to a wavelength ⁇ completely covers and seals the surface of the hemispheric lens and the upper surface of the package. I do.
  • the reflective electrode (Au) is replaced with the reflective electrode (Rh) and the metal layer (Ni) is eliminated from the structure of the deep ultraviolet LED device of the eighth aspect.
  • a deep ultraviolet LED device having a structure is provided.
  • Reflective electrode layer (Au) metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron blocking layer), multiple quantum well layer, n-type AlGaN Forming a layered structure including a layer, an AlN buffer layer, and a sapphire substrate in this order from a side opposite to the sapphire substrate, in a thickness direction range of the metal layer and the p-type GaN contact layer.
  • Reflective two-dimensional photonic crystal periodic structure having a plurality of vacancies provided in a position not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer
  • Forming forming a mold for forming the reflective two-dimensional photonic crystal periodic structure, forming a resist layer on the p-type GaN contact layer, and nanoimprinting the structure of the mold.
  • Transferring by a method etching the p-type GaN contact layer using the resist layer to which the structure has been transferred as a mask to form a two-dimensional photonic crystal periodic structure, and the reflection type two-dimensional photonic crystal.
  • a metal layer and a reflective electrode layer in this order by an oblique vapor deposition method, dicing the sapphire substrate to form a deep ultraviolet LED element, and an inner side wall angle of 45 degrees.
  • the p-type contact layer is changed from a p-type GaN contact layer to a p-type AlGaN contact layer.
  • the position of forming the reflective photonic crystal periodic structure is different from that of the sixteenth aspect, that is, within the range of the metal layer and the p-type AlGaN contact layer in the thickness direction, and in the p-type AlGaN contact layer.
  • a deep ultraviolet LED device comprising the step of providing a plurality of holes at positions not exceeding the interface between the contact layer and the multiple quantum barrier layer (or the electron blocking layer), and otherwise having the same steps as the tenth aspect.
  • a manufacturing method is provided.
  • a step of changing the reflective electrode from Au to Rh and using no metal layer (Ni) provides a method of manufacturing a deep ultraviolet LED device having the same steps except for this point.
  • a thirteenth aspect of the present invention in the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall. A step of coating a paint, and a step of mounting the hemispherical lens junction
  • a fourteenth aspect of the present invention in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall. A step of coating a paint, and a step of mounting the hemispherical lens junction LED
  • a fifteenth aspect of the present invention in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall.
  • a sixteenth aspect of the present invention in the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength ⁇ .
  • a method for manufacturing a deep ultraviolet LED device having a sealing step.
  • a seventeenth aspect of the present invention in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength ⁇ .
  • a method for manufacturing a deep ultraviolet LED device having a sealing step.
  • a deep ultraviolet LED device in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, further comprising: preparing a sapphire or quartz hemispheric lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength ⁇ .
  • a method for manufacturing a deep ultraviolet LED device having a sealing step. This description includes part or all of the disclosure content of Japanese Patent Application No
  • LEE of a deep ultraviolet LED device can be improved at low cost.
  • FIG. 2 is a cross-sectional view and a plan view of the deep ultraviolet LED device according to the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a photonic band structure and a relationship between R / a and a PBG value in a TE polarization component incident on a two-dimensional photonic crystal formed on a p-type GaN contact layer, obtained by a plane wave expansion method.
  • 4 is a calculation model in the ray tracing method of the deep ultraviolet LED device according to the first embodiment.
  • 5 is a calculation model in the FDTD method of the deep ultraviolet LED device according to the first embodiment.
  • NC-RC reflector (hereinafter referred to as "NC-RC reflector") as an inorganic paint satisfying the characteristic conditions of the inorganic paint, and an aluminum coat film.
  • FIG. 7 is a diagram illustrating a wavelength characteristic of the reflectance in the case where the reflection is performed.
  • FIG. 5 is an LEE analysis result in the case where the inorganic paint coating film according to the first embodiment is an NC-RC reflector, an Al reflection film, an Au reflection film, and no reflection film.
  • 5 is an LEE increase factor analysis result using a distance G from Well of the multiple quantum well layer of the first embodiment to the shortest end face of 2D-PhC as a variable. It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the first embodiment.
  • FIG. 9 is a diagram illustrating a photonic band structure and a relationship between R / a and a PBG value in a TE polarization component incident on a two-dimensional photonic crystal formed on a p-type AlGaN contact layer, obtained by a plane wave expansion method.
  • FIG. 10 is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the second embodiment. 10 is an LEE increase factor analysis result using the distance G from Well of the multiple quantum well layer of the second embodiment to the shortest end face of 2D-PhC as a variable.
  • FIG. 14 is an LEE analysis result in the case where the inorganic paint coating film according to the third embodiment is an NC-RC reflector, an Al reflection film, an Au reflection film, and no reflection film. It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the third embodiment. It is the sectional view and top view of the deep ultraviolet LED device of a 4th embodiment. 16 is a calculation model in the ray tracing method of the deep ultraviolet LED device according to the fourth embodiment.
  • 14 is a calculation model of the deep ultraviolet LED device according to the fourth embodiment in the FDTD method. It is an LEE analysis result in the case of an NC-RC reflector, an Al reflector, an Au reflector, and no reflector, which are inorganic coating films according to the fourth embodiment. It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the fourth embodiment. It is the sectional view and top view of the deep ultraviolet LED device of a 5th embodiment. It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the fifth embodiment. It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the fifth embodiment.
  • FIG. 37 shows LEE increase factor analysis results of the 2D-PhC calculation model according to the thirteenth embodiment.
  • FIG. 39 shows LEE increase factor analysis results of the 2D-PhC calculation model of the fourteenth embodiment.
  • FIG. 39 shows LEE increase factor analysis results of the 2D-PhC calculation model of the fifteenth embodiment.
  • the thickness of the sapphire substrate was changed to 130 ⁇ m, 280 ⁇ m, and 430 ⁇ m, and analysis was performed by the ray tracing method to determine the relationship between the sapphire substrate thickness and LEE of the LED without PhC.
  • an inorganic paint NC-RC manufactured by Nippon Tungsten Co., Ltd. was used as an inorganic paint satisfying a reflectance of 91% or more at a design wavelength ⁇ (200 nm to 355 nm) of a deep ultraviolet LED element.
  • the process was performed to obtain an NC-RC reflector.
  • the inorganic paint NC-RC is a paint mainly composed of an organopolysiloxane composition and hexagonal boron nitride, and has a reflectance of 91% or more at a design wavelength ⁇ (200 nm to 355 nm) after coating.
  • FIG. 1A (a-1) shows a structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED device having a wavelength of 280 nm as an example of a design wavelength ⁇ as a deep ultraviolet LED device according to the first embodiment of the present invention.
  • (A-2) shows a structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED device having a wavelength of 280 nm as an example of a design wavelength ⁇ as a deep ultraviolet LED device according to the first embodiment of the present invention.
  • (A-2) shows a structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED device having a wavelength of 280 nm as an example of a design wavelength ⁇ as a deep ultraviolet LED device according to the first embodiment of the present invention.
  • (A-2) shows a structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED device having
  • the quartz window 1, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, the multiple quantum well layer 5, and the multiple quantum barrier layer are arranged in this order from the top of the sectional view of FIG. (Or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter Ni layer) 9, reflective electrode layer (hereinafter Au reflective electrode layer) 10, surface mount type aluminum nitride package (hereinafter AlN package) 15, NC-RC reflector 17 coated on the inner bottom surface and inner side wall surface of AlN package, inner side wall angle ⁇ 15a of AlN package 15, reflection type two-dimensional photonic crystal periodic structure 100, hole 101 (h) Having.
  • a sapphire substrate 2 As shown in FIG. 1A (a-1), a sapphire substrate 2, an AlN buffer layer 3, an n-type AlGaN layer 4, a multiple quantum well layer 5, a multiple quantum barrier layer (or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter Ni layer) 9, reflection electrode layer (hereinafter Au reflection electrode layer) 10, reflection type two-dimensional photonic crystal periodic structure 100, hole 101 (h ) Is mounted.
  • the angle of the inner side wall angle ⁇ 15a of the AlN package 15 is not less than 45 degrees and not more than 60 degrees, light emitted from the side surface of the deep ultraviolet LED element can be reflected upward, so that LEE is improved.
  • the upper part of the AlN package 15 is sealed with the quartz window 1. This is to prevent the aging of the deep ultraviolet LED element.
  • a reflective two-dimensional photonic crystal periodic structure 100 having a plurality of holes 101 (h) is formed.
  • the reflection type two-dimensional photonic crystal periodic structure 100 is a column-shaped air having a smaller refractive index than the p-type GaN contact layer 8 and having a radius of R.
  • the hole 101 (h) having a cross section has a hole structure formed in a triangular lattice shape with a period a along the x direction and the y direction.
  • the deep ultraviolet light having a wavelength of 280 nm emitted from the quantum well layer 5 is transmitted in the medium while elliptically polarized as TE light and TM light are radiated in all directions.
  • A the period of the two-dimensional photonic crystal) and the photonic band gap (PBG) opens for the TE polarization component, the deep ultraviolet light incident on the two-dimensional photonic crystal becomes 2
  • a standing wave is formed in the plane of the two-dimensional photonic crystal and is reflected toward the sapphire substrate 2.
  • the band structure is shown in (b-2) by finding the relationship between R / a and the PBG value by the plane wave expansion method.
  • the PBG value is a value indicating the size of the gap between the first photonic band ( ⁇ 1TE) and the second photonic band ( ⁇ 2TE), and is (the minimum value of the second photonic band ( ⁇ a / 2 ⁇ c)) ⁇ (The maximum value of the first photonic band ( ⁇ a / 2 ⁇ c)). From this figure, it can be seen that R / a and the PBG value are in a proportional relationship.
  • the parameters required for the calculation of the plane wave expansion method are calculated as follows.
  • LEE due to the reflection effect of the two-dimensional photonic crystal is determined by simulation analysis using the FDTD method.
  • the FDTD method converts the Maxwell equation into a difference equation in space and time and directly calculates the electromagnetic field strength. Therefore, the FDTD method is suitable for wave analysis of a photonic crystal having a nm structure, but cannot directly calculate LEE.
  • the ray tracing method since tens of thousands of rays are randomly emitted and the number of rays reaching the detector is directly calculated, it is possible to directly obtain the LEE in the mm structure. However, wave analysis of nm structure is not possible. Therefore, in order to obtain LEE due to the reflection effect of the photonic crystal, a cross simulation of the FDTD method and the ray tracing method is required.
  • Table 1 shows a calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 2 shows a calculation model of the FDTD method of the deep ultraviolet LED device
  • Table 3 shows a calculation model of the FDTD method of the reflection type two-dimensional photonic crystal.
  • FIG. 1C shows a calculation model of the ray tracing method
  • FIG. 1D shows a calculation model of the FDTD method
  • FIG. 1E shows the wavelength characteristics of the reflectance of the NC-RC reflector 17 and the aluminum coat film coated on the AlN package 15. As is clear from the figure, the reflectance of the NC-RC reflector 17 is excellent.
  • the element shown in FIG. 1D is similar to FIG. 1A and corresponds to Table 2.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the rearmost end face of 2D-PhC was always the interface between the p-type GaN contact layer 8 and the Ni layer 9.
  • the angle of the NC-RC reflector 17 was selected to be 60 degrees based on the result of the ray tracing method. The results are shown in FIG. 1G and Table 5.
  • FIGS. -2 As the deep ultraviolet LED device according to the second embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the quartz window 1, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, the multiple quantum well layer 5, and the multiple quantum barrier layer are arranged in this order from the top of the cross-sectional view of FIG. (Or electron block layer) 6, p-type AlGaN contact layer 8a, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, inner side wall angle ⁇ 15a of AlN package 15, reflection type two-dimensional photo
  • the nick crystal has a periodic structure 100 and holes 101 (h).
  • the first embodiment is different from the first embodiment in that the p-type contact layer of the structure of the deep ultraviolet LED element is changed from the p-type GaN contact layer to the p-type AlGaN contact layer, and the other structure is the same.
  • the interface between the Ni layer 9 and the p-type AlGaN contact layer 8a in the thickness direction and the interface between the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or electron block layer) 6 are set.
  • a reflection type two-dimensional photonic crystal periodic structure 100 having a plurality of holes 101 (h) is formed at a position not exceeding.
  • the nick band structure is shown in (b-2) by finding the relationship between R / a and the PBG value by the plane wave expansion method. From this figure, it can be seen that R / a and the PBG value are in a proportional relationship.
  • the parameters required for the calculation of the plane wave expansion method are calculated as follows.
  • Table 7 shows a calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 8 shows a calculation model of the FDTD method of the deep ultraviolet LED device
  • Table 9 shows a calculation model of the FDTD method of the reflection type two-dimensional photonic crystal. Indicates parameters.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 1C and 1D in the first embodiment, and are not particularly illustrated.
  • the LEE of the deep ultraviolet LED device was calculated using the inner bottom surface and the inner side wall as the NC-RC reflector 17 by changing the inner side wall angle ⁇ of the AlN package to 45 °, 60 °, 75 °, and 90 ° as variables.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE in the case of an Al coating film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the present embodiment has the same structure as the second embodiment except that the Ni layer 9 and the Au reflective electrode layer 10 are replaced with the Rh reflective electrode layer 16.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, in order to obtain LEE due to the reflection effect of the photonic crystal, a cross simulation of the FDTD method and the ray tracing method is performed.
  • Table 13 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 14 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Each parameter of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method is the same as in Table 9.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as NC-RC reflectors 17 (inorganic paint coating) for a deep ultraviolet LED device.
  • LEE was calculated.
  • the NC-RC reflector 17 LEE in the case of the Al reflection film, the Au reflection film, and the absence of the reflection film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • FIGS. -2 the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the quartz window 1, the sapphire hemispherical lens 20a, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, and the multiple quantum well layer 5 are arranged in this order from the top of the sectional view of FIG. , Multiple quantum barrier layer (or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, AlN package 15. , A reflective two-dimensional photonic crystal periodic structure 100, and holes 101 (h).
  • a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the sapphire substrate 2 is bonded to the back surface of the sapphire substrate 2.
  • the deep ultraviolet light emitted from the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted to the outside from the normal direction of the surface of the sapphire hemispherical lens 20a, so that multiple internal total reflection is reduced. Therefore, LEE is improved.
  • the structure other than the sapphire hemispherical lens 20a is the same as that of the first embodiment.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the first embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 17 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 18 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • the parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3.
  • FIG. 4B shows a calculation model of the ray tracing method
  • FIG. 4C shows a calculation model of the FDTD method.
  • the elements shown in FIG. 4C are the same as those in FIG. 4A and correspond to Table 18.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as the NC-RC reflector 17.
  • the LEE of the deep ultraviolet LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (10.2%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG.
  • FIGS. -2 As a deep ultraviolet LED device according to a fifth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the sapphire substrate 2 is bonded to the back surface of the sapphire substrate 2.
  • the deep ultraviolet light emitted from the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted to the outside from the normal direction of the surface of the sapphire hemispherical lens 20a, so that multiple internal total reflection is reduced. Therefore, LEE is improved.
  • the structure other than the sapphire hemispherical lens 20a is the same as that of the second embodiment.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 21 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 22 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees with the inner side wall angle ⁇ as a variable, and the inner bottom surface and the inner side wall are used as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • LEE was analyzed in the case of an Al coat film, an Au reflection film, and no reflection film, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (25.5%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 5C and Table 24.
  • the Ni layer 9 and the Au reflective electrode layer 10 in the fifth embodiment are replaced with the Rh reflective electrode layer 16.
  • Other structures are the same as in the fifth embodiment.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fifth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 25 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 26 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE in the case of the Al reflective film, the Au reflective film, and the absence of the reflective film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (27.0%) of the NC-RC reflector and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 6C and Table 28.
  • the deep ultraviolet LED element structure of the present embodiment is the same as that of the fourth embodiment,
  • a sapphire hemispherical lens 20a is bonded to the back surface of the sapphire substrate 2, the hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, and A transparent resin film 21 a is attached to the surface of the lens, and seals the upper outer peripheral portion of the AlN package 15.
  • the reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element.
  • the radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
  • the quartz window 1 of the fourth embodiment is not used, when deep ultraviolet light is emitted from quartz to air, total internal reflection at the interface is suppressed, so that LEE can be improved. Furthermore, since the surface area of the entire inner side wall of the AlN package 15 is about 1/3 as compared with the deep ultraviolet LED device of the fourth embodiment, restrictions on the reflectivity of the reflection film and the side wall angle are relaxed. .
  • the reflection effect of the two-dimensional photonic crystal in the deep ultraviolet LED element and the method of optimization are the same as in the first embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is required to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 29 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 30 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • the parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3.
  • FIG. 7B shows a calculation model of the ray tracing method
  • FIG. 7C shows a calculation model of the FDTD method.
  • the element shown in FIG. 7C is the same as FIG. 7A and corresponds to Table 30.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a slightly higher LEE than the other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • FIGS. -2 the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the deep ultraviolet LED structure of the present embodiment has the same structure as that of the fifth embodiment.
  • a sapphire hemispherical lens 20a is bonded to the back surface of the sapphire substrate 2.
  • the hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, the transparent resin film 21a is adhered to the surface of the hemispherical lens, and the upper outer peripheral portion of the AlN package 15 is sealed. are doing.
  • the reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element.
  • the radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
  • the structure of the deep ultraviolet LED element from the sapphire substrate 2 to the Au reflective electrode layer 10 is the same as that of the second embodiment.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 33 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 34 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE in the case of an Al coating film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • FIGS. -2 the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the deep ultraviolet LED element structure of the present embodiment has the same structure as that of the sixth embodiment.
  • a sapphire hemispherical lens 20a is joined to the back surface of the sapphire substrate 2.
  • the hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, the transparent resin film 21a is adhered to the surface of the hemispherical lens, and the upper outer peripheral portion of the AlN package 15 is sealed. Stopped.
  • the reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element.
  • the radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
  • the structure of the deep ultraviolet LED from the sapphire substrate 2 to the Rh reflective electrode layer 16 is the same as that of the second embodiment.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 37 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 38 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE without the Al coat film, the Au reflection film, and without the reflection film was analyzed, and the results are shown in FIG. 9B and Table 39.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (28.9%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the ray tracing method. The results are shown in FIG. 9C and Table 40.
  • the present embodiment has the same structure as the fourth embodiment except for the quartz hemispherical lens 22a. Further, the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fourth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 41 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 42 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • the parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees by using the inner bottom surface and the inner side walls as NC-RC reflectors 17 in the deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG. 10B and Table 43.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (9.0%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 10C and Table 44.
  • this embodiment has the same structure as the fifth embodiment except for the quartz hemispherical lens 22a.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fifth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 45 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 46 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 the LEE in the case of the Al coating film, the Au reflection film, and the case without the reflection film was analyzed, and the results are shown in FIG. 11B and Table 47.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • FIGS. -2 As a deep ultraviolet LED device according to a twelfth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the present embodiment has the same structure as the sixth embodiment except for the quartz hemispherical lens 22a.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the sixth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 49 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 50 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • the LEE in the case of the Al reflective film, Au reflective film, and no reflective film was analyzed, and the results are shown in FIG. 12B and Table 51.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
  • FIGS. -2 the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • this embodiment has the same structure as that of the seventh embodiment except for the quartz hemispherical lens 22a.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the seventh embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 53 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 54 shows each parameter of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • the parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a slightly higher LEE than the other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (9.7%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the above ray tracing method. The results are shown in FIG. 13C and Table 56.
  • FIGS. -2 As a deep ultraviolet LED device according to a fourteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • the present embodiment has the same structure as the eighth embodiment except for the quartz hemispherical lens 22a.
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the eighth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 57 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 58 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as a variable, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 is higher than the other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • FIGS. -2 As the deep ultraviolet LED device according to the fifteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength ⁇ of 280 nm is shown in FIGS. -2).
  • This embodiment has the same structure as the ninth embodiment except for the quartz hemispherical lens 22a, as shown in FIG. 15A (a-1).
  • the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the ninth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
  • Table 61 shows the calculation model of the ray tracing method of the deep ultraviolet LED device
  • Table 62 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device.
  • Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method.
  • the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
  • the inner side wall angle ⁇ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet.
  • the LEE of the LED device was calculated.
  • the NC-RC reflector 17 inorganic paint coating
  • LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG. 15B and Table 63.
  • the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases.
  • the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
  • the thickness of the sapphire substrate 2 was changed to 130 ⁇ m, 280 ⁇ m, and 430 ⁇ m, and analysis was performed by the ray tracing method, and the thickness of the sapphire substrate 2 and no PhC The LEE relationship of the LED was determined. Since the thickness of the sapphire substrate 2 is not different from that of the above embodiment, it is not shown. The results are shown in FIGS. 16A to 16C and Tables 65 to 69.
  • FIG. 16A is a diagram in which the thickness of the sapphire substrate shown as a comparative example was changed to 130 ⁇ m, 280 ⁇ m, and 430 ⁇ m, analysis was performed by the ray tracing method, and the relationship between the sapphire substrate thickness and the LEE of the LED without PhC was obtained. It is.
  • FIG. 16B is an LEE analysis result when a sapphire lens with a quartz window and a quartz lens are used as comparative examples.
  • FIG. 16C is an analysis result of light extraction efficiency when a sapphire lens with a transparent resin film and a quartz lens shown as a comparative example are used.
