TW202022229A - Micro electrical-mechanical pump module - Google Patents

Micro electrical-mechanical pump module Download PDF

Info

Publication number
TW202022229A
TW202022229A TW107143741A TW107143741A TW202022229A TW 202022229 A TW202022229 A TW 202022229A TW 107143741 A TW107143741 A TW 107143741A TW 107143741 A TW107143741 A TW 107143741A TW 202022229 A TW202022229 A TW 202022229A
Authority
TW
Taiwan
Prior art keywords
common electrode
mems
electrodes
electrically connected
electrode
Prior art date
Application number
TW107143741A
Other languages
Chinese (zh)
Other versions
TWI763955B (en
Inventor
莫皓然
余榮侯
張正明
戴賢忠
廖文雄
黃啟峰
韓永隆
蔡長諺
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to TW107143741A priority Critical patent/TWI763955B/en
Publication of TW202022229A publication Critical patent/TW202022229A/en
Application granted granted Critical
Publication of TWI763955B publication Critical patent/TWI763955B/en

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Micromachines (AREA)

Abstract

A micro electrical-mechanical pump module is disclosed and comprises a microprocessor and a micro electrical-mechanical chip. The microprocessor sends a control signal. The micro electrical-mechanical chip electrically connects to the microprocessor and comprises a chip main body, plural micro electrical-mechanical pumps plural connecting electrodes and at least one common electrode. The chip main body is a rectangular structure and comprises a longer side. The plural micro electrical-mechanical pumps are disposed on the chip main body and each of them comprises a first electrode and a second electrode. The plural connecting electrodes are disposed on the chip main body, located nearby the longer side, and respectively electrically connect to the first electrodes of the plural micro electrical-mechanical pumps. The at least one common electrode is disposed on the chip main body, located nearby the longer side, and electrically connected to the second electrodes of the plural micro electrical-mechanical pumps. The microprocessor electrically connects to the plural connecting electrodes and the at least one common electrode, so as to transmit the control signal to the plural micro electrical-mechanical pumps.

Description

微機電泵模組MEMS Pump Module

本案係關於一種微機電泵模組,尤指一種利用共電極的設置來減少微處理器的接點,進而簡化微機電泵接點與佈線之微機電泵模組。This case is about a MEMS pump module, especially a MEMS pump module that uses the arrangement of common electrodes to reduce the contacts of the microprocessor, thereby simplifying the contacts and wiring of the MEMS pump.

隨著科技的日新月異,流體輸送裝置的應用亦愈來愈多元化,舉凡工業應用、生醫應用、醫療保健、電子散熱等等,甚至近來熱門的穿戴式裝置皆可見它的踨影,可見傳統的泵浦已漸漸有朝向裝置微小化的趨勢,但傳統的泵浦難以將尺寸縮小至公釐等級,故目前的微型流體輸送裝置僅能使用壓電泵結構來作為微型流體傳輸裝置。With the rapid development of science and technology, the applications of fluid delivery devices are becoming more and more diversified. For example, industrial applications, biomedical applications, medical care, electronic heat dissipation, etc., and even the recent popular wearable devices can be seen in its shadow and tradition. The pump has gradually become a trend toward miniaturization of the device, but the traditional pump is difficult to reduce the size to the millimeter level, so the current micro fluid delivery device can only use the piezoelectric pump structure as a micro fluid delivery device.

而微機電泵浦雖可將泵浦的體積微小化至微米等級,但微米等級的微機電泵浦會因為過小的體積而限制流體傳輸量,故需要多個微機電泵浦搭配使用,請參考第1圖所示,目前的微機電泵模組皆是透過一個高階微處理器1做個別控制,但高階微處理器1本身成本高,且每個微機電泵2都必須要兩個微處理器接腳11連接,增加了高階微處理器1的成本,導致微機電泵模組成本居高不下,難以普及,因此,如何降低微機電泵模組的驅動端的成本為目前微機電泵首要克服的難關。Although the MEMS pump can miniaturize the pump volume to the micron level, the micron-level MEMS pump will limit the fluid transmission due to the too small volume, so multiple MEMS pumps are required for use. Please refer to As shown in Figure 1, the current MEMS pump modules are individually controlled by a high-end microprocessor 1, but the high-end microprocessor 1 itself is expensive, and each MEMS pump 2 requires two microprocessors The connection of pin 11 of the device increases the cost of the high-end microprocessor 1, resulting in the high cost of the MEMS pump module, which is difficult to popularize. Therefore, how to reduce the cost of the drive end of the MEMS pump module is the first to overcome at present Difficulties.

