TW202026422A - 內含子為主之通用選殖方法及組成物 - Google Patents

內含子為主之通用選殖方法及組成物 Download PDF

Info

Publication number
TW202026422A
TW202026422A TW108133752A TW108133752A TW202026422A TW 202026422 A TW202026422 A TW 202026422A TW 108133752 A TW108133752 A TW 108133752A TW 108133752 A TW108133752 A TW 108133752A TW 202026422 A TW202026422 A TW 202026422A
Authority
TW
Taiwan
Prior art keywords
polynucleotide
intron
sequence
nucleic acid
cleavage
Prior art date
Application number
TW108133752A
Other languages
English (en)
Inventor
沃爾夫 雷希諾
沃納 迪特里區
約爾格 比肯費爾德
馬里昂 施奈德
Original Assignee
法商賽諾菲公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商賽諾菲公司 filed Critical 法商賽諾菲公司
Publication of TW202026422A publication Critical patent/TW202026422A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/42Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/30Phosphoric diester hydrolysing, i.e. nuclease
    • C12Q2521/313Type II endonucleases, i.e. cutting outside recognition site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/501Ligase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本發明是有關於一種用於產生編碼感興趣多肽之融合多核苷酸的方法。該方法包含以下步驟:提供第一多核苷酸與第二多核苷酸,以及使該第一多核苷酸和第二多核苷酸在容許第一多核苷酸和第一多核苷酸受到該第IIs型限制內切酶切割並且連接所得切割產物的條件下與第IIs型限制內切酶和連接酶接觸的步驟,從而產生編碼感興趣多肽的融合多核苷酸。第一多核苷酸包含內含子的5’部分,而第二多核苷酸包含內含子的3’部分。本發明更預期一種編碼感興趣多肽的多核苷酸,其當在真核宿主細胞中轉錄時,被轉錄成包含對於該多核苷酸為異源的至少五個內含子的轉錄本。