  • the LEE increase factor and LEE maximum value in the first to fifteenth embodiments (the thickness of the sapphire substrate 2 is all 430 ⁇ m with PhC) and the LEE maximum value of the PhC-less LED and the PhC-containing LED of the above comparative example.
  • the LEE of the p-type GaN contact LED was increased by about 2.8 times in the increase factor due to the reflection effect of the reflection type PhC.
  • the sapphire hemispherical lens junction further increased the LEE by a factor of 2.7, and it was confirmed that the integrated photonic effect of the reflective PhC and the hemispherical lens junction was 7 times or more at the maximum.
  • the LEE increased by a factor of 1.28 to 1.45 due to the reflection effect of the reflection type PhC. Further, the sapphire hemispherical lens junction further increased the LEE increasing factor by 2.0 times, and it was confirmed that the integrated photonic effect by the reflective PhC and the hemispherical lens junction was less than 3 times at the maximum. LEE at this time was 51.4% at the maximum. In the case of partial sapphire hemispherical lens bonding, LEE was increased by a factor of 1.2 by reducing the thickness of the sapphire substrate 2, but this was not enough to compensate for the increase in the cost of grinding and polishing the back surface of the sapphire substrate 2. .
  • a method of manufacturing a deep ultraviolet LED has a design wavelength of ⁇ (200 nm to 355 nm) and a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate, and includes a reflective electrode layer (Au).
  • Nanoimprint is a technology that transfers the photonic crystal pattern of a mold onto a large-area processed surface at once. Further, by using a resin mold, transfer can be performed even if the surface to be processed is warped by several hundred microns. Furthermore, if a two-layer resist is used, fluidity and an etching selectivity with respect to a workpiece can be obtained, so that a highly accurate photonic crystal can be processed.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
  • the difference from the sixteenth embodiment is that the p-type GaN contact layer is replaced with a p-type AlGaN contact layer. Only the differences from the sixteenth embodiment are specifically described below. . 1) In the step of forming the two-dimensional photonic crystal periodic structure 100, in the thickness direction of the metal layer 9 and the p-type AlGaN contact layer 8a, and the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or A plurality of holes 101 (h) are provided at positions not exceeding the interface with the electron block layer) 6. The steps 2) to 10) described in the sixteenth embodiment are the same as the sixteenth embodiment except that the p-type GaN contact layer is replaced with a p-type AlGaN contact layer.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Rh).
  • a p-type AlGaN contact layer 8a a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2.
  • This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
  • This step is different from the seventeenth embodiment only in that the present structure has no metal layer (Ni) 9 and the reflective electrode layer is replaced with a reflective electrode layer (Rh) 16 instead of (Au) 10. is there. Therefore, it can be explained by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the steps 1) to 10) described in the seventeenth embodiment.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au).
  • a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the steps of forming the laminated structure and the LED element are the same as the steps described in 1) to 6) of the sixteenth embodiment.
  • the sapphire hemispherical lens 20a described below is joined, and after the sapphire hemispherical lens 20a is joined, the sapphire hemispherical lens 20a is joined again according to 7) to 10) of the sixteenth embodiment. It has the same steps as the steps.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au).
  • a metal layer (Ni) 9 a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3.
  • a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the steps of producing the laminated structure and the LED element are the same as the steps described in 1) to 6) of the seventeenth embodiment.
  • the sapphire hemispherical lens 20a is bonded to the sapphire hemispherical lens 20a according to the steps 7) to 10) described in the nineteenth embodiment. It has the same steps as the steps 7) to 10) described in the embodiment.
  • a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm) is performed.
  • a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the present structure does not include the metal layer (Ni) 9 and the reflective electrode layer (Au) 10 is replaced with the reflective electrode layer (Rh) 16. . Therefore, the description can be made by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the steps 1) to 14) described in the twentieth embodiment. Omitted.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au).
  • a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the steps of producing the laminated structure and the LED element and coating the surface mount type ceramic package 15 with the NR-RC reflector 17 are the steps described in 1) to 8) of the sixteenth embodiment. Is the same.
  • a step of bonding the sapphire hemispherical lens 20a and covering the surface of the sapphire hemispherical lens 20a with the transparent resin film 21a is provided.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au).
  • a metal layer (Ni) 9 a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3.
  • a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the steps of producing the laminated structure and the LED element and coating the surface mount type ceramic package 15 with the NR-RC reflector 17 are the steps described in 1) to 8) of the seventeenth embodiment. Is the same as After the coating step in the step 8) is completed, the step of bonding the sapphire hemispherical lens 20a and covering the surface of the sapphire hemispherical lens 20a with the transparent resin film 21a includes the steps of 9) to 14) of the twenty-second embodiment. The steps are the same as described. Therefore, the details are omitted.
  • a design wavelength is set to ⁇ (200 nm to 355 nm), and a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate is performed.
  • a p-type AlGaN contact layer 8a a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2.
  • This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
  • a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the present structure does not include the metal layer (Ni) 9 and the reflective electrode layer (Au) 10 is replaced with the reflective electrode layer (Rh) 16. . Accordingly, the description can be made by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the process described in the twenty-third embodiment, and a detailed description thereof will be omitted.
  • a method of manufacturing a deep ultraviolet LED is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au).
  • a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the only difference from the nineteenth embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in the present structure. Therefore, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the nineteenth embodiment with a quartz hemispherical lens 22a, the details are omitted.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the only difference from the twentieth embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Accordingly, the process can be described by replacing the sapphire hemispherical lens 20a in the process described in the twentieth embodiment with a quartz hemispherical lens 22a, and a detailed description thereof will be omitted.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Rh).
  • a p-type AlGaN contact layer 8a a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2.
  • This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
  • a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the only difference from the twenty-first embodiment is that the sapphire hemispherical lens 20a is replaced with the quartz hemispherical lens 22a in the present structure. Therefore, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-first embodiment with the quartz hemispherical lens 22a, the details are omitted.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm).
  • a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the only difference from the twenty-second embodiment is that the sapphire hemispherical lens 20a is replaced with the quartz hemispherical lens 22a in the present structure. Accordingly, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-second embodiment with the quartz hemispherical lens 22a, the details are omitted.
  • a method for manufacturing a deep ultraviolet LED is to form a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2. Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • the only difference from the twenty-third embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-third embodiment with the quartz hemispherical lens 22a, and a detailed description thereof will be omitted.
  • this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of ⁇ (200 nm to 355 nm), and a reflective electrode layer (Rh).
  • a p-type AlGaN contact layer 8a a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2.
  • This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
  • a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
  • This step is different from the twenty-fourth embodiment only in that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Therefore, the process can be described by replacing the sapphire hemispherical lens 20a with the quartz hemispherical lens 22a in the process described in the twenty-fourth embodiment, and a detailed description thereof will be omitted.
  • the purpose of the present embodiment is to realize a low-cost, high-LEE, deep ultraviolet LED device. Therefore, although the reflectance is lower than that of the inorganic paint NC-RC, the effect of the Au coating film used at relatively low cost is also comparatively verified by simulation.
  • the inorganic paint coating film 17 is changed to the Au coating film 18 in the structures of the first embodiment and the tenth embodiment.
  • FIG. 17 shows a structure which is a modification of the tenth embodiment. Since the modification of the first embodiment has a structure in which the quartz hemispherical lens 22a is removed from FIG. 17, the drawing is omitted.
  • the parameters of the Au coating film 18 are 200 nm in film thickness, 1.678 in refractive index, 1.873 in extinction coefficient, 1.0 in relative magnetic permeability, and 1.0 in relative dielectric constant.
  • the reflective secondary photonic crystal 100 was provided so as not to exceed the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7 and to be embedded in the p-type GaN contact layer 8.
  • the crystal growth of GaN in the lateral direction is performed, so that the holes of the two-dimensional photonic crystal are formed.
  • the electrode formation process is performed by covering the upper part of the holes 101 (h) and flattening the interface between the p-type GaN contact layer 8 and the Ni electrode 9 while leaving 101 (h) in the p-type GaN contact layer 8. This is to make it easier to do.
  • Table 71 shows the results of Table 4 using an LEE calculation result by the ray tracing method of the structure in which the quartz hemispherical lens was not joined, which was shown in (First Embodiment), and an Au coating film was provided on the results of Table 4. It is the result calculated by multiplying the LEE increase factor by the FDTD of the structure.
  • the LEE of the Au reflective film is 4.0% in the case of the package side wall angle of 60 °, whereas the LEE of the side wall angle of 60 ° in Table 71 is, for example, two-dimensional photo.
  • LEE is 10.6%, which is an improvement of 2.66 times after the formation of the two-dimensional photonic crystal.
  • Table 71 LEE was 7.3%, and R / a in [Table 6] was also used.
  • LEE was 12.1%, whereas LEE was 12.6%.
  • LEE was lower than that of the inorganic coating film, but was relatively close to that of the inorganic coating film.
  • the LEE of the Au reflection film is 7.2% for the package side wall angle of 60 degrees, whereas the LEE of the side wall angle of 60 degrees in Table 72 is, for example, R / a. At 0.40, it is 20.9%, which is 2.9 times improved after the formation of the two-dimensional photonic crystal.
  • LEE was 20.9%, whereas LEE was lower than that of the inorganic coating film, but LEE close to that of the inorganic coating film was obtained.
  • the illustrated configuration and the like are not limited to these, and can be appropriately changed within a range in which the effects of the present invention are exhibited.
  • the present invention can be appropriately modified and implemented without departing from the scope of the object of the present invention.
  • each component of the present invention can be arbitrarily selected, and the present invention includes an invention having the selected configuration.
  • the present invention is applicable to deep ultraviolet LEDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

Provided is a deep ultraviolet LED device comprising: a surface mount-type aluminum nitride ceramic package in which an inorganic coating film having a reflectivity of at least 91% at a deep ultraviolet LED element design wavelength λ (200-355 nm) is coated on the inner bottom surface and inner side walls thereof, the inner side wall angle thereof is 45-60 degrees, and the outermost surface thereof is sealed with a quartz window; and a deep ultraviolet LED element mounted in the package, wherein the deep ultraviolet LED element has a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, a multi-quantum barrier layer (or electron block layer), a multi-quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate in this order from the opposite side from the sapphire substrate, and has a reflective two-dimensional photonic crystal which is located within the range of the metal layer and the p-type GaN contact layer in the thickness direction and which has a plurality vacancies disposed in locations that are not beyond the boundaries of the p-type GaN contact layer and the p-type AlGaN layer. The periodic structure of the reflective two-dimensional photonic crystal has a photonic band gap that opens to a TE-polarized component, wherein the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition for light having the design wavelength λ, the order m in the Bragg equation, mλ/neff=2a (m: order, λ: design wavelength, neff: effective refractive index of two-dimensional photonic crystal, and a: period of two-dimensional photonic crystal) satisfies 3≤m≤4, and the ratio of R/a (R is the radius of the vacancies) satisfies 0.30≤R/a≤0.40.

Description

深紫外LED装置及びその製造方法Deep ultraviolet LED device and method of manufacturing the same
 本発明は、深紫外LED装置及びその製造方法に関する。 The present invention relates to a deep ultraviolet LED device and a method for manufacturing the same.
 発光波長200nm~355nmの深紫外LEDは殺菌・浄水・院内感染の殺菌用途、白斑・アトピー性皮膚炎の医療用途、樹脂硬化の工業用途など多岐にわたる。しかし、電力変換効率(WPE)は数%と水銀ランプの20%に比較して低く実用化には多くの課題がある。その理由は量子井戸層で発光した光がp型GaNコンタクト層及びNi/Au電極で吸収消失されること、LED素子と空気の屈折率差に起因する内部全反射により光を外部に取り出すことが容易ではないなど、光取出し効率(Light Extraction Efficiency:LEE)が6%以下と低いことである。更に、LED素子をパッケージに搭載した場合、深紫外光の吸収を抑制する有効な材料がないことも挙げられる。 深 Deep UV LEDs with an emission wavelength of 200 nm to 355 nm are used in a wide variety of applications, including sterilization, water purification, sterilization for hospital infections, medical use for vitiligo and atopic dermatitis, and industrial use for resin curing. However, the power conversion efficiency (WPE) is several percent, which is low as compared with 20% of a mercury lamp, and there are many problems in practical use. The reason is that the light emitted from the quantum well layer is absorbed and lost by the p-type GaN contact layer and the Ni / Au electrode, and the light can be extracted to the outside by the total internal reflection caused by the refractive index difference between the LED element and air. Light extraction efficiency (Light Extraction Efficiency: LEE) is as low as 6% or less because it is not easy. Furthermore, when an LED element is mounted on a package, there is no effective material for suppressing absorption of deep ultraviolet light.
 そこで、特許文献1では、p型GaNコンタクト層或いはp型AlGaNコンタクト層に反射型フォトニック結晶を形成してLEEを2倍以上改善したと報告している。また、特許文献2では、サファイア基板裏面に上記波長に対して透明なサファイア半球レンズを接合させてLEEが最大で約3倍に改善したと報告している。 Therefore, Patent Document 1 reports that LEE has been improved more than twice by forming a reflective photonic crystal on the p-type GaN contact layer or the p-type AlGaN contact layer. In addition, Patent Document 2 reports that the LEE has been improved up to about three times at the maximum by bonding a sapphire hemispherical lens transparent to the above wavelength on the back surface of the sapphire substrate.
特許第6156898号公報Japanese Patent No. 6156898 特許第6230038号公報Japanese Patent No. 6230038
 特許文献1の表1では、発光波長に対して透明なp型AlGaNコンタクト層に反射型フォトニック結晶を形成してLEEを最大で1.82倍の23.8%に改善している。この場合、深紫外LED素子を装着する窒化アルミニウムセラミックパッケージ内壁は波長280nmにおいて反射率92%を有するアルミニウムで被覆されていることを前提としている。しかし、実際の工程で前記パッケージ内壁をアルミニウムで蒸着した場合、窒化アルミニウム表面の励起電子がアルミニウム内部の電界を弱めるために深紫外光が内部に入射・消失して所望の反射率が得られない(後述する本願の図1E参照)。 表 In Table 1 of Patent Document 1, the reflection type photonic crystal is formed on the p-type AlGaN contact layer transparent to the emission wavelength, and the LEE is improved 1.82 times at the maximum to 23.8%. In this case, it is assumed that the inner wall of the aluminum nitride ceramic package on which the deep ultraviolet LED element is mounted is covered with aluminum having a reflectance of 92% at a wavelength of 280 nm. However, when the inner wall of the package is deposited with aluminum in an actual process, excited electrons on the aluminum nitride surface weaken an electric field inside aluminum, so that deep ultraviolet light enters and disappears inside, and a desired reflectance cannot be obtained. (See FIG. 1E of the present application described below).
 また、特許文献2の表7では、前記反射型フォトニック結晶を有する深紫外LED素子のサファイア基板裏面にサファイア半球レンズを接合させてLEEを更に最大で57.1%に改善しているが、サファイア基板裏面を研磨して厚さを400umから100umまで薄くする工程が入りコストが高く実用的ではない。更に、この深紫外LED素子を市販の放熱特性に優れた窒化アルミニウムセラミックパッケージに装着した場合、深紫外光が全てパッケージ内側壁で吸収・消失するためにLEEが30%以上性能劣化する問題が生じるので、LEEは57.1%から40%程度に減少する。 Further, in Table 7 of Patent Document 2, LEE is further improved to 57.1% at the maximum by bonding a sapphire hemispherical lens to the back surface of the sapphire substrate of the deep ultraviolet LED element having the reflective photonic crystal, The process involves polishing the back surface of the sapphire substrate to reduce the thickness from 400 μm to 100 μm, which is costly and impractical. Further, when this deep ultraviolet LED element is mounted on a commercially available aluminum nitride ceramic package having excellent heat radiation characteristics, all deep ultraviolet light is absorbed / dissipated on the inner wall of the package, causing a problem that LEE deteriorates by 30% or more. Therefore, LEE decreases from 57.1% to about 40%.
 本発明は、深紫外LED装置のLEEを向上させることを目的とする。また、本発明は、LEEを向上させた深紫外LED装置を低コストで実現することを目的とする。 The present invention aims to improve LEE of a deep ultraviolet LED device. Another object of the present invention is to realize a deep ultraviolet LED device with improved LEE at low cost.
 本発明の第1の観点によれば、深紫外LED素子の設計波長λ(200nm~355nm)において反射率91%以上を有する無機塗料が、内側底面及び内側側壁にコーティングされ硬化処理された(以下前記無機塗料をコーティングし硬化処理する行為を併せて「コーティング」と記載し、前記無機塗料をコーティングした被膜を「無機塗料コーティング膜」と記載する)表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が45度以上60度以下であって、かつ、前記パッケージの最表面は石英窓で密閉されるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは3≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たす深紫外LED素子と、を有することを特徴とする深紫外LED装置を提供する。
 なお、前記無機塗料の反射率は、前記紫外線LED装置の使用時に設計波長λ(200nm~355nm)において反射率91%以上であれば良く、無機塗料そのものが反射率91%未満であっても、コーティング後に反射率91%となる無機塗料、あるいはコーティング後に化学的変化を伴う追加の処理によって反射率91%以上となる無機塗料であっても良い。
According to a first aspect of the present invention, an inorganic paint having a reflectance of 91% or more at a design wavelength λ (200 nm to 355 nm) of a deep ultraviolet LED element is coated on an inner bottom surface and an inner side wall and cured (hereinafter referred to as “hardening treatment”). The act of coating and curing the inorganic paint is collectively referred to as "coating", and the coating obtained by coating the inorganic paint is referred to as "inorganic paint coating film." Wherein the inner side wall angle of the package is not less than 45 degrees and not more than 60 degrees, and the outermost surface of the package is a package sealed with a quartz window, and a deep ultraviolet LED element mounted in the package, A reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, a p-type AlGaN layer, A barrier layer (or an electron block layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate are arranged in this order from the side opposite to the sapphire substrate. A reflection type two-dimensional photo having a plurality of holes provided in a range in a thickness direction of the p-type GaN contact layer and not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer. Nic crystal, the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened for a TE polarization component, and the reflective two-dimensional photonic crystal has a photonic band gap for light of the design wavelength λ. period a crystal periodic structure satisfies the Bragg condition, and the Bragg condition mλ / n eff = 2a (where, m: order, lambda: design wavelength, n eff: 2-dimensional photonic The effective refractive index of the crystal, a: the period of the two-dimensional photonic crystal) satisfies 3 ≦ m ≦ 4, and when the radius of the hole is R, the R / a ratio is 0.30 ≦ And a deep ultraviolet LED element satisfying R / a ≦ 0.40.
The reflectance of the inorganic paint may be at least 91% at a design wavelength λ (200 nm to 355 nm) when the ultraviolet LED device is used. Even if the inorganic paint itself has a reflectance of less than 91%, An inorganic paint that has a reflectance of 91% after coating, or an inorganic paint that has a reflectance of 91% or more by an additional process involving a chemical change after coating may be used.
 本発明の第2の観点によれば、前記無機塗料が、内側底面及び内側側壁にコーティングされた表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が45度以上60度以下であって、かつ、前記パッケージの最表面は石英窓で密閉されるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、反射電極層(Au)と、金属層(Ni)と、p型AlGaNコンタクト層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、前記金属層と前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記多重量子障壁層(或いは電子ブロック層)との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは2≦m≦3を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.35を満たす深紫外LED素子と、を有することを特徴とする深紫外LED装置を提供する。 According to a second aspect of the present invention, the inorganic paint is a surface-mounted aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 45 degrees or more and 60 degrees. The package is a package sealed with a quartz window on the outermost surface, and a deep ultraviolet LED element mounted in the package. The package includes a reflective electrode layer (Au) and a metal layer (Ni). , A p-type AlGaN contact layer, a multiple quantum barrier layer (or an electron blocking layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate from the opposite side to the sapphire substrate. The metal layer and the p-type AlGaN contact layer in the thickness direction, and the p-type AlGaN contact layer and the p-type AlGaN contact layer. A reflection type two-dimensional photonic crystal having a plurality of holes provided at a position not exceeding an interface with a quantum barrier layer (or an electron block layer); It has a photonic band gap opened to the polarization component, and the period a of the reflection type two-dimensional photonic crystal periodic structure satisfies the Bragg condition for light of the design wavelength λ, and the Bragg condition formula The order m in mλ / n eff = 2a (where m: order, λ: design wavelength, n eff : effective refractive index of the two-dimensional photonic crystal, a: period of the two-dimensional photonic crystal) is 2 ≦ m ≦ 3. A deep ultraviolet LED device comprising: a deep ultraviolet LED element that satisfies the condition 3 and the radius of the hole is R, and the R / a ratio satisfies 0.30 ≦ R / a ≦ 0.35. I will provide a.
 本発明の第3の観点によれば、前記第2の観点の深紫外LED装置の構造から、反射電極(Au)を、反射電極(Rh)に替えて、かつ金属層(Ni)を無くした構造を特徴とする深紫外LED装置を提供する。 According to the third aspect of the present invention, the reflective electrode (Au) is replaced with the reflective electrode (Rh) and the metal layer (Ni) is eliminated from the structure of the deep ultraviolet LED device of the second aspect. A deep ultraviolet LED device having a structure is provided.