本案之主要目的在於提供一種微機電泵模組, 透過共電極來減少微處理器的接點,減少微機電泵模組的接點及佈線,進一步簡化微機電泵模組。The main purpose of this case is to provide a MEMS pump module that reduces the contacts of the microprocessor through the common electrode, reduces the contacts and wiring of the MEMS pump module, and further simplifies the MEMS pump module.

為達上述目的,本案之較廣義實施態樣為提供一種微機電泵模組,包含:一微處理器,發出一控制訊號;一微機電晶片,電連接該微處理器,該微機電晶片包含:一晶片本體,係一長方形態樣,具有一長邊;複數個微機電泵,設置於該晶片本體,且分別具有一第一電極及一第二電極;複數個連接電極,設置於該晶片本體且鄰近該長邊,該些連接電極分別電連接該些微機電泵的該第一電極;以及至少一共電極,設置於該晶片本體且鄰近該長邊,該至少一共電極電連接該些微機電泵的該第二電極;其中,該微處理器分別電連接該些連接電極及該至少一共電極,以傳輸該控制訊號至該些微機電泵。In order to achieve the above purpose, the broader implementation aspect of this case is to provide a MEMS pump module, which includes: a microprocessor that sends out a control signal; a MEMS chip that is electrically connected to the microprocessor, and the MEMS chip includes :A chip body is a rectangular shape with a long side; a plurality of microelectromechanical pumps are arranged on the chip body, and respectively have a first electrode and a second electrode; a plurality of connecting electrodes are arranged on the chip The main body is adjacent to the long side, and the connection electrodes are respectively electrically connected to the first electrodes of the MEMS pumps; and at least one common electrode is disposed on the chip body and adjacent to the long side, and the at least one common electrode is electrically connected to the MEMS pumps The second electrode; wherein the microprocessor is electrically connected to the connecting electrodes and the at least one common electrode to transmit the control signal to the MEMS pumps.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。Some typical embodiments embodying the features and advantages of this case will be described in detail in the description in the following paragraphs. It should be understood that this case can have various changes in different forms, and it does not deviate from the scope of this case, and the descriptions and illustrations therein are essentially used for explanation, not for limiting this case.

請參考第2圖,第2圖為本案微機電泵模組的示意圖。微型壓電泵模組100包含:一微處理器3、一微機電晶片4,微機電晶片4電連接微處理器3,且微機電晶片4包含有一晶片本體41、複數個微機電泵42、至少一共電極43以及複數個連接電極44,晶片本體41係一長方形態樣具有一長邊41a及一短邊41b,微機電泵42皆設置晶片本體41上,且每個微機電泵42分別具有一第一電極42a及一第二電極42b,而至少一共電極43亦設置於晶片本體41且鄰近長邊41a,並且電連接所有微機電泵42的第二電極42b,該些連接電極44設置於晶片本體41且鄰近長邊41a,該些連接電極44分別電連接該些微機電泵42的第一電極42a,其中,所有連接電極44與晶片本體41上的至少一共電極43皆分別電連接至微處理器3,來接收微處理器3所發出的控制訊號,此外,第2圖同樣為本案的第一實施例示意圖,至少一共電極43的數量包含一第一共電極43a,本實施例的共電極43數量為一個,所有的微機電泵42的第二電極42b皆電連接至第一共電極43a。Please refer to Figure 2. Figure 2 is a schematic diagram of the MEMS pump module in this case. The micro piezoelectric pump module 100 includes: a microprocessor 3, a microelectromechanical chip 4, the microelectromechanical chip 4 is electrically connected to the microprocessor 3, and the microelectromechanical chip 4 includes a chip body 41, a plurality of microelectromechanical pumps 42, At least one common electrode 43 and a plurality of connecting electrodes 44. The chip body 41 has a rectangular shape with a long side 41a and a short side 41b. The microelectromechanical pumps 42 are arranged on the chip body 41, and each microelectromechanical pump 42 has A first electrode 42a and a second electrode 42b, and at least one common electrode 43 is also disposed on the chip body 41 and adjacent to the long side 41a, and is electrically connected to the second electrodes 42b of all the microelectromechanical pumps 42, the connecting electrodes 44 are disposed on The chip body 41 is adjacent to the long side 41a. The connecting electrodes 44 are respectively electrically connected to the first electrodes 42a of the MEMS pumps 42, wherein all the connecting electrodes 44 and at least one common electrode 43 on the chip body 41 are respectively electrically connected to the micro The processor 3 receives the control signal sent by the microprocessor 3. In addition, Figure 2 is also a schematic diagram of the first embodiment of the present invention. At least the number of common electrodes 43 includes a first common electrode 43a. The number of electrodes 43 is one, and the second electrodes 42b of all the MEMS pumps 42 are electrically connected to the first common electrode 43a.