Description

內含子為主之通用選殖方法及組成物
本發明是有關於一種用於產生編碼感興趣多肽之融合多核苷酸的方法。該方法包含以下步驟:提供第一多核苷酸與第二多核苷酸,以及使該第一多核苷酸和第二多核苷酸在容許第一多核苷酸和第一多核苷酸受到該第IIs型限制內切酶切割並且連接所得切割產物的條件下與第IIs型限制內切酶和連接酶接觸的步驟,從而產生編碼感興趣多肽的融合多核苷酸。第一多核苷酸包含內含子的5’部分,而第二多核苷酸包含內含子的3’部分。本發明更預期一種編碼感興趣多肽的多核苷酸,其當在真核宿主細胞中轉錄時,被轉錄成包含對於該多核苷酸為異源的至少五個內含子的轉錄本。
重組DNA分子以及可將多個DNA片段裝配成單一DNA連續段(contiguous stretch of DNA)的分子選殖方法是分子生物學、生物技術與醫學研究的重要工具。第一個重組DNA分子在1960年代晚期做出,就在發現限制酶和DNA連接酶後不久。從那時起,已開發出各種方法來加速和促進重組DNA分子的產生。
蛋白質工程通常是藉由操作基礎編碼DNA序列來進行。編碼不同蛋白質結構域之DNA模組的定向裝配(directional assembly)是以開發並優化新穎生物治療模式為核心。
分子選殖已經從單一DNA片段選殖進展成至將多個DNA組分的組合(assembly)選殖至單一DNA連續段(contiguous stretch)內。但是,仍然需要有效率的技術而能夠產生複雜的建構物(參見Endy,Nature 2005 Nov 24;438(7067):449-53)。尤其是需要一套標準且可靠的工程機制,以便在將遺傳組分裝配成更大的系統期間消除許多冗長和意外(參見Knight,T.F.(2003).Idempotent Vector Design for Standard Assembly of Biobricks.DOI:1721.1/21168)。
DNA模組(例如編碼蛋白質結構域)通常是透過剪切-與-黏貼機制,使用限定的側接前綴和後綴DNA序列來進行裝配。正統來說,前綴和後綴序列編碼第II型迴文限制位點。第II型酶識別並切割同一位點處的DNA且產生單股懸臂,單股懸臂可黏合至受到同一限制酶切割的其它DNA模組。然而,感興趣的DNA模組必須透過DNA操作技術在5'和3'端配備有合適的第II型限制位點,導致一級核苷酸序列遭受改變/突變。另外,直鏈的定向性DNA模組裝配需要幾個獨特的第II型位點。裝配通常需要數個選殖步驟,因為不同的第II型限制酶就反應條件來說往往不相容。
金門選殖(Golden Gate cloning)是一種經常使用的分子選殖方法,其能夠使用第IIs型限制酶與T4 DNA連接酶將多個DNA片段同時且定向裝配成單一片段。Engler 2008,A one pot,one step,precision cloning method with high throughput capability.PloS ONE 3.11:e3647,以及Engler et al.2009,Golden gate shuffling:a one-pot DNA shuffling method based on type IIs restriction enzymes.PLoS ONE 4:e5553。不同於標準的第II型限制酶(諸如EcoRI和BamHI),第IIs型限制酶(諸如BSAI,BsmBI和BbsI)在其識別序列以外切下DNA,因此可產生非迴文懸臂。在適當設計切割位點的情況下,透過第IIs型限制酶所切下的兩個片段可以被連接到缺乏原有限制位點的產物中。
第IIs型為主的限制-連接允許在單個選殖步驟中裝配多個DNA片段。就裝配來說,DNA片段在其5'(前綴)和3'(後綴)端處需要以一個規定距離和定向側接第IIs型限制酶識別位點的1到6bp長(例如3-4bp長)互補序列段。在結合至識別位點後,第IIs型酶在前綴和後綴核苷酸序列處切斷DNA片段,從而移除實際識別位點,並同時產生組成連接序列的游離5'和3'端。這些連接序列接而用於在連接反應中將DNA片段與匹配/相容連接 序列融合。因此,如果兩個不同DNA片段之間5'前綴和3'後綴序列是相同的,則這些片段可以在第IIs型為主的限制-連接反應中無縫連接。
一般來說,已經用來產生特定變體庫的DNA片段/模組不能在新計畫中重複使用(即重新裝配),因為它們通常不會表現出相容的前綴和後綴序列。反而需要重新設計模組以便匹配不同的選殖策略(即,需要調整前綴和後綴序列以便能夠連接)。這非常費時又昂貴,特別是因為DNA片段/模組的4bp前綴和後綴序列經常需要修改,但被前綴和後綴所側接的核心序列維持不變。
因此,在本技藝中所述選殖策略的主要侷限為它們在DNA模組內仍然需要獨特且相容的前綴和後綴序列以容許定向裝配。這些前綴和後綴序列在不同蛋白質結構域及/或形式中可能是不相容的,這限制了這些方法的通用應用性。
迄今尚無可在第IIs型為主的限制-連接反應中被重複使用並裝配,卻不受到其5'和3'前綴和後綴序列所影響的通用DNA片段模組。
前驅mRNA剪接在真核基因表現中是不可或缺的過程。在高等脊椎動物中,需要被識別的標靶內含子長度範圍在<50nt至>500.000nt。在人類中,於前驅-mRNA內最常見的是長度為約90nt至約2000nt的內含子。然而,也描述過短或甚至超短的內含子序列。例如,短內含子已經在線蟲(C.elegans)(<40nt)、阿拉伯芥(Arabidopsis thaliana)(~20-59nt)和人體組織(<65nt)中發現到(Hong et al.2006,Intron size,abundance,and distribution within untranslated regions of genes.Molecular biology and evolution,23(12),2392-2404;Shimada et al.,2015,Identification and validation of evolutionarily conserved unusually short pre-mRNA introns in the human genome.Int.J.Mol.Sci.2015,16,10376-10388)。
於一個前驅mRNA中,位於內含子和外顯子之間邊界處的內含子也可稱為剪接體內含子(spliceosomal introns)。RNA剪接移去非編碼RNA內含子,留下外顯子,然後將外顯子剪接並連結在一起而形成最終mRNA(「成熟mRNA」)。
對於快速且簡單產生能表現多個感興趣基因的重組DNA模組仍存在有強烈需要。特別是可在第IIs型為主的限制-連接反應中被重複使用且裝配,卻不受到其5'端和3'端(即前綴和後綴序列)所影響的方式和方法將會是極其盼望的。
構成本發明基礎的技術問題可以看成是提供符合前述需求的方式和方法。透過申請專利範圍以及本文以下中所表徵的具體例,得以解決技術問題。
因此,在某些態樣中,本發明是有關於一種用於產生編碼感興趣多肽之融合多核苷酸的方法。在某些具體例中,該方法包含使第一多核苷酸與第二多核苷酸在容許第一多核苷酸與第二多核苷酸受到該第IIs型限制內切酶切割,並且連接所得切割產物的條件下與第IIs型限制內切酶與連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸。在某些具體例中,該第一多核苷酸和該第二多核苷酸的各者包含含有用於第IIs型限制內切酶的識別和切割位點的內含子序列,其在切割之後產生可彼此連接的互補端以使得編碼感興趣多肽之融合多核苷酸得以產生。在某些具體例中,第一多核苷酸包含一個內含子的5'部分而該第二多核苷酸包含一個內含子的3'部分。
在另一個態樣中,本發明進一步是有關於一種包含第一、第二和第三多核苷酸的組成物。本發明進一步預期一種編碼感興趣多肽的多核苷酸,當在真核宿主細胞中轉錄時,其被轉錄成包含至少五個相對於該多核苷酸為異源性的內含子的轉錄本。
在前述方法的一個具體例中,第一多核苷酸沿5'至3'方向包含以下要素:
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,以及
(iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的切割序列可操作地連接至(iv)中的識別序列。
在前述方法的一個具體例中,第二多核苷酸沿5'至3'方向包含以下要素:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,即連接至第二多核苷酸的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第二部分的核酸序列。
因此,本發明是有關於一種用於產生編碼感興趣多肽之融合多核苷酸的方法,該方法包含以下步驟:
(a1)提供第一多核苷酸,該第一多核苷酸沿5'至3'方向包含
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,以及
(iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的切割序列可操作地連接至(iv)中的識別序列,即連接至第一多核苷酸的識別序列
(a2)提供第二多核苷酸,該第二多核苷酸沿5'至3'方向包含
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,即連接至第二多核苷酸的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第二部分的核酸序列,及
(b)使該第一多核苷酸與第二多核苷酸在容許第一多核苷酸與第二多核苷酸受到第IIs型限制內切酶切割並且連接所得切割產物的條件下 與第IIs型限制內切酶和連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸。
所產生的多核苷酸包含第一內含子,即應編碼第一內含子。該第一內含子應具有功能且應包含編碼第一內含子之5'部分的核酸序列與編碼第一內含子之3'部分的核酸序列。
因此,所產生的融合多核苷酸沿5'至3'方向應包含,
(aa)編碼感興趣多肽之第一部分的核酸序列,
(bb)編碼第一內含子的核酸序列,其中該第一內含子具有功能,且其中該第一內含子包含編碼第一內含子之5'部分的核酸序列與編碼第一內含子之3'部分的核酸序列,以及
(cc)編碼感興趣多肽之第二部分的核酸序列。
本發明之方法可產生編碼感興趣多肽的融合多核苷酸。因此,本方法是一種選殖方法。此等方法典型是在活體外進行。本發明方法並不限於上文明確提到的步驟,因而除了這些步驟之外還可包含步驟。例如,進一步的步驟可能有關於將額外多核苷酸序列連接至本發明的融合多核苷酸。例如,如本文下面所描述的,本發明方法不僅可產生含有如上文所示要素(aa)、(bb)及(cc)的融合多核苷酸,還可產生包含額外要素(諸如編碼感興趣多肽之第三、第四、第五、第六、第七、第八、第九,第十等部分)的融合多核苷酸。此外,額外多核苷酸可用於連接。此等多核苷酸可能編碼編碼感興趣多肽之多核苷酸的5'未轉譯區(5' UTR)和3'未轉譯區(3' UTR)。由於這些序列被轉錄但不被轉譯,故可能適用如本文所述之內含子為主的選殖方法。
另外,進一步的步驟可能有關於將融合多核苷酸選殖至載體(諸如表現載體)中、將融合多核苷酸,或包含該融合多核苷酸的載體引入至合適宿主細胞(諸如哺乳動物細胞)中,及/或從宿主細胞或培養基/上清液分離(即純化)該多肽。純化過程可透過在感興趣蛋白質中存在適當標籤(例如His標籤)獲得支持。
術語「多核苷酸」如本文所用應指核糖核酸(RNA),或特別是指去氧核糖核酸(DNA)。除非另有說明,否則術語「多核苷酸」在本文中 是指DNA多核苷酸的單股,或特別是雙股DNA多核苷酸。該雙股DNA應在本發明方法的步驟(b)期間,於末端處暫時地包含一個或兩個單股懸臂。這取決於存在多核苷酸內的切割序列(即切割位點)的數量:如果存在一個切割位點,則該多核苷酸在一端包含一個單股懸臂,如果存在兩個切割序列,則多核苷酸包含兩個單股懸臂(在每一端處一個)。懸臂是起因自用第IIs型內切酶切割且容許以預定順序來連接片段(如本文他處所述)。
多核苷酸的長度是根據鹼基對或核苷酸的數量來選定。除非另有說明,否則術語皆可交互使用,無論對應核酸是單股核酸還是雙股核酸。另外,因為多核苷酸是根據它們各自的核苷酸序列所定義,術語核苷酸/多核苷酸與核苷酸序列/多核苷酸序列可交互使用。
應藉由本發明產生的多核苷酸應為融合多核苷酸,並且因此應透過融合各種多核苷酸來產生。該融合多核苷酸尤其應透過使本文的第一多核苷酸和第二多核苷酸,且視情況至少一個額外的多核苷酸(諸如,第三、第四、第五、第六、第七、第八、第九、第十等多核苷酸)在容許第一多核苷酸和第二多核苷酸(以及如果有的話,至少一個額他多核苷酸,諸如第三、第四、第五、第六、第七、第八、第九、第十等多核苷酸)受到第IIs型限制內切酶切割並將所得切割產物連接的條件下,與該第IIs型限制內切酶和連接酶接觸所產生,從而產生編碼感興趣多肽的融合多核苷酸。
根據本發明方法的步驟(a1)和(a2),應提供第一多核苷酸和第二多核苷酸。如何提供多核苷酸是本技藝中所熟知的。在具體例中,所提供的多核苷酸是衍生自(即,由其製造)聚合酶鏈反應(PCR)。在另一個具體例中,該多核苷酸衍生自(即,由其製造)人工基因合成。同樣適用於本文他處所提到的第三、第四、第五、第六、第七、第八、第九,和第十等多核苷酸。在具體例中,所提供的多核苷酸存在於載體中,亦即由載體含括在內。在另一個具體例中,多核苷酸以線性DNA片段的形式提供。
如在本發明方法的步驟(a1)中提到的第一多核苷酸沿5'至3'方向應包含以下要素:
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,以及
(iv)用於該第IIs型限制內切酶的識別序列,其中(iii)中的第一切割序列可操作地連接至(iv)中的識別序列。
如在本發明方法的步驟(a1)中提到的第二多核苷酸沿5'至3'方向應包含以下要素:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,即連接至第二多核苷酸的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第二部分的核酸序列。
步驟(a1)之項次(i)下所列出的核酸序列應編碼感興趣多肽的第一部分,而步驟(a2)之項次(iv)下的核酸序列則為該多肽的第二部分。通常,編碼的核酸序列應編碼如本文所提及之感興趣多肽的一部分,其依據本發明具有至少10、至少50,或至少200bp的長度。該核酸序列應包含編碼序列的一部分。因此,多肽的一部分可具有至少1個胺基酸、至少約3個胺基酸、至少約15個胺基酸,或至少約50個胺基酸的長度。因此,該部分可具有從最少1個胺基酸至任何可行長度(例如100個胺基酸,500個胺基酸、1000個胺基酸,或更多個)。在本發明方法的一個具體例中,該部分包含蛋白質結構域。因此,該部分可具有例如100至150個胺基酸的長度。
編碼多肽之第一部分的核酸序列還可包含5'未轉譯區(5' UTR)。編碼多肽的最後部分(即,C端)的多核苷酸還可包含3'未轉譯區(3' UTR)。
編碼感興趣多肽之第一部分的核酸序列較佳地是融合多核苷酸的第一外顯子。因此,該核酸序列應編碼所得轉錄本的第一外顯子。編碼感興趣多肽之第二部分的核酸序列較佳地是融合多核苷酸的第二外顯子。編碼感興趣多肽之第三部分的核酸序列較佳地是融合多核苷酸等的第三外顯子。
由所產生之融合多核苷酸含括在內的外顯子是被功能性內含子隔開。例如,第一外顯子和第二外顯子是被第一內含子隔開。此外,如果在融合多核苷酸中存在其他外顯子,則較佳同樣被功能性內含子隔開。因此,如果存在第三外顯子時,第二外顯子和第三外顯子是被第二內含子隔開,以及如果存在第四外顯子時,第三外顯子和第四外顯子是被第三內含子隔開等等。在一個具體例中,被融合多核苷酸含括在內的內含子是相同的,意即具有相同序列。在另一個具體例中,被融合多核苷酸含括在內的內含子具有不同的序列。在這個具體例中,例如可使用不同基因及/或不同生物體的內含子。內含子也可以是人工內含子,即不存在於自然界中的內含子。例如,人工內含子可透過組合兩個不同內含子的5'和3'部分來設計,或者使天然存在的內含子突變。天然存在的內含子可以是因為添加、替換或刪除一或多個核苷酸而突變。圖7顯示一種內含子,其含有可從含有該內含子之轉錄本被有效切除之額外核苷酸。
根據本發明,應在真核宿主細胞中表現(即轉錄)由本發明方法所產生的融合多核苷酸來產生感興趣的多肽。來自表現融合多核苷酸的未經加工轉錄本(即,前驅信使RNA(前驅-mRNA))應包括融合多核苷酸所編碼的全部外顯子和內含子序列。該轉錄本在真核細胞中被加工,將內含子(或多個內含子)從該轉錄本切除,從而產生編碼感興趣多肽的信使RNA(mRNA),也就是要被轉譯成感興趣多肽的mRNA。由於內含子透過剪接而從前驅mRNA被移除,mRNA僅包含外顯子序列。
構成本發明基礎的研究中已證明,並不是所有測試的內含子都會從生成的轉錄本被切除。因此,本發明的方法可包含評估由本發明方法產生的融合多核苷酸當在真核宿主細胞中表現時是否會(或不會)容許感興趣的多肽產生的更多步驟。這個評估可以透過評估產生的多肽(例如其活性)來進行。
圖式顯示:
圖1:雙順反子載體(pcDNA5dual-FRT-TO_DEST,基於pcDNA5-FRT-TO_DEST[Invitrogen/ThermoFisher Scientific],用於表現建構物。
圖2:使用一個或兩個內含子的螢光素酶實驗:海腎(Renilla)螢光素酶基因中的內含子位置。方框表示「外顯子」,黑色水平槓表示人工插入的內含子。
圖3:hRluc表現-在內含子#2和#3中,典型剪接位點的突變破壞了海腎螢光素酶的表現,如同其C端序列部分的缺失般。x軸示出在hRluc基因中具有或不具有內含子的建構物。y軸示出各個建構物相對於沒有內含子的參考建構物(剖線槓)的表現水平。所示建構物包含那些在內含子位置#1處具有(非)功能性內含子者(參見圖2)和hRluc的C端缺失建構物者。誤差槓:標準差。
圖4:hRluc表現-在hRluc的內含子位置#1處帶有單一內含子的建構物保留了無內含子對照建構物的表現水平。僅內含子#1不會導致蛋白質的功能性表現。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。
圖5:hRluc表現-在hRluc的內含子位置#1與#2處帶有兩個相同內含子的建構物保留了無內含子對照建構物的至少80%表現水平。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。
圖6:hRluc表現-在hRluc的內含子位置#1與#2處帶有兩個不同內含子的建構物保留了無內含子對照建構物的至少70%表現水平,不論使用哪一種組合。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。
圖7:hRluc表現-在hRluc的內含子位置#1處帶有不同修飾內含子I3的建構物顯示介於無內含子對照建構物的60-90%之間,取決於插入序列的類型更甚於其長度。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。圖式中的序列:caagtgggctgag為SEQ ID NO:41,cagctgggctgctt為SEQ ID NO:42。
圖8:使用三至七個內含子的螢光素酶實驗:海腎螢光素酶基因中的內含子位置。方框表示「外顯子」,黑色水平槓表示內含子。具有超過三個內含子的建構物在位置#3,#4和#5處全都含有內含子。
圖9:hRluc表現-在hRluc的內含子位置#3至#7處帶有3至7個相同內含子的建構物顯示,表現水平相較於無內含子的對照建構物有所降低。每個建構物使用的內含子數目似乎並沒有在所有建構物中有相同效果。如果在同一個建構物中使用了超過兩個複本,內含子#2似乎不起作用。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。
圖10:hRluc表現-在hRluc的內含子位置#3至#7處帶有3至7個不同內含子的建構物顯示,表現水平相較於無內含子的對照建構物有所降低。在此,似乎沒有內含子越多則表現水平增加的趨勢。表現似乎是取決於所用內含子的組合以及它們使用的順序。參考建構物:剖線槓。誤差槓:標準差。關於x軸和y軸的使用,參見圖3。
圖11A和11B:在可變域與恆定域之間帶有一個或兩個內含子的抗體建構物(輕鏈和重鏈)(一個內含子,參見圖11A)),或前導序列和可變結構域之間以及可變結構域和恆定域之間皆有(兩個內含子,參見圖11B)。
圖12:抗體表現-從帶有或不帶有相容內含子之序列所產生的抗體的表現水平。x軸示出在抗體之輕鏈與重鏈基因中帶有或不帶有內含子的建構物。y軸顯示每種建構物相對於不帶有內含子之參考建構物(剖線槓)的表現水平。在略微不同之表現載體(EV1 & EV2),或在表現載體EV2(I8/I8,I9/I9)中,所示建構物包含每條鏈不含有內含子或含有一個內含子的抗體-關於內含子位置參見圖11A和圖11B。誤差槓:來自12個獨立實驗的標準差。
圖13:抗體表現-比較在重鏈(黑色槓)或輕鏈(方格槓)中含有一個內含子的建構物通常顯現,含有內含子#3或內含子#3之經修飾形式(mI3)的那些建構物有較低的表現。輕鏈似乎更為受到影響。相反,內含子#8或#9以與對照相同的水平表現或甚至顯示更高的表現水平。參考建構物:剖線槓。建構物名稱按照輕鏈/重鏈順序包含內含子出處:「---」表示沒有內含子的輕鏈或重鏈,所有其他含有原有內含子(I3、I8、I9)或混合型 內含子(I3_I8、I8_I3)。x軸示出在抗體的輕鏈或重鏈基因中帶有或不帶有內含子的建構物。y軸顯示每個建構物相對於無內含子的參考建構物(剖線槓)的表現水平。誤差槓:來自三個獨立實驗,用於模擬和無內含子對照的12個實驗的標準差。