 本発明の第4の観点によれば、前記第1の観点の深紫外LED装置の構造において、さらに、前記サファイア基板裏面に接合される波長λに対して透明な、サファイア又は石英半球レンズを有し、前記半球レンズの半径は、前記サファイア基板の外接円の半径以上を有する深紫外LED素子を有することを特徴とする深紫外LED装置を提供する。 According to a fourth aspect of the present invention, the structure of the deep ultraviolet LED device according to the first aspect further includes a sapphire or quartz hemispherical lens transparent to a wavelength λ bonded to the back surface of the sapphire substrate. In addition, the present invention provides a deep ultraviolet LED device comprising a deep ultraviolet LED element having a radius of the hemispheric lens equal to or larger than a radius of a circumcircle of the sapphire substrate.
 本発明の第5の観点によれば、前記第2の観点の深紫外LED装置の構造において、さらに、前記サファイア基板裏面に接合される波長λに対して透明な、サファイア又は石英半球レンズを有し、前記半球レンズの半径は、前記サファイア基板の外接円の半径以上を有することを特徴とする深紫外LED装置を提供する。 According to a fifth aspect of the present invention, the structure of the deep ultraviolet LED device according to the second aspect further includes a sapphire or quartz hemispherical lens transparent to a wavelength λ bonded to the back surface of the sapphire substrate. The radius of the hemispherical lens is equal to or larger than the radius of a circumcircle of the sapphire substrate.
 本発明の第6の観点によれば、前記第3の観点の深紫外LED装置の構造において、さらに、前記サファイア基板裏面に接合される波長λに対して透明な、サファイア又は石英半球レンズを有し、前記半球レンズの半径は、前記サファイア基板の外接円の半径以上を有することを特徴とする深紫外LED装置を提供する。 According to a sixth aspect of the present invention, in the structure of the deep ultraviolet LED device according to the third aspect, there is further provided a sapphire or quartz hemispherical lens transparent to a wavelength λ to be bonded to the back surface of the sapphire substrate. The radius of the hemispherical lens is equal to or larger than the radius of a circumcircle of the sapphire substrate.
 本発明の第7の観点によれば、前記無機塗料が、内側底面及び内側側壁にコーティングされた表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が60度以上75度以下であるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは3≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たし、さらに、前記サファイア基板裏面に接合される波長λに対して透明なサファイア又は石英半球レンズを有し、前記半球レンズの半径は前記パッケージ内壁の外接円以上を有し、波長λに対して透明な樹脂フィルムが前記半球レンズ表面及び前記パッケージ上面を完全被覆密閉することを特徴とする深紫外LED装置を提供する。 According to a seventh aspect of the present invention, the inorganic paint is a surface-mounted aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 60 degrees or more and 75 degrees. A package having the following structure, and a deep ultraviolet LED element mounted in the package, wherein a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, and a p-type AlGaN layer are multiplexed. It has a quantum barrier layer (or an electron blocking layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate in this order from the side opposite to the sapphire substrate. The p-type GaN contact layer is provided at a position within the thickness direction of the p-type GaN contact layer and at a position not exceeding the interface between the p-type GaN contact layer and the p-type AlGaN layer. Reflective two-dimensional photonic crystal having a plurality of holes, the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarized light component, and the design wavelength λ , The period a of the reflection type two-dimensional photonic crystal periodic structure satisfies the Bragg condition, and the Bragg condition mλ / n eff = 2a (where m: order, λ: design wavelength, n eff : the effective refractive index of the two-dimensional photonic crystal, a: the order m in the period of the two-dimensional photonic crystal satisfies 3 ≦ m ≦ 4, and when the radius of the hole is R, the R / a ratio Satisfies 0.30 ≦ R / a ≦ 0.40, and further has a sapphire or quartz hemispherical lens transparent to the wavelength λ bonded to the back surface of the sapphire substrate, and the radius of the hemispherical lens is the inner wall of the package. of It has more than contact yen, provides a deep ultraviolet LED device, wherein the transparent resin film with respect to the wavelength λ completely covering sealing the hemispherical lens surface and the top surface of the package.
 本発明の第8の観点によれば、前記無機塗料が、内側底面及び内側側壁にコーティングされた表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が60度以上75度以下であるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、反射電極層(Au)と、金属層(Ni)と、p型AlGaNコンタクト層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、前記金属層と前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記多重量子障壁層(或いは電子ブロック層)との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは2≦m≦3を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.35を満たす深紫外LED素子と、を有し、さらに、前記サファイア基板裏面に接合される波長λに対して透明なサファイア又は石英半球レンズを有し、前記半球レンズの半径は前記パッケージ内壁の外接円以上を有し、波長λに対して透明な樹脂フィルムが前記半球レンズ表面及び前記パッケージ上面を完全被覆密閉することを特徴とする深紫外LED装置を提供する。 According to an eighth aspect of the present invention, the inorganic paint is a surface mount type aluminum nitride ceramic package coated on an inner bottom surface and an inner side wall, and the inner side wall angle of the package is 60 degrees or more and 75 degrees. A package and a deep ultraviolet LED element mounted in the package, wherein the package includes a reflective electrode layer (Au), a metal layer (Ni), a p-type AlGaN contact layer, and a multiple quantum barrier layer (or an electron A block layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate in this order from the side opposite to the sapphire substrate, wherein the metal layer and the p-type AlGaN contact layer Within the range of the thickness direction, and not exceeding the interface between the p-type AlGaN contact layer and the multiple quantum barrier layer (or electron blocking layer). A reflective two-dimensional photonic crystal having a plurality of holes provided at positions, wherein the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarization component; For the light of the design wavelength λ, the period a of the reflective two-dimensional photonic crystal periodic structure satisfies the Bragg condition, and the Bragg condition mλ / n eff = 2a (where m: order, λ: The order m in the design wavelength, n eff : the effective refractive index of the two-dimensional photonic crystal, a: the period of the two-dimensional photonic crystal) satisfies 2 ≦ m ≦ 3, and when the radius of the hole is R, A deep ultraviolet LED element satisfying an R / a ratio of 0.30 ≦ R / a ≦ 0.35, further comprising a sapphire or quartz hemispherical lens transparent to a wavelength λ to be bonded to the back surface of the sapphire substrate. Having A deep ultraviolet LED device, wherein a radius of the hemispheric lens is equal to or larger than a circumcircle of the inner wall of the package, and a resin film transparent to a wavelength λ completely covers and seals the surface of the hemispheric lens and the upper surface of the package. I do.
 本発明の第9の観点によれば、前記第8の観点の深紫外LED装置の構造から、反射電極(Au)を、反射電極(Rh)に替えて、かつ金属層(Ni)を無くした構造を特徴とする深紫外LED装置を提供する。 According to the ninth aspect of the present invention, the reflective electrode (Au) is replaced with the reflective electrode (Rh) and the metal layer (Ni) is eliminated from the structure of the deep ultraviolet LED device of the eighth aspect. A deep ultraviolet LED device having a structure is provided.
 本発明の第10の観点によれば、設計波長をλ(200nm~355nm)とする深紫外LED装置の製造方法であって、サファイア基板を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程と、前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、前記p型GaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、前記構造が転写されたレジスト層をマスクとして前記p型GaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、前記反射型2次元フォトニック結晶を形成した上に、前記金属層と反射電極層をこの順で斜め蒸着法にて形成する工程と、前記サファイア基板をダイシングして深紫外LED素子を作成する工程と、内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、前記パッケージの内側底面と内側側壁に前記無機塗料をコーティングする工程と、前記パッケージに前記深紫外LED素子を装着する工程と、前記パッケージ最表面を石英窓で密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a tenth aspect of the present invention, there is provided a method of manufacturing a deep ultraviolet LED device having a design wavelength of λ (200 nm to 355 nm), the method including a step of forming a laminated structure using a sapphire substrate as a growth substrate. Reflective electrode layer (Au), metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron blocking layer), multiple quantum well layer, n-type AlGaN Forming a layered structure including a layer, an AlN buffer layer, and a sapphire substrate in this order from a side opposite to the sapphire substrate, in a thickness direction range of the metal layer and the p-type GaN contact layer. Reflective two-dimensional photonic crystal periodic structure having a plurality of vacancies provided in a position not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer Forming, forming a mold for forming the reflective two-dimensional photonic crystal periodic structure, forming a resist layer on the p-type GaN contact layer, and nanoimprinting the structure of the mold. Transferring by a method, etching the p-type GaN contact layer using the resist layer to which the structure has been transferred as a mask to form a two-dimensional photonic crystal periodic structure, and the reflection type two-dimensional photonic crystal. Forming a metal layer and a reflective electrode layer in this order by an oblique vapor deposition method, dicing the sapphire substrate to form a deep ultraviolet LED element, and an inner side wall angle of 45 degrees. Preparing a surface-mount type aluminum nitride ceramic package having a temperature of not less than 60 degrees and not more than 60 degrees; A deep ultraviolet LED device, a step of mounting the deep ultraviolet LED element on the package, and a step of sealing the outermost surface of the package with a quartz window.
 本発明の第11の観点によれば、前記10の観点による深紫外LED装置の製造方法のうち、p型コンタクト層を、p型GaNコンタクト層からp型AlGaNコンタクト層に替えた工程であって、前記第16の観点とは、前記反射型フォトニック結晶周期構造を形成する位置が異なり、すなわち前記金属層と前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記多重量子障壁層(或いは電子ブロック層)との界面を超えない位置に複数の空孔を設ける工程を有し、それ以外は第10の観点を同じ工程を有する深紫外LED装置の製造方法を提供する。 According to an eleventh aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, the p-type contact layer is changed from a p-type GaN contact layer to a p-type AlGaN contact layer. The position of forming the reflective photonic crystal periodic structure is different from that of the sixteenth aspect, that is, within the range of the metal layer and the p-type AlGaN contact layer in the thickness direction, and in the p-type AlGaN contact layer. A deep ultraviolet LED device comprising the step of providing a plurality of holes at positions not exceeding the interface between the contact layer and the multiple quantum barrier layer (or the electron blocking layer), and otherwise having the same steps as the tenth aspect. A manufacturing method is provided.
 本発明の第12の観点によれば、前記11の観点による深紫外LED装置の製造方法のうち、反射電極を、AuからRhに替え、かつ金属層(Ni)を用いない工程であって、前記第11の観点とは、この点以外は同じ工程を有する深紫外LED装置の製造方法を提供する。 According to a twelfth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, a step of changing the reflective electrode from Au to Rh and using no metal layer (Ni), The eleventh aspect provides a method of manufacturing a deep ultraviolet LED device having the same steps except for this point.
 本発明の第13の観点によれば、第10の観点の深紫外LED装置の製造方法において、さらに、前記LED素子基板外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、前記パッケージの内側底面と内側側壁に前記無機塗料をコーティングする工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、前記パッケージ最表面を石英窓で密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a thirteenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall. A step of coating a paint, and a step of mounting the hemispherical lens junction LED element on the package. The package top surface to provide a method of manufacturing a deep-ultraviolet LED device having a step of sealing with a quartz window.
 本発明の第14の観点によれば、第11の観点の深紫外LED装置の製造方法において、さらに、前記LED素子基板外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、前記パッケージの内側底面と内側側壁に前記無機塗料をコーティングする工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、前記パッケージ最表面を石英窓で密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a fourteenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall. A step of coating a paint, and a step of mounting the hemispherical lens junction LED element on the package. The package top surface to provide a method of manufacturing a deep-ultraviolet LED device having a step of sealing with a quartz window.
 本発明の第15の観点によれば、第12の観点の深紫外LED装置の製造方法において、さらに、前記LED素子基板外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、前記パッケージの内側底面と内側側壁に前記無機塗料をコーティングする工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、前記パッケージ最表面を石英窓で密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a fifteenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding a back surface to the back surface of the LED element substrate, preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of 45 degrees or more and 60 degrees or less, and forming the inorganic bottom surface and the inner side wall of the package on the inner bottom surface and the inner side wall. A step of coating a paint, and a step of mounting the hemispherical lens junction LED element on the package. The package top surface to provide a method of manufacturing a deep-ultraviolet LED device having a step of sealing with a quartz window.
 本発明の第16の観点によれば、第10の観点の深紫外LED装置の製造方法において、さらに、前記パッケージ内壁の外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、波長λに対して透明な樹脂フィルムを前記半球レンズ表面と前記パッケージ上面を同時に被覆密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a sixteenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the tenth aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength λ. Provided is a method for manufacturing a deep ultraviolet LED device having a sealing step.
 本発明の第17の観点によれば、第11の観点の深紫外LED装置の製造方法において、さらに、前記パッケージ内壁の外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、波長λに対して透明な樹脂フィルムを前記半球レンズ表面と前記パッケージ上面を同時に被覆密閉する工程を有する深紫外LED装置の製造方法を提供する。 According to a seventeenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the eleventh aspect, further comprising: preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength λ. Provided is a method for manufacturing a deep ultraviolet LED device having a sealing step.
 本発明の第18の観点によれば、第12の観点の深紫外LED装置の製造方法において、さらに、前記パッケージ内壁の外接円以上の半径を有するサファイア又は石英半球レンズを準備する工程と、前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、前記パッケージに前記半球レンズ接合LED素子を装着する工程と、波長λに対して透明な樹脂フィルムを前記半球レンズ表面と前記パッケージ上面を同時に被覆密閉する工程を有する深紫外LED装置の製造方法を提供する。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-157332号の開示内容を包含する。
According to an eighteenth aspect of the present invention, in the method for manufacturing a deep ultraviolet LED device according to the twelfth aspect, further comprising: preparing a sapphire or quartz hemispheric lens having a radius equal to or larger than a circumcircle of the package inner wall; A step of flattening the back surface of the LED element substrate and the back surface of the hemispheric lens, a step of surface-activating the back surface of the hemispheric lens and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma, and the hemispheric lens subjected to the surface activation processing Bonding the back surface to the LED device substrate back surface, mounting the hemispherical lens bonded LED device to the package, and simultaneously covering the hemispherical lens surface and the package top surface with a resin film transparent to a wavelength λ. Provided is a method for manufacturing a deep ultraviolet LED device having a sealing step.
This description includes part or all of the disclosure content of Japanese Patent Application No. 2018-157332, which is a priority document of the present application.
 本発明によれば、深紫外LED装置のLEEを低コストで向上させることができる。 According to the present invention, LEE of a deep ultraviolet LED device can be improved at low cost.
本発明の第1の実施の形態の深紫外LED装置の断面図と平面図である。FIG. 2 is a cross-sectional view and a plan view of the deep ultraviolet LED device according to the first embodiment of the present invention. p型GaNコンタクト層に形成した2次元フォトニック結晶に入射したTE偏光成分におけるフォトニックバンド構造及びR/aとPBG値の関係を平面波展開法で求めた図である。FIG. 9 is a diagram illustrating a photonic band structure and a relationship between R / a and a PBG value in a TE polarization component incident on a two-dimensional photonic crystal formed on a p-type GaN contact layer, obtained by a plane wave expansion method. 第1の実施の形態の深紫外LED装置の光線追跡法における計算モデルである。4 is a calculation model in the ray tracing method of the deep ultraviolet LED device according to the first embodiment. 第1の実施の形態の深紫外LED装置のFDTD法における計算モデルである。5 is a calculation model in the FDTD method of the deep ultraviolet LED device according to the first embodiment. AlNパッケージに前記無機塗料の特性条件を満足する無機塗料として、日本タングステン株式会社製無機塗料NC-RCを用いてコーティング(以下「NC-RC反射材」と称する)した場合とアルミニウムコート膜をコートした場合の、反射率の波長特性を示す図である。An AlN package coated with an inorganic paint NC-RC manufactured by Nippon Tungsten Co., Ltd. (hereinafter referred to as "NC-RC reflector") as an inorganic paint satisfying the characteristic conditions of the inorganic paint, and an aluminum coat film. FIG. 7 is a diagram illustrating a wavelength characteristic of the reflectance in the case where the reflection is performed. 第1の実施の形態の無機塗料コーティング膜であるNC-RC反射材,Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。FIG. 5 is an LEE analysis result in the case where the inorganic paint coating film according to the first embodiment is an NC-RC reflector, an Al reflection film, an Au reflection film, and no reflection film. 第1の実施の形態の多重量子井戸層のWellから2D-PhCの最短端面までの距離Gを変数としたLEE増加ファクター解析結果である。5 is an LEE increase factor analysis result using a distance G from Well of the multiple quantum well layer of the first embodiment to the shortest end face of 2D-PhC as a variable. 第1の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the first embodiment. 第2の実施の形態の深紫外LED装置の断面図と平面図である。It is sectional drawing and a top view of the deep ultraviolet LED device of 2nd Embodiment. p型AlGaNコンタクト層に形成した2次元フォトニック結晶に入射したTE偏光成分におけるフォトニックバンド構造及びR/aとPBG値の関係を平面波展開法で求めた図である。FIG. 9 is a diagram illustrating a photonic band structure and a relationship between R / a and a PBG value in a TE polarization component incident on a two-dimensional photonic crystal formed on a p-type AlGaN contact layer, obtained by a plane wave expansion method. 第2の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。FIG. 10 is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the second embodiment. 第2の実施の形態の多重量子井戸層のWellから2D-PhCの最短端面までの距離Gを変数としたLEE増加ファクター解析結果である。10 is an LEE increase factor analysis result using the distance G from Well of the multiple quantum well layer of the second embodiment to the shortest end face of 2D-PhC as a variable. 第2の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the second embodiment. 第3の実施の形態の深紫外LED装置の断面図と平面図である。It is sectional drawing and a top view of the deep ultraviolet LED device of 3rd Embodiment. 第3の実施の形態の無機塗料コーティング膜であるNC-RC反射材,Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。FIG. 14 is an LEE analysis result in the case where the inorganic paint coating film according to the third embodiment is an NC-RC reflector, an Al reflection film, an Au reflection film, and no reflection film. 第3の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the third embodiment. 第4の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 4th embodiment. 第4の実施の形態の深紫外LED装置の光線追跡法における計算モデルである。16 is a calculation model in the ray tracing method of the deep ultraviolet LED device according to the fourth embodiment. 第4の実施の形態の深紫外LED装置のFDTD法における計算モデルである。14 is a calculation model of the deep ultraviolet LED device according to the fourth embodiment in the FDTD method. 第4の実施の形態の無機塗料コーティング膜であるNC-RC反射材,Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflector, an Al reflector, an Au reflector, and no reflector, which are inorganic coating films according to the fourth embodiment. 第4の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the fourth embodiment. 第5の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 5th embodiment. 第5の実施の形態の無機塗料コーティング膜であるNC-RC反射材,Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the fifth embodiment. 第5の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the fifth embodiment. 第6の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 6th embodiment. 第6の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the sixth embodiment. 第6の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the sixth embodiment. 第7の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 7th embodiment. 第7の実施の形態の深紫外LED装置の光線追跡法による計算モデルである。16 is a calculation model of the deep ultraviolet LED device according to the seventh embodiment by a ray tracing method. 第7の実施の形態の深紫外LED装置のFDTD法による計算モデルである。It is a calculation model by the FDTD method of the deep ultraviolet LED device of the seventh embodiment. 第7の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is the LEE analysis result in the case of the NC-RC reflective material, the Al reflective film, the Au reflective film, and no reflective film which are the inorganic paint coating films of the seventh embodiment. 第7の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is the LEE increase factor analysis result of the calculation model of 2D-PhC of the seventh embodiment. 第8の実施の形態の深紫外LED装置の断面図と平面図である。It is sectional drawing and a top view of the deep ultraviolet LED device of 8th Embodiment. 第8の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflector, an Al reflector, an Au reflector, and no reflector, which are the inorganic paint coating films of the eighth embodiment. 第8の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the eighth embodiment. 第9の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 9th embodiment. 第9の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the ninth embodiment. 第9の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the ninth embodiment. 第10の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 10th embodiment. 第10の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the tenth embodiment. 第10の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the 2D-PhC calculation model of the tenth embodiment. 第11の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of an eleventh embodiment. 第11の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film which are the inorganic paint coating films of the eleventh embodiment. 第11の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。It is an LEE increase factor analysis result of the calculation model of 2D-PhC of the eleventh embodiment. 第12の実施の形態の深紫外LED装置の断面図と平面図である。It is sectional drawing and a top view of the deep ultraviolet LED device of the twelfth embodiment. 第12の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is the LEE analysis result in the case of the NC-RC reflection material, the Al reflection film, the Au reflection film, and no reflection film which are the inorganic paint coating films of the twelfth embodiment. 第12の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。FIG. 39 shows LEE increase factor analysis results of the 2D-PhC calculation model of the twelfth embodiment. 第13の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 13th embodiment. 第13の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflector, an Al reflector, an Au reflector, and no reflector, which are inorganic paint coating films of the thirteenth embodiment. 第13の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。FIG. 37 shows LEE increase factor analysis results of the 2D-PhC calculation model according to the thirteenth embodiment. 第14の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 14th embodiment. 第14の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the fourteenth embodiment. 第14の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。FIG. 39 shows LEE increase factor analysis results of the 2D-PhC calculation model of the fourteenth embodiment. 第15の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 15th embodiment. 第15の実施の形態の無機塗料コーティング膜であるNC-RC反射材、Al反射膜、Au反射膜、反射膜無しの場合のLEE解析結果である。It is an LEE analysis result in the case of an NC-RC reflective material, an Al reflective film, an Au reflective film, and no reflective film, which are the inorganic paint coating films of the fifteenth embodiment. 第15の実施の形態の2D-PhCの計算モデルのLEE増加ファクター解析結果である。FIG. 39 shows LEE increase factor analysis results of the 2D-PhC calculation model of the fifteenth embodiment. 比較例としてサファイア基板の厚さを130um、280um、430umと変化させて、光線追跡法にて解析を行いサファイア基板厚さとPhC無しLEDのLEEの関係を求めた図である。As a comparative example, the thickness of the sapphire substrate was changed to 130 μm, 280 μm, and 430 μm, and analysis was performed by the ray tracing method to determine the relationship between the sapphire substrate thickness and LEE of the LED without PhC. 比較例として示す石英窓付きサファイアレンズと石英レンズを用いた場合のLEEの解析結果である。It is an LEE analysis result when using a sapphire lens with a quartz window and a quartz lens shown as a comparative example. 比較例として示す透明樹脂フィルム付きサファイアレンズと石英レンズを用いた場合の光取り出し効率の解析結果である。9 is an analysis result of light extraction efficiency when a sapphire lens with a transparent resin film and a quartz lens are used as comparative examples. 第31の実施の形態の深紫外LED装置の断面図と平面図である。It is the sectional view and top view of the deep ultraviolet LED device of a 31st embodiment.