請參考第3圖所示,第3圖為本案微機電泵模組之微機電晶片的第二實施例示意圖,至少一共電極43包含有第一共電極43a及一第二共電極43b,前述的複數個微機電泵42依位置區分為一第一微機電泵群組421及一第二微機電泵群組422,其中位於第一微機電泵群組421內的微機電泵42其第二電極42b皆電連接至第一共電極43a,而位於第二微機電泵群組422內的微機電泵42其第二電極42b皆電連接至第二共電極43b,藉以達到分區控制的效果,本實施例之共電極43的數量為兩個。Please refer to Figure 3. Figure 3 is a schematic diagram of the second embodiment of the MEMS chip of the MEMS pump module in this case. At least one common electrode 43 includes a first common electrode 43a and a second common electrode 43b. The plurality of MEMS pumps 42 are divided into a first MEMS pump group 421 and a second MEMS pump group 422 according to their positions. The MEMS pump 42 located in the first MEMS pump group 421 has its second electrode 42b are electrically connected to the first common electrode 43a, and the second electrode 42b of the MEMS pump 42 in the second MEMS pump group 422 is electrically connected to the second common electrode 43b, so as to achieve the effect of zone control. The number of common electrodes 43 in the embodiment is two.

請參考第4圖所示,第4圖為本案微機電泵模組之微機電晶片的第三實施例示意圖,第三實施例與第二實施例相同共電極43皆為兩個,故共電極43具有第一共電極43a與第二共電極43b,第一共電極43a與第二共電極43b分開設置於晶片本體41的兩側,且第一共電極43a與第二共電極43b電連接,且前述之複數個微機電泵42的第二電極42b同時電連接位於兩側的第一共電極43a與第二共電極43b,第三實施例可降低微機電泵42的第二電極42b與共電極43之間的阻抗,降低距離共電極43較遠的第二電極42b的電力損耗。Please refer to Figure 4. Figure 4 is a schematic diagram of the third embodiment of the MEMS chip of the MEMS pump module in this case. The third embodiment is the same as the second embodiment. There are two common electrodes 43, so the common electrode 43 has a first common electrode 43a and a second common electrode 43b. The first common electrode 43a and the second common electrode 43b are separately arranged on both sides of the wafer body 41, and the first common electrode 43a and the second common electrode 43b are electrically connected. In addition, the second electrodes 42b of the aforementioned plurality of MEMS pumps 42 are simultaneously electrically connected to the first common electrode 43a and the second common electrode 43b on both sides. The third embodiment can reduce the second electrode 42b of the MEMS pump 42 and the common electrode. The impedance between the electrodes 43 reduces the power loss of the second electrode 42b farther from the common electrode 43.

