TW202025202A - 使用動態臨限進行電弧偵測的系統和方法 - Google Patents

使用動態臨限進行電弧偵測的系統和方法 Download PDF

Info

Publication number
TW202025202A
TW202025202A TW108140796A TW108140796A TW202025202A TW 202025202 A TW202025202 A TW 202025202A TW 108140796 A TW108140796 A TW 108140796A TW 108140796 A TW108140796 A TW 108140796A TW 202025202 A TW202025202 A TW 202025202A
Authority
TW
Taiwan
Prior art keywords
threshold parameter
arc
current signal
digital
digital current
Prior art date
Application number
TW108140796A
Other languages
English (en)
Other versions
TWI831866B (zh
Inventor
尤瑟夫 努里
Original Assignee
美商艾克塞利斯科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾克塞利斯科技公司 filed Critical 美商艾克塞利斯科技公司
Publication of TW202025202A publication Critical patent/TW202025202A/zh
Application granted granted Critical
Publication of TWI831866B publication Critical patent/TWI831866B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0432High speed and short duration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2485Electric or electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/54Protecting or lifetime prediction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/081Sources
    • H05H2007/082Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/24Radiofrequency or microwave generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/12Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Arc Welding Control (AREA)

Abstract

本發明是針對於得以快速淬滅可形成在關聯於離子源的高電壓電極之間的電弧之電路、系統、和方法,來縮短電弧的持續時間且減輕不均勻的離子植入。在一個實例中,用於偵測在離子植入系統中的電弧之電弧偵測電路包括類比至數位轉換器(ADC)與分析電路。ADC被裝配以將指示被供應到離子植入系統中的電極的電流之感測電流轉換為用以量化感測電流之數位電流訊號。分析電路被裝配以分析數位電流訊號以確定所述數位電流訊號是否符合臨限參數值,且響應於所述數位電流訊號符合臨限參數值而將電弧偵測訊號提供到觸發控制電路以致動電弧淬滅機制。