 以下に、本発明の実施の形態による深紫外LED装置について、図面を参照しながら詳細に説明する。
 なお本発明を実施するにあたり、深紫外LED素子の設計波長λ(200nm~355nm)において反射率91%以上を満足する無機塗料として、日本タングステン株式会社製の無機塗料NC-RCを用い、コーティングを行ってNC-RC反射材を得た。無機塗料NC-RCはオルガノポリシロキサン組成物および六方晶窒化ホウ素を主組成とする塗料であり、コーティング後の反射率は設計波長λ(200nm~355nm)において反射率91%以上である。
Hereinafter, a deep ultraviolet LED device according to an embodiment of the present invention will be described in detail with reference to the drawings.
In carrying out the present invention, an inorganic paint NC-RC manufactured by Nippon Tungsten Co., Ltd. was used as an inorganic paint satisfying a reflectance of 91% or more at a design wavelength λ (200 nm to 355 nm) of a deep ultraviolet LED element. The process was performed to obtain an NC-RC reflector. The inorganic paint NC-RC is a paint mainly composed of an organopolysiloxane composition and hexagonal boron nitride, and has a reflectance of 91% or more at a design wavelength λ (200 nm to 355 nm) after coating.
(第1の実施の形態)
 本発明の第1の実施の形態に係る深紫外LED装置として、設計波長λの一例として波長280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図1A(a-1)、(a-2)に表す。
(First Embodiment)
FIG. 1A (a-1) shows a structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED device having a wavelength of 280 nm as an example of a design wavelength λ as a deep ultraviolet LED device according to the first embodiment of the present invention. , (A-2).
 具体的には、図1A(a-1)の断面図の上から順番に、石英窓1、サファイア基板2、AlNバッファー層3、n型AlGaN層4、多重量子井戸層5、多重量子障壁層(或いは電子ブロック層)6、p型AlGaN層7、p型GaNコンタクト層8、金属層(以下Ni層)9、反射電極層(以下Au反射電極層)10、表面実装型窒化アルミニウムパッケージ(以下AlNパッケージ)15、AlNパッケージ内側底面及び内側側壁表面にコーティングされたNC-RC反射材17、AlNパッケージ15の内側側壁角度θ15a、反射型2次元フォトニック結晶周期構造100、空孔101(h)を有する。 Specifically, the quartz window 1, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, the multiple quantum well layer 5, and the multiple quantum barrier layer are arranged in this order from the top of the sectional view of FIG. (Or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter Ni layer) 9, reflective electrode layer (hereinafter Au reflective electrode layer) 10, surface mount type aluminum nitride package (hereinafter AlN package) 15, NC-RC reflector 17 coated on the inner bottom surface and inner side wall surface of AlN package, inner side wall angle θ15a of AlN package 15, reflection type two-dimensional photonic crystal periodic structure 100, hole 101 (h) Having.
 図1A(a-1)に示すように、AlNパッケージ15に、サファイア基板2、AlNバッファー層3、n型AlGaN層4、多重量子井戸層5、多重量子障壁層(或いは電子ブロック層)6、p型AlGaN層7、p型GaNコンタクト層8、金属層(以下Ni層)9、反射電極層(以下Au反射電極層)10、反射型2次元フォトニック結晶周期構造100、空孔101(h)で構成される深紫外LED素子が実装されている。AlNパッケージ15の内側側壁角度θ15aの角度が45度以上60度以下の時、深紫外LED素子の側面から出射された光を上部の方向に反射させることができるのでLEEが向上する。また、AlNパッケージ15は上部を石英窓1で封止されている。深紫外LED素子の経年劣化を防止するためである。 As shown in FIG. 1A (a-1), a sapphire substrate 2, an AlN buffer layer 3, an n-type AlGaN layer 4, a multiple quantum well layer 5, a multiple quantum barrier layer (or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, metal layer (hereinafter Ni layer) 9, reflection electrode layer (hereinafter Au reflection electrode layer) 10, reflection type two-dimensional photonic crystal periodic structure 100, hole 101 (h ) Is mounted. When the angle of the inner side wall angle θ15a of the AlN package 15 is not less than 45 degrees and not more than 60 degrees, light emitted from the side surface of the deep ultraviolet LED element can be reflected upward, so that LEE is improved. The upper part of the AlN package 15 is sealed with the quartz window 1. This is to prevent the aging of the deep ultraviolet LED element.
 次に深紫外LED素子においては、Ni層9とp型GaNコンタクト層8の厚さ方向の範囲内で、かつ、p型GaNコンタクト層8とp型AlGaN層7の界面を超えない位置に、複数の空孔101(h)を有する反射型2次元フォトニック結晶周期構造100が形成されている。 Next, in the deep ultraviolet LED element, at a position within the thickness direction of the Ni layer 9 and the p-type GaN contact layer 8 and not exceeding the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7, A reflective two-dimensional photonic crystal periodic structure 100 having a plurality of holes 101 (h) is formed.
 図1A(a-2)にxy平面図として示す通り、反射型2次元フォトニック結晶周期構造100は、円柱形状でp型GaNコンタクト層8よりも屈折率が小さい空気で半径がRの円を断面とする空孔101(h)が、x方向及びy方向に沿って周期aで三角格子状に形成されたホール構造を有する。 As shown as an xy plan view in FIG. 1A (a-2), the reflection type two-dimensional photonic crystal periodic structure 100 is a column-shaped air having a smaller refractive index than the p-type GaN contact layer 8 and having a radius of R. The hole 101 (h) having a cross section has a hole structure formed in a triangular lattice shape with a period a along the x direction and the y direction.
 上記の構造において、量子井戸層5で発光した波長280nmの深紫外光はTE光とTM光が全方向に放射されて楕円偏光しながら媒質中を伝搬する。そして、量子井戸層5近傍に設けられた2次元フォトニック結晶周期構造100がブラッグの条件式(mλ/neff=2a、但しm:次数、λ:発光波長、neff:2次元フォトニック結晶の等価屈折率、a:2次元フォトニック結晶の周期)を満たし、かつ、TE偏光成分に対してフォトニックバンドギャップ(PBG)が開くとき、2次元フォトニック結晶に入射した深紫外光は2次元フォトニック結晶面内で定常波を形成してサファイア基板2の方向に反射される。 In the above structure, the deep ultraviolet light having a wavelength of 280 nm emitted from the quantum well layer 5 is transmitted in the medium while elliptically polarized as TE light and TM light are radiated in all directions. The two-dimensional photonic crystal periodic structure 100 provided near the quantum well layer 5 has a Bragg conditional expression (mλ / n eff = 2a, where m: order, λ: emission wavelength, n eff : two-dimensional photonic crystal). , A: the period of the two-dimensional photonic crystal) and the photonic band gap (PBG) opens for the TE polarization component, the deep ultraviolet light incident on the two-dimensional photonic crystal becomes 2 A standing wave is formed in the plane of the two-dimensional photonic crystal and is reflected toward the sapphire substrate 2.
 図1Bの(b-1)に、波長280nmの深紫外光がp型GaNコンタクト層に形成した2次元フォトニック結晶(R/a=0.4)に入射したときのTE偏光成分におけるフォトニックバンド構造を、(b-2)にR/aとPBG値の関係を平面波展開法で求めて図示する。尚、PBG値とは、第1フォトニックバンド(ω1TE)と第2フォトニックバンド(ω2TE)のギャップの大きさを示す値で、(第2フォトニックバンド(ωa/2πc)の最小値)-(第1フォトニックバンド(ωa/2πc)の最大値)で計算される。この図からR/aとPBG値は比例関係にあることがわかる。 FIG. 1B (b-1) shows the photonic in the TE polarization component when deep ultraviolet light having a wavelength of 280 nm is incident on the two-dimensional photonic crystal (R / a = 0.4) formed on the p-type GaN contact layer. The band structure is shown in (b-2) by finding the relationship between R / a and the PBG value by the plane wave expansion method. The PBG value is a value indicating the size of the gap between the first photonic band (ω1TE) and the second photonic band (ω2TE), and is (the minimum value of the second photonic band (ωa / 2πc)) − (The maximum value of the first photonic band (ωa / 2πc)). From this figure, it can be seen that R / a and the PBG value are in a proportional relationship.
 また、平面波展開法の計算に必要なパラメータは以下のように計算される。2次元フォトニック結晶の充填率fは、f=(2π/3)0.5×(R/a)の式で計算される。また、2次元フォトニック結晶の等価屈折率neffは、neff=(n2+(n1-n2)×f)0.5の式で計算される。そこで、空気の屈折率n1=1、p型GaNコンタクト層8の屈折率n2=2.618とすると、R/a=0.2、0.3及び0.4の等価屈折率は上記2式より、其々、2.45、2.223及び1.859となる。 The parameters required for the calculation of the plane wave expansion method are calculated as follows. The filling factor f of the two-dimensional photonic crystal is calculated by the equation f = (2π / 3) 0.5 × (R / a) 2 . Further, the equivalent refractive index n eff of the two-dimensional photonic crystal is calculated by the following equation: n eff = (n2 2 + (n1 2 −n2 2 ) × f) 0.5 . Therefore, assuming that the refractive index of air is n1 = 1 and the refractive index of the p-type GaN contact layer 8 is n2 = 2.618, the equivalent refractive indices of R / a = 0.2, 0.3 and 0.4 are expressed by the above two equations. Thus, they are 2.45, 2.223 and 1.859, respectively.
 次に、2次元フォトニック結晶の反射効果によるLEEをFDTD法によるシミュレーション解析により求めていく。FDTD法はマクスウエル方程式を空間及び時間で差分方程式に変換して電磁界強度を直接計算するのでnm構造のフォトニック結晶などの波動解析には適しているがLEEを直接計算することはできない。一方、光線追跡法は数万本の光線をランダムに放射して検出器に到達した光線数を直接計算するのでmm構造におけるLEEを直接求めることが可能となる。しかしnm構造の波動解析はできない。そこで、フォトニック結晶の反射効果によるLEEを求めるには、FDTD法と光線追跡法のクロスシミュレーションが必要となる。 (4) Next, LEE due to the reflection effect of the two-dimensional photonic crystal is determined by simulation analysis using the FDTD method. The FDTD method converts the Maxwell equation into a difference equation in space and time and directly calculates the electromagnetic field strength. Therefore, the FDTD method is suitable for wave analysis of a photonic crystal having a nm structure, but cannot directly calculate LEE. On the other hand, in the ray tracing method, since tens of thousands of rays are randomly emitted and the number of rays reaching the detector is directly calculated, it is possible to directly obtain the LEE in the mm structure. However, wave analysis of nm structure is not possible. Therefore, in order to obtain LEE due to the reflection effect of the photonic crystal, a cross simulation of the FDTD method and the ray tracing method is required.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 そこで、表1に深紫外LED装置の光線追跡法の計算モデル、表2に深紫外LED装置のFDTD法の計算モデル、表3には反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータを示す。また、図1Cに光線追跡法の計算モデル、図1DにFDTD法の計算モデル、そして図1EにAlNパッケージ15にコーティングしたNC-RC反射材17及びアルミニウムコート膜の反射率の波長特性を示す。図から明らかなようにNC-RC反射材17の反射率が優れている。図1Dに示す素子は図1Aと同様であり、表2に対応している。 Therefore, Table 1 shows a calculation model of the ray tracing method of the deep ultraviolet LED device, Table 2 shows a calculation model of the FDTD method of the deep ultraviolet LED device, and Table 3 shows a calculation model of the FDTD method of the reflection type two-dimensional photonic crystal. Indicates parameters. FIG. 1C shows a calculation model of the ray tracing method, FIG. 1D shows a calculation model of the FDTD method, and FIG. 1E shows the wavelength characteristics of the reflectance of the NC-RC reflector 17 and the aluminum coat film coated on the AlN package 15. As is clear from the figure, the reflectance of the NC-RC reflector 17 is excellent. The element shown in FIG. 1D is similar to FIG. 1A and corresponds to Table 2.
(光線追跡法によるLEEの計算)
 図1Cの光線追跡法の計算モデルにおいて、AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17(無機塗料コーティング膜)として深紫外LED装置のLEEを計算した。また、NC-RC反射材17の比較として、Al反射膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図1F及び表4に示す。
(Calculation of LEE by ray tracing method)
In the calculation model of the ray tracing method of FIG. 1C, the inner bottom surface and the inner side wall are changed to 45 °, 60 °, 75 °, and 90 ° with the inner side wall angle θ of the AlN package as a variable, and the NC-RC reflector 17 ( LEE of the deep ultraviolet LED device was calculated as an inorganic paint coating film). In addition, as a comparison of the NC-RC reflector 17, the LEE in the case of the Al reflection film, the Au reflection film, and the absence of the reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 図1Dの計算モデルにおいて、先ず、LEE増加ファクター(2D-PhC有りの出力/2D-PhC無しの出力)が最大となる2次元フォトニック結晶(2D-PhC)の形成位置について解析を実施した。表3より選択した2D-PhCの計算モデルは、R/a=0.4、次数m=3、直径181nm、周期226nmである。また、形成位置に関しては、多重量子井戸層のWellから2D-PhCの最短端面までの距離Gを変数として、29nm≦G≦69nmにおいて4nmステップで変化させてLEE増加ファクターを解析した。また、2D-PhCの最後方端面は常にp型GaNコンタクト層8とNi層9の界面とした。尚、NC-RC反射材17の角度は上記光線追跡法の結果から60度を選択した。その結果を図1G及び表5に示す。
(Calculation of LEE by FDTD method)
In the calculation model of FIG. 1D, first, an analysis was performed on the formation position of the two-dimensional photonic crystal (2D-PhC) in which the LEE increase factor (output with 2D-PhC / output without 2D-PhC) is maximized. The calculation model of 2D-PhC selected from Table 3 has R / a = 0.4, order m = 3, diameter 181 nm, and period 226 nm. With respect to the formation position, the LEE increase factor was analyzed by changing the distance G from the well of the multiple quantum well layer to the shortest end face of 2D-PhC in 4 nm steps at 29 nm ≦ G ≦ 69 nm. The rearmost end face of 2D-PhC was always the interface between the p-type GaN contact layer 8 and the Ni layer 9. The angle of the NC-RC reflector 17 was selected to be 60 degrees based on the result of the ray tracing method. The results are shown in FIG. 1G and Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記結果より2D-PhCの形成位置は、G=61nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=61nmの時の深さは150nmとなるので、この深さを固定して、表3のR/a=0.3(次数m=3)、R/a=0.3(次数m=4)、R/a=0.4(次数m=4)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(4.5%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図1H及び表6に示す。 よ り From the above results, the LEE increase factor becomes maximum when G = 61 nm at the position where 2D-PhC is formed. Since the depth when G = 61 nm, which is the formation position of 2D-PhC, is 150 nm, this depth is fixed, and R / a = 0.3 (order m = 3) and R / a in Table 3 are set. = 0.3 (order m = 4) and R / a = 0.4 (order m = 4) A 2D-PhC calculation model was used to analyze the LEE increase factor. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (4.5%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(第2の実施の形態)
 本発明の第2の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図2A(a-1)、(a-2)に表す。
(Second embodiment)
As the deep ultraviolet LED device according to the second embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 具体的には、図2A(a-1)の断面図の上から順番に、石英窓1、サファイア基板2、AlNバッファー層3、n型AlGaN層4、多重量子井戸層5、多重量子障壁層(或いは電子ブロック層)6、p型AlGaNコンタクト層8a、Ni層9、Au反射電極層10、AlNパッケージ15、NC-RC反射材17、AlNパッケージ15の内側側壁角度θ15a、反射型2次元フォトニック結晶周期構造100、空孔101(h)を有する。 Specifically, the quartz window 1, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, the multiple quantum well layer 5, and the multiple quantum barrier layer are arranged in this order from the top of the cross-sectional view of FIG. (Or electron block layer) 6, p-type AlGaN contact layer 8a, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, inner side wall angle θ15a of AlN package 15, reflection type two-dimensional photo The nick crystal has a periodic structure 100 and holes 101 (h).
 第1の実施の形態とは、深紫外LED素子の構造の、p型コンクタト層に関して、p型GaNコンタクト層からp型AlGaNコンタクト層に替えたことが異なり、それ以外は同じ構造である。 The first embodiment is different from the first embodiment in that the p-type contact layer of the structure of the deep ultraviolet LED element is changed from the p-type GaN contact layer to the p-type AlGaN contact layer, and the other structure is the same.
 また、本実施の形態では、Ni層9とp型AlGaNコンタクト層8aの厚さ方向の範囲内で、かつ、p型AlGaNコンタクト層8aと多重量子障壁層(或いは電子ブロック層)6の界面を超えない位置に、複数の空孔101(h)を有する反射型2次元フォトニック結晶周期構造100が形成されている。 Further, in the present embodiment, the interface between the Ni layer 9 and the p-type AlGaN contact layer 8a in the thickness direction and the interface between the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or electron block layer) 6 are set. A reflection type two-dimensional photonic crystal periodic structure 100 having a plurality of holes 101 (h) is formed at a position not exceeding.
 図2Bの(b-1)に、波長280nmの深紫外光がp型AlGaNコンタクト層8aに形成した2次元フォトニック結晶(R/a=0.4)に入射したときのTE偏光成分におけるフォトニックバンド構造を、(b-2)にR/aとPBG値の関係を平面波展開法で求めて図示する。この図からR/aとPBG値は比例関係にあることがわかる。 FIG. 2B (b-1) shows the photo in the TE polarization component when deep ultraviolet light having a wavelength of 280 nm is incident on the two-dimensional photonic crystal (R / a = 0.4) formed on the p-type AlGaN contact layer 8a. The nick band structure is shown in (b-2) by finding the relationship between R / a and the PBG value by the plane wave expansion method. From this figure, it can be seen that R / a and the PBG value are in a proportional relationship.
 また、平面波展開法の計算に必要なパラメータは以下のように計算される。2次元フォトニック結晶の充填率fは、f=(2π/3)0.5×(R/a)の式で計算される。また、2次元フォトニック結晶の等価屈折率neffは、neff=(n2+(n1-n2)×f)0.5の式で計算される。そこで、空気の屈折率n1=1、p型AlGaNコンタクト層8aの屈折率n2=2.622とすると、R/a=0.2、0.3及び0.4の等価屈折率は上記2式より、其々、2.454、2.226及び1.861となる。 The parameters required for the calculation of the plane wave expansion method are calculated as follows. The filling factor f of the two-dimensional photonic crystal is calculated by the equation f = (2π / 3) 0.5 × (R / a) 2 . Further, the equivalent refractive index n eff of the two-dimensional photonic crystal is calculated by the following equation: n eff = (n2 2 + (n1 2 −n2 2 ) × f) 0.5 . Therefore, assuming that the refractive index of air n1 = 1 and the refractive index of the p-type AlGaN contact layer 8a is n2 = 2.622, the equivalent refractive indices of R / a = 0.2, 0.3 and 0.4 are expressed by the above two equations. Thus, they are 2.454, 2.226 and 1.861, respectively.
 次に、2次元フォトニック結晶の反射効果によるLEEをFDTD法によるシミュレーション解析により求めていく。そこで、表7に深紫外LED装置の光線追跡法の計算モデル、表8に深紫外LED装置のFDTD法の計算モデル、表9には反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータを示す。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第1の実施の形態における図1C、図1Dとほぼ同様なので特に図示しない。 (4) Next, LEE due to the reflection effect of the two-dimensional photonic crystal is determined by simulation analysis using the FDTD method. Therefore, Table 7 shows a calculation model of the ray tracing method of the deep ultraviolet LED device, Table 8 shows a calculation model of the FDTD method of the deep ultraviolet LED device, and Table 9 shows a calculation model of the FDTD method of the reflection type two-dimensional photonic crystal. Indicates parameters. Further, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 1C and 1D in the first embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(光線追跡法によるLEEの計算)
 AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図2C及び表10に示す。
(Calculation of LEE by ray tracing method)
The LEE of the deep ultraviolet LED device was calculated using the inner bottom surface and the inner side wall as the NC-RC reflector 17 by changing the inner side wall angle θ of the AlN package to 45 °, 60 °, 75 °, and 90 ° as variables. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 先ず、LEE増加ファクターが最大となる2D-PhCの形成位置について解析を実施した。表9より選択した2D-PhCの計算モデルは、R/a=0.3、次数m=3、直径113nm、周期189nmである。また、形成位置に関しては、多重量子井戸層5のWellから2D-PhCの最短端面までの距離Gを変数として、29nm≦G≦73nmにおいて4nmステップで変化させてLEE増加ファクターを解析した。また、2DPhCの最後方端面は常にp型AlGaNコンタクト層8aとNi層9の界面とした。尚、NC-RC反射材17の角度は上記光線追跡法の結果から60度を選択した。その結果を図2D及び表11に示す。
(Calculation of LEE by FDTD method)
First, the formation position of 2D-PhC at which the LEE increase factor is maximized was analyzed. The calculation model of 2D-PhC selected from Table 9 has R / a = 0.3, order m = 3, diameter 113 nm, and period 189 nm. With respect to the formation position, the LEE increase factor was analyzed by changing the distance G from the Well of the multiple quantum well layer 5 to the shortest end face of 2D-PhC in 4 nm steps at 29 nm ≦ G ≦ 73 nm. The rearmost end face of 2DPhC was always the interface between the p-type AlGaN contact layer 8a and the Ni layer 9. The angle of the NC-RC reflector 17 was selected to be 60 degrees based on the result of the ray tracing method. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記結果より2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(14.7%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図2E及び表12に示す。 よ り From the above results, in the formation position of 2D-PhC, the LEE increase factor becomes maximum when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. The LEE increase factor was analyzed using a calculation model of 2D-PhC where = 0.35 (order m = 2) and R / a = 0.35 (order m = 3). Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (14.7%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 2E and Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(第3の実施の形態)
 本発明の第3の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図3A(a-1)、(a-2)に表す。
(Third embodiment)
As the deep ultraviolet LED device according to the third embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. 3A (a-1) and (a). -2).