圖14:抗體表現-在前導序列的3'端處使用不同的末端密碼子:使用AGC(黑色槓)或TCG(方格槓)不會影響在重鏈序列中含有兩個內含子的不同建構物的表現水平。因此,當與代表外顯子中最常用的最後一個核苷酸「G」相比,相對於內含子起始之位置-1處最不常用的核苷酸「C」不會減少表現。與對照建構物相比時,使用不含野生型內含子#3或其修飾形式(mI3)的內含子組合顯示出更為穩定的表現水平。參考建構物:剖線槓。建構物名稱按照輕鏈(「---」=無內含子)/重鏈順序包含內含子出處。x軸示出在抗體的輕鏈或重鏈基因中帶有或不帶有內含子的建構物。y軸顯示每個建構物相對於無內含子的參考建構物(剖線槓)的表現水平。誤差槓:來自三個獨立實驗,用於模擬和無內含子對照的12個實驗的標準差。
圖15:抗體表現-在前導序列的3'端處使用不同的末端密碼子:使用AGC(黑色槓)或TCG(方格槓)不會影響在輕鏈序列中含有兩個內含子的不同建構物的表現水平。因此,當與代表外顯子中最常用的最後一個核苷酸「G」相比,相對於內含子起始之位置-1處最不常用的核苷酸「C」不會減少表現。與對照建構物相比時,使用不含野生型內含子#3或其修飾形式(mI3)的內含子組合顯示出更為穩定的表現水平。參考建構物:剖線槓。建構物名稱按照輕鏈/重鏈(「---」=無內含子)順序包含內含子出處。x軸示出在抗體的輕鏈或重鏈基因中帶有或不帶有內含子的建構物。y軸顯示每個建構物相對於無內含子的參考建構物(剖線槓)的表現水平。誤差槓:來自三個獨立實驗,用於模擬和無內含子對照的12個實驗的標準差。
圖16:抗體表現-在輕鏈和重鏈兩者中之各式內含子組合當在相同鏈上沒有存在其他內含子時,幾乎總是顯示內含子#3對表現水平有負面影響。當內含子#3與內含子#8或#9在同一條鏈上組合時,表現水平可再次增加。黑色槓:在每條鏈中有一個內含子,條紋槓:在輕鏈中有一個內含子、在重鏈中有兩個內含子,灰色槓:在輕鏈中有兩個內含子、在重鏈 中有一個內含子,方格槓:在每條鏈中有兩個內含子)。參考建構物:剖線槓。建構物名稱按照輕鏈/重鏈順序含有內含子出處。x軸示出帶有不同內含子或內含子與抗體之輕鏈或重鏈基因組合的建構物(「mI3」=內含子#3的經修飾形式)。y軸顯示各個建構物相對於無內含子的參考建構物(剖線槓)的表現水平。誤差槓:來自三個獨立實驗,用於模擬和無內含子對照的12個實驗的標準差。
術語「內含子」是本技藝中熟知的。如本文所用,該術語是指一個存在於未經加工的轉錄本內的核苷酸序列,該核苷酸序列能夠被真核宿主細胞從轉錄本剪接,意即切除。該未經加工的轉錄本通常也稱作為前驅信使RNA(前驅mRNA)。自未經加工的轉錄本剪接內含子發生在經加工轉錄本(即成熟信使RNA)轉譯之前。原則上,可使用任何具有功能的內含子(尤其是在宿主細胞中具有功能者,如本文所提及的融合多核苷酸在宿主細胞中理應被表現)。此內含子可以是天然存在的內含子,或人工內含子(即不存在於自然界中但具有功能的內含子)。包含功能性剪接位點的人工內含子是例如由Gatermann et al.,Mol.Cell Biol.,9:1526(1989)所描述。
如上文所列,融合多核苷酸所含括在內的內含子(等)應具有功能。與內含子有關的術語「具有功能」為習於技藝者所熟知。具有功能的內含子通常是能夠從在真核宿主細胞中表現的轉錄本(特別是來自前驅mRNA)剪出的內含子。可藉由任何已知方法來評估內含子是否具有功能。例如,可以分析表現蛋白質的活性來評估內含子是否已被剪出。在真核宿主細胞中轉錄時,融合多核苷酸被轉錄成在該細胞中受到加工的轉錄本,使得功能性內含子從該轉錄本被剪出,從而產生編碼感興趣多肽的mRNA。如果融合多核苷酸包含一或多個額外內含子(諸如第二內含子),則該額外的內含子也從轉錄本被剪出(以產生編碼感興趣多肽的mRNA)。
在本發明的一個較佳具體例中,術語「內含子」是指一種剪接體內含子(有時也稱為核前驅mRNA內含子)。如本技藝中已知的,剪接體內含子包含位於內含子與外顯子之間邊界處的特定內含子序列。這些序列 被剪接體RNA分子識別(參見例如Sperling(2016):WIREs RNA 2016.doi:10.1002/wrna.1377;Shefer et al.(2014):Comp.Struct.Biotechnol.J.11,113)。
在本發明的一個具體例中,具有功能的內含子包含剪接供體位點、分支點、聚嘧啶區(polypyrimidine tract)和剪接受體位點。該等要素是本技藝中熟知的。剪接供體位點由一個在內含子5'端處的GU(GT)序列組成。剪接受體位點是位於內含子的3'端處,因此終止內含子。該受體位點由AG序列組成。分支點包括參與套索形成的腺嘌呤核苷酸。聚略啶區富含嘧啶核苷酸,通常長度為15-20nt。其通常位於待剪接內含子的3'端之前約5-40nt。該區促使剪接體裝配。
如本文所用,術語「內含子」是指編碼內含子的核酸序列以及該序列的轉錄本中的對應序列。
融合多核苷酸所含括在內的內含子可以具有任何長度(只要它具有功能即可)。在本發明方法的一個具體例中,編碼內含子(即,功能性內含子,其包含內含子的連接5'和3'部分)的核酸具有40至2000bp的長度,特別是50至1000bp的長度。因此,由融合多核苷酸編碼的內含子(等)(即由轉錄本所含括在內的內含子(諸如第一、第二及/或第三內含子))應具有40至2000nt的長度,特別是50至1000nt的長度。
在一個具體例中,依據本發明使用的內含子(即由融合多核苷酸編碼之轉錄本含括在內的內含子)是短內含子。使用此等內含子是有利的,因為這將減少由本發明方法產生之融合多核苷酸的大小並且使其更易於處理。此外,相較於大型內含子,透過基因合成來合成小型內含子與費用更低有關。本文所指的短內含子通常具有小於500nt的長度。在一個具體例中,短內含子具有50至200nt的長度。在另一個具體例中,短內含子具有50至150nt的長度。在又一個具體例中,短內含子具有50至100nt的長度。舉例來說,每個存在於轉錄本中的內含子可具有50至200nt的長度,諸如50至150nt的長度或50至100nt的長度。因此,預期編碼內含子(即具有功能的內含子)的多核苷酸具有50至200bp的長度,尤其是50至150bp,或50至100bp。
具有功能的超短內含子在本技藝中已經描述過。例如,超短內含子已被Shimada et al.,2015(Identification and validation of evolutionarily conserved unusually short pre-mRNA introns in the human genome.Int.J.Mol.Sci.2015,16,10376-10388)描述過。
在依據本發明進行的研究中已證明,長於80個核苷酸的內含子組合經常發生比含有超短內含子者更高的表現水平(參見例如,關於實施例段落中內含子I8與I9的結果)。在一個較佳具體例中,所產生的多核苷酸的內含子(等)因而具有至少80個核苷酸的長度,特別是至少90個核苷酸。在一個較佳具體例中,內含子(等)具有80至200nt的長度。在另一個具體例中,內含子的長度為80至150nt。在另一個具體例中,內含子(例如存在於轉錄本中的各個內含子)具有80至120nt的長度。此外,預期內含子(等)具有90至150nt或90至120nt的長度。
較佳地,產生的多核苷酸所編碼的內含子(等)具有n個核苷酸的長度,其中n是不能被三整除的整數。因此,產生的多核苷酸所編碼的內含子(等)(特別是各個內含子)可具有n個核苷酸的長度,其中n是一個除以三時不能被整除的整數。例如,內含子(等)可具有91、92、94、95、97、98、100、101、103、104、106、107、109、110、112、113、115、116、118或119nt的長度。
在本發明方法的一個具體例中,所使用的內含子(等)是選自構成本發明基礎的研究中使用的內含子。特別地,內含子可以是內含子I2、I3、I4、I5,或I7(如I2、I4、I5或I7),並且尤其是實施例段落的表1中所示的I8或I9,或如表2中所示的其功能變體。這些內含子的序列顯示於實施例段落的表3中。
在本發明方法的一個具體例中,本發明多核苷酸所含括在內至少一個內含子(諸如第一內含子)以與編碼感興趣多肽之核酸序列的開放讀框同框的方式包含一個內部終止密碼子。因此至少一個內含子可包含一或多個同框終止密碼子。此外,預期如果融合多核苷酸包含超過一個內含子(諸如第一和第二內含子),即所有內含子以與編碼感興趣多肽之核酸序列的開放讀框同框的方式包含一個內部終止密碼子。因此,多核苷酸的每一 個內含子以與編碼感興趣多肽之核酸序列的開放讀框同框的方式包含一或多個內部終止密碼子。在不完全剪接的情況下,存在一或多個內部終止密碼子將導致產生截短的多肽。這種截短的多肽可以因為其長度較短而從感興趣多肽被分離。
RNA中的終止密碼子是例如UAG(琥珀)、UAA(赭石)、UGA(蛋白石)。對應的DNA序列是TAG、TAA和TGA。
在一些具體例中,內含子(等)在編碼如本文所述融合多肽的多核苷酸的各個開放讀框中包含至少一個終止密碼子。因此,一或多個內含子可在所有三個開放讀框中包含至少一個終止密碼子。
如已經在別處說明過的,由本發明方法產生之融合多核苷酸含括在內的功能性內含子包含編碼一個內含子之(例如,第一內含子之)5'部分的核酸序列,和編碼一個內含子之(例如,第一內含子之)3'部分的核酸序列。由本發明方法產生之融合多核苷酸含括在內的功能性內含子應透過將功能性內含子的5'端與功能性內含子的3'端組合而產生。該組合在本發明方法的步驟(b)中經由源自用第IIs型限制內切酶切割第一,第二(且若有的話,第三、第四、第五等)多核苷酸的相容(即互補)的懸臂實現。切割以及連接較佳地同時進行。因此,多核苷酸是透過所謂的金門選殖來組合,意即以期望的順序於第IIs型限制內切酶(即活化第IIs型限制內切酶)與連接酶存在的情況下,在一個包含多核苷酸受到第IIs型限制內切酶切割以及連接切割產物的反應中融合該等片段。
依據本發明,預期如本文提及之內含子的5'部分和3'部分不具有功能,即不是功能性內含子。較佳地,內含子的該等部分不包含從轉錄本剪出所必需的全部要素。依據本發明,預期編碼內含子之5'部分的核酸序列不包含剪接受體位點。該位點應由編碼內含子之3'部分的核酸序列含括在內。此外,預期編碼內含子之3'部分的核酸序列不包含剪接供體位點。該位點應由編碼內含子之5'部分的核酸序列含括在內。
由於並不存在剪接所須的全部要素,當單獨存在於轉錄本中時(即不具有對應5'或3'部分),該等部分不能夠從轉錄本被剪出。內含子的 功能性是藉由將分別包含內含子之5'部分和3'部分的兩個多核苷酸連接在一起而達成,如本文他處所述。
編碼內含子之5'部分和3'部分的序列可具有任何被認為合適的長度。該部分的最小長度是透過用應用於本發明方法中之限制內切酶切割所產生的懸臂的長度。在一個具體例中,內含子的5'部分至少包含剪接供體位點,而內含子的3'部分至少包含剪接受體位點。典型地,該5'部分和3'部分各自具有至少10nt或至少20nt的長度。在實施例段落中所測試的部分的長度是從12nt到98nt(參見表4)。
在本發明方法的一個具體例中,內含子上的5'部分和3'部分是衍生自單一內含子。在本發明方法的另一個具體例中,內含子之5'部分和3'部分是衍生自兩個不同的內含子。因此,透過將如本文所提及的多核苷酸裝配,產生了人工內含子。
在本發明的一個具體例中,至少一個功能性內含子(例如第一內含子),如本文所提及,對編碼感興趣多肽之天然存在的多核苷酸來說是異源的。在本發明的一個具體例中,如本文所提及之功能性內含子(諸如第一內含子)、數個功能性內含子,及/或內含子的5'及/或3'部分對於編碼感興趣多肽之融合多核苷酸來說是異源的。因此,融合多核苷酸可能不具有天然存在的多核苷酸的序列。在本發明的一個具體例中,如本文所提及之功能性內含子(諸如第一內含子)、數個功能性內含子,及/或內含子5'及/或3'部分對於編碼感興趣多肽之天然存在多核苷酸來說是異源的。對於融合多核苷酸來說是異源的多核苷酸(諸如內含子或其部分)較佳是在融合多核苷酸中非天然存在多核苷酸的多核苷酸(例如內含子或其部分)。在一個具體例中,所有的內含子(諸如第一、第二、第三等內含子)是由對於融合多核苷酸來說為異源的融合多核苷酸含括在內。
同樣適用於本文所提及的內含子的5'部分和3'部分,即預期該等部分對於將它們含括在內的多核苷酸來說是異源的。特別地,編碼內含子的5'部分或3'部分的核酸序列對於編碼感興趣多肽之一部分的核酸序列來說是異源的。例如,編碼第一內含子之5'部分的核酸序列對於編碼感興趣 多肽之第一部分的核酸序列來說應是異源的,或編碼第一內含子之3'部分的核酸序列對於編碼感興趣多肽之第二部分的核酸序列來說應是異源的。
此外,預期功能性內含子(功能性內含子等)位於融合多核苷酸的某個位置處(在融合多核苷酸的位置處),其天生(即當其處於其生物學基因體環境中時)不包含內含子。
編碼感興趣多肽之一部分的第一、第二、第三、第四、第五等多核苷酸應包含至少一個用於第IIs型限制內切酶的切割序列,和至少一個用於第IIs型限制內切酶的識別序列。第IIs型限制內切酶在本發明方法的步驟(b)中與連接酶組合使用,以產生融合多核苷酸。透過以預定的順序裝配各種多核苷酸來實現產生。
術語「第IIs型限制內切酶」為習於技藝者所周知的。如本文所用,該術語是指在其識別序列之外切割DNA的內切酶(通常也稱為「限制酶」)。已知第IIs型酶在距離其識別位點0到20bp的距離內切割DNA。依據本發明方法使用的第IIs型限制內切酶較佳地識別不對稱的雙股DNA序列,並且在雙股DNA上的識別序列之外切割雙股DNA。單股懸臂(「黏端」)是因為利用內切酶切割而產生。由依據本發明方法使用之內切酶所產生的懸臂通常具有3、4、5或6個核苷酸的長度。如習於技藝者所知的,這取決於所用第IIs型限制內切酶類型的特異性。然而,也可透過某些第IIs型限制內切酶產生更長的懸臂。在一個具體例中,第IIs型限制內切酶應在切割後產生一個具有3個核苷酸的懸臂。在另一個具體例中,應當產生具有4個核苷酸的懸臂。就產生4bp懸臂的內切酶來說,可能潛在有256(即,44)個懸臂序列。因此,可以按照正確順序來裝配至多256個多核苷酸。
因為第IIs型限制內切酶在切割序列(在本文中也被稱為「切割位點」)中切割DNA,切割序列是在其識別序列(在本文中也稱為「識別位點」)之外而不是被識別序列含括在內,在前述本發明方法之步驟(a)中提供的第一、第二、第三等多核苷酸皆包含識別序列以及切割序列。切割序列應可操作地連接至識別序列。這意味著於內切酶已識別多核苷酸中的識別序列後,多核苷酸在切割位點處被內切酶所切割。
技藝中已知切割只會發生在切割位點與識別位點之間的確定(defined)距離。舉例來說,大多數第IIs型限制內切酶(但不是全部)都需要在識別序列和切割序列之間存在一個間隔子。因此,間隔子必須存在於識別序列和切割序列之間(如果內切酶需要間隔子的話)。間隔子由一或多個核苷酸組成。間隔子的長度取決於所施用的限制內切酶而定。例如,BsaI在一個核苷酸後(沿5'至3'方向)切割一股。因此,具有一個核苷酸的間隔子必須存在於識別序列與切割序列之間,以便允許在切割位點處受到此酶切割。其他內切酶可能需要一個較長的間隔子。例如,如果施用的核酸內切酶是FokI,則間隔子需要具有9個核苷酸的長度。
此外,技藝中已知一些第IIs型限制內切酶可能是甲基化敏感型,因此不能夠在甲基化-胞嘧啶殘基處切割,留下完好無缺的甲基化DNA。為了避免第IIs型酶的活性受到其對應識別序列中或周圍的甲基化序列妨礙,待切割的多核苷酸延伸一個或兩個核苷酸,使得潛在已知甲基化位點得以避開。如果識別位點是位在多核苷酸的5'端處,則將額外的核苷酸添加至多核苷酸的5'端。如果識別位點位在多核苷酸的3'端處,則將額外的核苷酸添加至多核苷酸的3'端。因此,本文所述的多核苷酸可以在5'端或3'端處進一步包含一個或兩個核苷酸(取決於識別位點的位置)。
識別序列是受到第IIs型內切酶識別的序列。切割序列較佳是於該內切酶存在下受到切割的序列,即其能夠被該內切酶切割。應理解,識別位點必須是呈正確定向以容許在切割位點處切割以及隨後的連接。如習於技藝者所理解,識別位點的定向取決於切割是發生在多核苷酸的5'還是3'端處。在5'端處,切割應沿5'至3'方向發生。在3'端處,切割應沿3'至5'方向發生。
依據本發明,用於產生融合多核苷酸之方法的步驟(a)中所提及的多核苷酸含括在內的切割序列(等)和識別序列在用內切酶切割之後應被排列,識別序列從該多核苷酸(例如第一、第二、第三等多核苷酸)被移除。這是透過將識別序列相對於切割序列(例如上游或下游)以正確定向來安置而實現。例如,可以將識別序列以正確定向安置在該多核苷酸的末端。因此,如果如本文提及之多核苷酸應在5'端處切割,則用於第IIs型限制內切酶 的識別序列應位在該多核苷酸的5'端處,之後才是切割序列。因此,切割序列位於該識別序列的下游。如果如本文提及之多核苷酸應在3'端處切割,則用於第IIs型限制內切酶的識別序列應位在該多核苷酸的3'端處。在這種情況下,切割序列位於該識別序列的上游。應理解,不需要將識別序列安置在該多核苷酸的末端處。而是,可能存在其他核苷酸。例如,可添加額外核苷酸至多核苷酸的3'端。
在包含編碼內含子之5'部分的核酸序列的多核苷酸中,用於第IIs型限制內切酶的切割序列之後應為用於第IIs型限制內切酶的識別序列。在包含編碼內含子之3'部分的核酸序列的多核苷酸中,用於第IIs型限制內切酶的識別序列之後應為用於第IIs型限制內切酶的切割序列。
在一個具體例中,由本文提及之多核苷酸(即第一、第二、第三等多核苷酸)含括在內的切割序列是(待連接)內含子的5'或3'部分的一部分。例如,在第一多核苷酸中編碼第一內含子之5'部分的核酸序列包含用於第IIs型限制內切酶的第一切割序列。例如,在第二多核苷酸中編碼第一內含子之3'部分的核酸序列包含用於第IIs型限制內切酶的第二切割序列。連接之後,所得內含子包含內含子的5'部分,切割位點以及內含子的3'部分(本文中也稱為一個功能性內含子)。識別序列不復存在。
切割序列可以是如本文所示天然存在於內含子中的序列。或者,它可能不會在內含子中自然發生。在這種情況下,它可能已被添加至內含子(例如藉由插入),或者它可能已經透過將點突變引入至天然存在的內含子的序列中而產生。
大量第IIs型限制內切酶是可商購的。在一個具體例中,第IIs型限制內切酶是選自AcuI、AlwI、BaeI、BbsI、BbvI、BccI、BceAI、BcgI、BciVI、BcoDI、BfuAI、BmrI、BpmI、BpuEI、BsaI、BsaXI、BseRI、BdhI、BsmAI、BsmBI、BsmFI、BsmI、BspCNI、BspMI、BspQI、BsrDI、BsrI、BtgZI、BtsCI、BtsI、BtsIMutI、CspCI、EarI、EciI、FauI、FolkI、HgaI、HphI、HpyAV、MboII、MlyI、MmeI、MnlI、NmeAIII、PleI,SapI和SfaNI。較佳地,第IIs型限制內切酶是選自由BsaI、BbsI、FokI、BsmBI,BtgZI和SapI組成之群。
第二多核苷酸應包含第二切割序列,其與第一切割序列互補。依據本發明,片語「與另一切割序列互補的切割序列」(諸如與第一切割序列互補的第二切割序列)較佳地表示利用內切酶切割所產生之彼此互補(即相容)的懸臂。
在本發明的一個具體例中,只有使用一個第IIs型限制內切酶。該核酸內切酶識別由待裝配多核苷酸(第一、第二等多核苷酸)含括在內的所有識別序列。在本發明的一個替代性具體例中,使用具有不同識別位點的不同第IIs型限制內切酶,例如兩種,三種或更多種不同的第IIs型限制內切酶。該不同的核酸內切酶應產生理想上具有相同長度(例如4nt)和互補序列的懸臂以容許與將經切割多核苷酸連接。
此外,預期待裝配的多核苷酸不包含針對要使用之第IIs型限制內切酶的其他識別序列,也就是除了本文提及的識別序列外,它們不應包含識別序列以防止在不樂見的位置處切割。習於技藝者會將此納入考慮。
在前述本發明方法的步驟(b)中,步驟(a)中提供的多核苷酸在容許第一多核苷酸與第二核苷酸受到第IIs型限制內切酶切割並且連接所得切割產物的條件下與該第IIs型限制內切酶和連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸。
術語「連接酶」如本文中所用,應有關於一種用來將多核苷酸連接在一起的酶。應用於依據本發明之方法中的連接酶應是DNA連接酶。DNA連接酶在本技藝中是熟知的,且包括噬菌體連接酶,諸如T4 DNA連接酶、T7 DNA連接酶、細菌古細菌連接酶。在較佳具體例中,連接酶是T4 DNA連接酶。這個連接酶需要ATP作為輔因子。透過使用連接酶,在本發明方法之步驟(a)中提供的多核苷酸於利用內切酶切割之後經由產生的互補懸臂連接。從而,多核苷酸以定向的方式被裝配。
步驟(b)中的切割以及連接(即多核苷酸的裝配)是同時或基本上同時進行。因此,在連接酶和第IIs型限制內切酶存在下進行裝配。兩種酶均應具有活性。這種類型的裝配被稱為「金門」裝配。
由於步驟(b)中用於裝配的酶的最佳溫度不同,因此裝配通常在熱循環儀中進行。典型的熱循環儀操作規程在大約37℃(對於第IIs型限制 內切酶而言最佳)和大約16℃(對於連接酶而言最佳)之間擺盪。可以進行幾次循環。在最後一個步驟中,透過加熱(例如在65℃下)使酶不活化。可程式熱循環儀可容易地從許多商業供應商處獲得。
切割和連接之後,裝配產物被轉形至勝任細菌細胞(諸如大腸桿菌(E.coli)細胞)中。