Description

使用動態臨限進行電弧偵測的系統和方法
本發明概括關於離子植入系統,且尤指偵測可形成在離子植入系統內的電弧之電弧偵測電路和方法。 [相關申請案之參照]
本申請案主張標題為“使用動態臨限進行電弧偵測的系統和方法”且於西元2018年12月19日所提出的美國專利申請案第16/225,298號之裨益,其整體內容是以參照方式而納入本文。
離子植入系統被使用以將習稱為摻雜劑元素的雜質給予到通常稱作為工件的半導體基板或晶圓中。在所述系統中,離子源使期望摻雜劑元素離子化,且離子化的雜質是從離子源所取出作為離子束。離子束被指向(例如:掃掠)跨過各別工件以將離子化的摻雜劑植入在工件內。摻雜劑離子改變工件的成分而致使其具有期望的電氣特性,諸如可為有用以將諸如電晶體的特定半導體裝置製作在基板上。
朝向較小電子裝置的持續趨勢已呈現動機要將更大量的更小、更強大且更有能量效率的半導體裝置“封裝”到個別晶圓上。這需要在半導體製程上的審慎控制,包括離子植入且尤指植入到晶圓中的離子均勻度。甚者,半導體裝置被製造在較大工件上以提高產量。舉例來說,具有直徑300 mm或更大的晶圓被利用使得較多裝置可被製造在單一個晶圓上。上述晶圓為昂貴且因此使得希望減少廢料,諸如歸因於不均勻離子植入而必須廢棄整個晶圓。然而,較大晶圓與高密度特徵使得均勻離子植入有挑戰性,由於離子束必須掃描跨過較大角度與距離以到達晶圓的周邊而不錯失植入在其之間的任何區域。
此外,針對上述離子束所供應到離子源的高電壓易受到在種種高電壓電極與其他附近零件之間的偶然電弧。針對電弧之此傾向經常使一個或多個受影響高電壓(HV)電源供應器完全放電,直到電弧以較低許多的供應電壓而自然自我熄滅。當電弧形成時,射束電流可成為不穩定或被中斷而直到供應電壓恢復,在這時間期間的離子植入可遭受跨於工件的間歇或不均勻的劑量位準。
若薄膜是在處理/植入晶圓的過程期間形成在表面上,電弧可能發生,因此薄膜成為經脫層且落在二個電極之間的高電壓間隙。薄膜亦可成為經充電且嵌入在離子束中,直到其朝下游輸送跨過突然發生電弧的高電壓間隙。電弧可使薄膜材料剝離,因而產生亦可成為經嵌入在晶圓中的大量粒子。電弧亦可在絕緣體及/或饋通線成為塗覆有處理材料或副產物直到其絕緣值成為不足以隔離HV之後而發生,造成可穿越過絕緣體及/或饋通線且使材料剝離之電弧,重複恢復某量的絕緣值而直到HV電源供應器可被維持或植入系統被停用。電弧亦可歸因於靠近高電壓應力場的真空洩漏及/或壓力爆裂而發生。
電弧可形成在至少一個高電壓電極與另一個導電構件之間。三種不同型式的電弧被說明在圖1所示的習用離子植入系統10。第一電弧型式12發生在離子源電極14 (其為正電位)與取出接地電極16之間。第二電弧型式18發生在抑制電極20 (其為負電位)與取出接地電極16或鄰近所述抑制電極的其他接地電極之間。第一電弧型式12可有時引發或串接到第二電弧型式18的另外電弧。這些第一與第二電弧型式12、18可歸因於軟體或操作者失誤而進行離子植入系統10之誤調諧所引起。第三電弧型式22發生在某個電極(例如:離子源電極14)與鄰近所述電極的殼體24之間。其他型式的電弧包括在相同極性的二個電極之間的電弧,諸如在終端偏壓電極與終端抑制電極之間。對於環繞任何電極的束線之潛在電弧亦經常存在。
圖1進而說明正的高電壓取出電源26,其饋電給離子源電極14的取出縫隙,以及負的高電壓(HV)抑制電源28,其饋電給相鄰取出接地電極16的抑制電極20。HV抑制電源28具有習用電弧抑制或電弧保護電路30,其可使用限流電阻器32以限制到抑制電極的電弧電流、使用電容器34以使電源電壓濾波且穩定化、以及使用返馳二極體36以在電弧通-斷循環期間限制從電路的電抗元件所產生的任何反向電壓。
習用而言,電弧保護電路30基於固定臨限電流而限制電弧電流。然而,固定臨限電流的使用可能限制電弧保護電路30的有效性,因為臨限應該設定夠高以避免錯誤觸發。然而,歸因於不同處理配方與操作條件,種種電源供應器所供應的電流可充分變化而使固定臨限電流對於以即時方式偵測某些電弧條件為無效,若有的話。是以,存在針對於偵測在種種情況下的電弧之需要以考慮到關聯於離子植入系統的離子源或種種電極之高電壓電弧效應的減輕。
以下提出簡化概要以提供本發明的一個或多個觀點之基本瞭解。本發明內容並非本發明之廣泛概觀,且既非意圖以判別本發明關鍵或重要的要素,亦非界定其範疇。更確切地說,本發明內容之主要目的是以簡化形式來提出本發明的一些概念而作為稍後提出之更詳細說明的前言。
本發明是針對於一種用於偵測可形成在關聯於離子植入系統的高電壓(HV)電極之間的電弧之電弧偵測電路。舉例來說,電弧之偵測可被利用以觸發電弧淬滅(quenching)機制,其縮短電弧的持續時間。再者,不穩定離子束電流與不均勻離子植入可根據本記載內容而為減輕。儘管離子源電極將提供用於此說明的一些部分之背景,要瞭解的是,電弧偵測電路可使用於任何HV電極,包括在離子植入系統中的種種電極,其使射束成形、提供射束之能量濾波、或掃描或用其他方式操縱射束。
在一個實例中,電弧淬滅機制包括高電壓高速(HVHS, high voltage high speed)切換電路配置,各者納入經串聯附加在各個高電壓電源與關聯於離子源的各別高電壓電極之間的HVHS開關,以供快速熄滅有害電弧。
在一個實例中,形成在這些區域中的電弧具有傾向以實質將在諸如HV電源供應器的電源供應器內的高電壓電容器放電,其針對離子源或取出電極供應電壓(Vext )、或針對抑制電極供應電壓(Vsup )。結果,離子束電流是受到離子束電流(Ibeam )中的這些“脈衝干擾(glitches)”所劇烈影響,且因此其後耗費可觀的時間來恢復供應電壓與射束電流Ibeam
一種電弧偵測電路被論述,其將電極電流量化為數位電流訊號,其可相關於多個偵測參數而由數位處理構件來分析以偵測發生在不同情況及在離子植入系統中的不同位置之電弧。電弧偵測電路產生電弧偵測訊號,其觸發電弧淬滅電路以縮短電弧的持續時間,舉例來說,因而減少不穩定離子束電流的持續時間,且使離子植入的不均勻度最小化。
再者,合意的是在對作用在離子束掃描的離子束下游之電極供電的HV電源上包括電弧淬滅機制。供應到下游電極的電流取決於跨過晶圓之處理掃掠內的離子束位置而顯著變化。舉例來說,固定臨限在處理掃掠的中央部分期間將無法有效地偵測電弧,因為在這位置的正常電流位準是比當離子束在晶圓邊緣時的正常電流位準為較低許多。
本發明之電弧偵測電路使用動態偵測參數(例如:電流或電壓臨限)來偵測電弧,所述參數可對於許多處理配方而調適,可基於最近遭受的電流位準而變化,且可基於在射束的處理掃掠中的位置而變化。舉例來說,用於觸發電弧淬滅機制的臨限參數值可基於離子植入系統的種種參數、操作條件、配方、負載條件等而選擇性及/或動態地確定。再者,諸如淬滅時間與穩定化時間之電弧淬滅機制的特徵亦可由於種種參數而變化。以此方式,本記載內容之記載的電弧偵測電路和方法有效減輕在種種應用與條件中的離子束破壞且加速射束電流恢復。
本發明之電弧偵測電路將流通進出離子植入系統中的電極的感測電極電流量化為數位電流訊號。舉例來說,電極電流是流通進出HV電極的電流,且包括撞擊電極的離子束電流的部分與提供到電極以維持設定偏壓電壓的電源供應器電流之組合。電極電流的數位表示可由數位處理構件(例如:處理器、場可程式閘陣列(FPGA)、複雜邏輯可程式裝置(CPLD)、構件組合等)所快速分析以偵測在HV電極處之電弧的徵兆。術語FPGA可被使用作為簡略表示方式以指稱FPGA或CPLD或類似者。數位處理構件可包括作出關於觸發淬滅操作的即時決策之FPGA以及經裝配以儲存及/或操縱所儲存的數位訊號以確定臨限參數值之ARM或其他處理器等。
針對於電極電流訊號依據在處理掃掠中的離子束位置之臨限值範圍可基於先前掃描期間所遭受的電極電流位準而由電弧偵測電路所計算。電弧偵測電路儲存可各自或結合一起使用的多個電弧偵測參數值以偵測電弧條件。舉例來說,電弧偵測參數或值為動態且可根據處理配方或在操作條件中的變化而改變。
根據一個實例,一種偵測離子植入系統中的電弧之方法被提出。所述方法包括接收用以指示經供應到所述離子植入系統中的一個或多個電極的電流之感測電流,且量化所述感測電流以產生數位電流訊號。舉例來說,數位處理電路被使用以分析所述數位電流訊號以確定所述數位電流訊號是否符合臨限參數值。響應於所述數位電流訊號符合所述臨限參數值,偵測訊號被提供到觸發控制電路以致動電弧淬滅機制。