 本実施の形態は、Ni層9及びAu反射電極層10がRh反射電極層16に置き換わった事以外は、第2の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第2の実施の形態と同様である。従って、フォトニック結晶の反射効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 The present embodiment has the same structure as the second embodiment except that the Ni layer 9 and the Au reflective electrode layer 10 are replaced with the Rh reflective electrode layer 16. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, in order to obtain LEE due to the reflection effect of the photonic crystal, a cross simulation of the FDTD method and the ray tracing method is performed.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表13に深紫外LED装置の光線追跡法の計算モデル、表14に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータは表9と同様である。尚、光線追跡法の計算モデル、FDTD法の計算モデルは特に図示しない。 Table 13 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 14 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Each parameter of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method is the same as in Table 9. The calculation model of the ray tracing method and the calculation model of the FDTD method are not particularly illustrated.
(光線追跡法によるLEEの計算)
 先ず、AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17(無機塗料コーティング)として深紫外LED装置のLEEを計算した。また、NC-RC反射材17の比較として、Al反射膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図3B及び表15に示す。
(Calculation of LEE by ray tracing method)
First, the inner side wall angle θ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as NC-RC reflectors 17 (inorganic paint coating) for a deep ultraviolet LED device. LEE was calculated. In addition, as a comparison of the NC-RC reflector 17, LEE in the case of the Al reflection film, the Au reflection film, and the absence of the reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 第2の実施の形態と同様に、LEE増加ファクターが最大となる2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.3(次数m=3)R/a=0.35(次数m=2)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(16.3%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図3C及び表16に示す。
(Calculation of LEE by FDTD method)
As in the second embodiment, the formation position of the 2D-PhC at which the LEE increase factor is the maximum has the maximum LEE increase factor when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.3 (order m = 3) R / a = 0.35 (order m = 2), R / a = 0.35 (order m = 3) 2D-PhC calculation model to analyze LEE increase factor did. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (16.3%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(第4の実施の形態)
 本発明の第4の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図4A(a-1)、(a-2)に表す。
(Fourth embodiment)
As the deep ultraviolet LED device according to the fourth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 具体的には、図4A(a-1)の断面図の上から順番に、石英窓1、サファイア半球レンズ20a、サファイア基板2、AlNバッファー層3、n型AlGaN層4、多重量子井戸層5、多重量子障壁層(或いは電子ブロック層)6、p型AlGaN層7、p型GaNコンタクト層8、Ni層9、Au反射電極層10、AlNパッケージ15、NC-RC反射材17、AlNパッケージ15の内側側壁角度θ15a、反射型2次元フォトニック結晶周期構造100、空孔101(h)を有する。 Specifically, the quartz window 1, the sapphire hemispherical lens 20a, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, and the multiple quantum well layer 5 are arranged in this order from the top of the sectional view of FIG. , Multiple quantum barrier layer (or electron block layer) 6, p-type AlGaN layer 7, p-type GaN contact layer 8, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, AlN package 15. , A reflective two-dimensional photonic crystal periodic structure 100, and holes 101 (h).
 図4A(a-1)に示すように、サファイア基板2の裏面にサファイア基板2の外接円以上の半径を有するサファイア半球レンズ20aが接合されている。多重量子井戸層5で発光した深紫外光がサファイア基板2に入射した場合、深紫外光はサファイア半球レンズ20aの表面の法線方向から外部に出射される事により多重内部全反射が軽減されるのでLEEが向上する。 AAs shown in FIG. 4A (a-1), a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the sapphire substrate 2 is bonded to the back surface of the sapphire substrate 2. When the deep ultraviolet light emitted from the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted to the outside from the normal direction of the surface of the sapphire hemispherical lens 20a, so that multiple internal total reflection is reduced. Therefore, LEE is improved.
 尚、サファイア半球レンズ20a以外は、第1の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第1の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 The structure other than the sapphire hemispherical lens 20a is the same as that of the first embodiment. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the first embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表17に深紫外LED装置の光線追跡法の計算モデル、表18に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータは表3と同様である。また、図4Bに光線追跡法の計算モデル、図4CにFDTD法の計算モデルを示す。図4Cに示す素子は図4Aと同様であり、表18に対応している。 Therefore, Table 17 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 18 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3. FIG. 4B shows a calculation model of the ray tracing method, and FIG. 4C shows a calculation model of the FDTD method. The elements shown in FIG. 4C are the same as those in FIG. 4A and correspond to Table 18.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(光線追跡法によるLEEの計算)
 図4Bの光線追跡法の計算モデルにおいて、AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図4D及び表19に示す。
(Calculation of LEE by ray tracing method)
In the calculation model of the ray tracing method of FIG. 4B, the inner side wall angle θ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as the NC-RC reflector 17. The LEE of the deep ultraviolet LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 図4Cの計算モデルにおいて、実施の形態1と同様にNC-RC反射材17の角度を60度とした。また、2D-PhCの形成位置であるG=61nmの時の深さ150nmを固定した。そして表3より選択した、R/a=0.3(次数m=3)、R/a=0.3(次数m=4)、R/a=0.4(次数m=3)、R/a=0.4(次数m=4)の2DPhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(10.2%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図4E及び表20に示す。
(Calculation of LEE by FDTD method)
In the calculation model of FIG. 4C, the angle of the NC-RC reflector 17 is set to 60 degrees as in the first embodiment. Further, the depth of 150 nm when G = 61 nm, which is the formation position of 2D-PhC, was fixed. Then, R / a = 0.3 (order m = 3), R / a = 0.3 (order m = 4), R / a = 0.4 (order m = 3), R selected from Table 3. The LEE increase factor was analyzed using a calculation model of 2DPhC where /a=0.4 (order m = 4). Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (10.2%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(第5の実施の形態)
 本発明の第5の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図5A(a-1)、(a-2)に表す。
(Fifth embodiment)
As a deep ultraviolet LED device according to a fifth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 具体的には、図5A(a-1)の断面図の上から順番に、石英窓1、サファイア半球レンズ20a、サファイア基板2、AlNバッファー層3、n型AlGaN層4、多重量子井戸層5、多重量子障壁層(或いは電子ブロック層)6、p型AlGaNコンタクト層8a、Ni層9、Au反射電極層10、AlNパッケージ15、NC-RC反射材17、AlNパッケージ15の内側側壁角度θ15a、反射型2次元フォトニック結晶周期構造100、空孔101(h)を有する。 More specifically, the quartz window 1, the sapphire hemispherical lens 20a, the sapphire substrate 2, the AlN buffer layer 3, the n-type AlGaN layer 4, the multiple quantum well layer 5 Multi-quantum barrier layer (or electron blocking layer) 6, p-type AlGaN contact layer 8a, Ni layer 9, Au reflective electrode layer 10, AlN package 15, NC-RC reflector 17, inner side wall angle θ15a of AlN package 15, It has a reflective two-dimensional photonic crystal periodic structure 100 and holes 101 (h).
 図5A(a-1)に示すように、サファイア基板2の裏面にサファイア基板2の外接円以上の半径を有するサファイア半球レンズ20aが接合されている。多重量子井戸層5で発光した深紫外光がサファイア基板2に入射した場合、深紫外光はサファイア半球レンズ20aの表面の法線方向から外部に出射される事により多重内部全反射が軽減されるのでLEEが向上する。 AAs shown in FIG. 5A (a-1), a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the sapphire substrate 2 is bonded to the back surface of the sapphire substrate 2. When the deep ultraviolet light emitted from the multiple quantum well layer 5 is incident on the sapphire substrate 2, the deep ultraviolet light is emitted to the outside from the normal direction of the surface of the sapphire hemispherical lens 20a, so that multiple internal total reflection is reduced. Therefore, LEE is improved.
 尚、サファイア半球レンズ20a以外は、第2の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第2の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 The structure other than the sapphire hemispherical lens 20a is the same as that of the second embodiment. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表21に深紫外LED装置の光線追跡法の計算モデル、表22に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第4の実施の形態における図4B、図4Cとほぼ同様なので特に図示しない。 Therefore, Table 21 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 22 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(光線追跡法によるLEEの計算)
 第2の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図5B及び表23に示す。
(Calculation of LEE by ray tracing method)
Similarly to the second embodiment, the inner side wall angle θ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees with the inner side wall angle θ as a variable, and the inner bottom surface and the inner side wall are used as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. In addition, as a comparison of the NC-RC reflector 17 (inorganic paint coating), LEE was analyzed in the case of an Al coat film, an Au reflection film, and no reflection film, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 第2の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは150nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(25.5%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図5C及び表24に示す。
(Calculation of LEE by FDTD method)
As in the second embodiment, in the position where 2D-PhC is formed, the LEE increase factor becomes maximum when G = 69 nm. Since the depth when G = 69 nm, which is the position where 2D-PhC is formed, is 150 nm, this depth is fixed and R / a = 0.3 (order m = 2) and R / a in Table 9. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. The LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (25.5%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 5C and Table 24.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(第6の実施の形態)
 本発明の第6の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図6A(a-1)、(a-2)に表す。
(Sixth embodiment)
As the deep ultraviolet LED device according to the sixth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. 6A (a-1) and (a). -2).
本実施の形態は、第5の実施の形態におけるNi層9及びAu反射電極層10をRh反射電極層16に置き換えている。その他の構造は、第5の実施の形態と同じである。また、2次元フォトニック結晶の反射効果及び最適化の方法も第5の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 In this embodiment, the Ni layer 9 and the Au reflective electrode layer 10 in the fifth embodiment are replaced with the Rh reflective electrode layer 16. Other structures are the same as in the fifth embodiment. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fifth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表25に深紫外LED装置の光線追跡法の計算モデル、表26に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第4の実施の形態における図4B、図4Cとほぼ同様なので特に図示しない。 Therefore, Table 25 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 26 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
(光線追跡法によるLEEの計算)
 第5の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Al反射膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図6B及び表27に示す。
(Calculation of LEE by ray tracing method)
Similarly to the fifth embodiment, the inner side wall angle θ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of the Al reflective film, the Au reflective film, and the absence of the reflective film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 第5の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=2)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材・角度60度のLEE(27.0%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図6C及び表28に示す。
(Calculation of LEE by FDTD method)
As in the fifth embodiment, in the formation position of 2D-PhC, when G = 69 nm, the LEE increase factor becomes the maximum. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.3 (order m = 3), R / a = 0.35 (order m = 2), R / a = 0.35 (order m = 3) 2D-PhC Calculation Model Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (27.0%) of the NC-RC reflector and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 6C and Table 28.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
(第7の実施の形態)
 本発明の第7の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図7A(a-1)、(a-2)に表す。
(Seventh embodiment)
As the deep ultraviolet LED device according to the seventh embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. 7A (a-1) and 7 (a). -2).
 本実施の形態の深紫外LED素子構造は、第4の実施の形態と同じ構造であるが、 深 The deep ultraviolet LED element structure of the present embodiment is the same as that of the fourth embodiment,
図7A(a-1)に示すように、サファイア基板2の裏面にサファイア半球レンズ20aが接合されており、上記半球レンズがAlNパッケージ15の上面の内側側壁以上を覆っていて、かつ、上記半球レンズの表面に透明樹脂フィルム21aが貼られていて、そして、AlNパッケージ15の上部外周部を封止している。透明樹脂フィルム21aで封止する理由は深紫外LED素子の経年劣化を防止するためである。尚、サファイア半球レンズ20aの半径は、AlNパッケージ15の内側側壁の外接円の半径以上である。 As shown in FIG. 7A (a-1), a sapphire hemispherical lens 20a is bonded to the back surface of the sapphire substrate 2, the hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, and A transparent resin film 21 a is attached to the surface of the lens, and seals the upper outer peripheral portion of the AlN package 15. The reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element. The radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
 この構造であれば、第4の実施の形態の石英窓1を使用しないので深紫外光が石英から空気に出射されるとき、界面における内部全反射を抑制するのでLEEを向上させることができる。更に、第4の実施の形態の深紫外LED装置と比較してAlNパッケージ15の内側側壁全体の表面積が約1/3程度になるので、反射膜の反射率や側壁角度の制限が緩和される。 With this structure, since the quartz window 1 of the fourth embodiment is not used, when deep ultraviolet light is emitted from quartz to air, total internal reflection at the interface is suppressed, so that LEE can be improved. Furthermore, since the surface area of the entire inner side wall of the AlN package 15 is about 1/3 as compared with the deep ultraviolet LED device of the fourth embodiment, restrictions on the reflectivity of the reflection film and the side wall angle are relaxed. .
 尚、深紫外LED素子における2次元フォトニック結晶の反射効果及び最適化の方法は第1の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションが必要となる。 The reflection effect of the two-dimensional photonic crystal in the deep ultraviolet LED element and the method of optimization are the same as in the first embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is required to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表29に深紫外LED装置の光線追跡法の計算モデル、表30に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータは表3と同様である。
 また、図7Bに光線追跡法の計算モデル、図7CにFDTD法の計算モデルを示す。図7Cに示す素子は図7Aと同様であり、表30に対応している。
Therefore, Table 29 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 30 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3.
FIG. 7B shows a calculation model of the ray tracing method, and FIG. 7C shows a calculation model of the FDTD method. The element shown in FIG. 7C is the same as FIG. 7A and corresponds to Table 30.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
(光線追跡法によるLEEの計算)
 図7Bの光線追跡法の計算モデルにおいて、AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図7D及び表31に示す。
(Calculation of LEE by ray tracing method)
In the calculation model of the ray tracing method of FIG. 7B, the inner side wall angle θ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as the NC-RC reflector 17. The LEE of the deep ultraviolet LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE without the Al coat film, the Au reflection film, and without the reflection film was analyzed, and the results are shown in FIG. 7D and Table 31.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して若干高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a slightly higher LEE than the other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 図7Cの計算モデルにおいて、光線追跡法の結果からNC-RC反射材17の角度を75度とした。また、2D-PhCの形成位置であるG=61nmの時の深さ150nmを固定した。そして表3より選択した、R/a=0.3及び次数m=3、R/a=0.3及び次数m=4、R/a=0.4及び次数m=3、R/a=0.4及び次数m=4の2DPhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(11.4%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図7E及び表32に示す。
(Calculation of LEE by FDTD method)
In the calculation model of FIG. 7C, the angle of the NC-RC reflector 17 was set to 75 degrees based on the result of the ray tracing method. Further, the depth of 150 nm when G = 61 nm, which is the formation position of 2D-PhC, was fixed. Then, R / a = 0.3 and order m = 3, R / a = 0.3 and order m = 4, R / a = 0.4 and order m = 3, R / a = The LEE increase factor was analyzed with a 2DPhC calculation model of 0.4 and order m = 4. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (11.4%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the above ray tracing method. The results are shown in FIG. 7E and Table 32.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
(第8の実施の形態)
 本発明の第8の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図8A(a-1)、(a-2)に表す。
(Eighth embodiment)
As the deep ultraviolet LED device according to the eighth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態の深紫外LED構造は、第5の実施の形態と同じ構造であるが、図8A(a-1)に示すように、サファイア基板2の裏面にサファイア半球レンズ20aが接合されており、上記半球レンズがAlNパッケージ15の上面の内側側壁以上を覆っていて、かつ、上記半球レンズの表面に透明樹脂フィルム21aが貼られていて、そして、AlNパッケージ15の上部外周部を封止している。透明樹脂フィルム21aで封止する理由は深紫外LED素子の経年劣化を防止するためである。尚、サファイア半球レンズ20aの半径は、AlNパッケージ15の内側側壁の外接円の半径以上である。 The deep ultraviolet LED structure of the present embodiment has the same structure as that of the fifth embodiment. However, as shown in FIG. 8A (a-1), a sapphire hemispherical lens 20a is bonded to the back surface of the sapphire substrate 2. The hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, the transparent resin film 21a is adhered to the surface of the hemispherical lens, and the upper outer peripheral portion of the AlN package 15 is sealed. are doing. The reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element. The radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
 尚、サファイア基板2からAu反射電極層10における深紫外LED素子の構造は、第2の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第2の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 Note that the structure of the deep ultraviolet LED element from the sapphire substrate 2 to the Au reflective electrode layer 10 is the same as that of the second embodiment. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表33に深紫外LED装置の光線追跡法の計算モデル、表34に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第7の実施の形態における図7B、図7Cとほぼ同様なので特に図示しない。 Table 33 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 34 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(光線追跡法によるLEEの計算)
 第5の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図8B及び表35に示す。
(Calculation of LEE by ray tracing method)
Similarly to the fifth embodiment, the inner side wall angle θ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of an Al coating film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 第5の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(27.3%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図8C及び表36に示す。
Figure JPOXMLDOC01-appb-T000036
(Calculation of LEE by FDTD method)
As in the fifth embodiment, in the formation position of 2D-PhC, when G = 69 nm, the LEE increase factor becomes the maximum. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (27.3%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the ray tracing method. The results are shown in FIG. 8C and Table 36.
Figure JPOXMLDOC01-appb-T000036
(第9の実施の形態)
 本発明の第9の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図9A(a-1)、(a-2)に表す。
(Ninth embodiment)
As the deep ultraviolet LED device according to the ninth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態の深紫外LED素子構造は、第6の実施の形態と同じ構造であるが、図9A(a-1)に示すように、サファイア基板2の裏面にサファイア半球レンズ20aが接合されており、上記半球レンズがAlNパッケージ15の上面の内側側壁以上を覆っていて、かつ、上記半球レンズの表面に透明樹脂フィルム21aが貼られていて、そして、AlNパッケージ15の上部外周部を封止している。透明樹脂フィルム21aで封止する理由は深紫外LED素子の経年劣化を防止するためである。尚、サファイア半球レンズ20aの半径は、AlNパッケージ15の内側側壁の外接円の半径以上である。 The deep ultraviolet LED element structure of the present embodiment has the same structure as that of the sixth embodiment. However, as shown in FIG. 9A (a-1), a sapphire hemispherical lens 20a is joined to the back surface of the sapphire substrate 2. The hemispherical lens covers at least the inner side wall of the upper surface of the AlN package 15, the transparent resin film 21a is adhered to the surface of the hemispherical lens, and the upper outer peripheral portion of the AlN package 15 is sealed. Stopped. The reason for sealing with the transparent resin film 21a is to prevent aging of the deep ultraviolet LED element. The radius of the sapphire hemispherical lens 20a is equal to or larger than the radius of a circumcircle of the inner side wall of the AlN package 15.
 尚、サファイア基板2からRh反射電極層16における深紫外LEDの構造は、第2の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第2の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 Note that the structure of the deep ultraviolet LED from the sapphire substrate 2 to the Rh reflective electrode layer 16 is the same as that of the second embodiment. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as those in the second embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表37に深紫外LED装置の光線追跡法の計算モデル、表38に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第7の実施の形態における図7B、図7Cとほぼ同様なので特に図示しない。 Table 37 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 38 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
(光線追跡法によるLEEの計算)
 第6の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図9B及び表39に示す。
(Calculation of LEE by ray tracing method)
Similarly to the sixth embodiment, the inner side wall angle θ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE without the Al coat film, the Au reflection film, and without the reflection film was analyzed, and the results are shown in FIG. 9B and Table 39.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 第6の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(28.9%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図9C及び表40に示す。
(Calculation of LEE by FDTD method)
As in the sixth embodiment, in the position where 2D-PhC is formed, the LEE increase factor becomes maximum when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (28.9%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the ray tracing method. The results are shown in FIG. 9C and Table 40.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
(第10の実施の形態)
 本発明の第10の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図10A(a-1)、(a-2)に表す。
(Tenth embodiment)
As the deep ultraviolet LED device according to the tenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態は、図10A(a-1)に示すように、石英半球レンズ22a以外は、第4の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第4の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 As shown in FIG. 10A (a-1), the present embodiment has the same structure as the fourth embodiment except for the quartz hemispherical lens 22a. Further, the reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fourth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表41に深紫外LED装置の光線追跡法の計算モデル、表42に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータは表3と同様である。また、また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第4の実施の形態における図4B、図4Cとほぼ同様なので特に図示しない。 Therefore, Table 41 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 42 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3. Further, the calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
(光線追跡法によるLEEの計算)
 第4の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図10B及び表43に示す。
(Calculation of LEE by ray tracing method)
Similarly to the fourth embodiment, the inner side wall angle θ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees by using the inner bottom surface and the inner side walls as NC-RC reflectors 17 in the deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG. 10B and Table 43.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 図4Cの計算モデルにおいて、実施の形態1と同様にNC-RC反射材17の角度を60度とした。また、2D-PhCの形成位置であるG=61nmの時の深さ150nmを固定した。そして表3より選択した、R/a=0.3(次数m=3)、R/a=0.3(次数m=4)、R/a=0.4(次数m=3)、R/a=0.4(次数m=4)の2DPhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(9.0%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図10C及び表44に示す。
(Calculation of LEE by FDTD method)
In the calculation model of FIG. 4C, the angle of the NC-RC reflector 17 is set to 60 degrees as in the first embodiment. Further, the depth of 150 nm when G = 61 nm, which is the formation position of 2D-PhC, was fixed. Then, R / a = 0.3 (order m = 3), R / a = 0.3 (order m = 4), R / a = 0.4 (order m = 3), R selected from Table 3. The LEE increase factor was analyzed using a calculation model of 2DPhC where /a=0.4 (order m = 4). Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (9.0%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 10C and Table 44.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
(第11の実施の形態)
 本発明の第11の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図11A(a-1)、(a-2)に表す。
(Eleventh embodiment)
As the deep ultraviolet LED device according to the eleventh embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. 11A (a-1) and 11 (a). -2).