請參考第5圖所示,第5圖為本案微機電泵模組之微機電晶片的第四實施例示意圖,至少一共電極43包含有第一共電極43a、第二共電極43b、一第三共電極43c及一第四共電極43d,第一共電極43a與第三共電極43c間隔設置於晶片本體41的一側,第二共電極43b與第四共電極43d間隔設置於晶片本體41的另一側,而本實施例中,前述之複數個微機電泵42依位置區域區分為第一微機電泵群組421、第二微機電泵群組422、一第三微機電泵群組423及一第四微機電泵群組424,第一微機電泵群組421為鄰近第一共電極43a的微機電泵42所組成,第一共電極43a供位於第一微機電泵群組421內所有的微機電泵42的第二電極42b電連接;第二微機電泵群組422為鄰近第二共電極43b的微機電泵42所組成,第二共電極43b供位於第二微機電泵群422內所有的微機電泵42的第二電極42b電連接;第三微機電泵群組423為鄰近第三共電極43c的微機電泵42所組成,第三共電極43c供位於第三微機電泵群組423內所有的微機電泵42的第二電極42b電連接;第四微機電泵群組424為鄰近第四共電極43d的微機電泵42所組成,第四共電極43d供位於第四微機電泵群組424內所有的微機電泵42其第二電極42b電連接,藉以達到分區控制的效果。Please refer to Figure 5. Figure 5 is a schematic diagram of the fourth embodiment of the MEMS chip of the MEMS pump module in this case. At least one common electrode 43 includes a first common electrode 43a, a second common electrode 43b, and a third A common electrode 43c and a fourth common electrode 43d. The first common electrode 43a and the third common electrode 43c are spaced apart on one side of the wafer body 41, and the second common electrode 43b and the fourth common electrode 43d are spaced apart on the wafer body 41. On the other hand, in this embodiment, the aforementioned plurality of MEMS pumps 42 are divided into a first MEMS pump group 421, a second MEMS pump group 422, and a third MEMS pump group 423 according to location areas. And a fourth microelectromechanical pump group 424. The first microelectromechanical pump group 421 is composed of microelectromechanical pumps 42 adjacent to the first common electrode 43a, and the first common electrode 43a is provided in the first microelectromechanical pump group 421 The second electrodes 42b of all the microelectromechanical pumps 42 are electrically connected; the second microelectromechanical pump group 422 is composed of microelectromechanical pumps 42 adjacent to the second common electrode 43b, and the second common electrode 43b is provided in the second microelectromechanical pump group The second electrodes 42b of all the microelectromechanical pumps 42 in 422 are electrically connected; the third microelectromechanical pump group 423 is composed of microelectromechanical pumps 42 adjacent to the third common electrode 43c, and the third common electrode 43c is provided in the third microelectromechanical pump. The second electrodes 42b of all the microelectromechanical pumps 42 in the pump group 423 are electrically connected; the fourth microelectromechanical pump group 424 is composed of the microelectromechanical pumps 42 adjacent to the fourth common electrode 43d, and the fourth common electrode 43d is provided in the fourth common electrode 43d. The second electrodes 42b of all the microelectromechanical pumps 42 in the four microelectromechanical pump group 424 are electrically connected to achieve the effect of zone control.

請參考第6圖所示,第6圖為本案微機電泵模組之微機電晶片的第五實施例示意圖,本實施例與第四實施例中相同具有第一共電極43a、第二共電極43b、第三共電極43c及第四共電極43d,且其設置位置也相同,差異點為本實施例中第一共電極43a電連接第二共電極43b,第三共電極43c電連接第四共電極43d,並將前述之複數個微機電泵42區分為第一微機電泵群組421及第二微機電泵群組422,第一微機電泵群組421為鄰近第一共電極43a或鄰近第二共電極43b的微機電泵42所組成,第二微機電泵群組422為鄰近第三共電極43c或鄰近第四共電極43d的微機電泵42所組成,藉此來達到分區控制的功效,且減少共電極43與第二電極42b之間的距離,降低電力傳輸的損耗。Please refer to Figure 6. Figure 6 is a schematic diagram of the fifth embodiment of the MEMS chip of the MEMS pump module in this case. This embodiment has the same first common electrode 43a and second common electrode as in the fourth embodiment. 43b, the third common electrode 43c, and the fourth common electrode 43d, and their positions are also the same. The difference is that the first common electrode 43a is electrically connected to the second common electrode 43b in this embodiment, and the third common electrode 43c is electrically connected to the fourth common electrode. Common electrode 43d, and the aforementioned plurality of MEMS pumps 42 are divided into a first MEMS pump group 421 and a second MEMS pump group 422. The first MEMS pump group 421 is adjacent to the first common electrode 43a or The MEMS pumps 42 adjacent to the second common electrode 43b are formed, and the second MEMS pump group 422 is formed by the MEMS pumps 42 adjacent to the third common electrode 43c or the fourth common electrode 43d, thereby achieving zone control. It also reduces the distance between the common electrode 43 and the second electrode 42b and reduces the loss of power transmission.