在一個實例中,一種電弧偵測電路被提出以用於偵測離子植入系統中的電弧。所述電弧偵測電路包括分析電路與類比至數位轉換器(ADC)。ADC被裝配以將指示經供應到所述離子植入系統中的電極的電流之感測電流轉換為用以量化所述感測電流之數位電流訊號。所述分析電路被裝配以分析所述數位電流訊號來確定所述數位電流訊號是否符合臨限參數值,且響應於所述數位電流訊號符合所述臨限參數值,將電弧偵測訊號提供到觸發控制電路以致動電弧淬滅機制。
根據另一個實例,一種分析電路被提出為包括硬體處理構件,其裝配以比較數位電流訊號和臨限參數值,且響應於所述數位電流訊號符合所述臨限參數值,將電弧偵測訊號提供到觸發控制電路以致動電弧淬滅機制。所述分析電路還包括處理器,其裝配以動態地確定所述臨限參數值。
為了達成前述與相關目的,以下敘述與隨附圖式詳述本發明的某些說明觀點與實施方式。這些是指出本發明原理可被運用在其中的種種方式之僅有一些者。本發明的其他觀點、優點與新穎特徵將從當結合圖式所考慮時之本發明的以下詳細敘述而變得明顯。
本發明將關於圖式來描述,其中同樣的元件符號被使用以指稱圖式中的同樣元件。圖例與以下敘述為範例性質而非限制性。因此,將理解的是,圖示系統和方法的變化以及除了本文所圖示者以外的其他此類實施方式被視為屬於本發明與隨附申請專利範圍的範疇內。如在本文所利用,術語“模組”、“構件”、“系統”、“電路”、“元件”、“片電路”、“電路系統”與類似者是意圖指稱一組的一個或多個電子構件、電腦相關實體、硬體、軟體(例如:執行中)、及/或韌體。舉例來說,電路系統、電路或類似術語可為處理器、場可程式閘陣列(FPGA)、運作在處理器上的處理、控制器、物件、可執行程式、儲存裝置、及/或具有處理裝置的電腦。作為舉例而言,運作在伺服器上的應用程式與伺服器亦可為電路系統。一個或多個電路可位在於相同電路系統內,且電路系統可侷限在一個電腦上及/或分佈在二或多個電腦之間。一組元件或一組其他電路可被描述在本文,其中術語“組”可解讀為“一者或多者”。
一種電弧偵測電路被描述在本文,其包括類比至數位轉換器(ADC)與分析電路。ADC取樣且將電極電流轉換成為數位電流訊號,其相關於包括淬滅時間、穩定化時間、電弧持續時間、以及臨限電流或電壓之多個電弧偵測參數而由分析電路所分析。
舉例來說,電弧淬滅電路包括高電壓高速(HVHS)切換電路,其包含和高電壓電源為串聯耦接到抑制及/或取出電極、或接地電極以熄滅有害的電弧之HVHS開關(例如:65KV@2MHz的MOSFET開關)。當上述HV電弧發生時,上述HV電源供應器的高電壓電容器可為實質放電。此深度放電顯著影響離子束電流且其後需要相當多時間來恢復電源供應器電壓與離子束電流Ibeam
在電弧淬滅電路中的高電壓開關是由電弧偵測電路所控制,其偵測在HV電源到電極的電流或電壓變化,如為關聯於在電極中之一者處的電弧之形成。電弧淬滅電路包含用於HV開關的一個或多個保護電路以吸收來自環繞HVHS開關的電抗構件之過量能量,且箝制來自HVHS開關的任何過電壓。保護電路可和各別HVHS開關為並聯及/或串聯連接。
雖然本發明之電弧偵測電路是在離子源和離子植入系統的環境來說明及描述,要理解的是,上述電弧偵測電路亦可利用在需要HV與高速電弧淬滅之其他應用,諸如例如:X光設備、加速器、或其他離子源應用。以此方式,高電壓電源之不想要的電弧短路可在高電壓電源供應器已經顯著放電且有機會影響相關系統的輸出(例如:離子植入系統的離子束)之前而偵測到。
現在參考圖式,圖2A說明範例離子植入系統100,其中離子束能量可作選擇性變化及/或控制,如本文所述。離子植入系統100具有配置在終端106與末端站108之中的注入器102與束線組件104。終端106包括終端偏壓的高電壓電源供應器(HVPS) 110,其相關於接地而加偏壓於終端內的構件。根據一個範例觀點,終端的電弧淬滅電路112是和終端106有關聯。終端的電弧淬滅電路112的種種細節將進一步論述於下文。
尤其,舉例來說,終端的電弧淬滅電路112被使用以偵測且淬滅在終端106與接地源之間發生的電弧。這些接地源可包括用於使終端106處於真空之電氣隔離的排氣線路(未顯示)、或可成為塗覆有種種薄膜之其他構件。舉例來說,當電氣隔離的排氣線路可能歸因於薄膜塗覆而不再隔絕高電壓應力,線路可能形成電弧且磨損材料而直到充分的電阻被恢復、或植入器被維修。在終端106與接地之間的其他電弧來源可包括終端隔離襯套(未顯示),其將終端連接到末端站108,且可成為經塗覆而直到不充分絕緣。從終端106到接地的電弧亦可透過用於冷卻的去離子化水與水線路(未顯示)而發生,若水為不充分去離子化或成為經汙染,其進一步降低電氣隔離而直到電弧成為可能。
舉例來說,注入器102包括由取出高電壓電源供應器(HVPS) 116所供電之離子源114,其產生離子束118且將離子束118指引到束線組件104。舉例來說,源HVPS 116加偏壓於氣體箱(未顯示)與離子源114。就此而言,離子源114產生帶電荷的離子,其經由離子取出組件120而從離子源所取出且形成為離子束118,隨後沿著在束線組件104之中的射束路徑而指引到末端站108。
為了產生離子,將離子化的摻雜劑材料(未顯示)提供在離子源114的離子產生腔室122之內。舉例來說,摻雜劑材料可從氣體源(未顯示)而饋送到離子產生腔室122之中。將理解的是,任何數目個適合的機制(未顯示)可被使用以激發在離子產生腔室122內的自由電子,諸如:RF或微波激發源、電子束注入源、電磁源及/或產生在腔室內的電弧放電之陰極。經激發的電子和摻雜劑氣體分子碰撞,因而產生離子。概括而言,正離子被產生在離子產生腔室122之中;雖然本文的記載內容亦可應用到其中產生負離子之系統。
離子是藉由離子取出組件120透過在離子產生腔室122之中的縫隙124所控制地取出,其中離子取出組件包含複數個取出抑制電極126a、126b。舉例來說,離子取出組件120可包括單一或二個取出抑制電極126。舉例來說,一個或多個取出抑制電源供應器128加偏壓於各別取出抑制電極126a、126b以加速出自離子產生腔室122的離子。歸因於由源HVPS 116所供應的高電壓,電弧可發生在離子源114與周圍環境之間。源電弧淬滅電路130被使用以藉由中斷從取出HVPS 116到離子源114的電力來淬滅上述電弧。本記載內容理解的是,電弧132有時可發生在取出抑制電極126a、126b之間,或在電極中的一者與另一個構件或環繞殼體的真空腔室殼體(未顯示)之間。取出抑制電弧淬滅電路134被使用以藉由中斷從取出抑制HVPS 128到取出抑制電極126a及/或126b的電力來淬滅上述電弧。
可理解的是,由於離子束118包含類似充電粒子,離子束可具有傾向為徑向朝外擴張,或射束“衝散(blow up)”,如同類似充電粒子在離子束內為彼此排斥。亦可理解的是,射束衝散的這個現象可能在低能量、高電流的射束中為加重,其中許多類似充電粒子是朝相同方向而相當緩慢移動,且其中在粒子之間有充足的推斥力,但是不多的粒子動量來保持粒子朝射束路徑方向移動。
是以,離子取出組件120被概括裝配,俾使離子束118為以高能量所取出而使得離子束不會衝散(例如:使得粒子具有充分動量以克服可能導致射束衝散之推斥力)。甚者,概括有利為以相當高能量來轉移離子束118通過系統,其中此能量可就在離子植入到工件136之前而如所期望為降低以促進射束圍阻。亦可有利的是產生且輸送可以相當高能量來輸送而以較低等效能量來植入之分子或叢集離子,原因在於分子或叢集的能量被分配在分子的摻雜原子之間。
束線組件104包括束導138、質量分析器140、掃描系統142、校正器或平行器144、以及一個或多個角能量濾波器146 (詳細顯示於圖2B)。圖2A的質量分析器140被裝配以具有大約90度角度且包含作用以在其中建立(雙極)磁場之一個或多個磁鐵(未顯示)。儘管90度角度被說明於圖2A,其他質量分析器運用包括110度、130度或其他角度的角度。隨著離子束118進入質量分析器140,離子束118被磁場所對應彎曲,俾使期望離子沿著射束路徑傳輸而不適當電荷對質量比的離子被拒斥。更具體而言,具有過大或過小電荷對質量比的離子被不充分或過度偏轉以便轉向到質量分析器140的側壁148,使得質量分析器允許具有期望電荷對質量比之離子束118中的那些離子通過且通過解析孔隙150而離開。