 本実施の形態は、図11A(a-1)に示すように、石英半球レンズ22a以外は、第5の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第5の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 As shown in FIG. 11A (a-1), this embodiment has the same structure as the fifth embodiment except for the quartz hemispherical lens 22a. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the fifth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表45に深紫外LED装置の光線追跡法の計算モデル、表46に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第4の実施の形態における図4B、図4Cとほぼ同様なので特に図示しない。 Table 45 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 46 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
(光線追跡法によるLEEの計算)
 第5の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図11B及び表47に示す。
(Calculation of LEE by ray tracing method)
Similarly to the fifth embodiment, the inner side wall angle θ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as variables, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17, the LEE in the case of the Al coating film, the Au reflection film, and the case without the reflection film was analyzed, and the results are shown in FIG. 11B and Table 47.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 第5の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは150nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(22.8%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図11C及び表48に示す。
(Calculation of LEE by FDTD method)
As in the fifth embodiment, in the formation position of 2D-PhC, when G = 69 nm, the LEE increase factor becomes the maximum. Since the depth when G = 69 nm, which is the position where 2D-PhC is formed, is 150 nm, this depth is fixed and R / a = 0.3 (order m = 2) and R / a in Table 9. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (22.8%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 11C and Table 48.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
(第12の実施の形態)
 本発明の第12の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図12A(a-1)、(a-2)に表す。
(Twelfth embodiment)
As a deep ultraviolet LED device according to a twelfth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態は、図12A(a-1)に示すように、石英半球レンズ22a以外は、第6の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第6の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 As shown in FIG. 12A (a-1), the present embodiment has the same structure as the sixth embodiment except for the quartz hemispherical lens 22a. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the sixth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表49に深紫外LED装置の光線追跡法の計算モデル、表50に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第4の実施の形態における図4B、図4Cとほぼ同様なので特に図示しない。 Table 49 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 50 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 4B and 4C in the fourth embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
(光線追跡法によるLEEの計算)
 第6の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Al反射膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図12B及び表51に示す。
(Calculation of LEE by ray tracing method)
Similarly to the sixth embodiment, the inner side wall angle θ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), the LEE in the case of the Al reflective film, Au reflective film, and no reflective film was analyzed, and the results are shown in FIG. 12B and Table 51.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、45度~60度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. Further, as for the inner side wall angle, a high LEE is shown between 45 degrees and 60 degrees.
(FDTD法によるLEEの計算)
 第6の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=2)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度60度のLEE(24.3%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図12C及び表52に示す。
(Calculation of LEE by FDTD method)
As in the sixth embodiment, in the position where 2D-PhC is formed, the LEE increase factor becomes maximum when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.3 (order m = 3), R / a = 0.35 (order m = 2), R / a = 0.35 (order m = 3) 2D-PhC Calculation Model Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (24.3%) of the NC-RC reflector 17 and the angle of 60 degrees obtained by the ray tracing method. The results are shown in FIG. 12C and Table 52.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
(第13の実施の形態)
 本発明の第13の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図13A(a-1)、(a-2)に表す。
(Thirteenth embodiment)
As the deep ultraviolet LED device according to the thirteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態は、図13A(a-1)に示すように、石英半球レンズ22a以外は、第7の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第7の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 As shown in FIG. 13A (a-1), this embodiment has the same structure as that of the seventh embodiment except for the quartz hemispherical lens 22a. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the seventh embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表53に深紫外LED装置の光線追跡法の計算モデル、表54に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶のFDTD法の計算モデルの各パラメータは表3と同様である。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第7の実施の形態における図7B、図7Cとほぼ同様なので特に図示しない。 Therefore, Table 53 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 54 shows each parameter of the calculation model of the FDTD method of the deep ultraviolet LED device. The parameters of the FDTD calculation model of the reflection type two-dimensional photonic crystal are the same as in Table 3. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
(光線追跡法によるLEEの計算)
 図7Bの光線追跡法の計算モデルにおいて、AlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図13B及び表55に示す。
(Calculation of LEE by ray tracing method)
In the calculation model of the ray tracing method of FIG. 7B, the inner side wall angle θ of the AlN package is changed to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are used as the NC-RC reflector 17. The LEE of the deep ultraviolet LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して若干高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a slightly higher LEE than the other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 図7Cの計算モデルにおいて、光線追跡法の結果からNC-RC反射材17の角度を75度とした。また、2D-PhCの形成位置であるG=61nmの時の深さ150nmを固定した。そして表3より選択した、R/a=0.3及び次数m=3、R/a=0.3及び次数m=4、R/a=0.4及び次数m=3、R/a=0.4及び次数m=4の2DPhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(9.7%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図13C及び表56に示す。
(Calculation of LEE by FDTD method)
In the calculation model of FIG. 7C, the angle of the NC-RC reflector 17 was set to 75 degrees based on the result of the ray tracing method. Further, the depth of 150 nm when G = 61 nm, which is the formation position of 2D-PhC, was fixed. Then, R / a = 0.3 and order m = 3, R / a = 0.3 and order m = 4, R / a = 0.4 and order m = 3, R / a = The LEE increase factor was analyzed with a 2DPhC calculation model of 0.4 and order m = 4. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (9.7%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the above ray tracing method. The results are shown in FIG. 13C and Table 56.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
(第14の実施の形態)
 本発明の第14の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図14A(a-1)、(a-2)に表す。
(14th embodiment)
As a deep ultraviolet LED device according to a fourteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態は、図14A(a-1)に示すように、石英半球レンズ22a以外は、第8の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第8の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 As shown in FIG. 14A (a-1), the present embodiment has the same structure as the eighth embodiment except for the quartz hemispherical lens 22a. The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the eighth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表57に深紫外LED装置の光線追跡法の計算モデル、表58に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第7の実施の形態における図7B、図7Cとほぼ同様なので特に図示しない。 Therefore, Table 57 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 58 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
(光線追跡法によるLEEの計算)
 第8の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図14B及び表59に示す。
(Calculation of LEE by ray tracing method)
Similarly to the eighth embodiment, the inner side wall angle θ of the AlN package is changed to 45 °, 60 °, 75 °, and 90 ° as a variable, and the inner bottom surface and the inner side wall are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 上記結果よりNC-RC反射材を17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 is higher than the other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 第8の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(24.6%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図14C及び表60に示す。
(Calculation of LEE by FDTD method)
As in the eighth embodiment, in the position where 2D-PhC is formed, the LEE increase factor is maximized when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (24.6%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the ray tracing method. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
(第15の実施の形態)
 本発明の第15の実施の形態に係る深紫外LED装置として、設計波長λを280nmとするAlGaN系深紫外LED装置の構造(断面図と平面図)を図15A(a-1)、(a-2)に表す。
(Fifteenth embodiment)
As the deep ultraviolet LED device according to the fifteenth embodiment of the present invention, the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED device having a design wavelength λ of 280 nm is shown in FIGS. -2).
 本実施の形態は、図15A(a-1)に示すように、石英半球レンズ22a以外は、第9の実施の形態と同じ構造である。また、2次元フォトニック結晶の反射効果及び最適化の方法も第9の実施の形態と同様である。従って、フォトニック結晶の反射効果及び半球レンズ効果によるLEEを求めるために、FDTD法と光線追跡法のクロスシミュレーションを実施する。 This embodiment has the same structure as the ninth embodiment except for the quartz hemispherical lens 22a, as shown in FIG. 15A (a-1). The reflection effect of the two-dimensional photonic crystal and the method of optimization are the same as in the ninth embodiment. Therefore, a cross simulation of the FDTD method and the ray tracing method is performed to obtain the LEE due to the reflection effect and the hemispheric lens effect of the photonic crystal.
 そこで、表61に深紫外LED装置の光線追跡法の計算モデル、表62に深紫外LED装置のFDTD法の計算モデルの各パラメータを示す。尚、反射型2次元フォトニック結晶のFDTD法の計算モデルのパラメータは表9を引用する。また、光線追跡法の計算モデル、FDTD法の計算モデルに関しては、第7の実施の形態における図7B、図7Cとほぼ同様なので特に図示しない。 Therefore, Table 61 shows the calculation model of the ray tracing method of the deep ultraviolet LED device, and Table 62 shows the parameters of the calculation model of the FDTD method of the deep ultraviolet LED device. Table 9 is referred to for the parameters of the calculation model of the reflection type two-dimensional photonic crystal by the FDTD method. The calculation model of the ray tracing method and the calculation model of the FDTD method are substantially the same as those in FIGS. 7B and 7C in the seventh embodiment, and are not particularly illustrated.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
(光線追跡法によるLEEの計算)
 第9の実施の形態と同様にAlNパッケージの内側側壁角度θを変数として45度、60度、75度、90度と変化させて、内側底面及び内側側壁をNC-RC反射材17として深紫外LED装置のLEEを計算した。また、NC-RC反射材17(無機塗料コーティング)の比較として、Alコート膜、Au反射膜、反射膜無しの場合のLEEを解析して、その結果を図15B及び表63に示す。
(Calculation of LEE by ray tracing method)
Similarly to the ninth embodiment, the inner side wall angle θ of the AlN package is varied to 45 degrees, 60 degrees, 75 degrees, and 90 degrees as variables, and the inner bottom surface and the inner side walls are formed as NC-RC reflectors 17 for deep ultraviolet. The LEE of the LED device was calculated. As a comparison of the NC-RC reflector 17 (inorganic paint coating), LEE in the case of an Al coat film, an Au reflection film, and no reflection film was analyzed, and the results are shown in FIG. 15B and Table 63.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 上記結果よりNC-RC反射材17を有する深紫外LED装置のLEEは他の場合と比較して高いLEEを示している。また、内側側壁角度に関しては、あまり角度依存性はないが45度~75度において高いLEEを示している。 よ り From the above results, the LEE of the deep ultraviolet LED device having the NC-RC reflector 17 shows a higher LEE than other cases. In addition, the angle of the inner side wall does not depend much on the angle, but shows a high LEE in the range of 45 to 75 degrees.
(FDTD法によるLEEの計算)
 第9の実施の形態と同様に、2D-PhCの形成位置は、G=69nmの時LEE増加ファクターが最大となる。2D-PhCの形成位置であるG=69nmの時の深さは60nmとなるので、この深さを固定して、表9のR/a=0.3(次数m=2)、R/a=0.35(次数m=2)、R/a=0.3(次数m=3)、R/a=0.35(次数m=3)の2D-PhCの計算モデルでLEE増加ファクターを解析した。そして上記で得られた各LEE増加ファクターに上記光線追跡法で得られたNC-RC反射材17・角度75度のLEE(26.2%)を乗じて各2D-PhC計算モデルのLEEを計算し、その結果を図15C及び表64に示す。
(Calculation of LEE by FDTD method)
As in the ninth embodiment, the position at which 2D-PhC is formed has a maximum LEE increase factor when G = 69 nm. Since the depth when G = 69 nm, which is the formation position of 2D-PhC, is 60 nm, this depth is fixed, and R / a = 0.3 (order m = 2) and R / a in Table 9 are set. = 0.35 (order m = 2), R / a = 0.3 (order m = 3), R / a = 0.35 (order m = 3) Analyzed. Then, the LEE of each 2D-PhC calculation model is calculated by multiplying each LEE increase factor obtained above by the LEE (26.2%) of the NC-RC reflector 17 and the angle of 75 degrees obtained by the above ray tracing method. The results are shown in FIG. 15C and Table 64.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 第1の実施の形態から第15の実施の形態の比較例としてサファイア基板2の厚さを130um、280um、430umと変化させて、光線追跡法にて解析を行いサファイア基板2の厚さとPhC無しLEDのLEEの関係を求めた。サファイア基板2の厚さ以外は上記実施の形態における図と変わらないので特に図示しない。結果を図16A~16C及び表65~69までに示す。 As a comparative example of the first to fifteenth embodiments, the thickness of the sapphire substrate 2 was changed to 130 μm, 280 μm, and 430 μm, and analysis was performed by the ray tracing method, and the thickness of the sapphire substrate 2 and no PhC The LEE relationship of the LED was determined. Since the thickness of the sapphire substrate 2 is not different from that of the above embodiment, it is not shown. The results are shown in FIGS. 16A to 16C and Tables 65 to 69.
 ここで、図16Aは、比較例として示すサファイア基板の厚さを130μm、280μ、430μmと変化させて、光線追跡法にて解析を行いサファイア基板厚さとPhC無しLEDのLEEの関係を求めた図である。図16Bは、比較例として示す石英窓付きサファイアレンズと石英レンズを用いた場合のLEEの解析結果である。図16Cは、比較例として示す透明樹脂フィルム付きサファイアレンズと石英レンズを用いた場合の光取り出し効率の解析結果である。 Here, FIG. 16A is a diagram in which the thickness of the sapphire substrate shown as a comparative example was changed to 130 μm, 280 μm, and 430 μm, analysis was performed by the ray tracing method, and the relationship between the sapphire substrate thickness and the LEE of the LED without PhC was obtained. It is. FIG. 16B is an LEE analysis result when a sapphire lens with a quartz window and a quartz lens are used as comparative examples. FIG. 16C is an analysis result of light extraction efficiency when a sapphire lens with a transparent resin film and a quartz lens shown as a comparative example are used.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 また、第1~第15の実施の形態におけるLEEの増加ファクター及びLEE最大値(サファイア基板2の厚さは全て430umでPhC有り)と上記比較例のPhC無しLEDとPhC有りLEDのLEE最大値を表70に纏める。尚、前記比較例のPhC有りLEDのLEE最大値=上記比較例のPhC無しLEDのLEE最大値×LEE増加ファクター最大値とした。 Also, the LEE increase factor and LEE maximum value in the first to fifteenth embodiments (the thickness of the sapphire substrate 2 is all 430 μm with PhC) and the LEE maximum value of the PhC-less LED and the PhC-containing LED of the above comparative example. Are summarized in Table 70. The maximum value of LEE of the LED with PhC of the comparative example = the maximum value of LEE of the LED without PhC of the comparative example × the maximum value of the LEE increase factor.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 表70の結果を比較すると、p型GaNコンタクトLEDは、反射型PhCの反射効果によりLEEが増加ファクターで約2.8倍となった。また、サファイア半球レンズ接合により更にLEEの増加ファクターが2.7倍となり反射型PhC及び半球レンズ接合による集積フォトニック効果が最大で7倍以上が確認された。 比較 Comparing the results in Table 70, the LEE of the p-type GaN contact LED was increased by about 2.8 times in the increase factor due to the reflection effect of the reflection type PhC. In addition, the sapphire hemispherical lens junction further increased the LEE by a factor of 2.7, and it was confirmed that the integrated photonic effect of the reflective PhC and the hemispherical lens junction was 7 times or more at the maximum.
 p型AlGaNコンタクトLEDは、反射型PhCの反射効果によりLEEが増加ファクターで1.28~1.45倍となった。また、サファイア半球レンズ接合により更にLEEの増加ファクターが2.0倍となり反射型PhC及び半球レンズ接合による集積フォトニック効果が最大で3倍弱が確認された。尚この時のLEEは最大で51.4%であった。
 一部サファイア半球レンズ接合の場合、サファイア基板2の厚さを薄くすることによりLEEが増加ファクターで1.2倍増大したが、サファイア基板2の裏面を研削研磨するコスト増加を補償するほどではない。
In the p-type AlGaN contact LED, the LEE increased by a factor of 1.28 to 1.45 due to the reflection effect of the reflection type PhC. Further, the sapphire hemispherical lens junction further increased the LEE increasing factor by 2.0 times, and it was confirmed that the integrated photonic effect by the reflective PhC and the hemispherical lens junction was less than 3 times at the maximum. LEE at this time was 51.4% at the maximum.
In the case of partial sapphire hemispherical lens bonding, LEE was increased by a factor of 1.2 by reducing the thickness of the sapphire substrate 2, but this was not enough to compensate for the increase in the cost of grinding and polishing the back surface of the sapphire substrate 2. .
(第16の実施の形態)
 深紫外LEDの製造方法に関して図1Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型GaNコンタクト層8と、p型AlGaN層7と、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
(Sixteenth embodiment)
As shown in FIG. 1A, a method of manufacturing a deep ultraviolet LED has a design wavelength of λ (200 nm to 355 nm) and a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate, and includes a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
 この工程において、
1)金属層9とp型GaNコンタクト層8の厚さ方向の範囲内で、かつ、p型GaNコンタクト層8とp型AlGaN層7との界面を超えない位置に設けられた複数の空孔101(h)を有する反射型2次元フォトニック結晶周期構造100を形成する工程と、
2)反射型2次元フォトニック結晶周期構造100を形成するための金型を準備する工程と、
3)p型GaNコンタクト層8の上にレジスト層を形成し、金型の構造をナノインプリント法にて転写する工程と、
4)上記構造が転写されたレジスト層をマスクとしてp型GaNコンタクト層8をエッチングして2次元フォトニック結晶周期構造を形成する工程と、
5)反射型2次元フォトニック結晶100を形成した上に、金属層9と反射電極層10をこの順で斜め蒸着法にて形成する工程と、
6)サファイア基板2をダイシングして深紫外LED素子を作成する工程と、
7)内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、
8)上記パッケージ15の内側底面と内側側壁に設計波長λに対して91%以上の反射率を有するNC-RC反射材17をコーティングする工程と、
9)上記パッケージ15に深紫外LED素子を装着する工程と、
10)上記パッケージ15の最表面を石英窓で密閉する工程と
を有する。
In this process,
1) A plurality of vacancies provided in a range in the thickness direction of the metal layer 9 and the p-type GaN contact layer 8 and not exceeding the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7 Forming a reflective two-dimensional photonic crystal periodic structure 100 having 101 (h);
2) a step of preparing a mold for forming the reflection type two-dimensional photonic crystal periodic structure 100;
3) a step of forming a resist layer on the p-type GaN contact layer 8 and transferring a mold structure by a nanoimprint method;
4) forming a two-dimensional photonic crystal periodic structure by etching the p-type GaN contact layer 8 using the resist layer onto which the structure has been transferred as a mask;
5) a step of forming a metal layer 9 and a reflective electrode layer 10 in this order by an oblique vapor deposition method after forming the reflective type two-dimensional photonic crystal 100;
6) dicing the sapphire substrate 2 to produce a deep ultraviolet LED element;
7) a step of preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of not less than 45 degrees and not more than 60 degrees;
8) coating the inner bottom surface and the inner side wall of the package 15 with an NC-RC reflector 17 having a reflectance of 91% or more with respect to a design wavelength λ;
9) mounting a deep ultraviolet LED element on the package 15;
10) sealing the outermost surface of the package 15 with a quartz window.
 ナノインプリントは金型のフォトニック結晶パターンを大面積被加工面に一括転写する技術である。また、樹脂モールドを利用することにより被加工面が数百ミクロン程度反っていても転写ができる。さらに二層レジストを使用すれば流動性と被加工体に対するエッチング選択比が得られるので精度の高いフォトニック結晶の加工が可能となる。 Nanoimprint is a technology that transfers the photonic crystal pattern of a mold onto a large-area processed surface at once. Further, by using a resin mold, transfer can be performed even if the surface to be processed is warped by several hundred microns. Furthermore, if a two-layer resist is used, fluidity and an etching selectivity with respect to a workpiece can be obtained, so that a highly accurate photonic crystal can be processed.
(第17の実施の形態)
 深紫外LEDの製造方法に関して図2Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
(Seventeenth embodiment)
As shown in FIG. 2A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
 この工程において、第16の実施の形態との違いは、p型GaNコンタクト層がp型AlGaNコンタクト層に替わっている点であり、第16の実施の形態との違いのみ具体的に以下に示す。
1)2次元フォトニック結晶周期構造100を形成する工程では、金属層9とp型AlGaNコンタクト層8aの厚さ方向の範囲内で、かつ、p型AlGaNコンタクト層8aと多重量子障壁層(或いは電子ブロック層)6との界面を超えない位置に複数の空孔101(h)を設ける。
第16の実施の形態に記載の、2)から10)の工程においては、p型GaNコンタクト層をp型AlGaNコンタクト層に置き換える以外は、第16の実施の形態と同じである。
In this step, the difference from the sixteenth embodiment is that the p-type GaN contact layer is replaced with a p-type AlGaN contact layer. Only the differences from the sixteenth embodiment are specifically described below. .