請參考第7圖所示,第7圖為本案微機電泵模組之微機電晶片的第六實施例示意圖,本實施例與第四實施例中具有相同具有第一共電極43a、第二共電極43b、第三共電極43c及第四共電極43d,且其設置位置也相同,差異點為本實施例中,第一共電極43a、第二共電極43b、第三共電極43c與第四共電極43d皆相互電連接,使的前述之複數個微機電泵42的第二電極42b得以電連接距離其較近的共電極43,如鄰近第一共電極43a的微機電泵42的第二電極42b便電連接至第一共電極43a,鄰近第二共電極43b的微機電泵42的第二電極42b便電連接至第二共電極43b,以此類推,共電極43供給位置相近的微機電泵42,可降低各微機電泵42於傳輸電力的損耗。Please refer to Figure 7. Figure 7 is a schematic diagram of the sixth embodiment of the MEMS chip of the MEMS pump module in this case. This embodiment and the fourth embodiment have the same first common electrode 43a and second common electrode. The electrode 43b, the third common electrode 43c, and the fourth common electrode 43d are arranged at the same position. The difference is that in this embodiment, the first common electrode 43a, the second common electrode 43b, the third common electrode 43c and the fourth The common electrodes 43d are all electrically connected to each other, so that the second electrodes 42b of the aforementioned plural MEMS pumps 42 can be electrically connected to the common electrodes 43 that are closer to them, such as the second electrodes of the MEMS pumps 42 adjacent to the first common electrode 43a. The electrode 42b is electrically connected to the first common electrode 43a, and the second electrode 42b of the microelectromechanical pump 42 adjacent to the second common electrode 43b is electrically connected to the second common electrode 43b, and so on, the common electrode 43 supplies the microelectrodes at similar positions. The electromechanical pump 42 can reduce the power loss of each microelectromechanical pump 42 in transmission.

請同時參考第8A圖及第8B圖所示,第8A圖為本案微機電泵的電連接示意圖,第8B圖為本案微處理器輸出之控制訊號第一實施例示意圖;微機電泵42更包含有一壓電件42c,第一電極42a及第二電極42b將電壓傳遞至壓電件42c,供壓電件42c因壓電效應產生形變,進而改變微機電泵42的內部壓力,以用來輸送流體, 微機電泵42的第一電極42a通過連接電極44電連接至微處理器3(如第二圖所示),第二電極42b通過共電極43電連接至微處理器3(如第二圖所示),其中,微處理器3所輸出的控制訊號包含有一定電壓及一變電壓,於本實施例中,變電壓可為在一第一電壓及一第二電壓間切換之電壓,且該定電壓的電壓值介於第一電壓的電壓值與第二電壓的電壓值之間,而定電壓的電壓值亦可為第一電壓的電壓值及第二電壓的電壓值其中間值±10%,舉例來說,當第一電壓為1.5V,第二電壓為-1.5V時,定電壓為0V,第一電壓為3V,第二電壓為0V時,定電壓為1.5V,使得微機電泵42的第二電極42b接受固定電壓,第一電極42a接受持續變化的第一電壓與第二電壓,令壓電件42c會因第一電極42a與第二電極42b之間持續改變的電壓差產生形變,用以傳輸流體。此外,請繼續參考第8C圖及第8D圖,第8C圖為本案微處理器輸出之控制訊號第二實施例示意圖,第8D圖為本案微處理器輸出之控制訊號第三實施例示意圖,變電壓亦可以是介於第一電壓與第二電壓之間連續變化之電壓,控制訊號除了第一實施例的方波外,亦可使用三角波(圖8C)及正弦波(圖8D)。Please refer to Fig. 8A and Fig. 8B at the same time. Fig. 8A is a schematic diagram of the electrical connection of the micro-electromechanical pump of the present invention, and Fig. 8B is a schematic diagram of the first embodiment of the control signal output by the microprocessor of the present invention; There is a piezoelectric element 42c. The first electrode 42a and the second electrode 42b transfer voltage to the piezoelectric element 42c, and the piezoelectric element 42c is deformed due to the piezoelectric effect, thereby changing the internal pressure of the microelectromechanical pump 42 for transport For fluid, the first electrode 42a of the MEMS pump 42 is electrically connected to the microprocessor 3 through the connecting electrode 44 (as shown in the second figure), and the second electrode 42b is electrically connected to the microprocessor 3 through the common electrode 43 (as the second As shown in the figure), the control signal output by the microprocessor 3 includes a certain voltage and a variable voltage. In this embodiment, the variable voltage can be a voltage switched between a first voltage and a second voltage. And the voltage value of the constant voltage is between the voltage value of the first voltage and the voltage value of the second voltage, and the voltage value of the constant voltage can also be the middle value of the voltage value of the first voltage and the voltage value of the second voltage ±10%, for example, when the first voltage is 1.5V and the second voltage is -1.5V, the constant voltage is 0V, the first voltage is 3V, and the second voltage is 0V, the constant voltage is 1.5V, so The second electrode 42b of the MEMS pump 42 receives a fixed voltage, and the first electrode 42a receives continuously changing first and second voltages, so that the piezoelectric element 42c will be continuously changed due to the continuous change between the first electrode 42a and the second electrode 42b. The voltage difference produces deformation, which is used to transfer fluid. In addition, please continue to refer to Figures 8C and 8D. Figure 8C is a schematic diagram of the second embodiment of the control signal output by the microprocessor of the present invention, and Figure 8D is a schematic diagram of the third embodiment of the control signal output by the microprocessor of the present project. The voltage can also be a voltage that continuously changes between the first voltage and the second voltage. In addition to the square wave of the first embodiment, the control signal can also use a triangular wave (Figure 8C) and a sine wave (Figure 8D).

綜上所述,本案提供一種微機電泵模組,讓微處理器經由共電極將定電壓傳遞至微機電泵的第二電極,再傳輸變電壓至微機電泵的第一電極,僅需調變第一電極上的電壓,便可改變第一電極與第二電極之間的電壓差,成功驅動微機電泵的壓電件,使其作動來傳輸流體,透過共電極的設置可大幅減少微處理器的接腳,降低微處理器的成本的情況下,仍可有效地控制複數個微機電泵。To sum up, this project provides a MEMS pump module, which allows the microprocessor to transfer a constant voltage to the second electrode of the MEMS pump through the common electrode, and then transfer the variable voltage to the first electrode of the MEMS pump. Changing the voltage on the first electrode can change the voltage difference between the first electrode and the second electrode, and successfully drive the piezoelectric element of the MEMS pump to make it actuate to transfer fluid. The arrangement of the common electrode can greatly reduce micro The pins of the processor can effectively control multiple MEMS pumps while reducing the cost of the microprocessor.

本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case can be modified in many ways by those who are familiar with this technology, but it is not deviated from the protection of the scope of the patent application.

100:微機電泵模組1:高階微處理器11:微處理器接腳2:微機電泵3:微處理器4:微機電晶片41:晶片本體41a:長邊41b:短邊42:微機電泵42a:第一電極42b:第二電極42c:壓電件421:第一微機電泵群組422:第二微機電泵群組423:第三微機電泵群組424:第四微機電泵群組43:共電極43a:第一共電極43b:第二共電極43c:第三共電極43d:第四共電極44:連接電極100: MEMS pump module 1: high-end microprocessor 11: microprocessor pin 2: MEMS pump 3: microprocessor 4: MEMS chip 41: chip body 41a: long side 41b: short side 42: micro Electromechanical pump 42a: first electrode 42b: second electrode 42c: piezoelectric element 421: first MEMS pump group 422: second MEMS pump group 423: third MEMS pump group 424: fourth MEMS Pump group 43: common electrode 43a: first common electrode 43b: second common electrode 43c: third common electrode 43d: fourth common electrode 44: connecting electrode

第1圖為先前技術中微機電泵模組的示意圖。 第2圖為本案微機電泵模組的示意圖。 第3圖為本案微機電泵模組之微機電晶片的第二實施例示意圖。 第4圖為本案微機電泵模組之微機電晶片的第三實施例示意圖。 第5圖為本案微機電泵模組之微機電晶片的第四實施例示意圖。 第6圖為本案微機電泵模組之微機電晶片的第五實施例示意圖。 第7圖為本案微機電泵模組之微機電晶片的第六實施例示意圖。 第8A圖為本案微機電泵的電連接示意圖。 第8B圖為本案微處理器輸出之控制訊號的第一實施例示意圖。 第8C圖為本案微處理器輸出之控制訊號的第二實施例示意圖。 第8D圖為本案微處理器輸出之控制訊號的第三實施例示意圖。Fig. 1 is a schematic diagram of a MEMS pump module in the prior art. Figure 2 is a schematic diagram of the MEMS pump module of this case. Figure 3 is a schematic diagram of the second embodiment of the MEMS chip of the MEMS pump module in this case. Figure 4 is a schematic diagram of the third embodiment of the MEMS chip of the MEMS pump module of the present invention. Figure 5 is a schematic diagram of the fourth embodiment of the MEMS chip of the MEMS pump module in this case. Figure 6 is a schematic diagram of the fifth embodiment of the MEMS chip of the MEMS pump module of the present invention. Figure 7 is a schematic diagram of the sixth embodiment of the MEMS chip of the MEMS pump module of the present invention. Figure 8A is a schematic diagram of the electrical connection of the MEMS pump in this case. Figure 8B is a schematic diagram of the first embodiment of the control signal output by the microprocessor of the present invention. Figure 8C is a schematic diagram of the second embodiment of the control signal output by the microprocessor of the present invention. Figure 8D is a schematic diagram of the third embodiment of the control signal output by the microprocessor of the present invention.

100:微機電泵模組 100: MEMS pump module

3:微處理器 3: Microprocessor

4:微機電晶片 4: MEMS chip

41:晶片本體 41: chip body

41a:長邊 41a: Long side

41b:短邊 41b: short side

42:微機電泵 42: MEMS pump

42a:第一電極 42a: first electrode

42b:第二電極 42b: second electrode

43:共電極 43: common electrode

43a:第一共電極 43a: first common electrode

44:連接電極 44: Connect electrode

Claims (10)

一種微機電泵模組,包含: 一微處理器,發出一控制訊號; 一微機電晶片,電連接該微處理器,該微機電晶片包含:        一晶片本體,係一長方形態樣,具有一長邊;        複數個微機電泵,設置於該晶片本體,且分別具有一第一電極及一第二電極;        複數個連接電極,設置於該晶片本體且鄰近該長邊,該些連接電極分別電連接該些微機電泵的該第一電極;以及        至少一共電極,設置於該晶片本體且鄰近該長邊,該至少一共電極電連接該些微機電泵的該第二電極;其中,該微處理器分別電連接該些連接電極及該至少一共電極,以傳輸該控制訊號至該些微機電泵。A micro-electro-mechanical pump module includes: a microprocessor that sends out a control signal; a micro-electro-mechanical chip that is electrically connected to the microprocessor, and the micro-electro-mechanical chip includes: a chip body, which has a rectangular shape and has a long A plurality of microelectromechanical pumps are arranged on the chip body, and each has a first electrode and a second electrode; A plurality of connection electrodes are arranged on the chip body and adjacent to the long side, and the connection electrodes are respectively electrically connected The first electrodes of the MEMS pumps; and at least one common electrode disposed on the chip body and adjacent to the long side, and the at least one common electrode is electrically connected to the second electrodes of the MEMS pumps; wherein the microprocessor is electrically connected to The connecting electrodes and the at least one common electrode are connected to transmit the control signal to the MEMS pumps. 如申請專利範圍第1項所述之微機電泵模組,其中該至少一共電極包含一第一共電極。According to the MEMS pump module described in claim 1, wherein the at least one common electrode includes a first common electrode. 如申請專利範圍第2項所述之微機電泵模組,其中該些微機電泵的該第二電極電連接該第一共電極。For the MEMS pump module described in item 2 of the scope of patent application, the second electrodes of the MEMS pumps are electrically connected to the first common electrode. 如申請專利範圍第2項所述之微機電泵模組,其中該至少一共電極更包含一第二共電極。According to the MEMS pump module described in item 2 of the scope of patent application, the at least one common electrode further includes a second common electrode. 如申請專利範圍第4項所述之微機電泵模組,其中該些微機電泵可區分為一第一微機電泵群組及一第二微機電泵群組,該第一微機電泵群組的該些第二電極電連接該第一共電極,該第二微機電泵群組的該些第二電極電連接該第二共電極。For example, the MEMS pump module described in item 4 of the scope of patent application, wherein the MEMS pumps can be divided into a first MEMS pump group and a second MEMS pump group. The first MEMS pump group The second electrodes are electrically connected to the first common electrode, and the second electrodes of the second MEMS pump group are electrically connected to the second common electrode. 如申請專利範圍第4項所述之微機電泵模組,其中該些微機電泵的第二電極電連接該第一共電極與該第二共電極。The MEMS pump module described in item 4 of the scope of patent application, wherein the second electrodes of the MEMS pumps are electrically connected to the first common electrode and the second common electrode. 如申請專利範圍第4項所述之微機電泵模組,其中該至少一共電極更包含一第三共電極及一第四共電極。According to the MEMS pump module described in claim 4, the at least one common electrode further includes a third common electrode and a fourth common electrode. 如申請專利範圍第7項所述之微機電泵模組,其中該些微機電泵可區分為一第一微機電泵群組、一第二微機電泵群組、一第三微機電泵群組及一第四微機電泵群組,該第一微機電泵群組之該些第二電極電連接該第一共電極,該第二微機電泵群組之該些第二電極電連接該第二共電極,該第三微機電泵群組之該些第二電極電連接該第三共電極,該第四微機電泵群組之該些第二電極電連接該第四共電極。Such as the MEMS pump module described in item 7 of the scope of patent application, wherein the MEMS pumps can be divided into a first MEMS pump group, a second MEMS pump group, and a third MEMS pump group And a fourth microelectromechanical pump group, the second electrodes of the first microelectromechanical pump group are electrically connected to the first common electrode, and the second electrodes of the second microelectromechanical pump group are electrically connected to the first common electrode Two common electrodes, the second electrodes of the third MEMS pump group are electrically connected to the third common electrode, and the second electrodes of the fourth MEMS pump group are electrically connected to the fourth common electrode. 如申請專利範圍第7項所述之微機電泵模組,其中該些微機電泵可區分為一第一微機電泵群組及一第二微機電泵群組,該第一微機電泵群組的該些第二電極電連接該第一共電極與該第二共電極,該第二微機電泵群組的該些第二電極電連接該第三共電極與該第四共電極。For example, the MEMS pump module described in item 7 of the scope of patent application, wherein the MEMS pumps can be divided into a first MEMS pump group and a second MEMS pump group. The first MEMS pump group The second electrodes are electrically connected to the first common electrode and the second common electrode, and the second electrodes of the second MEMS pump group are electrically connected to the third common electrode and the fourth common electrode. 如申請專利範圍第7項所述之微機電泵模組,其中該些微機電泵的該第二電極電連接該第一共電極、該第二共電極、該第三共電極及該第四共電極。For example, the MEMS pump module described in item 7 of the scope of patent application, wherein the second electrodes of the MEMS pumps are electrically connected to the first common electrode, the second common electrode, the third common electrode and the fourth common electrode. electrode.
TW107143741A 2018-12-05 2018-12-05 Micro electrical-mechanical pump module TWI763955B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107143741A TWI763955B (en) 2018-12-05 2018-12-05 Micro electrical-mechanical pump module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143741A TWI763955B (en) 2018-12-05 2018-12-05 Micro electrical-mechanical pump module

Publications (2)

Publication Number Publication Date
TW202022229A true TW202022229A (en) 2020-06-16
TWI763955B TWI763955B (en) 2022-05-11

Family

ID=72175631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143741A TWI763955B (en) 2018-12-05 2018-12-05 Micro electrical-mechanical pump module

Country Status (1)

Country Link
TW (1) TWI763955B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193108A (en) * 2016-04-20 2017-10-26 東芝テック株式会社 Ink jet head and ink jet recording device

Also Published As

Publication number Publication date
TWI763955B (en) 2022-05-11

Similar Documents

Publication Publication Date Title
US11454232B2 (en) Micro-electromechanical systems pump
TWI710700B (en) Micro electrical-mechanical pump module
TWM577068U (en) Micro electrical-mechanical pump module
TWM577067U (en) Micro electrical-mechanical pump module
TWM576619U (en) Micro electrical-mechanical pump module
TWI763955B (en) Micro electrical-mechanical pump module
TWI790323B (en) Micro electrical-mechanical pump module
TWI690658B (en) Micro electrical-mechanical pump module
TWI790324B (en) Micro electrical-mechanical pump module
TW202022227A (en) Micro electrical-mechanical pump module
TWI726281B (en) Micro-electromechanical system pump module
CN209925181U (en) Micro-electromechanical pump module
TWM577066U (en) Micro electrical-mechanical pump module
TWM576618U (en) Micro electrical-mechanical pump module
TWM576205U (en) Micro electrical-mechanical pump module
TWM580627U (en) Micro-electromechanical system pump module
CN111271266B (en) Micro-electromechanical pump module
CN111271264B (en) Micro-electromechanical pump module
CN111271265B (en) Microcomputer electric pump module
CN111271269B (en) Micro-electromechanical pump module
CN111271267B (en) Micro-electromechanical pump module
CN111271268B (en) Micro-electromechanical pump module
CN111502968B (en) Microcomputer electric pump module
TWI696755B (en) Micro-electromechanical system pump module
TWI720876B (en) Driving circuit system for driving piezoelectric pump