融合多核苷酸編碼感興趣多肽。應理解,融合多核苷酸必須在真核細胞中表現,因為原核細胞不具有剪接機制。為了表現多核苷酸,其可操作地連接至一或多個表現控制序列。較佳地,表現控制序列對於該多核苷酸來說是異源的。
如本文所用,術語「表現控制序列」是指能夠支配(即起始和控制)感興趣核酸序列(在當前情況下是上文所提及之核酸序列)轉錄的核酸序列。這樣一個序列通常包含一個啟動子或啟動子和增強子序列的組合或由其所組成。因此,表現控制序列較佳是啟動子。多核苷酸的表現包含核酸分子的轉錄,較佳轉錄成可轉譯的mRNA。額外的調控要素可包括轉錄以及轉譯增強子。
較佳地,啟動子在真核宿主細胞中,更佳在哺乳動物細胞及/或昆蟲細胞中應具有活性。在一個具體例中,融合多核苷酸可操作地連接至選自CMV-5-、SV40-、RSV-、EF1a-,MPSV-和SRα-啟動子的啟動子。就昆蟲細胞來說,可使用多面體啟動子、p10啟動子,或ie1啟動子。
為了能夠表現,融合多核苷酸可以存在於載體中。較佳地,載體是適於表現透過本發明方法產生之融合多核苷酸的重組DNA建構物。此外,該術語也有關於靶向建構物,其容許將靶向建構物隨機或定點併入基因體DNA中。此類靶向建構物較佳包含足夠長的DNA以供同源或異源重組。該載體可以包含用於在宿主中擴增及/或篩選的可篩選標記。
融合多核苷酸應在其中表現的宿主細胞可以是任何真核細胞,諸如哺乳動物(例如,人類或小鼠)細胞、植物細胞或昆蟲細胞。較佳地,宿主細胞是真核細胞,更佳為哺乳動物或昆蟲細胞。例如,宿主細胞可以是HEK-293細胞(人類胚腎細胞293),諸如HEK-293E細胞、HEK-293T細胞 或FreestyleTM HEK-293細胞。或者,宿主細胞可以是CHO細胞(中國倉鼠卵巢),諸如CHO-K1細胞。
本發明的方法可以應用於產生編碼預定感興趣多肽的融合多核苷酸。
然而,該方法也可以應用於產生數個編碼感興趣多肽之不同融合多核苷酸,該等多肽的差異在於由因為產生該融合多核苷酸的第一、第二和更多多核苷酸所編碼的多肽部分的順序不同。在這樣的情況下,融合多核苷酸典型地包含如依據本發明方法所指明的第一、第二和至少再一個多核苷酸。然而,預期在這樣的情況下,介於更多多核苷酸及/或第一與第二多核苷酸間之用於第IIs型限制內切酶的切割序列全是彼此互補,使得第一、第二以及更多多核苷酸的連接以基本上隨機的方式連接。
術語「多肽」為習於技藝者所熟知。多肽是一種由胺基酸殘基透過醯胺鍵(又稱為肽鍵)線性連接所組成的分子。感興趣多肽可以具有任何長度。例如,感興趣多肽可以是包含至少50、100、300或500個胺基酸的多肽。多肽可以甚至更長,例如如果要產生的感興趣多肽是人工抗體,這端視建構物而定。例如,感興趣多肽可包含至少2000個胺基酸。
在構成本發明基礎的研究中,分析不同的融合多肽(螢光素酶及抗體,參見圖1至16)。然而,本發明不限於這些多肽。原則上,感興趣多肽可以是任一種多肽。例如,在某些具體例中,感興趣多肽是天然存在的多肽。典型來說,該多肽是酶、轉錄因子、核酸酶、配體蛋白、治療性蛋白質、轉錄因子、生長因子、生長因子受體。此外,感興趣的多肽可以是抗體或其衍生物,例如雙特異性或多特異性蛋白建構物/抗體。在某些具體例中,感興趣多肽是包含至少兩個天然存在多肽的部分或全部的融合蛋白。在某些具體例中,感興趣多肽是包含天然存在的多肽的部分或全部和至少一種非天然存在的多肽的融合蛋白。例如,感興趣多肽可以是治療性肽或蛋白質和治療性抗體,或其抗原結合片段的融合物。
如上文所示,該感興趣多肽也可以是抗體或其抗原結合片段。抗體也可以是雙特異性抗體或多特異性抗體。如本文所用的術語「雙特異性抗體」是指特異地結合至兩個不同表位的抗體。多特異性抗體是結 合至兩個或更多個不同表位的抗體。該雙特異性和多特異性抗體的不同表位通常是不相重疊的表位。此外,抗體可以是二價或多價抗體。在一個具體例中,抗體是多特異性的多價抗體。在一個具體例中,抗體是雙特異性的二價抗體。
在一個具體例中,感興趣多肽是非天然存在的多肽。
本發明的方法不僅容許裝配兩個多核苷酸,還容許裝配三個或更多個多核苷酸。例如,可以按照預定順序裝配(即連接)三個、四個、五個、六個、七個、八個、九個或十個多核苷酸,以便產生一個編碼感興趣多肽的融合多核苷酸。如果裝配超過兩個多核苷酸以產生該融合多核苷酸,則位在融合多核苷酸中央位置處的待裝配多核苷酸(在本文中也稱為中央多核苷酸)在兩端(即5'端和3'端)處包含用於第IIs型限制內切酶的切割位點以及識別位點。在融合多核苷酸兩端處的待裝配多核苷酸(在本文中也稱為末端多核苷酸)可能僅在一端處包含用於第IIs型限制內切酶的切割位點和識別位點。然而,也預期該等末端多核苷酸在兩端處包含用於第IIs型限制內切酶的切割位點和識別位點。這將容許例如編碼感興趣多肽的多核苷酸選殖至載體(諸如表現載體)中。如本文他處所述,切割位點和識別位點應可操作地彼此連接。
在本發明方法的一個具體例中,該方法包含裝配(即連接)三個多核苷酸:如上文所示的第一多核苷酸、如上文所示的第二多核苷酸和第三多核苷酸。在步驟(a1)、(a2)和(a3)中分別提供的多核苷酸應按照下列順序(從5'至3')連接:第一多核苷酸(末端多核苷酸)-第二多核苷酸(中央多核苷酸)-第三多核苷酸(末端多核苷酸)。
由於第二多核苷酸變成中央多核苷酸,它除了本發明方法的步驟(a2)中所示之第二多核苷酸的要素(i)至(iv)以外,還包含下列序列(再沿5'至3'方向):
(v)編碼第二內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第一切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第三切割序列可操作地連接至該識別序列。
該方法進一步包含步驟(a3)。該步驟是在步驟(b)之前進行。在本發明方法的步驟(a3)中,提供第三多核苷酸,其沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第四切割序列,其中該第四切割序列與該第三切割序列互補,其中(ii)中的第四切割序列可操作地連接至該識別序列,即連接至(i)之第三多核苷酸的識別序列,
(iii)編碼第二內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第三部分的核酸序列。
在本發明方法的一個具體例中,該方法包含裝配(即連接)四個多核苷酸:如上文所示的第一多核苷酸、如上文所示的第二多核苷酸加上裝配三個多核苷酸,與如上文所示的第三多核苷酸,以及第四多核苷酸。分別在步驟(a1)、(a2)、(a3)和(a4)中提供的多核苷酸應按照下列順序(5'至3')連接:第一多核苷酸(末端多核苷酸)-第二多核苷酸(中央多核苷酸)-第三多核苷酸(中央多核苷酸)-第四多核苷酸(末端多核苷酸)。
由於第三多核苷酸變成中央多核苷酸,它除了上文步驟(a3)中所示之第三多核苷酸的要素(i)至(iv)以外還包含下列序列(再沿5'至3'方向):
(v)編碼第三內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第五切割序列,其不同於第一多核苷酸的第一切割序列與第二多核苷酸的第三切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第五切割序列可操作地連接至該識別序列(即(vii)中的識別序列)。
該方法進一步包含步驟(a4)。該步驟是在步驟(b)之前進行。在本發明方法的步驟(a4)中,提供第四多核苷酸,其沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第六切割序列,其中該第六切割序列與該第五切割序列互補,其中(ii)中的第六切割序列可操作地連接至(i)中的該識別序列,
(iii)編碼第三內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第四部分的核酸序列。
在本發明方法的一個具體例中,該方法包含裝配(即連接)五個多核苷酸:如上文所示的第一多核苷酸、如上文所示的第二多核苷酸加上裝配三個多核苷酸、第三多核苷酸加上裝配四個多核苷酸,如上文所示的第四多核苷酸,以及第五多核苷酸。分別在步驟(a1)、(a2)、(a3)、(a4)和(a5)中提供的多核苷酸應按照下列順序(自5'至3')連接:第一多核苷酸(末端多核苷酸)-第二多核苷酸(中央多核苷酸)-第三多核苷酸(中央多核苷酸)-第四多核苷酸(中央多核苷酸)-第五多核苷酸(末端多核苷酸)。
由於第四多核苷酸變成中央多核苷酸,它除了上文步驟(a4)中所示之第四多核苷酸的要素(i)至(iv)以外還包含下列序列(再次沿5'至3'方向):
(v)編碼第四內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第七切割序列,其不同於第一多核苷酸的第一切割序列、第二多核苷酸的第三切割序列與第三多核苷酸的第五切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第七切割序列可操作地連接至(vii)中的該識別序列。
該方法進一步包含步驟(a5)。該步驟是在步驟(b)之前進行。在方法的步驟(a5)中,提供第五多核苷酸,其沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第八切割序列,其中該第八切割序列與該第七切割序列互補,其中(ii)中的切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第四內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第五部分的核酸序列。
在本發明方法的一個具體例中,該方法包含裝配(即連接)六個多核苷酸:如上文所示的第一多核苷酸、如上文所示的第二多核苷酸加上裝配三個多核苷酸、如上文所示的第三多核苷酸加上裝配四個多核苷酸、如上文所示的第四多核苷酸加上裝配五個多核苷酸、如上文所示的第五多核苷酸,以及第六多核苷酸。分別在步驟(a1)、(a2)、(a3)、(a4)、(a5)和(a6)中提供的多核苷酸應按照下列順序(自5'至3')連接:第一多核苷酸(末端多核苷酸)-第二多核苷酸(中央多核苷酸)-第三多核苷酸(中央多核苷酸)-第四多核苷酸(中央多核苷酸)-第五多核苷酸(中央多核苷酸)-第六多核苷酸(末端核苷酸)。
由於第五多核苷酸變成中央多核苷酸,它除了上文步驟(a5)中所示之第五多核苷酸的要素(i)至(iv)以外還包含下列序列(再次沿5'至3'方向):
(v)編碼第五內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第九切割序列,其不同於第一多核苷酸的第一切割序列、第二多核苷酸的第三切割序列、第三多核苷酸的第五切割序列與第四多核苷酸的第七切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第九切割序列可操作地連接至(vii)中的識別序列。
該方法進一步包含步驟(a6)。該步驟是在步驟(b)之前進行。在方法的步驟(a6)中,提供第六多核苷酸,其沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第十切割序列,其中該第十切割序列與該第九切割序列互補,其中(ii)中的第十切割序列可操作地連接至(i)中的該識別序列,
(iii)編碼第五內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第六部分的核酸序列。
在本發明方法的一個具體例中,該方法包含裝配(即連接)七個多核苷酸:如上文所示的第一多核苷酸、如上文所示的第二多核苷酸加上裝配三個多核苷酸、如上文所示的第三多核苷酸加上裝配三個多核苷酸、如上文所示的第四多核苷酸加上裝配五個多核苷酸、如上文所示的第五多核苷酸加上裝配六個多核苷酸、如上文所述的第六多核苷酸,以及第七多核苷酸。分別在步驟(a1)、(a2)、(a3)、(a4)、(a5)、(a6)和(a7)中提供的多核苷酸應按照下列順序(5'至3')連接:第一多核苷酸(末端多核苷酸)-第二多核苷酸(中央多核苷酸)-第三多核苷酸(中央多核苷酸)-第四多核苷酸(中央多核苷酸)-第五多核苷酸(中央多核苷酸)-第六多核苷酸(中央核苷酸)-第七多核苷酸(末端多核苷酸)。
由於第六多核苷酸變成中央多核苷酸,它除了上文步驟(a6)中所示之第六多核苷酸的要素(i)至(iv)以外還包含下列序列(再次沿5'至3'方向):
(v)編碼第六內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第十一切割序列,其不同於第一多核苷酸的第一切割序列、第二多核苷酸的第三切割序列、第三多核苷酸的第五切割序列、第四多核苷酸的第七切割序列與第五多核苷酸的第九切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第十一切割序列可操作地連接至(vii)中的識別序列。
該方法進一步包含步驟(a7)。該步驟是在步驟(b)之前進行。在方法的步驟(a7)中,提供第七多核苷酸,其沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第十二切割序列,其中該切割序列與該第十一切割序列互補,其中(ii)中的第十二切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第六內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第七部分的核酸序列。
如上文所定義之三個、四個、五個、六個、七個等多核苷酸的裝配(以及因而是連接)是在本發明方法的步驟(b)中發生。
在這個步驟(b)中,如上文所定義之三個、四個、五個、六個、七個等多核苷酸在容許該等多核苷酸受到第IIs型限制內切酶切割並且連接所得產物的條件下與第IIs型限制內切酶及連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸。
若提供以及連接三個多核苷酸,則融合多核苷酸沿5'至3'方向包含,
(aa)編碼感興趣多肽之第一部分的核酸序列,
(bb)編碼第一內含子的核酸序列,其中該第一內含子具有功能,且其中該第一內含子包含編碼第一內含子之5'部分的核酸序列以及編碼第一內含子之3'部分的核酸序列,
(cc)編碼感興趣多肽之第二部分的核酸序列,
(dd)編碼第二內含子的核酸序列,其中該第二內含子具有功能,且其中該第二內含子包含編碼第二內含子之5'部分的核酸序列以及編碼第二內含子之3'部分的核酸序列,以及
(ee)編碼感興趣多肽之第三部分的核酸序列。
若提供以及連接四個多核苷酸,則融合多核苷酸沿5'至3'方向進一步包含,
(ff)編碼第三內含子的核酸序列,其中該第三內含子具有功能,且其中該第三內含子包含編碼第三內含子之5'部分的核酸序列以及編碼第三內含子之3'部分的核酸序列,以及
(gg)編碼感興趣多肽之第四部分的核酸序列。
若提供五個多核苷酸,則融合多核苷酸沿5'至3'方向進一步包含:
(hh)編碼第四內含子的核酸序列,其中該第四內含子具有功能,且其中該第四內含子包含編碼第四內含子之5'部分的核酸序列以及編碼第四內含子之3'部分的核酸序列,
(ii)編碼感興趣多肽之第五部分的核酸序列。
若提供六個多核苷酸,則融合多核苷酸沿5'至3'方向進一步包含:
(jj)編碼第五內含子的核酸序列,其中該第五內含子具有功能,且其中該第四內含子包含編碼第五內含子之5'部分的核酸序列以及編碼第五內含子之3'部分的核酸序列,
(kk)編碼感興趣多肽之第六部分的核酸序列。
若提供七個多核苷酸,則融合多核苷酸沿5'至3'方向進一步包含:
(ll)編碼第六內含子的核酸序列,其中該第六內含子具有功能,且其中該第六內含子包含編碼第六內含子之5'部分的核酸序列以及編碼第六內含子之3'部分的核酸序列,
(mm)編碼感興趣多肽之第七部分的核酸序列。
如上文所示產生的融合多核苷酸,當在真核宿主細胞中轉錄時,被轉錄成在該細胞中受到加工的轉錄本,使得具有功能的內含子從該轉錄本被剪出,從而產生編碼感興趣多肽的mRNA。
在第一個具體例中,由轉錄本轉錄的所有內含子均相同或基本上相同。因此,第一內含子、第二內含子和第三內含子等是相同或基本上相同的。出乎意料,在構成本發明基礎的研究中證實,於許多情況下,相同的內含子可用於建構物中的多個位置處,不會妨礙感興趣蛋白質的表現(參見實施例)。具有相同或基本上相同內含子的多核苷酸可以透過移動內含子中的切割位點(也就是透過使用相同內含子的5'部分和3'部分而產生(差異在於其長度不同)。因此,第一內含子的5'部分與3'部分的長度有別於第二內含子的5'部分與3'部分的長度。連接不同的部分將會產生兩個相同或基本上相同的內含子。
在第二個具體例中,所有內含子彼此不同。因此,使用了不同的內含子。在這種情況下,使用獨特的切割位點來裝配各個內含子。此外,透過使用具有不同切割位點的單個內含子,可以產生帶有不同內含子的建構物。此等切割位點可能已被引入內含子中。
在第三個具體例中,轉錄本可包含與轉錄本中的其他內含子相同的內含子,以及至少又一個與其餘內含子不同的內含子。因此,轉錄本可包含出現超過一次的內含子以及一或多個不同於這些內含子的其他內含子。該一或多個其他內含子可以彼此相同或不同。
本發明進一步容許裝配超過七個多核苷酸。一般來說,本發明方法的步驟(a)和(b)如下:
(a)提供n個多核苷酸,n為至少3的整數,
其中編號1的多核苷酸沿5'至3'方向包含,
(i)編碼感興趣多肽之部分之編號1的核酸序列,
(ii)編碼編號1之內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶之編號1的切割序列,以及
(iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的切割序列可操作地連結至(iv)中的識別序列,
其中編號2至(n-1)的多核苷酸沿5'至3'方向包含,
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的切割序列,其中該切割序列與編號1至(n-2)的切割序列互補,其中(ii)中的切割序列可操作地連結至(i)中的識別序列,
(iii)編碼編號2至(n-1)之內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之部分之編號2至(n-1)的核酸序列,
(v)編碼編號為2至(n-1)之內含子的5'部分的核酸序列,
(vi)用於第IIs型限制內切酶之編號2至(n-1)的切割序列,其不同於具有不同編號的切割序列,及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的切割序列可操作地連結至(vii)中的識別序列。
其中編號n的多核苷酸沿5'至3'方向包含,
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的切割序列,其中該切割序列與編號n-1的切割序列互補,其中(ii)中的切割序列可操作地連結至(i)中的識別序列,
(iii)編碼內含子之3'部分之編號(n-1)的核酸序列,以及
(vi)編碼感興趣多肽之部分之編號n的核酸序列,
以及
(b)使該等n個多核苷酸在容許該等n個多核苷酸受到該第IIs型限制內切酶切割且連結所得切割產物的條件下與第IIs型限制內切酶和連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸。
有利地,在構成本發明基礎的研究中證實,在功能性內含子的3'或5'端(其被分成兩個非功能性部分,功能性內含子的5'端以及功能性內含子的3'端)處使用合適的第IIs型切割序列可用來裝配因為第IIs型限制-連接在其他方面不相容的DNA片段。不相容的DNA片段在其5'端和3'端處都配備有代表此等第II-裂解內含子轉接子(adaptor)的核酸序列。金門選殖(即,以期望順序在包含利用第IIs型內切酶進行切割並連接的反應中融合複數個片段)使得功能性內含子受到裂解內含子轉接子(adaptor)(含有相同/可相容第IIs型前綴與後綴序列)的無縫連接而重建。
在本發明的方法中,若適用的話,可供通用裝配多核苷酸而不需要相容序列做為待裝配多核苷酸序列一部分作為前提。因此,不需要改變一級多核苷酸序列。多虧了本發明,因為內含子序列(而不是透過編碼序列)提供的切割序列,現在可以重組融合各自編碼感興趣多肽之一部份的兩個或更多個多核苷酸。伴隨而來的,在其他方面不相容的DNA片段將以線性但內含子散佈其間的方式裝配。在轉染至真核表現宿主中之後,經重建的內含子「間隔子」透過剪接在轉錄後被去除,以產生預期的經裝配核酸建構物。本發明方法(即使用裂解內含子方法之第IIs型為主之選殖的組合)從而提供了一種不受其序列邊界影響的通用方法來裝配編碼DNA片段。特別地,本發明容許簡易裝配編碼不同蛋白質結構域的多核苷酸。若適用的話,將使蛋白質的產生更加容易。此等蛋白質可以例如進行篩選方法並可容許鑑定帶有經增進治療特性的蛋白質。若適用的話,本發明方法將會是 在生物藥物開發中具有價值的工具。本文所述之模組選殖將容許多特異性蛋白質工程。例如,可以產生多特異性的抗體,因此具有多個標靶。與僅具有單個標靶的單特異性抗體相比,此類抗體將具有更廣範圍的活性。
除非另有說明,否則上面本文提供的定義以及說明在經過適當修改之後可適用於下列。
此外,本發明是有關於用於產生感興趣多肽,包含以下步驟
(i)藉由本發明方法產生融合多核苷酸,以及
(ii)在真核宿主細胞中表現該融合多核苷酸,從而產生該感興趣多肽。
在一個具體例中,該方法進一步包括從該真核宿主細胞分離所產生之感興趣多肽的步驟(iii)。術語「分離所產生之感興趣多肽」也含括從培養基的上清液分離所產生的多肽。
在步驟(i)中,融合多核苷酸應由本發明方法製造,即透過產生編碼感興趣多肽之融合多核苷酸的方法。因此,執行該方法的步驟。
在步驟(ii)中,融合多核苷酸應表現於真核宿主細胞中,由此產生該感興趣多肽。如何表現多核苷酸在本技藝中是眾所周知的,並且已描述於上文中。為了表現該多核苷酸,較佳將其可操作地連接至啟動子。該啟動子在宿主細胞中應具有活性。上文說明了較佳的宿主細胞。
本發明還有關一種包含如上文定義的第一多核苷酸和第二多核苷酸的組成物。該組成物可進一步包含如上文定義的第三多核苷酸。除了第一,第二和第三多核苷酸之外,該組成物可包含如上文定義的第四、或第四與第五、或第四、第五與第六,或第四、第五、第六與第七多核苷酸。此外,組成物可包含一或多個多核苷酸,其不包含內含子的一部分,但包含合適的切割位點和識別位點。因此,該多核苷酸應包含用於第IIs型限制內切酶的識別位點,其可操作地連接到切割位點,在用該第IIs型限制內切酶切割之後,容許將多核苷酸連接至組成物中所存在的更多多核苷酸。該等更多多核苷酸應具有一個與該多核苷酸的切割位點相容的切割位點。術語「可操作地連結」在本文他處定義。因而適用該定義。
該等多核苷酸應為個別的多核苷酸。然而,在透過切割與連接裝配之後,將會產生單一多核苷酸(即在本文所提及的融合多核苷酸)。
在一個較佳具體例中,本發明組成物包含第一、第二及第三多核苷酸,
其中該第一多核苷酸沿5'至3'方向包含:
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,以及
(iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的第一切割序列可操作地連接至(iv)中的識別序列,
其中該第二多核苷酸沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,
(iv)編碼感興趣多肽之第二部分的核酸序列,
(v)編碼第二內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第一切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第三切割序列可操作地連接至(vii)中的識別序列,及
其中該第三多核苷酸沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第四切割序列,其中該第四切割序列與該第三切割序列互補,其中(ii)中的第四切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第二內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第三部分的核酸序列。
除了如上文提及的多核苷酸以外,該組成物可進一步包含連接酶(尤其是DNA連接酶,諸如T4 DNA連接酶)以及第IIs型限制內切酶。該第IIs型限制內切酶應能夠在(即在所有)切割序列處切割多核苷酸。因此,該第IIs型限制內切酶理應辨識識別序列。
在本發明組成物的一個較佳具體例中,組成物所含括的第IIs型限制內切酶以及連接酶應容許切割該組成物含括在內的多核苷酸(例如第一多核苷酸、第二多核苷酸與第三多核苷酸),並且連接所得切割產物,從而產生編碼感興趣多肽的融合多核苷酸。
本發明亦有關於一種套組,其包含如上文所定義之第一多核苷酸與第二多核苷酸、容許切割(即其能夠切割)多核苷酸的第IIs型限制內切酶,以及容許連接使用第IIs型限制內切酶切割而來之切割產物的連接酶。
該套組可進一步包含如上文定義的第三多核苷酸。除了第一、第二與第三多核苷酸以外,該套組可包含如上文定義的第四、或第四與第五、或第四、第五與第六,或第四、第五、第六與第七多核苷酸。
本發明進一步涉及編碼感興趣多肽的多核苷酸,當在真核宿主細胞中轉錄時,其被轉錄成包含至少三個對於該多核苷酸為異源的內含子的轉錄本。
術語「至少三個內含子」表示三個或超過三個,尤其是至少四個、至少五個、至少六個、至少七個、至少八個、至少九個、至少十個或至少15個內含子。較佳地,轉錄本所含括在內的所有內含子對於該多核苷酸來說為異源的。上文已說明過術語「異源的」。
上文已定義過術語「內含子」。因而適用該定義。
在一個具體例中,轉錄本所轉錄的所有內含子是相同或基本上相同的。在另一個具體例中,至少一個內含子不同於其他內含子。在又另一個具體例中,所有內含子彼此不相同。
轉錄本所含括在內之內含子的長度可以是如上面本文加上本發明方法所指定的長度。在本發明多核苷酸(或方法)的一個具體例中,轉錄本所含括在內之該等內含子的每一者具有50至200nt的長度,特別是50至 150nt。例如,該等內含子之每一者的長度為50至100nt。另外,該等內含子之每一者可具有80至110nt的長度。
如本文他處所述,所產生之多核苷酸的內含子(等)也可具有至少80個核苷酸,特別是至少90個核苷酸的長度。在一個較佳具體例中,內含子具有80至200nt的長度。在另一個具體例中,內含子具有80至150nt的長度,例如80至120nt的長度。此外,預期內含子具有90至150nt的長度,例如90至120nt的長度。
此外,本發明預期,轉錄本所含括在內之各個內含子包含內部終止密碼子,其與編碼感興趣多肽之核酸序列的開放讀框同框。
最後,本發明是有關包含連接酶及第IIs型限制內切酶的組成物用於產生編碼感興趣多肽之融合多核苷酸的用途,該融合多核苷酸是透過利用該內切酶切割下列並且連接所得切割產物而產生
(a1)如上文定義的第一多核苷酸,及
(a2)如上文定義的第二多核苷酸,及視情況
(a3)如上文定義的第三多核苷酸。
依據前述用途,可切割至少又一個多核苷酸,其中該又一個多核苷酸選自下列組成之群:
(a4)如上文定義的第四多核苷酸,
(a5)如上文定義的第五多核苷酸,
(a6)如上文定義的第六多核苷酸,及
(a7)如上文定義的第七多核苷酸。
本文在下面歸納了本發明的較佳具體例。本文提供的說明與定義經適當修改之後可應用於下列較佳具體例。
1.一種產生編碼感興趣多肽之融合多核苷酸的方法,該方法包含下列步驟:
(a1)提供第一多核苷酸,該第一多核苷酸沿5'至3'方向包含,
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,及
(iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的第一切割序列可操作地連接至(iv)中的識別序列,
(a2)提供第二多核苷酸,該第二多核苷酸沿5'至3'方向包含,
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與第一切割序列互補,且其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,及
(iv)編碼感興趣多肽之第二部分的核酸序列,以及
(b)使該第一多核苷酸和第二多核苷酸在容許第一多核苷酸和第二多核苷酸受到該第IIs型限制內切酶切割並連接所得切割產物的條件下與第IIs型限制內切酶及連接酶接觸,從而產生編碼感興趣多肽之融合多核苷酸。
2.如具體例1之方法,其中該融合多核苷酸沿5'至3'方向包含:
(aa)編碼感興趣多肽之第一部分的核酸序列,
(bb)編碼第一內含子的核酸序列,其中該第一內含子具有功能,且其中該第一內含子包含編碼第一內含子之5'部分的核酸序列與編碼第一內含子之3'部分的核酸序列,以及
(cc)編碼感興趣多肽之第二部分的核酸序列。
3.如具體例1與2之方法,其中該融合多核苷酸當在真核宿主細胞中轉錄時,被轉錄成在該細胞中受到加工的轉錄本,使得內含子自該轉錄本被剪出,從而產生編碼感興趣多肽的mRNA。
4.如具體例1至3中任一項之方法,其中第一內含子對於融合多核苷酸為異源的。
5.如具體例1至4中任一項之方法,其中編碼第一內含子的多核苷酸具有40至2000bp的長度。
6.如具體例1至5中任一項之方法,其中編碼內含子的多核苷酸具有50至200bp,尤其是50至150bp的長度。
7.如具體例1至6中任一項之方法,其中該第一內含子包含內部終止密碼子,其與編碼感興趣多肽之核酸序列的開放讀框同框。
8.如具體例1至7中任一項之方法,其中該第二多核苷酸進一步包含
(v)編碼第二內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第三切割序列,以及
(viii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第三切割序列可操作地連接至(vii)的識別序列。
9.如具體例8之方法,其中該方法進一步包含
(a3)提供第三多核苷酸,該第三多核苷酸沿5'至3'方向包含,
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第四切割序列,其中該第四切割序列與該第三切割序列互補,其中(ii)中的第四切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第二內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第三部分的核酸序列,
其中在步驟(b)中該第一多核苷酸、第二多核苷酸與第三多核苷酸在容許第一多核苷酸、第二多核苷酸與第三多核苷酸受到該第IIs型限制內切酶切割並且連接所產生之切割產物的條件下與第IIs型限制內切酶和連接酶接觸,從而產生編碼感興趣多肽的融合多核苷酸,且
其中該融合多核苷酸沿5'至3'方向包含,
(aa)編碼感興趣多肽之第一部分的核酸序列,
(bb)編碼第一內含子的核酸序列,其中該第一內含子具有功能,且其中該第一內含子包含編碼第一內含子之5'部分的核酸序列與編碼第一內含子之3'部分的核酸序列,
(cc)編碼感興趣多肽之第二部分的核酸序列,
(dd)編碼第二內含子的核酸序列,其中該第二內含子具有功能,且其中該第二內含子包含編碼第二內含子之5'部分的核酸序列以及編碼第二內含子之3'部分的核酸序列,及
(ee)編碼感興趣多肽之第三部分的核酸序列。
10.一種用於產生感興趣多肽的方法,包含以下步驟
(i)藉由如具體例1至9中任一項之方法產生編碼感興趣多肽的融合多核苷酸,以及
(ii)在真核宿主細胞中表現該融合多核苷酸,從而產生該感興趣多肽。
11.如具體例10之方法,其中該方法進一步包含從該真核宿主細胞中分離所產生之感興趣多肽的步驟(iii)。
12.一種包含第一、第二與第三多核苷酸的組成物,
其中該第一多核苷酸沿5'至3'方向包含:
(i)編碼感興趣多肽之第一部分的核酸序列,
(ii)編碼第一內含子之5'部分的核酸序列,
(iii)用於第IIs型限制內切酶的第一切割序列,及
(iv)用於該第IIs型限制內切酶的識別序列,其中(iii)中的第一切割序列可操作地連接至(iv)中的識別序列,
其中該第二多核苷酸沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中(ii)中的第二切割序列可操作地連接至(i)中的識別序列,
(iii)編碼第一內含子之3'部分的核酸序列,
(iv)編碼感興趣多肽之第二部分的核酸序列,
(v)編碼第二內含子之5'部分的核酸序列,
(vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第一切割序列,以及
(vii)用於第IIs型限制內切酶的識別序列,其中(vi)中的第三切割序列可操作地連接至(vii)中的識別序列,
以及
其中該第三多核苷酸沿5'至3'方向包含:
(i)用於第IIs型限制內切酶的識別序列,
(ii)用於第IIs型限制內切酶的第四切割序列,其中該第四切割序列與該第三切割序列互補,其中(ii)中的第四切割序列可操作地連接至(i)中之識別序列,
(iii)編碼第二內含子之3'部分的核酸序列,以及
(iv)編碼感興趣多肽之第三部分的核酸序列。
13.如具體例12之組成物,其中該組成物進一步包含第IIs型限制內切酶與連接酶。
14.如具體例13之組成物,其中該第IIs型限制內切酶與該連接酶容許切割第一多核苷酸、第二多核苷酸及第三多核苷酸,並且連接所得切割產物,從而產生編碼感興趣多肽的融合多核苷酸。
15.一種套組,其包含如具體例12中所定義的第一、第二與第三多核苷酸、容許切割第一、第二與第三多核苷酸的第IIs型限制內切酶,以及容許連接使用第IIs型限制內切酶切割而來之切割產物的連接酶。
16.如具體例1至10中任一項之方法、具體例11至14中任一項之組成物,或如具體例15之套組,其中該第IIs型限制內切酶是選自AcuI、AlwI、BaeI、BbsI、BbvI、BccI、BceAI、BcgI、BciVI、BcoDI、BfuAI、BmrI、BpmI、BpuEI、BsaI、BsaXI、BseRI、BsgI、BsmAI、BsmBI、BsmFI、BsmI、BspCNI、BspMI、BspQI、BsrDI、BsrI、BtgZI、BtsCI、BtsI、BtsIMutI、CspCI、EarI、EciI、FauI、FokI、HgaI、HphI、HpyAV、MboII、MlyI、MmeI、MnlI、NmeAIII、PleI、SapI以及SfaNI。
17.一種編碼感興趣多肽的多核苷酸,當其在真核宿主細胞中轉錄時,被轉錄成包含至少五個對於該多核苷酸為異源之內含子的轉錄本。
18.如具體例17之多核苷酸,其中該多核苷酸被轉錄成包含至少七個對於該多核苷酸為異源之內含子的轉錄本。
19.如具體例17及18之多核苷酸,其中該等內含子中的每一者具有50至200nt,尤其是50至150nt的長度。
20.如具體例17至19中任一項之多核苷酸,其中該等內含子中的每一者具有80至200nt的長度,諸如90至150nt或90至120nt的長度。
21.如具體例19之多核苷酸,其中該等內含子中的每一者具有50至100nt的長度。
22.如具體例17至21中任一項之多核苷酸,其中所有內含子包含內部終止密碼子,其與編碼感興趣多肽之核酸序列的開放讀框同框。
23.一種包含連接酶與第IIs型限制內切酶之組成物於製造編碼感興趣多肽的融合多核苷酸的用途,該融合多核苷酸是透過利用該內切酶切割下列並且連接所得切割產物而製得
(a1)如具體例1中定義的第一多核苷酸,及
(a2)如具體例1或3中定義的第二多核苷酸,及視情況
(a3)如具體例3中定義的第三多核苷酸。
在本說明書中引用的所有參考文獻透過參照其整體揭示內容以及在本說明書中特別提及之揭示內容而併入。
實施例
僅藉由以下實施例來說明本發明。該等實施例無論如何都不應以限制本發明範圍的方式來解釋。
實施例1:材料&方法
質體
(a)選殖含有螢光素酶的建構物
如下改變質體pcDNA5-FRT-TO_DEST(以Invitrogen/Thermo Fisher Scientific的pcDNA5/FRT/TO為基礎,並透過在CMV啟動子和BGHpA位點之間插入attR1/2位點進行修飾來容許門選殖),以便可以同時表現海腎(Renilla)和螢火蟲螢光素酶(分別為hRluc和luc2-參見圖1):(i)透過鈍端連接至pcDNA5-FRT-TO_DEST的PmlI位點、破壞5' PmeI位點,但保留3'位點來引 入真核延長因子1α(EF1α)的啟動子,從而產生pcDNA5dual-FRT-TO_DEST。(ii)螢火蟲螢光素酶核苷酸序列(取自pGL4.10[Promega]的胺基酸序列,針對在人類細胞株中表現利用密碼子優化的基因合成是由GeneArt/Thermo Fisher Scientific,Regensburg完成)。將在其5'端的5'共通Kozak序列(CACGTGAGCGCCACC,SEQ ID NO 43)和在其3'端的雙終止密碼子(TAATGA)插入pcDNA5dual-FRT-TO_DEST的PmlI位點,得到luc2-pcDNA5dual-FRT-TO_DEST。(iii)所有海腎螢光素酶核苷酸序列(海腎螢光素酶的胺基酸序列取自pGL4.75[Promega]),而內含子序列是由GeneArt/Thermo Fisher Scientific,Regensburg(如上密碼子經優化)合成,側接為包括5' Kozak共通序列和3'雙終止密碼子(分別為ACTTTGTACAAAAAAGCAGGCTAGCGCCACC(SEQ ID NO:44)和TGATAAGCTTACCCAGCTTTCTTGTACAAAG(SEQ ID NO:45))的attB1和attB2序列,以容許門選殖至luc2-pcDNA5dual-FRT-TO_DEST(關於精確的內含子位置參見圖2與8)中。(iv)同樣地,無內含子海腎螢光素酶被選殖至pcDNA5dual-FRT-TO_DEST(無螢火蟲螢光素酶基因)中,其在所有海腎螢光素酶分析中用做為主要的陽性對照。
(b)選殖抗體建構物(標準限制與金門為主的選殖)
關於在真核細胞中瞬時表現來說,利用限制選殖(插入物包含Kozak共通序列)或金門選殖,CMV為主的傳統載體被用來產生抗體表現建構物(輕鏈與重鏈建構物)。就後者來說,從載體主鏈移除BsaI限制位點,並引入側接BsaI位點的填充序列(5':cgccagGAGACC(SEQ ID NO:46),3:GGTCTCtataat(SEQ ID NO:47);BsaI識別序列呈粗體)用於將抗體序列併入表現載體中。使用含有不同內含子的各式模組組合來裝配抗體建構物(所有抗huIL4),然後依據Weber等入(PLoS ONE.2011 Feb 18;6(2):e16765)以及Engler等人(ACS Synth Biol.2014 Nov 21;3(11):839-43)所述選殖到表現載體中。抗體建構物的編碼序列的核苷酸序列在無內含子以及含內含子抗體中相同,除了:(i)重鏈恆定區中的一個核苷酸(那些使用金門為主之選殖所產生的建構物),需要破壞BsaI位點,以及(ii)前導序列的最後一個密碼子。
金門模組
金門模組(產生含有內含子之抗體輕鏈與重鏈)被設計成含有三個部分:內含子的3'部分被安置在模組的5'端,接著是結構域的編碼序列(即抗體鏈的可變部分或恆定部分)。編碼序列接著是下一個內含子的5'部分。BsaI位點在兩端是以這些位點於使用BsaI消化後被移除,留下對於每個內含子位置具有特異性的4個核苷酸懸臂,從而容許特異性連接並裝配最終建構物這樣的方式來安置。
內含子
在構成本發明基礎的研究中使用一組內含子:原始的,經修飾和局部內含子:
可在表1至4中找到關於內含子的概述。
經修飾或局部內含子包含:
(a)在內含子5'或3'端處帶有典型剪接位點缺失的內含子,用作陰性對照(內含子#10-#13)
(b)帶有4個核苷酸插入的內含子(例如,用於金門選殖反應的插入重疊序列的實例;內含子#14-#16和#19-#20)
(c)在插入物的任一側帶有包含兩個潛在重疊序列之較大核苷酸插入物的內含子(可用於跳過外顯子;內含子#17-#18)
(d)由兩個不同內含子半體組成的混合內含子(內含子#21-24)
(e)由其原始內含子的5'部分或3'部分構成的局部內含子,用於金門選殖反應(局部內含子#1-#16)
Figure 108133752-A0202-12-0044-1
Figure 108133752-A0202-12-0045-2
Figure 108133752-A0202-12-0045-3
Figure 108133752-A0202-12-0046-4
Figure 108133752-A0202-12-0047-5
Figure 108133752-A0202-12-0047-6
Figure 108133752-A0202-12-0048-7
Figure 108133752-A0202-12-0049-8
Figure 108133752-A0202-12-0050-9
Figure 108133752-A0202-12-0051-10
Figure 108133752-A0202-12-0051-11
Figure 108133752-A0202-12-0052-12
細胞培養與轉染
在含有6mM麩醯胺酸的Free-style F17表現培養基(Gibco Cat.No.A1383502)中培育已適應懸浮的HEK293-F細胞(Invitrogen Cat.No.51-002)。轉染前當天,將1公升細胞以1.2e6細胞/ml的密度接種在帶排氣蓋的3L Fernbach錐形瓶(Corning 431252)中,並在37℃下以110rpm和8% CO2攪拌培育過夜。
轉染當天,用F17表現培養基將細胞調整到1.9e6細胞/ml。就每次轉染來說,將50ng pXL4617_EBNA(EBNA1表現質體)與1μg感興趣的表現建構物DNA和2.8μg PEI(Polysciences,Cat.No.23966-2)混合,並用F17表現培養基調整成230μl的體積。培育15分鐘後,將870μl細胞(1.65e6)添加到DNA/PEI複合物中。所有轉染實驗是在96深孔盤(Nunc Cat.No.10447181)的1100μl最終工作體積中進行。用DUETZ系統蓋(Kuehner Technology)覆蓋盤並在37℃、8% CO2與利用3mm軌道(Infors HT Multitron Pro)搖動1,000rpm下培育歷時2天。所有轉染均至少以二重複進行,並重複2至5次。
使用螢光素酶報導子分析(螢光素酶建構物)的表現分析
(a)實驗程序
轉染後兩天,使用Dual-Glo®螢光素酶分析系統(Promegam Cat.No.E2940)測量經轉染細胞的螢光素酶活性。50μl細胞懸浮液被轉移至96多孔盤(Perkin Elmer Cat.No.6005040))並在室溫下平衡歷時10分鐘。加入50μl的Dual-GLO®試劑並培育歷時10分鐘以溶解細胞。利用微量盤讀取儀(Molecular Devices,Gemini XP;設定:30讀數,高PMT)測量螢火蟲螢光素酶發光。添加50μl Dual-GLO® Stop & Glo®試劑以淬滅螢火蟲反應的發光。培育10分鐘後,在與螢火蟲螢光素酶所述相同的條件下測量海腎螢光素酶發光。
(b)數據分析
一次轉染(二重複或三重複)的多個數據點被用來產生平均值。然後將這些相對於含有海腎螢光素酶的雙順反子建構物[hRluc,無內含子]的平均信號連同螢火蟲螢光素酶[luc2])一起進行常規化,產生相對表現 水平。然後按照所測試的建構物來計算兩個至九個實驗相對表現水平的平均值(連同標準差)。
從螢火蟲螢光素酶測量而來的信號被用作對照,以指示成功轉染(數據未顯示)。
使用Octet® QK e (抗體建構物)的表現分析
(a)量化
轉染後七天,藉由離心(3220 rcf,2分鐘)收取含有經表現抗體建構物的細胞上清液。這些上清液是使用Octet® QKe系統(Pall FortéBio,#30-5046)利用蛋白A生物感測器(Pall FortéBio,#18-5013)透過生物層干涉法(BLI)來進行量化。如下利用生物感測器的再生進行定量:將細胞上清液以1:10稀釋於D-PBS(Gibco,#14190-094)中,並轉移到分析盤(Greiner 96孔微量盤,PP,黑色,# 655209)。量化時間設定為120秒,生物感測器的再生/中和是利用10mM甘胺酸/HCl,pH 1.5與D-PBS來進行5秒,在第一次測量之前與所有之後的測量使用三個循環。該分析是在30℃下並以1000rpm搖動進行。感測器偏移設定為3mm。在延遲600秒以便平衡盤歷時10分鐘(30℃以及搖動)後開始實驗。
(b)數據分析
使用FortéBio Data Analysis 9.0和經預先驗證的人類IgG標準品曲線(結合率對濃度)完成數據分析。來自數次轉染的多個數據點(每個以二重複進行)用來產生三個獨立實驗的平均值和標準差。
使用Octet® QK e 的結合分析
(a)對人類IL4的抗體結合
Octet® QKe系統也用於測試被表現的抗IL4抗體自人類IL4解離的速率(kd)。為此,帶有His6標籤的2.5μg/mL重組人類IL-4(novoprotein,#CD88)被捕獲在預先塗覆有抗五His抗體(Qiagen)的生物感測器(HIS1K,Pall FortéBio,#18-5122)上歷時120sec。使用來自模擬轉染之上清液進行基線記錄後(「基線孔」,1:10稀釋在D-PBS中,加載時間30秒),將生物感測器浸入含有樣品上清液(也1:10稀釋在D-PBS中)的樣品孔中。培育120秒後,將生物感測器移回到基線孔的上清液,以使得結合的抗IL4抗體自固定的IL4 解離歷時600sec。各自用10mM甘胺酸/HCl,pH 1.7和D-PBS歷時5sce來再生與中和感測器,在第一次測量之前和之後所有測量之間進行三個循環。在30℃與1000rpm搖動下進行每次分析,感測器偏移設定為3mm且在延遲600sec以便平衡盤歷時10分鐘(30℃與搖動)後開始。以雙重參照的方式測量測量所有樣品(如Octet® QKe手冊中所述),雙重參照是:(i)無結合配體之模擬轉染的上清液(1:10在D-PBS中),以及(ii)有結合的IL4配體之模擬轉染的上清液(1:10在D-PBS中)。
(b)抗體結合實驗的數據分析
所有樣品數據點均使用下列進行計算:(i)雙重參照(參見上文),從而校正非特異性結合和配體解離,以及(ii)步間校正,避免兩個測量步驟之間的不重合(如Octet® QKe手冊中所述)。將所得到的結合曲線與局部全1:1模型擬合並算出解離常數kdis。數個轉染的多個數據點(各以二重複進行)被用來從三個獨立實驗產生平均值和標準差。
實施例2:結果/結論
螢光素酶實驗的結果顯示於圖3至10中,抗體實驗的結果顯示於圖12至16中。
使用細胞內表現的單鏈螢光素酶建構物和分泌型雙鏈抗體建構物,其證實:
(a)當在(真核)HEK293FS細胞中表現時,將各種短和超短內含子引入不同蛋白質的編碼序列中,導致功能性蛋白(細胞溶質型或分泌型)與不帶有內含子之對照蛋白的表現水平相似。
(b)使典型剪接位點突變,導致感興趣蛋白質的表現水平降低到模擬轉染的水平,如同預期的那樣,從而證明功能性內含子(因此將其從前驅mRNA中移除)對於正確表現感興趣蛋白質至關重要。
(c)引入兩個相同或不同的內含子導致表現水平與僅含有一個內含子的彼等序列相當。
(d)即使與對照水平相比,某些蛋白質的表現水平略有降低,但是將「外來」序列插入內含子會導致良好的表現。
(e)插入三至七個(相同或不相同)內含子證實某些內含子不表現。所有其他顯示表現水平降低。
(f)內含子可以含有至少一個內部同框終止密碼子,以確保那些未受到剪接的建構物不會產生延長的蛋白質,可能還(但也未必需要)具有預期的蛋白質的性質(剪接後)-例如,在內含子長度為三的倍數的情況下。
(g)透過模組化,金門為主的選殖所產生的抗體建構物,其含有內含子的各種組合,並如預期般分泌到培養基中,儘管表現水平不同,這取決於建構物中使用的內含子組合。較長內含子的組合,諸如內含子I8和I9通常產生比含有超短內含子的彼等更高的表現水平。抗體建構物的功能性測試顯示,在預期範圍內雖然在一些卻不是所有情況都結合至其標靶,但內含子I3或其經修飾形式mI3顯示結合稍微降低。
內含子顯示可以與金門選殖方法一起使用,透過使用細胞剪接設備產生功能性mRNA來創造出正確折疊的感興趣蛋白。本發明的選殖方法是有利的,因為它消除了DNA模組特異性前綴和後綴序列的必要性,並因而容許組合在其他方面不相容的DNA模組,從而產生完全普遍且通用的蛋白質工程方法學。與此相反,在本技藝中所述的選殖技術中,如果感興趣的DNA模組含有獨特並相容的前綴-後綴對,它們只能線性融合,因此,帶有不相容的前綴-後綴對的一級模組序列必須透過一級DNA序列操縱(例如,透過引入相容序列)加以修飾才能夠定向裝配。相容的前綴和後綴序列由第IIs型限制酶(例如BsaI)產生的互補4個鹼基對懸臂(前綴-後綴對)組成。因此,蛋白質模組可透過金門選殖在共有的末端4bp標靶位點處接合(通常是共有胺基酸密碼子+1個額外的核苷酸)。
然而,本發明的方法容許DNA模組(例如編碼蛋白質結構域)經由使用規定的側接前綴與後綴序列(編碼非迴文第IIs型限制位點)的剪切和黏貼機制加以裝配。在此,用於DNA模組裝配的前綴和後綴序列從DNA模組的末端部分移開,取而代之是位於裂解內含子序列的3'或5'端(例如,分為兩個非功能性部分的功能性內含子),其被融合到感興趣的DNA模組上。 因此,內含子序列提供了前綴和後綴序列。DNA模組的通用裝配不需要相容的末端前綴和後綴序列作為一級DNA序列的一部分。不需要改變一級DNA序列。因此,DNA模組的通用裝配可能無需以相容的末端前綴和後綴序列作為一級DNA序列的一部分當成前提。不需要改變一級DNA序列。由於前綴和後綴序列不再是一級DNA模組的一部分,因此,i)透過改變內含子序列中第IIs型標靶位點的位置,或ii)透過使用其他內含子序列,或iii)其組合可以實現多結構域裝配的靈活性/可變性。
本發明方法是有利的,因為它容許連接在重疊位置處(即在切割後產生之懸臂內)共有具三個核苷酸的至少一個相同片段的序列(例如編碼蛋白質結構域)。這容許DNA序列的靈活且不依賴於編碼序列的連接。因此,本發明容許連接並因而串連帶有側接核酸序列序列的編碼序列,而該等側接核酸序列是用於/容許進行連接而不受編碼序列影響。
透過本方法裝配的建構物可包含人工內含子。已經證明,可以在真核表現宿主中透過剪接除去內含子,以產生所需的感興趣多肽,儘管在此測試的內含子明顯不能任意組合。但是,這並不意外。如本技藝已知的,剪接受到外顯子與內含子內的活化性和抑制性核苷酸序列所調節(參見例如Lee and Rio,Annu.Rev.Biochem.2015.84:291-323,或Yeo GW,Van Nostrand EL,Liang TY(2007)Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements.PLoS Genet3(5):e85.doi:10.1371/journal.pgen.0030085)。儘管有大量的實驗數據顯示各種短核苷酸序列對於剪接效率的影響,但並非所有調節序列都是已知的。它們在給定序列上下文中的影響也並非都是已知的。此外,對於超短內含子來說,剪接的調控可能以與較長內含子不同的方式進行。在上述的實驗中,剪接超短內含子似乎比此處使用的較長內含子更容易受到潛在調控要素所影響。
令人驚訝地,在許多情況下,可以在建構物中的多個位置處使用相同的內含子而不會妨礙感興趣蛋白質的表現。
<110> 法商賽諾菲公司(Sanofi)
<120> 內含子為主之通用選殖方法及組成物
<130> DE2018/053
<160> 47
<170> BiSSAP 1.3.6
<210> 1
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 內含子I1
<400> 1
Figure 108133752-A0202-12-0059-15
<210> 2
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 內含子I2
<400> 2
Figure 108133752-A0202-12-0059-16
<210> 3
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3
<400> 3
Figure 108133752-A0202-12-0059-17
<210> 4
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> 內含子I4
<400> 4
Figure 108133752-A0202-12-0060-18
<210> 5
<211> 82
<212> DNA
<213> 人工序列
<220>
<223> 內含子I5
<400> 5
Figure 108133752-A0202-12-0060-19
<210> 6
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> 內含子I6
<400> 6
Figure 108133752-A0202-12-0060-20
<210> 7
<211> 72
<212> RNA
<213> 人工序列
<220>
<223> 內含子I7
<400> 7
Figure 108133752-A0202-12-0061-21
<210> 8
<211> 110
<212> DNA
<213> 人工序列
<220>
<223> 內含子I8
<400> 8
Figure 108133752-A0202-12-0061-22
<210> 9
<211> 82
<212> DNA
<213> 人工序列
<220>
<223> 內含子I9
<400> 9
Figure 108133752-A0202-12-0061-23
<210> 10
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 內含子I2(del5ss)
<400> 10
Figure 108133752-A0202-12-0061-24
<210> 11
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 內含子I2(del3ss)
<400> 11
Figure 108133752-A0202-12-0062-25
<210> 12
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(del5ss)
<400> 12
Figure 108133752-A0202-12-0062-27
<210> 13
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(del3ss)
<400> 13
Figure 108133752-A0202-12-0062-28
<210> 14
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins38)-1
<400> 14
Figure 108133752-A0202-12-0062-30
<210> 15
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins38)-2
<400> 15
Figure 108133752-A0202-12-0063-33
<210> 16
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins38)-3
<400> 16
Figure 108133752-A0202-12-0063-32
<210> 17
<211> 79
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins38)-4
<400> 17
Figure 108133752-A0202-12-0063-31
<210> 18
<211> 79
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins38)-5
<400> 18
Figure 108133752-A0202-12-0064-34
<210> 19
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins37)-1
<400> 19
Figure 108133752-A0202-12-0064-35
<210> 20
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(ins37)-2
<400> 20
Figure 108133752-A0202-12-0064-36
<210> 21
<211> 115
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(1-29)_I8(25-110)
<400> 21
Figure 108133752-A0202-12-0064-37
<210> 22
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 內含子I3(1-48)_I8(99-110)
<400> 22
Figure 108133752-A0202-12-0065-38
<210> 23
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 內含子I8(1-24)_I3(30-65)
<400> 23
Figure 108133752-A0202-12-0065-39
<210> 24
<211> 115
<212> DNA
<213> 人工序列
<220>
<223> 內含子I8(1-98)_I3(49-65)
<400> 24
Figure 108133752-A0202-12-0065-40
<210> 25
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> I3N1(1-29)
<400> 25
Figure 108133752-A0202-12-0065-42
<210> 26
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> I3C1(30-65)
<400> 26
Figure 108133752-A0202-12-0066-43
<210> 27
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> I3N2(1-48)
<400> 27
Figure 108133752-A0202-12-0066-44
<210> 28
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> I3C2(49-65)
<400> 28
Figure 108133752-A0202-12-0066-45
<210> 29
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> mI3N1(1-36_insCAAG)
<400> 29
Figure 108133752-A0202-12-0066-46
<210> 30
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> mI3C1(insCAAG_37-65)
<400> 30
Figure 108133752-A0202-12-0066-47
<210> 31
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> mI3N2(1-36_insCAGC)
<400> 31
Figure 108133752-A0202-12-0067-49
<210> 32
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> mI3C2(insCAGC_37-65)
<400> 32
Figure 108133752-A0202-12-0067-50
<210> 33
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> I8N1(1-24)
<400> 33
Figure 108133752-A0202-12-0067-51
<210> 34
<211> 86
<212> DNA
<213> 人工序列
<220>
<223> I8C1(25-110)
<400> 34
Figure 108133752-A0202-12-0067-53
<210> 35
<211> 98
<212> DNA
<213> 人工序列
<220>
<223> I8N2(1-98)
<400> 35
Figure 108133752-A0202-12-0068-55
<210> 36
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> I8C2(99-110)
<400> 36
Figure 108133752-A0202-12-0068-56
<210> 37
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> I9N1(1-22)
<400> 37
Figure 108133752-A0202-12-0068-57
<210> 38
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> I9C1(23-82)
<400> 38
Figure 108133752-A0202-12-0068-59
<210> 39
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> I9N2(1-60)
<400> 39
Figure 108133752-A0202-12-0069-61
<210> 40
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> I9C2(61-82)
<400> 40
Figure 108133752-A0202-12-0069-62
<210> 41
<211> 14
<212> DNA
<213> 人工序列
<220>
<223> hRluc-I3經修飾1
<400> 41
Figure 108133752-A0202-12-0069-63
<210> 42
<211> 14
<212> DNA
<213> 人工序列
<220>
<223> hRluc-I3經修飾2
<400> 42
Figure 108133752-A0202-12-0069-64
<210> 43
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 共通Kozak序列,載體
<400> 43
Figure 108133752-A0202-12-0069-65
<210> 44
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> DNA序列,載體
<400> 44
Figure 108133752-A0202-12-0070-67
<210> 45
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> DNA序列,載體
<400> 45
Figure 108133752-A0202-12-0070-68
<210> 46
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> BsaI位點所側接的序列,載體
<400> 46
Figure 108133752-A0202-12-0070-69
<210> 47
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> BsaI位點所側接的序列,載體
<400> 47
Figure 108133752-A0202-12-0070-70

Claims (17)

  1. 一種用於製造編碼感興趣多肽之融合多核苷酸的方法,該方法包含以下步驟:
    (a1)提供第一多核苷酸,該第一多核苷酸沿5'至3'方向包含,
    (i)編碼感興趣多肽之第一部分的核酸序列,
    (ii)編碼第一內含子之5'部分的核酸序列,
    (iii)用於第IIs型限制內切酶的第一切割序列,以及
    (iv)用於第IIs型限制內切酶的識別序列,其中(iii)中的第一切割序列可操作地連接至該識別序列,
    (a2)提供第二多核苷酸,該第二多核苷酸沿5'至3'方向包含,
    (i)用於第IIs型限制內切酶的識別序列,
    (ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與第一切割序列互補,且其中該第二切割序列可操作地連接至(a2)(i)中的識別序列,
    (iii)編碼第一內含子之3'部分的核酸序列,
    (iv)編碼感興趣多肽之第二部分的核酸序列,
    (v)編碼第二內含子之5'部分的核酸序列,
    (vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第一切割序列,以及
    (vii)用於第IIs型限制內切酶的識別序列,其中該第三切割序列可操作地連接至(a2)(vii)中的識別序列,及
    (a3)提供第三多核苷酸,該第三多核苷酸沿5'至3'方向包含:
    (i)用於第IIs型限制內切酶的識別序列,
    (ii)用於第IIs型限制內切酶的第四切割序列,其中該第四切割序列與該第三切割序列互補,其中第四切割序列可操作地連接至(a3)(i)之識別序列,
    (iii)編碼第二內含子之3'部分的核酸序列,以及
    (iv)編碼感興趣多肽之第三部分的核酸序列,及
    (b)使該第一多核苷酸、第二多核苷酸與第三多核苷酸在容許第一多核苷酸、第二多核苷酸與第三多核苷酸受到第IIs型限制內切酶切割並且連接所得切割產物的條件下與第IIs型限制內切酶和連接酶接觸,從而製造編碼感興趣多肽的融合多核苷酸。
  2. 如請求項1之方法,其中該融合多核苷酸沿5'至3'方向包含:
    (aa)編碼感興趣多肽之第一部分的核酸序列,
    (bb)編碼第一內含子的核酸序列,其中該第一內含子具有功能,且其中該第一內含子包含編碼第一內含子之5'部分的核酸序列以及編碼第一內含子之3'部分的核酸序列,
    (cc)編碼感興趣多肽之第二部分的核酸序列,
    (dd)編碼第二內含子的核酸序列,其中該第二內含子具有功能,且其中該第二內含子包含編碼第二內含子之5'部分的核酸序列以及編碼第二內含子之3'部分的核酸序列,以及
    (ee)編碼感興趣多肽之第三部分的核酸序列。
  3. 如請求項1及2之方法,其中該融合多核苷酸當在真核宿主細胞中轉錄時,被轉錄成在該細胞中受到加工的轉錄本,使得各個內含子從該轉錄本被剪出,從而製造編碼感興趣多肽的mRNA。
  4. 如請求項1至3中任一項之方法,其中第一內含子及/或第二內含子對融合多核苷酸來說是異源的。
  5. 如請求項1至4中任一項之方法,其中編碼第一內含子的多核苷酸及/或編碼第二內含子的多核苷酸具有40至2000bp的長度。
  6. 如請求項1至5中任一項之方法,其中編碼第一內含子及/或第二內含子的多核苷酸具有50至200nt的長度,特別是50至150nt的長度。
  7. 如請求項1至6中任一項之方法,其中該第一及/或第二內含子以與編碼感興趣多肽之融合多核苷酸的開放讀框同框的方式包含一個內部終止密碼子。
  8. 一種製造感興趣多肽的方法,包含以下步驟:
    (i)藉由如請求項1至7中任一項之方法製造編碼感興趣多肽的融合多核苷酸,以及
    (ii)在真核宿主細胞中表現該融合多核苷酸,從而製造該感興趣多肽,及視情況
    (iii)從該真核宿主細胞中分離所製造之感興趣多肽。
  9. 一種包含第一、第二與第三多核苷酸的組成物,
    其中該第一多核苷酸沿5'至3'方向包含:
    (i)編碼感興趣多肽之第一部分的核酸序列,
    (ii)編碼第一內含子之5'部分的核酸序列,
    (iii)用於第IIs型限制內切酶的第一切割序列,及
    (iv)用於該第IIs型限制內切酶的識別序列,其中第一切割序列可操作地連接至該識別序列,
    其中該第二多核苷酸沿5'至3'方向包含:
    (i)用於第IIs型限制內切酶的識別序列,
    (ii)用於第IIs型限制內切酶的第二切割序列,其中該第二切割序列與該第一切割序列互補,其中第二切割序列可操作地連接至第二多核苷酸的該識別序列(i),
    (iii)編碼第一內含子之3'部分的核酸序列,
    (iv)編碼感興趣多肽之第二部分的核酸序列,
    (v)編碼第二內含子之5'部分的核酸序列,
    (vi)用於第IIs型限制內切酶的第三切割序列,其不同於第一多核苷酸的第一切割序列,以及
    (vii)用於第IIs型限制內切酶的識別序列,其中第三切割序列可操作地連接至該識別序列,
    以及
    其中該第三多核苷酸沿5'至3'方向包含:
    (i)用於第IIs型限制內切酶的識別序列,
    (ii)用於第IIs型限制內切酶的第四切割序列,其中該切割序列與第三切割序列互補,其中(ii)中的第四切割序列可操作地連接至該第三多核苷酸之識別序列(i),
    (iii)編碼第二內含子之3'部分的核酸序列,以及
    (iv)編碼感興趣多肽之第三部分的核酸序列。
  10. 如請求項9之組成物,其中該組成物進一步包含第IIs型限制內切酶與連接酶,尤其是其中該第IIs型限制內切酶與該連接酶容許切割第一多核苷酸、第二多核苷酸及第三多核苷酸,並且連接所得切割產物,從而製造編碼感興趣多肽的融合多核苷酸。
  11. 一種套組,其包含如請求項9中所定義的第一、第二與第三多核苷酸、容許切割第一、第二與第三多核苷酸的第IIs型限制內切酶,以及容許連接使用該第IIs型限制內切酶切割而來之切割產物的連接酶。
  12. 如請求項1至8中任一項之方法、請求項9或10之組成物,或如請求項11之套組,其中該第IIs型限制內切酶是選自AcuI、AlwI、BaeI、BbsI、BbvI、BccI、BceAI、BcgI、BciVI、BcoDI、BfuAI、BmrI、BpmI、BpuEI、BsaI、BsaXI、BseRI、BsgI、BsmAI、BsmBI、BsmFI、BsmI、BspCNI、BspMI、BspQI、BsrDI、BsrI、BtgZI、BtsCI、BtsI、BtsIMutI、CspCI、EarI、EciI、FauI、FokI、HgaI、HphI、HpyAV、MboII、MlyI、MmeI、MnlI、NmeAIII、PleI、SapI以及SfaNI。
  13. 一種編碼感興趣多肽的多核苷酸,當其在真核宿主細胞中轉錄時,被轉錄成包含至少五個對於該多核苷酸為異源之內含子的轉錄本。
  14. 如請求項13之多核苷酸,其中該等內含子中的每一者較佳地具有50至200nt的長度,更佳地50至150nt的長度,以及最佳地50至100nt的長度。
  15. 如請求項13之多核苷酸,其中該等內含子中的每一者較佳地具有80至200nt的長度,諸如90至150nt或90至120nt的長度。
  16. 如請求項13至17中任一項之多核苷酸,其中所有內含子包含一個內部終止密碼子,其與編碼感興趣多肽之核酸序列的開放讀框同框。
  17. 一種包含連接酶與第IIs型限制內切酶之組成物用於製造生編碼感興趣多肽的融合多核苷酸的用途,該融合多核苷酸是透過利用該內切酶切割下列並且連接所得切割產物而製得
    (a1)如請求項1中定義的第一多核苷酸,
    (a2)如請求項1或3中定義的第二多核苷酸,及
    (a3)如請求項3中定義的第三多核苷酸。
TW108133752A 2018-09-20 2019-09-19 內含子為主之通用選殖方法及組成物 TW202026422A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18306220.7 2018-09-20
EP18306220 2018-09-20

Publications (1)

Publication Number Publication Date
TW202026422A true TW202026422A (zh) 2020-07-16

Family

ID=63832350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133752A TW202026422A (zh) 2018-09-20 2019-09-19 內含子為主之通用選殖方法及組成物

Country Status (13)

Country Link
US (1) US11834693B2 (zh)
EP (1) EP3853361A1 (zh)
JP (1) JP2022501036A (zh)
KR (1) KR20210060561A (zh)
CN (1) CN113015801A (zh)
AU (1) AU2019342866A1 (zh)
BR (1) BR112021005115A2 (zh)
CA (1) CA3113130A1 (zh)
IL (1) IL281536A (zh)
MX (1) MX2021003273A (zh)
SG (1) SG11202102817WA (zh)
TW (1) TW202026422A (zh)
WO (1) WO2020058438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL315140A (en) * 2022-03-08 2024-10-01 Amgen Inc Modular vector system (MODVEC): a platform for building next-generation expression vectors

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002303176A1 (en) * 2001-03-27 2002-10-15 University Of Delaware Genomics applications for modified oligonucleotides
DE10145553B4 (de) 2001-09-16 2006-06-08 Gene Architects Ag Nukleinsäure für einen Klonierungsvektor
WO2004015085A2 (en) * 2002-08-09 2004-02-19 California Institute Of Technology Method and compositions relating to 5’-chimeric ribonucleic acids
US20100291633A1 (en) 2007-09-03 2010-11-18 Thorsten Selmer Method of cloning at least one nucleic acid molecule of interest using type iis restriction endonucleases, and corresponding cloning vectors, kits and system using type iis restriction endonucleases
WO2010053820A1 (en) * 2008-10-29 2010-05-14 Trustees Of Boston University Sequence preserved dna conversion
GB0909660D0 (en) * 2009-06-04 2009-07-22 Gene Bridges Gmbh Method of altering nucleic acids
PL2816112T3 (pl) * 2009-12-10 2019-03-29 Regents Of The University Of Minnesota Modyfikacja DNA za pośrednictwem efektorów TAL
US8771985B2 (en) * 2010-04-26 2014-07-08 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using zinc-finger nucleases
EP2395087A1 (en) 2010-06-11 2011-12-14 Icon Genetics GmbH System and method of modular cloning
BR112013025567B1 (pt) * 2011-04-27 2021-09-21 Amyris, Inc Métodos para modificação genômica
CA2854249C (en) * 2011-12-22 2022-05-03 F. Hoffmann-La Roche Ag Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
CN104372414B (zh) * 2012-10-25 2016-05-04 盛司潼 一种构建测序文库的方法
WO2014102104A1 (en) * 2012-12-31 2014-07-03 Boehringer Ingelheim International Gmbh Artificial introns
US10253321B2 (en) * 2013-05-01 2019-04-09 Dna2.0, Inc. Methods, compositions and kits for a one-step DNA cloning system
EP3036334A1 (en) * 2013-08-22 2016-06-29 E. I. du Pont de Nemours and Company A soybean u6 polymerase iii promoter and methods of use
EP3757116A1 (en) * 2013-12-09 2020-12-30 Sangamo Therapeutics, Inc. Methods and compositions for genome engineering
CN106148322A (zh) * 2015-04-22 2016-11-23 王金 一种合成dna的方法
US10041079B2 (en) * 2015-11-30 2018-08-07 Synthetic Genomics, Inc. Compositions and methods for expressing genes in algae
WO2018148256A1 (en) * 2017-02-07 2018-08-16 The Regents Of The University Of California Gene therapy for haploinsufficiency
EP3401328A1 (en) 2017-05-10 2018-11-14 Bayer Pharma Aktiengesellschaft One step antibody humanization by golden gate based germline framework region shuffling
CN116848244A (zh) * 2020-12-15 2023-10-03 新英格兰生物实验室公司 用于改进多核苷酸体外组装的组合物和方法
CA3213502A1 (en) * 2021-04-21 2022-10-27 Nathaniel Stephen Wang Alphavirus vectors containing universal cloning adaptors

Also Published As

Publication number Publication date
CA3113130A1 (en) 2020-03-26
AU2019342866A1 (en) 2021-05-20
JP2022501036A (ja) 2022-01-06
SG11202102817WA (en) 2021-04-29
CN113015801A (zh) 2021-06-22
US11834693B2 (en) 2023-12-05
MX2021003273A (es) 2021-07-16
EP3853361A1 (en) 2021-07-28
IL281536A (en) 2021-05-31
WO2020058438A1 (en) 2020-03-26
US20200115728A1 (en) 2020-04-16
KR20210060561A (ko) 2021-05-26
BR112021005115A2 (pt) 2021-06-15

Similar Documents

Publication Publication Date Title
JP7220737B2 (ja) 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
AU2021236488B2 (en) Modified Transposases For Improved Insertion Sequence Bias and Increased DNA Input Tolerance
US6358712B1 (en) Ordered gene assembly
US7579146B2 (en) Nucleic acid cloning
Scior et al. Directed PCR-free engineering of highly repetitive DNA sequences
US20100291633A1 (en) Method of cloning at least one nucleic acid molecule of interest using type iis restriction endonucleases, and corresponding cloning vectors, kits and system using type iis restriction endonucleases
JP2023517041A (ja) クラスiiのv型crispr系
JP2007289152A (ja) 核酸相互作用分析
Bennett et al. CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR
Ortega et al. Overview of high-throughput cloning methods for the post-genomic era
TW202026422A (zh) 內含子為主之通用選殖方法及組成物
US20190040397A1 (en) Method for producing dna vectors from molecular bricks containing sequences of interest
Strawn et al. A method for generating user‐defined circular single‐stranded DNA from plasmid DNA using Golden Gate intramolecular ligation
EP3914704B9 (en) A method for screening of an in vitro display library within a cell
Weber et al. Modular Protein Expression Toolbox (MoPET), a standardized assembly system for defined expression constructs and expression optimization libraries
Weninger et al. Key methods for synthetic biology: genome engineering and DNA assembly
Dix et al. Gap-repair recombineering for efficient retrieval of large DNA fragments from BAC clones and manipulation of large high-copy number plasmids
JP2006506972A (ja) cDNAクローンを迅速に発現させてスクリーニングするための方法および核酸ベクター
Roy λ-integrase mediated seamless vector transgenesis platform
US8512945B2 (en) Method of RNA cleavage and recombination