1) In the step of forming the two-dimensional photonic crystal periodic structure 100, in the thickness direction of the metal layer 9 and the p-type AlGaN contact layer 8a, and the p-type AlGaN contact layer 8a and the multiple quantum barrier layer (or A plurality of holes 101 (h) are provided at positions not exceeding the interface with the electron block layer) 6.
The steps 2) to 10) described in the sixteenth embodiment are the same as the sixteenth embodiment except that the p-type GaN contact layer is replaced with a p-type AlGaN contact layer.
(第18の実施の形態)
 深紫外LEDの製造方法に関して図3Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Rh)16と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
(Eighteenth Embodiment)
As shown in FIG. 3A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Rh). 16, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2. This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
 この工程においては、第17の実施の形態と違いは、本構造では金属層(Ni)9がなく、反射電極層が(Au)10が反射電極層(Rh)16に替わっている点のみである。
 従って、第17の実施の形態に記載の1)から10)の工程の、反射電極(Au)及び金属層(Ni)9を、反射電極(Rh)16に置き換えることで説明できる。
This step is different from the seventeenth embodiment only in that the present structure has no metal layer (Ni) 9 and the reflective electrode layer is replaced with a reflective electrode layer (Rh) 16 instead of (Au) 10. is there.
Therefore, it can be explained by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the steps 1) to 10) described in the seventeenth embodiment.
(第19の実施の形態)
 深紫外LEDの製造方法に関して図4Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型GaNコンタクト層8と、p型AlGaN層7と、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Nineteenth Embodiment)
As shown in FIG. 4A, regarding the method of manufacturing the deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、前記積層構造体及びLED素子を作成する工程は、第16の実施の形態の1)から6)に記載の工程と同じである。前記工程6)でのLED素子作成後、以下に記載のサファイア半球レンズ20aを接合させる工程を経て、サファイア半球レンズ20a接合後、再び、第16の実施の形態の7)から10)に記載の工程と同じ工程を有する。
1)第16の実施の形態の1)の工程と同じ、
2)第16の実施の形態の2)の工程と同じ、
3)第16の実施の形態の3)の工程と同じ、
4)第16の実施の形態の4)の工程と同じ、
5)第16の実施の形態の5)の工程と同じ、
6)第16の実施の形態の6)の工程と同じ、
7)LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを準備する工程と、
8)LED素子基板裏面及びサファイア半球レンズ20aの裏面を平坦化する工程と、
9)サファイア半球レンズ20aの裏面とLED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、
10)表面活性化処理したサファイア半球レンズ20aの裏面とLED素子基板裏面とを接合する工程と、
11)第16の実施の形態の7)の工程と同じ、
12)第16の実施の形態の8)の工程と同じ、
13)第16の実施の形態の9)の工程と同じ、
14)第16の実施の形態の10)の工程と同じ、を有する。
 また、ナノインプリント、樹脂モールド、二層レジストの効用も第16の実施の形態と同様である。
In this step, the steps of forming the laminated structure and the LED element are the same as the steps described in 1) to 6) of the sixteenth embodiment. After forming the LED element in the step 6), the sapphire hemispherical lens 20a described below is joined, and after the sapphire hemispherical lens 20a is joined, the sapphire hemispherical lens 20a is joined again according to 7) to 10) of the sixteenth embodiment. It has the same steps as the steps.
1) The same as the step 1) of the sixteenth embodiment,
2) The same as step 2) of the sixteenth embodiment,
3) The same as the step 3) of the sixteenth embodiment,
4) The same as step 4) of the sixteenth embodiment,
5) The same as step 5) of the sixteenth embodiment,
6) The same as the step 6) of the sixteenth embodiment,
7) preparing a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate;
8) flattening the back surface of the LED element substrate and the back surface of the sapphire hemispherical lens 20a;
9) activating the back surface of the sapphire hemispherical lens 20a and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma;
10) joining the back surface of the sapphire hemispherical lens 20a subjected to the surface activation treatment to the back surface of the LED element substrate;
11) Same as step 7) of the sixteenth embodiment,
12) Same as step 8) of the sixteenth embodiment,
13) The same as the step 9) of the sixteenth embodiment,
14) Same as step 10) of the sixteenth embodiment.
Further, the effects of the nanoimprint, the resin mold, and the two-layer resist are the same as in the sixteenth embodiment.
(第20の実施の形態)
 深紫外LEDの製造方法に関して図5Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Twentieth embodiment)
As shown in FIG. 5A for the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、前記積層構造体及びLED素子を作成する工程は、第17の実施の形態の1)から6)に記載の工程と同じである。前記工程6)でのLED素子作成後、第19の実施の形態に記載のサファイア半球レンズ20aを接合させる工程7)から10)を経て、サファイア半球レンズ20a接合後、再び、第17の実施の形態に記載の7)から10)に記載の工程と同じ工程を有する。
1)第17の実施の形態の1)の工程と同じ、
2)第17の実施の形態の2)の工程と同じ、
3)第17の実施の形態の3)の工程と同じ、
4)第17の実施の形態の4)の工程と同じ、
5)第17の実施の形態の5)の工程と同じ、
6)第17の実施の形態の6)の工程と同じ、
7)第19の実施の形態の7)の工程と同じ、
8)第19の実施の形態の8)の工程と同じ、
9)第19の実施の形態の9)の工程と同じ、
10)第19の実施の形態の10)の工程と同じ、
11)第17の実施の形態の7)の工程と同じ、
12)第17の実施の形態の8)の工程と同じ、
13)第17の実施の形態の9)の工程と同じ、
14)第17の実施の形態の10)の工程と同じ、を有する。
 また、ナノインプリント、樹脂モールド、二層レジストの効用も第16の実施の形態と同様である。
In this step, the steps of producing the laminated structure and the LED element are the same as the steps described in 1) to 6) of the seventeenth embodiment. After the LED element is formed in the step 6), the sapphire hemispherical lens 20a is bonded to the sapphire hemispherical lens 20a according to the steps 7) to 10) described in the nineteenth embodiment. It has the same steps as the steps 7) to 10) described in the embodiment.
1) The same as the step 1) of the seventeenth embodiment,
2) The same as the step 2) of the seventeenth embodiment,
3) The same as the step 3) of the seventeenth embodiment,
4) The same as step 4) of the seventeenth embodiment,
5) The same as the step 5) of the seventeenth embodiment,
6) The same as the step 6) of the seventeenth embodiment,
7) Same as step 7) of the nineteenth embodiment,
8) The same as the step 8) of the nineteenth embodiment,
9) The same as step 9) in the nineteenth embodiment,
10) The same as the step 10) of the nineteenth embodiment,
11) Same as step 7) of the seventeenth embodiment,
12) Same as step 8) of the seventeenth embodiment,
13) Same as step 9) of the seventeenth embodiment,
14) Same as step 10) of the seventeenth embodiment.
Further, the effects of the nanoimprint, the resin mold, and the two-layer resist are the same as in the sixteenth embodiment.
(第21の実施の形態)
 深紫外LEDの製造方法に関して図6Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Rh)16と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Twenty-first embodiment)
As shown in FIG. 6A, regarding the method of manufacturing a deep ultraviolet LED, as shown in FIG. 6A, a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm) is performed. 16, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2. This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第20の実施の形態との違いは、本構造では金属層(Ni)9がなく、反射電極層(Au)10が反射電極層(Rh)16に替わっている点のみである。
従って、第20の実施の形態に記載の1)から14)の工程の、反射電極(Au)及び金属層(Ni)9を、反射電極(Rh)16に置き換えることで説明できるため、詳細を省略する。
In this step, the only difference from the twentieth embodiment is that the present structure does not include the metal layer (Ni) 9 and the reflective electrode layer (Au) 10 is replaced with the reflective electrode layer (Rh) 16. .
Therefore, the description can be made by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the steps 1) to 14) described in the twentieth embodiment. Omitted.
(第22の実施の形態)
 深紫外LEDの製造方法に関して図7Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型GaNコンタクト層8と、p型AlGaN層7と、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Twenty-second embodiment)
As shown in FIG. 7A for the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、前記積層構造体とLED素子の作成及び表面実装型セラミックパッケージ15にNR-RC反射材17をコーティングする工程は、第16の実施の形態の1)から8)に記載の工程と同じである。前記工程8)でのコーティング工程終了後、以下に記載のように、サファイア半球レンズ20aを接合させ、前記サファイア半球レンズ20aの表面に透明樹脂フィルム21aを被覆する工程を有する。
1)第16の実施の形態の1)の工程と同じ、
2)第16の実施の形態の2)の工程と同じ、
3)第16の実施の形態の3)の工程と同じ、
4)第16の実施の形態の4)の工程と同じ、
5)第16の実施の形態の5)の工程と同じ、
6)第16の実施の形態の6)の工程と同じ、
7)第16の実施の形態の7)の工程と同じ、
8)第16の実施の形態の8)の工程と同じ、
9)上記パッケージ内壁の外接円以上の半径を有するサファイア半球レンズ20aを準備する工程と、
10)上記LED素子基板裏面及びサファイア半球レンズ20aの裏面を平坦化する工程と、
11)サファイア半球レンズ20aの裏面とLED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、
12)上記表面活性化処理したサファイア半球レンズ20aの裏面とLED素子基板裏面とを接合する工程と、
13)上記パッケージ15にサファイア半球レンズ20a接合LED素子を装着する工程と、
14)波長λに対して透明な樹脂フィルム21aをサファイア半球レンズ20aの表面と上記パッケージ上面を同時に被覆密閉する工程と、を有する。
 ナノインプリント、樹脂モールド、二層レジストの効用は第16の実施の形態と同様である。
In this step, the steps of producing the laminated structure and the LED element and coating the surface mount type ceramic package 15 with the NR-RC reflector 17 are the steps described in 1) to 8) of the sixteenth embodiment. Is the same. After the coating step in the step 8), as described below, a step of bonding the sapphire hemispherical lens 20a and covering the surface of the sapphire hemispherical lens 20a with the transparent resin film 21a is provided.
1) The same as the step 1) of the sixteenth embodiment,
2) The same as step 2) of the sixteenth embodiment,
3) The same as the step 3) of the sixteenth embodiment,
4) The same as step 4) of the sixteenth embodiment,
5) The same as step 5) of the sixteenth embodiment,
6) The same as the step 6) of the sixteenth embodiment,
7) Same as step 7) of the sixteenth embodiment,
8) The same as step 8) of the sixteenth embodiment,
9) preparing a sapphire hemispherical lens 20a having a radius greater than or equal to the circumcircle of the package inner wall;
10) flattening the back surface of the LED element substrate and the back surface of the sapphire hemispherical lens 20a;
11) a step of activating the back surface of the sapphire hemispherical lens 20a and the back surface of the LED element substrate with an ion beam or atmospheric pressure plasma;
12) joining the back surface of the sapphire hemispherical lens 20a subjected to the surface activation treatment to the back surface of the LED element substrate;
13) mounting a sapphire hemispherical lens 20a bonded LED element to the package 15;
14) simultaneously covering and sealing the surface of the sapphire hemispherical lens 20a and the upper surface of the package with a resin film 21a transparent to the wavelength λ.
The effects of the nanoimprint, the resin mold, and the two-layer resist are the same as in the sixteenth embodiment.
(第23の実施の形態)
 深紫外LEDの製造方法に関して図8Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Twenty-third embodiment)
As shown in FIG. 8A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、前記積層構造体及びLED素子の作成、及び表面実装型セラミックパッケージ15にNR-RC反射材17をコーティングする工程は、第17の実施の形態の1)から8)に記載の工程と同じである。前記工程8)でのコーティング工程終了後、サファイア半球レンズ20aを接合させ、前記サファイア半球レンズ20aの表面に透明樹脂フィルム21aを被覆する工程は、第22の実施の形態の9)から14)に記載の工程と同じである。従って、詳細を省略する。 In this step, the steps of producing the laminated structure and the LED element and coating the surface mount type ceramic package 15 with the NR-RC reflector 17 are the steps described in 1) to 8) of the seventeenth embodiment. Is the same as After the coating step in the step 8) is completed, the step of bonding the sapphire hemispherical lens 20a and covering the surface of the sapphire hemispherical lens 20a with the transparent resin film 21a includes the steps of 9) to 14) of the twenty-second embodiment. The steps are the same as described. Therefore, the details are omitted.
(第24の実施の形態)
 深紫外LEDの製造方法に関して図9Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Rh)16と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有するサファイア半球レンズ20aを接合させる工程を有する。
(Twenty-fourth embodiment)
As shown in FIG. 9A for the method of manufacturing a deep ultraviolet LED, as shown in FIG. 9A, a design wavelength is set to λ (200 nm to 355 nm), and a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate is performed. 16, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2. This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
Further, a step of bonding a sapphire hemispherical lens 20a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第23の実施の形態との違いは、本構造では金属層(Ni)9がなく、反射電極層(Au)10が反射電極層(Rh)16に替わっている点のみである。
 従って、第23の実施の形態に記載の工程の、反射電極(Au)及び金属層(Ni)9を、反射電極(Rh)16に置き換えることで説明できるため、詳細を省略する。
In this step, the only difference from the twenty-third embodiment is that the present structure does not include the metal layer (Ni) 9 and the reflective electrode layer (Au) 10 is replaced with the reflective electrode layer (Rh) 16. .
Accordingly, the description can be made by replacing the reflective electrode (Au) and the metal layer (Ni) 9 with the reflective electrode (Rh) 16 in the process described in the twenty-third embodiment, and a detailed description thereof will be omitted.
(第25の実施の形態)
 深紫外LEDの製造方法に関して図10Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型GaNコンタクト層8と、p型AlGaN層7と、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Twenty-fifth embodiment)
As shown in FIG. 10A, a method of manufacturing a deep ultraviolet LED is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第19の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第19の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 In this step, the only difference from the nineteenth embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in the present structure. Therefore, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the nineteenth embodiment with a quartz hemispherical lens 22a, the details are omitted.
(第26の実施の形態)
 深紫外LEDの製造方法に関して図11Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Twenty-sixth embodiment)
As shown in FIG. 11A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第20の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第20の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 In this step, the only difference from the twentieth embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Accordingly, the process can be described by replacing the sapphire hemispherical lens 20a in the process described in the twentieth embodiment with a quartz hemispherical lens 22a, and a detailed description thereof will be omitted.
(第27の実施の形態)
 深紫外LEDの製造方法に関して図12Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Rh)16と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Twenty-seventh embodiment)
As shown in FIG. 12A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Rh). 16, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2. This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第21の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第21の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 In this step, the only difference from the twenty-first embodiment is that the sapphire hemispherical lens 20a is replaced with the quartz hemispherical lens 22a in the present structure. Therefore, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-first embodiment with the quartz hemispherical lens 22a, the details are omitted.
(第28の実施の形態)
 深紫外LEDの製造方法に関して図13Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型GaNコンタクト層8と、p型AlGaN層7と、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Twenty-eighth embodiment)
As shown in FIG. 13A for the method of manufacturing a deep ultraviolet LED, as shown in FIG. 13A, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm). 10, a metal layer (Ni) 9, a p-type GaN contact layer 8, a p-type AlGaN layer 7, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, and an n-type AlGaN layer This is a step of forming a laminated structure containing the AlN buffer layer 4, the AlN buffer layer 3, and the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第22の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第22の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 In this step, the only difference from the twenty-second embodiment is that the sapphire hemispherical lens 20a is replaced with the quartz hemispherical lens 22a in the present structure. Accordingly, since the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-second embodiment with the quartz hemispherical lens 22a, the details are omitted.
(第29の実施の形態)
 深紫外LEDの製造方法に関して図14Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)10と、金属層(Ni)9と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側
からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Twenty-ninth embodiment)
As shown in FIG. 14A, a method for manufacturing a deep ultraviolet LED is to form a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Au). 10, a metal layer (Ni) 9, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron block layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, and an AlN buffer layer 3. And a step of forming a laminated structure containing the sapphire substrate 2 in this order from the side opposite to the sapphire substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第23の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第23の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 In this step, the only difference from the twenty-third embodiment is that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Therefore, the description can be made by replacing the sapphire hemispherical lens 20a in the process described in the twenty-third embodiment with the quartz hemispherical lens 22a, and a detailed description thereof will be omitted.
(第30の実施の形態)
 深紫外LEDの製造方法に関して図14Aに示すように、設計波長をλ(200nm~355nm)とし、サファイア基板2を成長基板とする積層構造体を形成する工程であって、反射電極層(Rh)16と、p型AlGaNコンタクト層8aと、多重量子障壁層(或いは電子ブロック層)6と、多重量子井戸層5と、n型AlGaN層4と、AlNバッファー層3と、サファイア基板2を、サファイア基板2とは反対側からこの順で含有する積層構造体を形成する工程である。
 さらに、サファイア基板2の裏面に、LED素子基板外接円以上の半径を有する石英半球レンズ22aを接合させる工程を有する。
(Thirtieth embodiment)
As shown in FIG. 14A, regarding the method of manufacturing a deep ultraviolet LED, this is a step of forming a laminated structure using a sapphire substrate 2 as a growth substrate with a design wavelength of λ (200 nm to 355 nm), and a reflective electrode layer (Rh). 16, a p-type AlGaN contact layer 8a, a multiple quantum barrier layer (or electron blocking layer) 6, a multiple quantum well layer 5, an n-type AlGaN layer 4, an AlN buffer layer 3, and a sapphire substrate 2. This is a step of forming a laminated structure to be contained in this order from the side opposite to the substrate 2.
Further, a step of bonding a quartz hemispherical lens 22a having a radius equal to or larger than the circumcircle of the LED element substrate to the back surface of the sapphire substrate 2 is included.
 この工程において、第24の実施の形態との違いは、本構造ではサファイア半球レンズ20aが石英半球レンズ22a替わっている点のみである。従って、第24の実施の形態に記載の工程の、サファイア半球レンズ20aを、石英半球レンズ22aに置き換えることで説明できるため、詳細を省略する。 This step is different from the twenty-fourth embodiment only in that the sapphire hemispherical lens 20a is replaced by a quartz hemispherical lens 22a in this structure. Therefore, the process can be described by replacing the sapphire hemispherical lens 20a with the quartz hemispherical lens 22a in the process described in the twenty-fourth embodiment, and a detailed description thereof will be omitted.
(第31の実施の形態)
 第31の実施の形態では、(第1の実施の形態)及び(第10の実施の形態)の変形例として、窒化アルミニムセラミックパーケッジの内壁にAuを蒸着する形態を示す。
(Thirty-first embodiment)
In the thirty-first embodiment, as a modification of the first embodiment and the tenth embodiment, an embodiment in which Au is deposited on the inner wall of an aluminum nitride ceramic package is shown.
 本実施の形態の目的は、低コスト、かつ、高LEEの深紫外LED装置を実現することである。従って、無機塗料NC-RCよりは反射率は劣るものの、比較的安価に使用されるAuコーティング膜による効果もシミュレーションにより比較検証する。 The purpose of the present embodiment is to realize a low-cost, high-LEE, deep ultraviolet LED device. Therefore, although the reflectance is lower than that of the inorganic paint NC-RC, the effect of the Au coating film used at relatively low cost is also comparatively verified by simulation.
 本実施の形態の深紫外LED装置の構造は、(第1の実施の形態)及び(第10の実施の形態)の構造のうち、無機塗料コーティング膜17をAuコーティング膜18に変更した。参考として、(第10の実施の形態)の変形例である構造を図17に示す。(第1の実施の形態)の変形例は、図17から石英半球レンズ22aを除いた構造であるため、図は省略する。 深 In the structure of the deep ultraviolet LED device of the present embodiment, the inorganic paint coating film 17 is changed to the Au coating film 18 in the structures of the first embodiment and the tenth embodiment. For reference, FIG. 17 shows a structure which is a modification of the tenth embodiment. Since the modification of the first embodiment has a structure in which the quartz hemispherical lens 22a is removed from FIG. 17, the drawing is omitted.
 Auコーティング膜18のパラメータは、膜厚200nm、屈折率1.678、消衰係数1.873、比透磁率1.0、瞬間比誘電率1.0である。 The parameters of the Au coating film 18 are 200 nm in film thickness, 1.678 in refractive index, 1.873 in extinction coefficient, 1.0 in relative magnetic permeability, and 1.0 in relative dielectric constant.
 また、反射型2次元フォトニック結晶100は、多重井戸層5のWellと当該反射型2次元フォトニック結晶100の最短端面との距離Gを61nm、次数m=3、R/aはR/a=0.30、0.35、0.40の3条件で確認した。尚、当該反射型2次フォトニック結晶100は、p型GaNコンタクト層8とp型AlGaN層7との界面を超えず、かつp型GaNコンタクト層8の内部に埋め込むように設けた。これは、当該反射型2次元フォトニック結晶形成後、電極(Ni電極9及びAu反射電極10)形成の前に、GaNの横方向の結晶成長を行うことで、2次元フォトニック結晶の空孔101(h)をp型GaNコンタクト層8内に残しつつ、空孔101(h)上部は被覆し、p型GaNコンタクト層8とNi電極9の界面を平坦化させることで、電極形成プロセスをしやすくすることを考慮したものである。 In the reflection type two-dimensional photonic crystal 100, the distance G between the well of the multi-well layer 5 and the shortest end face of the reflection type two-dimensional photonic crystal 100 is 61 nm, the order m = 3, and R / a is R / a. = 0.30, 0.35, and 0.40. The reflective secondary photonic crystal 100 was provided so as not to exceed the interface between the p-type GaN contact layer 8 and the p-type AlGaN layer 7 and to be embedded in the p-type GaN contact layer 8. This is because, after the formation of the reflection type two-dimensional photonic crystal and before the formation of the electrodes (Ni electrode 9 and Au reflection electrode 10), the crystal growth of GaN in the lateral direction is performed, so that the holes of the two-dimensional photonic crystal are formed. The electrode formation process is performed by covering the upper part of the holes 101 (h) and flattening the interface between the p-type GaN contact layer 8 and the Ni electrode 9 while leaving 101 (h) in the p-type GaN contact layer 8. This is to make it easier to do.