掃描系統142包含掃描元件152與聚焦及/或操縱元件154。在範例掃描系統142中,各別電源供應器156、158被實施耦接到掃描元件152與聚焦及操縱元件154,且尤其是到位在其中的各別電極160a、160b與162c、162d。聚焦及操縱元件154接收質量分析後之具有相當窄輪廓的離子束118 (例如:在圖示離子植入系統100中的“筆狀”射束),其中由電源供應器158所施加到板162a與162b的電壓操作以將離子束聚焦及操縱到掃描元件152的最佳點,較佳為掃描頂點164。由電源供應器156所施加到掃描器板160a與160b的電壓波形接著往復掃描射束118,以使射束118散開成為延長“帶狀”射束(例如:掃描束118a),具有可至少如同有關注工件一樣寬或較寬的寬度。將理解的是,掃描頂點164可界定為光學路徑中的點,而在已經由掃描元件152所掃描之後的帶狀射束118a的各個小束或掃描部分看乎源自於此點。
將瞭解的是,本文所述型式的離子植入系統可運用不同型式的掃描系統。舉例來說,靜電系統或磁性系統可運用在本發明中。靜電掃描系統的一個實施例包括耦接到掃描器板或電極160a與160b的電源供應器,其中掃描器152提供掃描束118a。掃描器152接收質量分析後之具有相當窄的輪廓的離子束118 (例如:在圖示系統中的“筆狀”射束),且由電源供應器156所施加到掃描器板160a與160b的電壓波形操作朝X方向(掃描方向)來往復掃描射束,以使射束散開成為延長“帶狀”射束(例如:掃描束),具有可至少如同關注工件一樣寬或較寬的有效X方向寬度。同理,在磁性掃描系統中,高電流電源被連接到電磁鐵的線圈。磁場被調整以掃描射束。為了本記載內容的目的,所有不同型式的掃描系統均為預期的,且靜電系統是用於說明。掃描束118a接著通過平行器144,其指引射束為概括平行於Z方向(例如:概括垂直於工件表面)而朝向末端站108。儘管磁性平行器144被說明於圖2A,在其他離子植入系統中,靜電平行化透鏡電極被使用。在上述系統中,類似於本文所論述之電弧淬滅電路(未顯示)可被安裝用於淬滅發生在平行器144的平行化電極166c、166d上之電弧。
參考圖2B,舉例來說,角能量濾波器146包括電氣偏壓的終端抑制孔隙168,其抑制電子免於返回串流到圖2A的經負偏壓的終端106。更特別而言,具有太大或太小電位的離子被不充分或過度偏向以便轉向到角能量濾波器的離開孔隙的頂與底壁(未顯示),使得僅有具有期望電位之在射束中的那些離子通過孔隙且離開。圖2B的終端抑制孔隙168是由終端抑制HVPS 170所偏壓且出自終端抑制孔隙168的電弧是由電弧淬滅電路172所偵測且淬滅。頂板電極174與底板電極176建立電場以濾除來自掃描束118a之非期望的離子束電位。頂板電極174與底板電極176是分別由頂板HVPS 178與底板HVPS 180所偏壓。電弧淬滅電路182被使用以偵測及淬滅在頂板電極174的電弧且電弧淬滅電路184被使用以偵測及淬滅在底板電極176的電弧。在一個實例中,單一電路板可實施電弧淬滅電路182與電弧淬滅電路184二者。
上述任何構件之控制可經由在圖2A所示的離子植入系統的控制系統186所達成。如將在下文所更詳細描述,圖2A-2B的電弧淬滅電路112、130、134、172、182、184 (概括稱作為電弧淬滅電路188)例如由各別電弧偵測電路(未顯示)所控制或觸發,其感測流通到離子源114 (就電弧淬滅電路130而言)或到HV電極(就電弧淬滅電路112、134、172、182、184而言)的電流且響應於臨限參數值為符合以致動電弧淬滅機制(未顯示)。電弧淬滅電路188是以類似方式作用同時使用經對準於既定位置處的預期電極電流之不同臨限參數值。舉例來說,由圖2A之電弧淬滅電路130與134所監測的電極電流可例如本質上接近DC,而由在掃描系統142的下游之電弧淬滅電路112、172、182、184所監測的電極電流是依據在晶圓之處理掃掠中的離子束位置而顯著變化。因此,電弧淬滅電路112、172、182、184可使用依據在射束掃掠內的位置而變化(例如:由從掃掠開始的經過時間所確定)之臨限參數值,而電弧淬滅電路130與134可使用並未依據射束位置而變化之臨限參數值。儘管在此說明中,六個電弧偵測電路被使用以偵測在六個不同HV電極中的電弧,已記載的電弧偵測電路可被應用到易於形成電弧的任何HV電極,包括具有關聯於較小聚焦與抑制電極之較少電壓供應器之電極。
現在參考圖3,實例離子植入系統200被說明,其包括針對於加偏壓於離子源114的HVPS之範例電弧淬滅電路202。離子植入系統200包括HVPS 204 (例如:圖2A的源HVPS 116)、高電壓高速(HVHS)開關206、與比流器(CT) 208,用於偵測從HVPS 204流通到離子源114的電流,以用於產生可用離子束118的形式所取出之離子量。當由電弧偵測電路216所提供的偵測訊號214指出針對於偵測電流的某個臨限參數值已經符合時,觸發控制電路210致動淬滅機制(例如:打開HVHS開關206)。除了HVHS開關206之外的其他電弧淬滅機制可被使用,諸如其他型式的開關或致動中斷來自電源的電力流通之電源供應器特徵。儘管電弧淬滅電路202被說明為淬滅有關聯於HVPS 204的電弧,電弧淬滅電路202亦可應用到用於離子束聚焦/成形或提供抑制之HV電極。
HVHS開關206是分別由並聯與串聯的保護電路212與215所保護以吸收來自環繞HVHS開關206之電抗構件的能量且保護開關免於過電壓損壞。保護電路212與215亦保護HVHS開關206與離子植入系統的其他構件,藉由減輕由切換暫態與HVHS開關206外部的電抗構件所引起的任何阻尼振盪。電弧淬滅電路202可使用在任何離子植入系統、或諸如可能使用易受到在電源輸出的電弧放電之高電壓電源的其他此類應用中。
電弧偵測電路216接收或監測在CT 208的二次繞組所產生的類比感測電流218,且當感測電流指示電弧正在發生時而產生用於觸發控制電路210的偵測訊號214。電弧偵測電路216包括類比至數位轉換器(ADC) 220、分析電路222、儲存媒體224與介面電路226。ADC 220超取樣且量化感測電流以產生其包含一連串的數位電流值之數位電流訊號228。歸因於快速淬滅電弧之重要性,ADC 220可為已經最佳化以降低用以量化感測電流的取樣為數位電流訊號值的所需要時間之低潛時ADC。在一個實例中,ADC 220是能夠以每秒大約60-125百萬個取樣(msps, mega samples per second)來取樣感測電流之12位元低潛時ADC。能夠以如同大約40 msps之低速率來取樣感測電流之ADC可使用以完整描述由比流器208所產生的訊號之特徵。然而,適當淬滅性能可使用如同250 ksps之慢速而感測的ADC 220來得到。
分析電路222是數位處理電路,意指分析電路222是使用數位構件而在數位域操作於數位電流訊號228。分析電路222被裝配以分析數位電流訊號228來確定可應用臨限參數值是否已經符合,且當標準為符合時而產生偵測訊號214以及將其提供到觸發控制電路210。分析電路222被裝配以基於諸如例如由離子植入系統200目前在使用的處理配方或在最近掃描期間所接收的數位電流訊號228之離子植入系統的操作條件來確定可應用臨限參數值。分析電路222從儲存媒體224擷取針對於處理配方的臨限參數值。介面電路226為使用者提供用以儲存如映射到儲存媒體224中的不同處理配方的臨限參數值的手段。
除了在數位電流訊號的大小上的臨限,分析電路222還可動態地確定其他臨限參數值。實例臨限參數值包括電流臨限、最小電弧持續時間、淬滅時間、與穩定化時間。電流臨限界定在數位電流訊號228的大小之極限。舉例來說,若電流臨限為200 mA,則若數位電流訊號228超過+200 mA或小於-200 mA,電流臨限已經被所述數位電流訊號所超過。在一些實例中,不同大小可被使用作為電流臨限的正值與電流臨限的負值。
最小電弧持續時間是數位電流訊號228必須超過臨限以使分析電路222用以確定電弧正在發生且產生偵測訊號214之時間量。最小電弧偵測時間是用以嘗試消除可能歸因於在數位電流訊號228的雜訊或在類比感測電流218中無關於電弧的暫態所產生的錯誤偵測訊號。淬滅時間是觸發控制電路210打開HVHS開關206以更快速熄滅電弧之持續時間,否則電弧可透過降低電阻路徑來持續本身更久而直到電壓已經充分放電以自然熄滅。穩定化時間是在數位電流訊號228為在HVHS開關206為閉合之後且由分析電路222相關於臨限參數值所分析之前所必須經過的時間量。這允許電極與射束在確定電弧是否仍在發生之前從切換事件恢復。
電弧偵測電路216的這些臨限參數值之任一者或全部可為取決於包括在使用中的處理配方之許多不同操作條件以動態方式來作選擇或改變。在可能影響臨限參數值之處理配方中的參數包括離子束電位、電極電位、離子束電流、射束掃描頻率、光點射束形狀、以及參與由CT 208所測量之負載中的任何其他處理組態參數。分析電路222可經裝配以響應於被改變的這些參數中的任一者而自動地定比例其為儲存以供既定處理配方之臨限參數值。
在一個實例中,分析電路222被實施為場可程式閘陣列(FPGA),其包括可儲存從儲存媒體224所擷取的臨限參數值之若干個暫存器230。FPGA有利地提供並行處理能力以快速比較數位電流訊號228的值和暫存器230的內容,其對應於儲存在暫存器中的臨限參數值。
儘管固定臨限參數值可適當用於遭受接近DC負載的電極(例如:在掃描系統上游的電極),在各個處理掃掠期間而變化的臨限參數值可較佳適用於遭受較動態負載的電極(例如:在掃描系統下游的電極)。分析電路222因此被裝配以儲存針對於電流臨限的數個值,各者映射到在處理掃掠中的位置之不同範圍。圖4說明來自用於依據隨著晶圓之656次掃描過程的時間而對終端106加偏壓到固定電壓之圖2A的終端偏壓的HVPS 110的電源供應器電流。圖4的左側峰值302對應於當離子束在晶圓的最左位置,中間峰值304對應於當離子束在晶圓的最右位置,且右側峰值306 (其繼續回到左側峰值302)對應於當離子束回到在晶圓的最左位置。可看出的是,當離子束為接近晶圓邊緣,負載歸因於其他植入系統構件(例如:安裝硬體等)之鄰近而變成較為動態的。
圖4說明針對於圖2A之電弧淬滅電路188使用足夠高以防止在晶圓邊緣處觸發之固定臨限在離子束於晶圓中間時將無效於偵測異常電流。因此,不同電流臨限是針對於在處理掃掠(例如:晶圓的各單一掃描)開始所起始發生之在圖4所示的數個時間增量T1、T2、T3…T12各者而儲存。儘管12個時間增量被顯示,高達每一數位電流訊號取樣為一個增量之任何數目個增量可被使用。舉例來說,當使用經設定足夠高的電流臨限以避免在晶圓邊緣的電流值之觸發時,電弧事件308可能並未由圖3的分析電路222所偵測。然而,當離子束在較接近晶圓中央的位置時,圖4的電弧事件308可為分析電路使用較低電流臨限(例如:在圖4所指出的T7臨限)所偵測。為了利於在不同離子束位置的不同電流臨限之使用,同步訊號310被傳送到圖3的各個電弧偵測電路216以指出各個處理掃掠的開始。此同步訊號可由離子植入系統的控制系統(在圖2A的186)所提供。
用於分析針對多個處理掃掠的數位電流訊號資料的數位電路與儲存媒體之使用亦提供能力,以統計方式模型化在離子植入系統操作期間的數位電流訊號以動態地調整或確定電流臨限值。舉例來說,預設電流臨限值可針對於既定處理配方來儲存。在操作期間,針對於各個掃描的數位電流訊號值可經收集及分析以確定在各個晶圓位置或自同步訊號開始的時間增量下沒有出現電弧的情況所可預期發生之值範圍。在圖4,舉例來說,點350a、350b對應於針對在時間增量T7期間的最近656次掃描之+/- 3σ的電流範圍值。點360a、360b對應於針對在時間增量T9期間的最近656次掃描之+/- 3σ值。舉例來說,將隨著電極磨損、溫度漂移等而變化的這些統計模型值可由圖3的分析電路223所使用,以動態調整針對於不同時間增量的電流臨限值。基於以統計方式模型化的實例臨限電流被說明在圖4。以此方式,分析電路可基於數位電流訊號的統計模型以動態地調整臨限參數值。當處理配方改變時,分析電路可將最新的電流臨限值儲存在儲存媒體中以供下次處理配方在使用時之存取,或預設值可維持在儲存媒體中以供下次處理配方在執行時之使用。
在另一個實例中,關聯於處理配方的臨限參數值可基於數位電流訊號之大小的某個比值/函數而定比例,諸如:在電弧事件期間所偵測的數位電流訊號的峰值或平均值。舉例來說,200 mA電弧(其對應於在圖2的ADC 220之某個定比例電壓)可將基於400 mA的數位電流訊號大小所儲存的200 μs淬滅時間按比例縮減到針對於200 mA的數位電流訊號大小的150 μs,或針對大於400 mA的數位電流訊號大小而以類似方式按比例增加。諸如穩定化時間的其他臨限參數值亦可被定比例。
回到圖3,儘管單一電弧淬滅電路202被說明,要瞭解的是,多個電弧淬滅電路可被配置在不同位置且關聯於離子植入系統中的不同電極。有利的是,各個電弧淬滅電路可基於以預期電極電流為基礎所選擇的不同臨限參數值而偵測電弧。
現在轉向圖5,當電弧發生在類似於圖2A的離子植入系統之一種離子植入系統的高電壓取出及抑制電壓時所造成在射束電流上的變化之繪圖400被加以說明。
繪圖400說明在大約0 ms的時間415處從大約2.2 KV到接近0 V的電弧放電的取出電壓410。大約同一時間,抑制電壓420從大約-9.3 KV下降到接近0 V而射束電流Ibeam 430下降到接近0 mA。隨著取出電壓410與抑制電壓420分別降低到接近0 V,電弧自我熄滅,因而允許這些電壓朝向其初始電壓位準重新充電。如在440所示,取出電壓410超越這初始電壓,且不利地延遲射束電流Ibeam 430之恢復而直到其中取出電壓410已經概括恢復之時間445 (在大約67 ms)。可從繪圖400所觀察的是,取出電壓變化具有在射束電流上之相當大且持續的影響。因此,圖5提示的是,可能為有利地是在HV電源已經有機會顯著放電之前而快速打開在用於離子束的電極與用於電極的高電壓電源之間的高電壓電流路徑。本發明的電弧淬滅電路可達成此目標。
圖6說明範例離子植入系統600,其利用根據本發明種種觀點之關聯於離子源的高電壓電源之範例電弧淬滅電路602。舉例來說,電弧淬滅電路602包含高電壓電源(Vb ) 604 (例如:高電壓正電源)與HVHS開關606 (例如:串聯堆疊的MOSFET電晶體),其串聯連接於驅動負載(例如:離子源114)之開關的保護電路608。HVHS開關606亦並聯連接於用以保護HVHS開關606免於例如電抗過電壓之並聯的保護電路610。電弧淬滅電路602更包含偵測在高電壓電源604到離子源114的電流之比流器(CT) 612,離子源114被例如用於產生可以離子束(例如:圖2A的離子束118)的形式所取出之離子量。
電路600亦包括由電弧偵測電路618所產生的偵測訊號616所控制之觸發控制電路614。就本發明而論,電弧保護電路618亦可關聯於HVHS開關606所使用來保護HVHS開關以免於損壞。若指示電弧的電流突波發生在電源電流(Iext ) 620,則電弧偵測電路618將偵測訊號616提供到觸發控制電路614,其打開HVHS開關606以將電弧淬滅。在負載(例如:離子源114)內之點622的電容C1、與在負載的電壓(Va )因此藉由HVHS開關606而和高電壓電源604的電壓Vb 為隔離。因此,在負載的C1之Va 可能歸因於電弧之發生而放電,但電源電壓Vb 將歸因於藉由HVHS開關606之隔離而概括維持充電電壓。
再者,HVHS開關606是分別由串聯與並聯的保護電路608與610所保護以吸收來自HVHS開關206外部之電抗構件的能量,且因此保護開關免於過電壓損壞。本發明的電弧淬滅電路602可使用在任何離子植入系統中、或在諸如可使用易受到在電源輸出的電弧放電之高電壓電源的其他此類應用中。
圖7說明在關聯於離子源的取出電極之電弧期間打開及閉合在真空下所測試的本發明之電弧淬滅電路的HVHS開關之電弧淬滅效應。繪圖750說明在關聯於離子源(例如:圖2A與圖6的114)的取出電極(例如:圖2A的126a)之電弧期間由根據本發明之電弧淬滅電路(例如:圖6的602)所提供的訊號之相關振幅位準,如在例如離子植入系統的實際真空環境所測試。圖7進而說明如在取出電極電壓Vext 770處所測量之HVHS開關(例如:圖6的606)的打開及閉合期間所偵測的法拉第電流760。離子源是由高正供應電壓所饋送,且如響應於來自電弧偵測電路(例如:圖6的602)的電弧偵測訊號而由觸發控制電路(例如:圖6的614)所產生的Vext 觸發控制訊號780所觸發,具有由高負供應電壓所饋送的抑制電壓Vsup 790。圖7進而說明當開關為閉合時而產生高Vext 位準770a且當開關為打開時而產生低Vext 位準770b之跨於HVHS開關606的電壓770、在高電壓電源604處的高電壓供應Vb 730、以及如在負載處(例如:離子源114)所見的高電壓Va 720。
在時間0.0之前,當電弧發生時,偵測的法拉第電流Ifaraday 760是在高位準760a,針對於取出電極電壓Vext 770的正電源供應電壓是在高正電壓位準770a,針對於電極電壓Vsup 790的負電源供應電壓是在低負電壓位準790a,且Vext 觸發控制訊號780將開關閉合780a訊號提供到圖6的HVHS開關606,其產生高Vext 位準770a。在圖7的時間0.0,電弧發生在例如在Vext 電極的高電壓供應(例如:Va 720),且Vext 770與Vsup 790分別快速下降到零,例如在770b與790b所示。據以響應,例如由CT 612所偵測的電流是由圖6的電弧偵測電路618所接收,且據以響應而電弧偵測電路將偵測訊號提供到觸發控制電路614,其在圖7的Vext 觸發控制訊號780上產生780b訊號以控制HVHS開關606為打開,其產生低Vext 位準770b。此外,偵測的法拉第電流Ifaraday 760下降到低電流位準760b。隨著HVHS開關現在為打開,且在大約0.3 ms之後,Vext 觸發控制訊號780返回到780a的位準而指出電弧已經熄滅,且Vext 觸發控制訊號780控制HVHS開關以重新閉合,且據以響應而Vext 770返回到770a的位準。
之後,在大約0.6 ms,且隨著電弧為熄滅,在負載的供應電壓開始恢復為足夠用於Vsup 790以再次恢復到Vsup 的790a位準,且之後不久在大約0.65 ms-0.7 ms,射束電流如同由Ifaraday 760恢復回到760a位準所指出而恢復。因此,顯示的是,本發明之電弧淬滅電路能夠淬滅在例如離子植入系統的高電壓電極中的電弧,且使離子束脈衝干擾的長度為最小到大約0.7 ms。藉著記載的電弧淬滅技術,離子束脈衝干擾的長度可甚至進而降低到200-270 μs的範圍。
用於偵測且熄滅在離子植入系統中的電弧之一種範例方法800被說明在圖8。方法800可由根據本發明數個觀點之本發明的電弧淬滅電路(例如:圖2A-2B的188、圖2的202、與圖6的602)所實行。雖然實例方法800在下文被說明且描述為一連串的動作或事件,將理解的是,本發明不受限於所述動作或事件的圖示順序。就這點而言,根據本發明,一些動作可以不同順序發生且/或和除了本文所說明及/或描述以外的其他動作或事件為同時發生。此外,並非所有圖示的步驟可能必要以實施根據本發明的方法。進而指出的是,根據本發明的方法可關聯於在本文所說明及描述的晶圓、晶圓匣、晶圓感測器、晶圓處置系統、與模型系統而且關聯於未舉例說明的其他設備與結構來實施。
方法800包括:在810,接收用以指示經供應到離子植入系統中的一個或多個電極的電流之感測電流。在820,感測電流被量化,量化感測電流以產生數位電流訊號。在830,所述方法包括:用數位處理電路,分析數位電流訊號以確定所述數位電流訊號是否符合臨限參數值。在840,響應於所述數位電流訊號符合臨限參數值,所述方法包括將偵測訊號提供到觸發控制電路以致動電弧淬滅機制。
HVHS開關基本上應用到任何離子源的取出系統。將理解的是,本文所述的觀點可同樣應用到包括提供在“軟離子化”離子源中的主電子束電流、在RF或微波離子源中的RF或微波功率者之其他離子源、以及應用到非電弧放電的電源。
雖然本發明已經相關於某些觀點與實施而說明且描述於上文,將理解的是,熟習此技術其他人士將在本說明書與伴隨圖式之詳讀及瞭解後而思及等效變更與修改。特別是關於由上述構件(組件、裝置、電路、系統等)所實行的種種功能,除非另為指明,使用以描述所述構件的術語(包括提及“裝置”)是意圖對應於實行所描述構件的特定功能之任何構件(即:其為功能等效),即使並非結構等效於實行本發明之本文所示的範例實施方式中的功能的已記載結構。此外,儘管本發明的特定特徵可能已經關於數個實施方式之僅有一者而記載,如可針對於任何既定或特定應用為期望且有利,所述特徵可和其他實施方式的一個或多個特徵為結合。甚者,在某種程度上,術語“含有”、“包括”、“具有”、“具備”、“帶有”與其變化者被使用在詳細說明或申請專利範圍中,這些術語意圖以類似於術語“包含”之方式而為全包括性質。此外,如本文所使用之術語“範例”僅意指實例,而非為最佳實行者。片語“A、B、或C的一者或多者”之使用是意圖包括A、B、與C的所有組合,例如:A、A與B、A與B與C、B等。
10:離子植入系統 12:第一電弧型式 14:離子源電極 16:取出接地電極 18:第二電弧型式 20:抑制電極 22:第三電弧型式 24:殼體 26:高電壓(HV)取出電源 28:高電壓(HV)抑制電源 30:電弧保護電路 32:限流電阻器 34:電容器 36:返馳二極體 100:離子植入系統 102:注入器 104:束線組件 106:終端 108:末端站 110:高電壓電源供應器(HVPS) 112:電弧淬滅電路 114:離子源 116:取出高電壓電源供應器(HVPS)/源HVPS 118:離子束 118a:掃描束/帶狀射束 120:離子取出組件 122:離子產生腔室 124:縫隙 126、126a、126b:取出抑制電極 128:取出抑制電源供應器/取出抑制HVPS 130:(源)電弧淬滅電路 132:電弧 134:(取出抑制)電弧淬滅電路 136:工件 138:束導 140:質量分析器 142:掃描系統 144:平行器 146:角能量濾波器 148:側壁 150:解析孔隙 152:掃描元件/掃描器 154:聚焦及/或操縱元件/聚焦及操縱元件 156、158:電源供應器 160a、160bb:電極/掃描器板 162a、162b:電極/板 164:掃描頂點 166c、166d:平行化電極 168:終端抑制孔隙 170:終端抑制HVPS 172:電弧淬滅電路 174:頂板電極 176:底板電極 178:頂板HVPS 180:底板HVPS 182、184、188:電弧淬滅電路 186:控制系統 200:離子植入系統 202:電弧淬滅電路 204:高電壓電源供應器(HVPS) 206:高電壓高速(HVHS)開關 208:比流器(CT) 210:觸發控制電路 212、215:保護電路 214:偵測訊號 216:電弧偵測電路 218:類比感測電流 220:類比至數位轉換器(ADC) 222:分析電路 224:儲存媒體 226:介面電路 228:數位電流訊號 230:暫存器 302:左側峰值 304:中間峰值 306:右側峰值 308:電弧事件 310:同步訊號 350a、350b:點 360a、360b:點 400:繪圖 410:取出電壓 415:時間 420:抑制電壓 430:射束電流 445:時間 600:離子植入系統/電路 602:電弧淬滅電路 604:高電壓電源 606:HVHS開關 608、610:保護電路 612:比流器(CT) 614:觸發控制電路 616:偵測訊號 618:電弧偵測電路 620:電源電流(Iext) 622:點 750:繪圖 760:法拉第電流(Ifaraday) 760a:高電流位準 760b:低電流位準 770:取出電極電壓(Vext) 770a:高Vext位準 770b:低Vext位準 780:Vext觸發控制訊號 780a:開關閉合 790:抑制電壓(Vsup) 790a:低負電壓位準 800:方法 810、820、830、840:步驟
圖1是發生在離子源的電弧以及具有諸如可使用在離子植入系統中的習用電弧抑制電路之範例抑制電極高電壓供應電路的簡化示意圖;
圖2A是諸如可利用本發明的電弧偵測電路之範例離子植入系統的簡化方塊圖;
圖2B是諸如可利用本發明的電弧偵測電路之範例角能量濾波器系統的簡化立體圖;
圖3是示意方塊圖,其說明用以淬滅關聯於離子植入系統的離子源的電弧之根據本發明的一個或多個觀點之一種電弧偵測電路的構件;
圖4是終端偏壓電源供應器電流相對時間的繪圖,其指示最小與最大臨限射束電流以及在分析中的射束電流;
圖5是在圖2A之離子植入系統的高電壓電極的電弧期間之離子植入系統內的射束電流與取出及抑制電壓隨著時間之變化的繪圖;
圖6是關聯於諸如可使用在根據本發明之離子植入系統中的離子源的高電壓電源所利用之範例電弧淬滅電路的簡化方塊圖;
圖7是描繪在關聯於離子源的取出電極之電弧期間來打開及閉合在真空所測試的範例電弧淬滅電路的HVHS開關之電弧淬滅效應的圖形表示;
圖8是根據本發明的一個或多個觀點之一種用於偵測電弧且將電弧偵測訊號提供到電弧淬滅機制的範例方法的流程圖。
114:離子源
118:離子束
200:離子植入系統
202:電弧淬滅電路
204:高電壓電源供應器(HVPS)
206:高電壓高速(HVHS)開關
208:比流器(CT)
210:觸發控制電路
212、215:保護電路
214:偵測訊號
216:電弧偵測電路
218:類比感測電流
220:類比至數位轉換器(ADC)
222:分析電路
224:儲存媒體
226:介面電路
228:數位電流訊號
230:暫存器
310:同步訊號

Claims (22)

  1. 一種偵測離子植入系統中的電弧之方法,其包含: 接收用以指示供應到所述離子植入系統中的一個或多個電極的電流之感測電流; 量化所述感測電流以產生數位電流訊號;且 用數位處理電路: 分析所述數位電流訊號以確定所述數位電流訊號是否符合臨限參數值;且 響應於所述數位電流訊號符合所述臨限參數值,將偵測訊號提供到觸發控制電路以致動電弧淬滅機制。
  2. 如請求項1所述之方法,其更包含:用所述數位處理電路,至少基於由所述離子植入系統使用的處理配方而選擇用於偵測所述電弧之所述臨限參數值。
  3. 如請求項1所述之方法,其更包含:用所述數位處理電路,至少基於所述離子植入系統的操作條件而動態調整用於偵測所述電弧之所述臨限參數值。
  4. 如請求項1所述之方法,其中: 所述臨限參數值包含映射到相對於所述離子植入系統的處理掃掠的開始時間的時間增量之電流值範圍;且 分析所述數位電流訊號包含: 接收用以指示所述處理掃掠的所述開始時間的同步訊號; 比較在各個時間增量中的所述數位電流訊號和經映射到所述時間增量的所述電流值範圍;且 響應於所述數位電流訊號落在針對於至少一個時間增量的所述電流值範圍之外而產生所述偵測訊號。
  5. 如請求項1所述之方法,其更包含用所述數位處理電路: 收集針對於所述離子植入系統的多個處理掃掠之數位電流訊號資料; 以統計方式分析所述數位電流訊號資料以產生統計模型; 基於所述統計模型而確定所述臨限參數值;且 將經確定的所述臨限參數值儲存在儲存媒體中以供後續分析的存取。
  6. 如請求項1所述之方法,其中分析所述數位電流訊號包含: 識別映射到由所述離子植入系統使用的處理配方之所儲存的一個或多個臨限參數值; 從儲存媒體中讀取所述一個或多個臨限參數值;且 基於所述一個或多個臨限參數值而分析所述數位電流訊號。
  7. 如請求項6所述之方法,其更包含至少基於所述離子植入系統的操作條件而確定所述一個或多個臨限參數值。
  8. 如請求項7所述之方法,其中所述一個或多個臨限參數值包括淬滅時間、穩定化時間、電弧持續時間、或電流臨限之一者或多者。
  9. 如請求項6所述之方法,其更包含: 基於所述數位電流訊號的大小而定比例所述一個或多個臨限參數值之至少一個臨限參數值;且 基於經定比例的所述至少一個臨限參數值而分析所述數位電流訊號。
  10. 如請求項1所述之方法,其中量化所述感測電流包含將所述感測電流提供到類比至數位轉換器(ADC)的輸入,俾使由所述ADC響應於所述感測電流所輸出的訊號為所述數位電流訊號。
  11. 如請求項1所述之方法,其中分析所述數位電流訊號包含: 將所述數位電流訊號提供到場可程式閘陣列(FPGA);且 用所述FPGA,比較所述數位電流訊號和儲存在關聯於所述FPGA的暫存器中的臨限參數值。
  12. 一種用於偵測離子植入系統中的電弧之電弧偵測電路,其包含: 類比至數位轉換器(ADC),其裝配以將指示供應到所述離子植入系統中的電極的電流之感測電流轉換為用以量化所述感測電流之數位電流訊號;及 分析電路,其裝配以: 分析所述數位電流訊號以確定所述數位電流訊號是否符合臨限參數值;且 響應於所述數位電流訊號符合所述臨限參數值,將電弧偵測訊號提供到觸發控制電路以致動電弧淬滅機制。
  13. 如請求項12所述之電弧偵測電路,其中所述ADC包含具有每秒至少40百萬個取樣的取樣率之低潛時ADC。
  14. 如請求項12所述之電弧偵測電路,其中所述分析電路包含場可程式閘陣列(FPGA),其包括裝配以儲存一個或多個臨限參數值之複數個暫存器,且其中所述FPGA被裝配以比較所述數位電流訊號和經儲存的所述一個或多個臨限參數值來確定所述臨限參數值是否符合。
  15. 如請求項14所述之電弧偵測電路,其更包含: 儲存媒體,其裝配以儲存多組臨限參數值,且 其中所述FPGA被裝配以: 基於由所述離子植入系統使用的處理配方而選擇一組臨限參數值; 將所述一組臨限參數值儲存在所述複數個暫存器中;且 當分析所述數位電流訊號時而讀取所述複數個暫存器的內容。
  16. 如請求項15所述之電弧偵測電路,其更包含介面電路,其裝配以: 接收對應於一組臨限參數值與處理配方的資料;且 以將所述一組臨限參數值映射到所述處理配方之方式而將所述資料儲存在所述儲存媒體中。
  17. 如請求項12所述之電弧偵測電路,其中所述分析電路包含處理器,其裝配以: 收集針對於所述離子植入系統的多個處理掃掠之數位電流訊號資料; 以統計方式分析所述數位電流訊號資料以產生統計模型; 基於所述統計模型而確定所述臨限參數值;且 將經確定的所述臨限參數值儲存在儲存媒體中以供後續分析的存取。
  18. 一種分析電路,其包含: 硬體處理構件,其裝配以比較數位電流訊號和臨限參數值,且響應於所述數位電流訊號符合所述臨限參數值,將電弧偵測訊號提供到觸發控制電路以致動電弧淬滅機制;及 處理器,其裝配以動態地確定所述臨限參數值。
  19. 如請求項18所述之分析電路,其中所述處理器被裝配以至少基於由離子植入系統使用的處理配方而確定所述臨限參數值。
  20. 如請求項18所述之分析電路,其中所述處理器被裝配以: 隨著離子束的複數個掃描而收集數位電流訊號資料; 以統計方式模型化經收集的所述數位電流訊號資料;且 至少基於以統計方式模型化的所述數位電流訊號資料而確定所述臨限參數值。
  21. 如請求項18所述之分析電路,其中所述處理器被裝配以: 讀取經儲存的臨限參數值;且 至少基於離子植入系統的操作條件而定比例所述臨限參數值。
  22. 如請求項18所述之分析電路,其中所述一個或多個臨限參數值包括淬滅時間、穩定化時間、電弧持續時間、或電流臨限之一者或多者。
TW108140796A 2018-12-19 2019-11-11 用於偵測離子植入系統中的電弧之方法和電弧偵測電路以及分析電路 TWI831866B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/225,298 US10515780B1 (en) 2018-12-19 2018-12-19 System and method of arc detection using dynamic threshold
US16/225,298 2018-12-19

Publications (2)

Publication Number Publication Date
TW202025202A true TW202025202A (zh) 2020-07-01
TWI831866B TWI831866B (zh) 2024-02-11

Family

ID=68979592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140796A TWI831866B (zh) 2018-12-19 2019-11-11 用於偵測離子植入系統中的電弧之方法和電弧偵測電路以及分析電路

Country Status (6)

Country Link
US (1) US10515780B1 (zh)
JP (1) JP7401546B2 (zh)
KR (1) KR20210104740A (zh)
CN (1) CN113169018B (zh)
TW (1) TWI831866B (zh)
WO (1) WO2020131239A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763222B (zh) * 2020-12-30 2022-05-01 群光電子股份有限公司 具短路保護的電子裝置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426920B (zh) * 2020-04-16 2022-11-29 许继集团有限公司 用于高压直流输电换流阀的火灾和/或电弧检测装置及方法
JP2022122112A (ja) * 2021-02-09 2022-08-22 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入方法
US20230016122A1 (en) * 2021-07-09 2023-01-19 Applied Materials, Inc. Method and apparatus for controlled ion implantation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754200A (en) * 1985-09-09 1988-06-28 Applied Materials, Inc. Systems and methods for ion source control in ion implanters
JPH0636736A (ja) * 1992-07-21 1994-02-10 Nissin Electric Co Ltd イオン注入装置
JPH06201836A (ja) * 1992-12-28 1994-07-22 Shimadzu Corp イオンビーム検出装置
JPH08106875A (ja) * 1994-10-03 1996-04-23 Hitachi Ltd イオン注入装置および方法
US6452196B1 (en) * 1999-12-20 2002-09-17 Axcelis Technologies, Inc. Power supply hardening for ion beam systems
US7282721B2 (en) * 2001-08-30 2007-10-16 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for tuning ion implanters
GB2409928B (en) * 2004-01-09 2007-03-21 Applied Materials Inc Improvements relating to ion implantation
US7507977B2 (en) 2006-03-14 2009-03-24 Axcelis Technologies, Inc. System and method of ion beam control in response to a beam glitch
JP2009530769A (ja) * 2006-03-14 2009-08-27 アクセリス テクノロジーズ, インコーポレイテッド イオンビームの分裂を緩和するアーク消滅回路
US7663125B2 (en) * 2006-06-09 2010-02-16 Varian Semiconductor Equipment Associates, Inc. Ion beam current uniformity monitor, ion implanter and related method
JP4842752B2 (ja) * 2006-09-28 2011-12-21 株式会社ダイヘン プラズマ処理システムのアーク検出装置、アーク検出装置を実現するためのプログラム及び記憶媒体
US7566887B2 (en) 2007-01-03 2009-07-28 Axcelis Technologies Inc. Method of reducing particle contamination for ion implanters
JP2008293724A (ja) * 2007-05-23 2008-12-04 Ihi Corp イオン注入装置及びそのイオンビームの均一性調整方法
US8604449B2 (en) * 2010-07-01 2013-12-10 Varian Semiconductor Equipment Associates, Inc. Glitch control during implantation
JP2012156243A (ja) * 2011-01-25 2012-08-16 Toshiba Corp 半導体装置の製造方法および製造装置
JP5808706B2 (ja) * 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法
US20140021373A1 (en) * 2012-07-23 2014-01-23 Varian Semiconductor Equipment Associates, Inc. Beamline electrode voltage modulation for ion beam glitch recovery
JP5941377B2 (ja) * 2012-08-31 2016-06-29 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763222B (zh) * 2020-12-30 2022-05-01 群光電子股份有限公司 具短路保護的電子裝置

Also Published As

Publication number Publication date
JP7401546B2 (ja) 2023-12-19
WO2020131239A3 (en) 2020-07-23
US10515780B1 (en) 2019-12-24
KR20210104740A (ko) 2021-08-25
CN113169018A (zh) 2021-07-23
WO2020131239A2 (en) 2020-06-25
JP2022511076A (ja) 2022-01-28
TWI831866B (zh) 2024-02-11
CN113169018B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
TWI831866B (zh) 用於偵測離子植入系統中的電弧之方法和電弧偵測電路以及分析電路
JP5438519B2 (ja) イオン注入機の粒子汚染を軽減する方法
US7507977B2 (en) System and method of ion beam control in response to a beam glitch
TWI395249B (zh) 離子佈植機與操作離子佈植機的方法
US7345856B2 (en) Method and apparatus for arc suppression in scanned ion beam processing equipment
TWI722085B (zh) 離子植入機、離子植入方法及設備
KR20050073549A (ko) 이온 주입에 있어서의 개선
US7342240B2 (en) Ion beam current monitoring
WO2007111822A2 (en) A method of ion beam control for glitch recovery
US20220115236A1 (en) Method and apparatus to eliminate contaminant particles from an accelerated neutral atom beam and thereby protect a beam target
US20070187615A1 (en) Wafer charge monitoring
WO2007106395A2 (en) Arc quenching circuit to mitigate ion beam disruption
US20170125211A1 (en) Method of cleaning electrostatic chuck
KR100219411B1 (ko) 반도체 이온주입설비의 패러데이컵 어셈블리
US7564048B2 (en) Automated faraday sensor test system
US9899189B2 (en) Ion implanter
US8766210B2 (en) Variable energy charged particle systems
JP2011187309A (ja) イオンビーム照射装置
Rowe Particle induced post arc breakdown in vacuum circuit breakers
MATSUDA et al. Industrial Aspects of Ion-Implantation Equipment and Ion Beam Generation
Nagao et al. Development of Plasma Flood Gun for Gen 5.5 Implanter
KR20070017868A (ko) 이온주입장치
Mack et al. Particle generation in ion implanters
JPH06295700A (ja) イオン注入装置における帯電防止方法
JPH03230466A (ja) イオン注入装置