 結果を表71及び表72に示す。 The results are shown in Tables 71 and 72.
 表71は、(第1の実施の形態)で示した、石英半球レンズを接合していない構造の光線追跡法によるLEE計算結果表4を用いて、表4の結果にAuコーティング膜を設けた構造のFDTDによるLEE増加ファクターを乗じて算出した結果である。 Table 71 shows the results of Table 4 using an LEE calculation result by the ray tracing method of the structure in which the quartz hemispherical lens was not joined, which was shown in (First Embodiment), and an Au coating film was provided on the results of Table 4. It is the result calculated by multiplying the LEE increase factor by the FDTD of the structure.
 また、表72は、(第10の実施の形態)で示した、石英半球レンズを接合した構造の光線追跡法によるLEE計算結果表43を用いて、表43の結果にAuコーティング膜を設けた構造のFDTDによるLEE増加ファクターを乗じて算出した結果である。 In Table 72, an Au coating film was provided on the results of Table 43, using the LEE calculation result table 43 by the ray tracing method of the structure in which the quartz hemispherical lenses were joined, shown in (Tenth Embodiment). It is the result calculated by multiplying the LEE increase factor by the FDTD of the structure.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 上記結果を、(第1の実施の形態)及び(第10の実施の形態)の結果と比較する。 The above result is compared with the results of (first embodiment) and (tenth embodiment).
 まず、(第1の実施の形態)の表4では、Au反射膜のLEEは、パッケージ側壁角度60度の場合4.0%に対し、上記表71の側壁角度60度の、例えば2次元フォトニック結晶がR/a=0.40の場合ではLEE10.6%と、2次元フォトニック結晶形成後に2.66倍向上している。また、無機塗料コーティング膜との比較では、表6では、R/a=0.3のときのLEE8.9%に対し、上記表71ではLEE7.3%、同じく[表6]のR/a=0.4ではLEE12.1%に対して、表71ではLEE10.6%で、無機塗料コーティング膜には及ばないものの、比較的、無機塗料コーティング膜に近いLEEが得られている。 First, in Table 4 of the first embodiment, the LEE of the Au reflective film is 4.0% in the case of the package side wall angle of 60 °, whereas the LEE of the side wall angle of 60 ° in Table 71 is, for example, two-dimensional photo. When the nick crystal has R / a = 0.40, LEE is 10.6%, which is an improvement of 2.66 times after the formation of the two-dimensional photonic crystal. In comparison with the inorganic paint coating film, in Table 6, LEE was 8.9% when R / a = 0.3, whereas in Table 71, LEE was 7.3%, and R / a in [Table 6] was also used. In Table 71, LEE was 12.1%, whereas LEE was 12.6%. In Table 71, LEE was lower than that of the inorganic coating film, but was relatively close to that of the inorganic coating film.
 また、(第10の実施の形態)の表43では、Au反射膜のLEEは、パッケージ側壁角度60度の場合7.2%に対し、上記表72の側壁角度60度の、例えばR/a=0.40では20.9%と、2次元フォトニック結晶形成後に2.9倍向上している。また、無機塗料コーティング膜との比較では、表44では、R/a=0.3のLEE19%に対し、上記表72ではLEE14.6%、同じく表44のR/a=0.4ではLEE25.4%に対し、表72ではLEE20.9%で、やはり無機塗料コーティング膜には及ばないものの、無機塗料コーティング膜に近いLEEが得られている。 In Table 43 of the tenth embodiment, the LEE of the Au reflection film is 7.2% for the package side wall angle of 60 degrees, whereas the LEE of the side wall angle of 60 degrees in Table 72 is, for example, R / a. At 0.40, it is 20.9%, which is 2.9 times improved after the formation of the two-dimensional photonic crystal. In comparison with the inorganic coating film, in Table 44, LEE was 19% at R / a = 0.3, whereas LEE was 14.6% in Table 72, and LEE25 at R / a = 0.4 in Table 44. In Table 72, LEE was 20.9%, whereas LEE was lower than that of the inorganic coating film, but LEE close to that of the inorganic coating film was obtained.
 これらの結果は、本発明においては、窒化アルミニムセラミックパーケッジ内壁材料に、無機塗料コーティング膜に加えて、Au蒸着を用いた構造も、選択肢として有効であることを示す。 These results show that, in the present invention, in addition to the inorganic coating film, a structure using Au vapor deposition on the inner wall material of the aluminum nitride ceramic package is also effective as an option.
 上記の実施の形態において、図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
In the above embodiment, the illustrated configuration and the like are not limited to these, and can be appropriately changed within a range in which the effects of the present invention are exhibited. In addition, the present invention can be appropriately modified and implemented without departing from the scope of the object of the present invention.
In addition, each component of the present invention can be arbitrarily selected, and the present invention includes an invention having the selected configuration.
 本発明は、深紫外LEDに利用可能である。 The present invention is applicable to deep ultraviolet LEDs.
1…石英窓
2…サファイア基板
3…AlNバッファー層
4…n型AlGaN層
5…多重量子井戸層
6…多重量子障壁層(或いは電子ブロック層)
7…p型AlGaN層
8…p型GaNコンタクト層
8a…p型AlGaNコンタクト層
9…金属層(Ni,Ni層)
10…反射電極層(Au,Au反射電極層)
15…表面実装型窒化アルミニウムセラミックパッケージ,AlNパッケージ
15a…AlNパッケージ内側側壁角度θ
16…Rh反射電極層
17…無機塗料コーティング膜(NC-RC反射材)
18…Auコーティング膜
20a…サファイア半球レンズ
21a…透明樹脂フィルム
22a…石英半球レンズ
100…反射型2次元フォトニック結晶
101(h)…空孔(柱状構造体、ホール)
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。
DESCRIPTION OF SYMBOLS 1 ... Quartz window 2 ... Sapphire substrate 3 ... AlN buffer layer 4 ... N-type AlGaN layer 5 ... Multi quantum well layer 6 ... Multi quantum barrier layer (or electron block layer)
7 p-type AlGaN layer 8 p-type GaN contact layer 8 a p-type AlGaN contact layer 9 metal layer (Ni, Ni layer)
10. Reflective electrode layer (Au, Au reflective electrode layer)
15: Surface mount type aluminum nitride ceramic package, AlN package 15a: AlN package inner side wall angle θ
16 Rh reflection electrode layer 17 Inorganic paint coating film (NC-RC reflector)
18 Au coating film 20a Sapphire hemispherical lens 21a Transparent resin film 22a Quartz hemispherical lens 100 Reflective two-dimensional photonic crystal 101 (h) Void (columnar structure, hole)
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (6)

  1.  深紫外LED素子の設計波長λ(200nm~355nm)において反射率91%以上を有する無機コーティング膜が、内側底面及び内側側壁にコーティングされた表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が45度以上60度以下であって、かつ、前記パッケージの最表面は石英窓で密閉されるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、
     前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは3≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たす深紫外LED素子と、を有することを特徴とする深紫外LED装置。
    A surface-mount type aluminum nitride ceramic package in which an inorganic coating film having a reflectance of 91% or more at a design wavelength λ (200 nm to 355 nm) of a deep ultraviolet LED element is coated on an inner bottom surface and an inner side wall; A package having an inner side wall angle of not less than 45 degrees and not more than 60 degrees, and a package whose outermost surface is sealed with a quartz window, and a deep ultraviolet LED element mounted in the package, (Au), metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron block layer), multiple quantum well layer, n-type AlGaN layer, and AlN Having a buffer layer and a sapphire substrate in this order from the side opposite to the sapphire substrate,
    A plurality of holes are provided within a range in a thickness direction of the metal layer and the p-type GaN contact layer and at a position not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer. A reflection type two-dimensional photonic crystal, wherein the reflection type two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarized light component, and reflects the light of the design wavelength λ. The period a of the periodic type two-dimensional photonic crystal structure satisfies the Bragg condition, and the Bragg conditional expression mλ / n eff = 2a (where m: order, λ: design wavelength, n eff : two-dimensional photonic crystal) The effective index of refraction, a: the period m of the two-dimensional photonic crystal) satisfies 3 ≦ m ≦ 4, and when the radius of the hole is R, the R / a ratio is 0.30 ≦ R / satisfies a ≦ 0.40 A deep ultraviolet LED device.
  2.  さらに、前記サファイア基板裏面に接合される波長λに対して透明な、サファイア又は石英半球レンズを有し、前記半球レンズの半径は、前記サファイア基板の外接円の半径以上を有することを特徴とする請求項1に記載の深紫外LED装置。 Further, the sapphire substrate has a sapphire or quartz hemispherical lens that is transparent to a wavelength λ that is bonded to the back surface of the sapphire substrate, and a radius of the hemispherical lens is equal to or larger than a radius of a circumcircle of the sapphire substrate. The deep ultraviolet LED device according to claim 1.
  3.  設計波長をλ(200nm~355nm)とする深紫外LED装置の製造方法であって、サファイア基板を成長基板とする積層構造体を形成する工程であって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、
     前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程と、
     前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記p型GaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、
     前記構造が転写されたレジスト層をマスクとして前記p型GaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、
     前記反射型2次元フォトニック結晶を形成した上に、前記金属層と反射電極層をこの順で斜め蒸着法にて形成する工程と、
     前記サファイア基板をダイシングして深紫外LED素子を作成する工程と、
     内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、
     前記パッケージの内側底面と内側側壁に前記無機コーティング膜をコーティングする工程と、
     前記パッケージに前記深紫外LED素子を装着する工程と、前記パッケージ最表面を石英窓で密閉する工程と、
    を有する深紫外LED装置の製造方法。
    A method of manufacturing a deep ultraviolet LED device having a design wavelength of λ (200 nm to 355 nm), wherein a step of forming a laminated structure using a sapphire substrate as a growth substrate includes a reflective electrode layer (Au) and a metal layer. (Ni), a p-type GaN contact layer, a p-type AlGaN layer, a multiple quantum barrier layer (or an electron block layer), a multiple quantum well layer, an n-type AlGaN layer, an AlN buffer layer, and a sapphire substrate. In the step of forming a laminated structure containing the sapphire substrate in this order from the opposite side,
    A plurality of holes are provided within a range in a thickness direction of the metal layer and the p-type GaN contact layer and at a position not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer. Forming a reflective two-dimensional photonic crystal periodic structure;
    Preparing a mold for forming the reflective two-dimensional photonic crystal periodic structure;
    Forming a resist layer on the p-type GaN contact layer, and transferring the structure of the mold by nanoimprinting;
    Etching the p-type GaN contact layer using the resist layer to which the structure has been transferred as a mask to form a two-dimensional photonic crystal periodic structure;
    Forming the reflective two-dimensional photonic crystal and then forming the metal layer and the reflective electrode layer in this order by oblique deposition;
    Dicing the sapphire substrate to create a deep ultraviolet LED element,
    A step of preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of not less than 45 degrees and not more than 60 degrees;
    Coating the inorganic coating film on the inner bottom surface and the inner side wall of the package;
    A step of mounting the deep ultraviolet LED element on the package, and a step of sealing the outermost surface of the package with a quartz window,
    A method for manufacturing a deep ultraviolet LED device having:
  4.  さらに、前記LED素子基板外接円以上の半径を有する、サファイア又は石英半球レンズを準備する工程と、
     前記LED素子基板裏面及び前記半球レンズ裏面を平坦化する工程と、
     前記半球レンズ裏面と前記LED素子基板裏面をイオンビーム或いは大気圧プラズマで表面活性化する工程と、
     前記表面活性化処理した前記半球レンズ裏面と前記LED素子基板裏面とを接合する工程と、
     内側側壁角度が45度以上60度以下を有する表面実装型窒化アルミニウムセラミックパッケージを準備する工程と、
     前記パッケージの内側底面と内側側壁に前記無機コーティング膜をコーティングする工程と、
     前記パッケージに前記半球レンズ接合LED素子を装着する工程と、
     前記パッケージ最表面を石英窓で密閉する工程と
    を有する請求項3に記載の深紫外LED装置の製造方法。
    Further, a step of preparing a sapphire or quartz hemispherical lens having a radius equal to or larger than the circumcircle of the LED element substrate,
    Flattening the LED element substrate back surface and the hemispheric lens back surface,
    A step of surface-activating the hemispheric lens back surface and the LED element substrate back surface with an ion beam or atmospheric pressure plasma,
    Bonding the hemispherical lens back surface and the LED element substrate back surface that have been subjected to the surface activation processing,
    A step of preparing a surface-mounted aluminum nitride ceramic package having an inner side wall angle of not less than 45 degrees and not more than 60 degrees;
    Coating the inorganic coating film on the inner bottom surface and the inner side wall of the package;
    Mounting the hemispherical lens junction LED element on the package;
    4. The method of manufacturing a deep ultraviolet LED device according to claim 3, further comprising: sealing the outermost surface of the package with a quartz window.
  5.  深紫外LED素子の設計波長λ(200nm~355nm)において、Auコーティング膜が、内側底面及び内側側壁にコーティングされた表面実装型窒化アルミニウムセラミックパッケージであって、かつ、前記パッケージの内側側壁角度が60度以上90度以下であって、かつ、前記パッケージの最表面は石英窓で密閉されるパッケージと、前記パッケージ内に装着された深紫外LED素子であって、
     反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層と、多重量子障壁層(或いは電子ブロック層)と、多重量子井戸層と、n型AlGaN層と、AlNバッファー層と、サファイア基板を、前記サファイア基板とは反対側からこの順で有し、
     前記金属層と前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶を有し、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/neff=2a(但し、m:次数、λ:設計波長、neff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mはm=3を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たす深紫外LED素子と、を有することを特徴とする深紫外LED装置。
    At the design wavelength λ (200 nm to 355 nm) of the deep ultraviolet LED element, the Au coating film is a surface mount type aluminum nitride ceramic package coated on the inner bottom surface and the inner side wall, and the inner side wall angle of the package is 60 mm. Not less than 90 degrees, and the outermost surface of the package is a package sealed with a quartz window, and a deep ultraviolet LED element mounted in the package,
    Reflective electrode layer (Au), metal layer (Ni), p-type GaN contact layer, p-type AlGaN layer, multiple quantum barrier layer (or electron block layer), multiple quantum well layer, and n-type AlGaN layer And an AlN buffer layer and a sapphire substrate in this order from the side opposite to the sapphire substrate,
    A plurality of holes are provided within a range in a thickness direction of the metal layer and the p-type GaN contact layer and at a position not exceeding an interface between the p-type GaN contact layer and the p-type AlGaN layer. A reflection type two-dimensional photonic crystal, wherein the reflection type two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarized light component, and reflects the light of the design wavelength λ. The period a of the periodic type two-dimensional photonic crystal structure satisfies the Bragg condition, and the Bragg conditional expression mλ / n eff = 2a (where m: order, λ: design wavelength, n eff : two-dimensional photonic crystal) The effective refractive index, a: the order m in the period of the two-dimensional photonic crystal) satisfies m = 3, and when the radius of the hole is R, the R / a ratio is 0.30 ≦ R / a ≦ Depth satisfying 0.40 A deep ultraviolet LED device, comprising: an ultraviolet LED element.
  6.  さらに、
     前記サファイア基板裏面に接合される波長λに対して透明な石英半球レンズを有し、前記半球レンズの半径は、前記サファイア基板の外接円の半径以上を有することを特徴とする請求項5に記載の深紫外LED装置。
    further,
    6. The sapphire substrate according to claim 5, further comprising: a quartz hemispherical lens transparent to a wavelength λ, which is bonded to a back surface of the sapphire substrate, wherein a radius of the hemispherical lens is equal to or larger than a radius of a circumcircle of the sapphire substrate. Deep ultraviolet LED device.
PCT/JP2019/033110 2018-08-24 2019-08-23 Deep ultraviolet led device and method for manufacturing same WO2020040304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157332 2018-08-24
JP2018-157332 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040304A1 true WO2020040304A1 (en) 2020-02-27

Family

ID=69593033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033110 WO2020040304A1 (en) 2018-08-24 2019-08-23 Deep ultraviolet led device and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW202027304A (en)
WO (1) WO2020040304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312877A (en) * 2020-03-25 2020-06-19 苏州紫灿科技有限公司 Inverted deep ultraviolet LED with double-layer photonic crystal structure and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093116A1 (en) * 2003-10-29 2005-05-05 M/A-Com, Inc. Surface mount package for a high power light emitting diode
JP2005317596A (en) * 2004-04-27 2005-11-10 Kyocera Corp Light emitting device storage package, manufacturing method therefor, light emitting apparatus, and lighting equipment
WO2006013899A1 (en) * 2004-08-03 2006-02-09 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element
US20100259930A1 (en) * 2009-04-08 2010-10-14 Ledengin, Inc. Package for multiple light emitting diodes
JP2012244170A (en) * 2011-05-13 2012-12-10 Lg Innotek Co Ltd Light emitting element package and ultraviolet lamp including the same
JP2013042079A (en) * 2011-08-19 2013-02-28 Sharp Corp Semiconductor light emitting device
WO2017038961A1 (en) * 2015-09-03 2017-03-09 丸文株式会社 Deep-ultraviolet led and method for manufacturing same
JP2017117982A (en) * 2015-12-25 2017-06-29 旭硝子株式会社 Substrate for deep uv light-emitting element, coupling substrate for deep uv light-emitting element, and deep uv light-emitting device
WO2017168811A1 (en) * 2016-03-30 2017-10-05 丸文株式会社 Deep ultraviolet led and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093116A1 (en) * 2003-10-29 2005-05-05 M/A-Com, Inc. Surface mount package for a high power light emitting diode
JP2005317596A (en) * 2004-04-27 2005-11-10 Kyocera Corp Light emitting device storage package, manufacturing method therefor, light emitting apparatus, and lighting equipment
WO2006013899A1 (en) * 2004-08-03 2006-02-09 Tokuyama Corporation Package for storing light emitting element and method for producing package for storing light emitting element
US20100259930A1 (en) * 2009-04-08 2010-10-14 Ledengin, Inc. Package for multiple light emitting diodes
JP2012244170A (en) * 2011-05-13 2012-12-10 Lg Innotek Co Ltd Light emitting element package and ultraviolet lamp including the same
JP2013042079A (en) * 2011-08-19 2013-02-28 Sharp Corp Semiconductor light emitting device
WO2017038961A1 (en) * 2015-09-03 2017-03-09 丸文株式会社 Deep-ultraviolet led and method for manufacturing same
JP2017117982A (en) * 2015-12-25 2017-06-29 旭硝子株式会社 Substrate for deep uv light-emitting element, coupling substrate for deep uv light-emitting element, and deep uv light-emitting device
WO2017168811A1 (en) * 2016-03-30 2017-10-05 丸文株式会社 Deep ultraviolet led and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312877A (en) * 2020-03-25 2020-06-19 苏州紫灿科技有限公司 Inverted deep ultraviolet LED with double-layer photonic crystal structure and preparation method thereof
CN111312877B (en) * 2020-03-25 2022-02-22 苏州紫灿科技有限公司 Inverted deep ultraviolet LED with double-layer photonic crystal structure and preparation method thereof
EP3993070A4 (en) * 2020-03-25 2022-10-19 Suzhou Uvcantek Co., Ltd Inverted deep ultraviolet led of double-layer photonic crystal structure, and preparation method therefor

Also Published As

Publication number Publication date
TW202027304A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
EP2800456B1 (en) Organic light emitting diode, manufacturing method for organic light emitting diode
JP5479582B2 (en) Organic light emitting diode
US20090108279A1 (en) Light emitting device and method for manufacturing the same
WO2016047045A1 (en) Organic electroluminescent element, base material, and light emitting device
WO2017168811A1 (en) Deep ultraviolet led and production method therefor
JP4231880B2 (en) Three-dimensional structure, light emitting device having the same, and method for manufacturing the same
US10950751B2 (en) Deep ultraviolet LED and method for manufacturing the same
US9513415B2 (en) Optical filter configured to transmit light of a predetermined wavelength
WO2020138146A1 (en) Deep ultraviolet led device and manufacturing method therefor
WO2020040304A1 (en) Deep ultraviolet led device and method for manufacturing same
JP7316610B2 (en) Deep UV LED and its manufacturing method
US11294195B2 (en) Aperiodic nano-optical array for angular shaping of incoherent emissions
US10840051B2 (en) Extraction structure for a UV lamp
JPWO2019009151A1 (en) Optical member and optical system device using the same
WO2024090391A1 (en) Deep ultraviolet led
US20230086879A1 (en) Semiconductor Light Source, Cover Body and Method
JP6156898B1 (en) Deep ultraviolet LED and manufacturing method thereof
KR20060134453A (en) Method for fabricating light emitting device with photonic crystal stucture
CN117352626A (en) Light-emitting diode chip capable of improving adhesion and manufacturing method thereof
Ma Optically functional structures on GaN-based light-emitting diodes for light-extraction efficiency enhancement and emission pattern control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP