TW202021808A - Electroluminescence fiber - Google Patents

Electroluminescence fiber Download PDF

Info

Publication number
TW202021808A
TW202021808A TW107144385A TW107144385A TW202021808A TW 202021808 A TW202021808 A TW 202021808A TW 107144385 A TW107144385 A TW 107144385A TW 107144385 A TW107144385 A TW 107144385A TW 202021808 A TW202021808 A TW 202021808A
Authority
TW
Taiwan
Prior art keywords
parts
weight
electroluminescent
layer
microns
Prior art date
Application number
TW107144385A
Other languages
Chinese (zh)
Other versions
TWI704053B (en
Inventor
薛羽利
吳政樑
曾勝茂
Original Assignee
財團法人紡織產業綜合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人紡織產業綜合研究所 filed Critical 財團法人紡織產業綜合研究所
Priority to TW107144385A priority Critical patent/TWI704053B/en
Publication of TW202021808A publication Critical patent/TW202021808A/en
Application granted granted Critical
Publication of TWI704053B publication Critical patent/TWI704053B/en

Links

Images

Abstract

An electroluminescence fiber includes a linear center electrode, a dielectric layer, an electroluminescence layer, and a transparent conductive layer. The dielectric layer wraps the linear center electrode. The electroluminescence layer wraps the dielectric layer, and includes 3 parts by weight to 7 parts by weight of Cu-containing ZnS phosphor, 0.05 parts by weight to 0.8 parts by weight of metal oxide, 0.1 parts by weight to 0.7 parts by weight of amino alcohol compound, 0.095 parts by weight to 0.24 parts by weight of alkali metal carbonates, and 2.0 parts by weight to 2.5 parts by weight of PU resin. The metal oxide includes ZnO, TiO2, BaTiO3, MnO2, and the combination thereof. The transparent conductive layer wraps the electroluminescence layer.

Description

電致發光纖維 Electroluminescent fiber

本發明是有關於一種電致發光纖維,且特別是關於一種包括電致發光層的電致發光纖維。 The present invention relates to an electroluminescent fiber, and in particular to an electroluminescent fiber including an electroluminescent layer.

電致發光(electroluminescence,EL)光源已廣泛的運用在各種顯示照明裝置中。在現有的電致發光元件中,通常需施加高電壓才可達到高發光亮度。然而,使用高電壓的電致發光元件存在疑慮與危險。 Electroluminescence (EL) light sources have been widely used in various display lighting devices. In existing electroluminescent devices, high voltage is usually required to achieve high luminous brightness. However, there are doubts and dangers in using high-voltage electroluminescent elements.

此外,為了提高亮度或出光率,現有的線型電致發光元件會在中心電極外多鍍一或多層功能層,例如,強反光層、內電子發射層或外電子發射層等等。但此方法使製造程序複雜化,導致成本及線體直徑增加,因而降低了線型電致發光元件的使用範圍。因此,需要一種新穎的電致發光元件以解決上述問題。 In addition, in order to improve the brightness or light extraction rate, the existing linear electroluminescent device will be coated with one or more functional layers outside the center electrode, such as a strong light reflecting layer, an inner electron emission layer, or an outer electron emission layer. However, this method complicates the manufacturing process, increases the cost and the diameter of the wire body, and thus reduces the application range of the linear electroluminescent element. Therefore, a novel electroluminescent element is needed to solve the above-mentioned problems.

本揭示內容提供一種電致發光纖維,包括線狀中心電極、介電層、電致發光層及透明導電層。介電層包覆線狀中心電極。電致發光層包覆介電層,且電致發光層包括 3重量份至7重量份的含銅硫化鋅發光粉、0.05重量份至0.8重量份的金屬氧化物、0.1重量份至0.7重量份的胺醇類化合物、0.095重量份至0.24重量份的鹼金屬碳酸鹽、以及2.0重量份至2.5重量份的PU樹脂。金屬氧化物包括氧化鋅(ZnO)、二氧化鈦(TiO2)、鈦酸鋇(BaTiO3)、二氧化錳(MnO2)或其組合。透明導電層包覆電致發光層。 The present disclosure provides an electroluminescent fiber, which includes a linear center electrode, a dielectric layer, an electroluminescent layer, and a transparent conductive layer. The dielectric layer covers the linear center electrode. The electroluminescent layer covers the dielectric layer, and the electroluminescent layer includes 3 parts by weight to 7 parts by weight of copper-containing zinc sulfide luminescent powder, 0.05 parts by weight to 0.8 parts by weight of metal oxide, and 0.1 parts by weight to 0.7 parts by weight The amine alcohol compound, 0.095 parts by weight to 0.24 parts by weight of alkali metal carbonate, and 2.0 parts by weight to 2.5 parts by weight of PU resin. The metal oxide includes zinc oxide (ZnO), titanium dioxide (TiO 2 ), barium titanate (BaTiO 3 ), manganese dioxide (MnO 2 ), or a combination thereof. The transparent conductive layer covers the electroluminescent layer.

在一些實施方式中,電致發光層的厚度介於25微米至40微米的範圍內。 In some embodiments, the thickness of the electroluminescent layer is in the range of 25 to 40 microns.

在一些實施方式中,電致發光纖維的線徑介於300微米至700微米的範圍內。 In some embodiments, the wire diameter of the electroluminescent fiber ranges from 300 microns to 700 microns.

在一些實施方式中,介電層的厚度介於20微米至50微米的範圍內。 In some embodiments, the thickness of the dielectric layer ranges from 20 microns to 50 microns.

在一些實施方式中,電致發光纖維更包括保護層包覆所述透明導電層,其中所述保護層包括聚乙烯醋酸乙烯酯(EVA)或聚醋酸乙烯酯(PVAC)。 In some embodiments, the electroluminescent fiber further includes a protective layer covering the transparent conductive layer, wherein the protective layer includes polyethylene vinyl acetate (EVA) or polyvinyl acetate (PVAC).

在一些實施方式中,透明導電層包括多條奈米銀線,且每條奈米銀線的線直徑寬為50奈米至100奈米,線長為5微米至50微米。 In some embodiments, the transparent conductive layer includes a plurality of nano-silver wires, and each nano-silver wire has a wire diameter of 50 nanometers to 100 nanometers, and a wire length of 5 micrometers to 50 micrometers.

在一些實施方式中,金屬氧化物為0.1重量份至0.8重量份的氧化鋅(ZnO)。 In some embodiments, the metal oxide is 0.1 to 0.8 parts by weight of zinc oxide (ZnO).

在一些實施方式中,金屬氧化物為0.05重量份至0.3重量份的二氧化鈦(TiO2)。 In some embodiments, the metal oxide is 0.05 parts by weight to 0.3 parts by weight of titanium dioxide (TiO 2 ).

在一些實施方式中,金屬氧化物為0.24重量份至0.75重量份的鈦酸鋇(BaTiO3)。 In some embodiments, the metal oxide is 0.24 parts by weight to 0.75 parts by weight of barium titanate (BaTiO 3 ).

在一些實施方式中,金屬氧化物為0.05重量份至0.10重量份的二氧化錳(MnO2)。 In some embodiments, the metal oxide is 0.05 to 0.10 parts by weight of manganese dioxide (MnO 2 ).

100‧‧‧電致發光纖維 100‧‧‧Electroluminescent fiber

110‧‧‧線狀中心電極 110‧‧‧Linear center electrode

120‧‧‧介電層 120‧‧‧Dielectric layer

130‧‧‧電致發光層 130‧‧‧Electroluminescent layer

140‧‧‧透明導電層 140‧‧‧Transparent conductive layer

150‧‧‧保護層 150‧‧‧Protection layer

200‧‧‧薄膜電致發光裝置 200‧‧‧Thin film electroluminescence device

210‧‧‧導電層 210‧‧‧Conductive layer

220‧‧‧介電層 220‧‧‧Dielectric layer

230‧‧‧電致發光層 230‧‧‧Electroluminescent layer

240‧‧‧透明導電層 240‧‧‧Transparent conductive layer

250、260‧‧‧導線 250、260‧‧‧Wire

D1‧‧‧線徑 D1‧‧‧Wire diameter

T1、T2‧‧‧厚度 T1, T2‧‧‧thickness

當讀到隨附的圖式時,從以下詳細的敘述可充分瞭解本揭露的各方面。值得注意的是,根據工業上的標準實務,各種特徵不是按比例繪製。事實上,為了清楚的討論,各種特徵的尺寸可任意增加或減少。 When reading the accompanying drawings, you can fully understand all aspects of this disclosure from the following detailed description. It is worth noting that according to industry standard practice, various features are not drawn to scale. In fact, for clear discussion, the size of various features can be increased or decreased arbitrarily.

第1圖為根據本發明之一實施方式繪示的電致發光纖維的立體分解示意圖。 Figure 1 is a three-dimensional exploded schematic diagram of an electroluminescent fiber according to an embodiment of the present invention.

第2圖為根據本發明之一實施方式繪示的電致發光纖維的剖面示意圖。 Figure 2 is a schematic cross-sectional view of an electroluminescent fiber according to an embodiment of the present invention.

第3圖為根據本發明之一實施方式繪示的薄膜電致發光裝置的立體分解示意圖。 FIG. 3 is a three-dimensional exploded schematic diagram of a thin film electroluminescence device according to an embodiment of the present invention.

第4~6圖分別顯示本發明之一實施方式的電致發光層的能量散射光譜(EDS)。 Figures 4 to 6 respectively show the energy scattering spectrum (EDS) of the electroluminescent layer according to one embodiment of the present invention.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。並且為求清楚說明,元件之大小或厚度可能誇大顯示,並未依照原尺寸作圖。此外,為簡化圖示起見, 一些習知慣用的結構與元件在圖示中將以簡單示意的方式繪示之。 In the following, a plurality of embodiments of the present invention will be disclosed in the form of diagrams. For the sake of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are unnecessary. In addition, for clarity, the size or thickness of the component may be exaggerated, and the drawing is not based on the original size. In addition, to simplify the illustration, Some conventionally used structures and components are shown in a simple schematic manner in the figure.

在本文中使用空間相對用語,例如「下方」、「之下」、「上方」、「之上」等,這是為了便於敘述一元件或特徵與另一元件或特徵之間的相對關係,如圖中所繪示。這些空間上的相對用語的真實意義包含其他的方位。例如,當圖示上下翻轉180度時,一元件與另一元件之間的關係,可能從「下方」、「之下」變成「上方」、「之上」。此外,本文中所使用的空間上的相對敘述也應作同樣的解釋。 Spatial relative terms are used in this article, such as "below", "below", "above", "above", etc. This is to facilitate the description of the relative relationship between one element or feature and another element or feature, such as Shown in the figure. The true meaning of these relative terms in space includes other directions. For example, when the icon is turned upside down by 180 degrees, the relationship between one element and another element may change from "below" and "below" to "above" and "above". In addition, the relative narratives in space used in this article should also be interpreted in the same way.

第1圖為根據本發明之各種實施方式繪示的電致發光纖維100的立體分解示意圖。請參照第1圖,電致發光纖維100包括線狀中心電極110、介電層120、電致發光層130及透明導電層140。在各種實施方式中,線狀中心電極110包括導電材料,例如一或多條銅金屬絲,但不限於此。 FIG. 1 is a three-dimensional exploded schematic diagram of the electroluminescent fiber 100 according to various embodiments of the present invention. Please refer to FIG. 1, the electroluminescent fiber 100 includes a linear center electrode 110, a dielectric layer 120, an electroluminescent layer 130 and a transparent conductive layer 140. In various embodiments, the linear center electrode 110 includes a conductive material, such as one or more copper wires, but is not limited thereto.

如第1圖所示,介電層120包覆線狀中心電極110。在一些實施方式中,介電層120包括介電材料。在一些實施例中,介電層120是由包括PU樹脂、水及鈦酸鋇的介電層配方乾燥而形成,其中PU樹脂/水/鈦酸鋇的重量比約為12/4/15,但不限於此。在一些實施例中,介電層的密度為約4.68至5.47g/mL。 As shown in FIG. 1, the dielectric layer 120 covers the linear center electrode 110. In some embodiments, the dielectric layer 120 includes a dielectric material. In some embodiments, the dielectric layer 120 is formed by drying a dielectric layer formulation including PU resin, water and barium titanate, wherein the weight ratio of PU resin/water/barium titanate is about 12/4/15, But it is not limited to this. In some embodiments, the density of the dielectric layer is about 4.68 to 5.47 g/mL.

電致發光層130包覆介電層120。電致發光層130包括3重量份至7重量份的含銅硫化鋅發光粉、0.05重量份至0.8重量份的金屬氧化物、0.1重量份至0.7重量份的胺 醇類化合物、0.095重量份至0.24重量份的鹼金屬碳酸鹽以及2.0重量份至2.5重量份的PU樹脂。在一些實施例中,含銅硫化鋅發光粉:金屬氧化物:胺醇類化合物:鹼金屬碳酸鹽:PU樹脂的固含量重量比為5:(0.05-0.08):(0.1-0.7):(0.095-0.24):(2.0-2.5)。在一實施例中,含銅硫化鋅發光粉、金屬氧化物、胺醇類化合物、鹼金屬碳酸鹽、PU樹脂佔電致發光層130的重量百分比分別為59.6%、5.9%、5.9%、1.2%、27.4%。在一些實施例中,電致發光層130的密度例如是約2.97-3.38g/mL。 The electroluminescent layer 130 covers the dielectric layer 120. The electroluminescent layer 130 includes 3 parts by weight to 7 parts by weight of copper-containing zinc sulfide luminescent powder, 0.05 parts by weight to 0.8 parts by weight of metal oxide, and 0.1 parts by weight to 0.7 parts by weight of amine Alcohol compounds, 0.095 parts by weight to 0.24 parts by weight of alkali metal carbonate, and 2.0 parts by weight to 2.5 parts by weight of PU resin. In some embodiments, the solid content weight ratio of copper-containing zinc sulfide luminescent powder: metal oxide: amine alcohol compound: alkali metal carbonate: PU resin is 5: (0.05-0.08): (0.1-0.7): ( 0.095-0.24): (2.0-2.5). In one embodiment, the weight percentages of copper-containing zinc sulfide luminescent powder, metal oxides, amine alcohol compounds, alkali metal carbonates, and PU resins in the electroluminescent layer 130 are 59.6%, 5.9%, 5.9%, 1.2, respectively. %, 27.4%. In some embodiments, the density of the electroluminescent layer 130 is, for example, about 2.97-3.38 g/mL.

在一些實施方式中,電致發光層130是由電致發光塗料乾燥而形成。在一些實施方式中,將含銅硫化鋅發光粉、金屬氧化物及胺醇類化合物震盪混和,之後,再將上述混合物與鹼金屬碳酸鹽水溶液及PU樹脂混拌,以形成電致發光塗料。 In some embodiments, the electroluminescent layer 130 is formed by drying the electroluminescent paint. In some embodiments, the copper-containing zinc sulfide luminescent powder, the metal oxide and the amino alcohol compound are shaken and mixed, and then the above mixture is mixed with the alkali metal carbonate aqueous solution and the PU resin to form an electroluminescent coating.

在一些實施方式中,含銅硫化鋅發光粉可以是用摻雜銅的方式形成的硫化鋅發光粉,例如ZnS:Cu,且含銅硫化鋅發光粉的粒徑尺寸例如是20μm至30μm。 In some embodiments, the copper-containing zinc sulfide luminescent powder may be a zinc sulfide luminescent powder formed by doping copper, such as ZnS:Cu, and the particle size of the copper-containing zinc sulfide luminescent powder is, for example, 20 μm to 30 μm.

在一些實施方式中,金屬氧化物包括氧化鋅(ZnO)、二氧化鈦(TiO2)、鈦酸鋇(BaTiO3)、二氧化錳(MnO2)或其組合。上述金屬氧化物的導帶能量略低於硫化鋅發光粉,例如,硫化鋅發光粉導帶為-3.2eV、氧化鋅為-4.5eV、二氧化鈦為-4.2eV、鈦酸鋇為-4.2eV、二氧化錳為-6.5eV。因此,使用金屬氧化物混摻含銅硫化鋅發光粉,可以提供階梯式電荷注入方式,使能隙降低並同時提高此電 致發光層130的電容值,從而提升電致發光層130的發光強度。金屬氧化物可以直接與含銅硫化鋅發光粉混摻,而不須經過退火、燒結等製程,因此可簡化製作工序及節省成本,同時提升亮度。第4~6圖分別顯示本發明之一實施方式的電致發光層的能量散射光譜(EDS),其中第4圖為摻雜鈦酸鋇的電致發光層,第5圖為摻雜二氧化錳的電致發光層,第6圖為摻雜二氧化鈦的電致發光層。由第4~6圖可知,金屬氧化物是直接混摻於電致發光層中而沒有經過退火或燒結等高溫製程,因此電致發光層中的金屬氧化物可保有其原來的氧化態。 In some embodiments, the metal oxide includes zinc oxide (ZnO), titanium dioxide (TiO 2 ), barium titanate (BaTiO 3 ), manganese dioxide (MnO 2 ), or a combination thereof. The conduction band energy of the above metal oxide is slightly lower than that of zinc sulfide luminescent powder. For example, the conduction band of zinc sulfide luminescent powder is -3.2eV, zinc oxide is -4.5eV, titanium dioxide is -4.2eV, and barium titanate is -4.2eV, Manganese dioxide is -6.5 eV. Therefore, the use of metal oxide mixed with copper-containing zinc sulfide luminescent powder can provide a stepped charge injection method, which reduces the energy gap and increases the capacitance value of the electroluminescent layer 130 at the same time, thereby increasing the luminous intensity of the electroluminescent layer 130 . The metal oxide can be directly mixed with the copper-containing zinc sulfide luminescent powder without annealing, sintering and other processes, so the production process can be simplified and the cost can be saved, while the brightness is improved. Figures 4 to 6 respectively show the energy scattering spectrum (EDS) of the electroluminescent layer according to an embodiment of the present invention. Figure 4 is the electroluminescent layer doped with barium titanate, and Figure 5 is the doped electroluminescent layer. Manganese electroluminescent layer. Figure 6 shows the electroluminescent layer doped with titanium dioxide. It can be seen from Figs. 4-6 that the metal oxide is directly mixed into the electroluminescent layer without undergoing high-temperature processes such as annealing or sintering. Therefore, the metal oxide in the electroluminescent layer can maintain its original oxidation state.

在一些實施方式中,金屬氧化物為0.1重量份至0.8重量份的氧化鋅(ZnO),例如0.1、0.5或0.8重量份。在一些實施方式中,金屬氧化物為0.05重量份至0.3重量份的二氧化鈦(TiO2),例如0.05、0.1、0.15、0.2或0.3重量份。在一些實施方式中,金屬氧化物為0.24重量份至0.75重量份的鈦酸鋇(BaTiO3),例如0.24、0.57或0.75重量份。在一些實施方式中,金屬氧化物為0.05重量份至0.10重量份的二氧化錳(MnO2),例如0.05、0.08或0.1重量份,其中二氧化錳可以是α-MnO2或β-MnO2In some embodiments, the metal oxide is 0.1 to 0.8 parts by weight of zinc oxide (ZnO), such as 0.1, 0.5 or 0.8 parts by weight. In some embodiments, the metal oxide is 0.05 to 0.3 parts by weight of titanium dioxide (TiO 2 ), for example, 0.05, 0.1, 0.15, 0.2, or 0.3 parts by weight. In some embodiments, the metal oxide is 0.24 to 0.75 parts by weight of barium titanate (BaTiO 3 ), such as 0.24, 0.57, or 0.75 parts by weight. In some embodiments, the metal oxide is 0.05 to 0.10 parts by weight of manganese dioxide (MnO 2 ), such as 0.05, 0.08 or 0.1 parts by weight, where the manganese dioxide may be α-MnO 2 or β-MnO 2 .

在一些實施方式中,胺醇類化合物可包括乙二醇或二乙醇胺。胺醇類化合物可做為表面修飾劑,幫助含銅硫化鋅發光粉分散在PU樹脂中。胺醇類化合物也可以在含銅硫化鋅發光粉表面形成偶極(interfacial dipole),從而降低電荷由PU樹脂注入含銅硫化鋅發光粉的障礙。 In some embodiments, the amine alcohol compound may include ethylene glycol or diethanolamine. Amino alcohol compounds can be used as surface modifiers to help disperse copper-containing zinc sulfide luminescent powder in PU resin. Amino alcohol compounds can also form an interfacial dipole on the surface of the copper-containing zinc sulfide luminescent powder, thereby reducing the barrier of injecting the electric charge from the PU resin into the copper-containing zinc sulfide luminescent powder.

在一些實施方式中,鹼金屬碳酸鹽可包括碳酸鉀或碳酸銫。鹼金屬碳酸鹽可以極化PU樹脂,促使離子空間電場(ionic space charge field)產生,提升電致發光層130的電容值,進而提升發光強度。 In some embodiments, the alkali metal carbonate may include potassium carbonate or cesium carbonate. The alkali metal carbonate can polarize the PU resin, promote the generation of an ionic space charge field, increase the capacitance value of the electroluminescent layer 130, and thereby increase the luminous intensity.

請繼續參照第1圖。透明導電層140包覆電致發光層130。在一些實施方式中,透明導電層140包括多條奈米銀線,且每一奈米銀線的線直徑寬為50奈米至100奈米,例如50、55、60、65、70、75、80、85、90、95或100奈米,線長為5微米至50微米,例如5、10、15、20、25、30、35、40、45或50微米。 Please continue to refer to Figure 1. The transparent conductive layer 140 covers the electroluminescent layer 130. In some embodiments, the transparent conductive layer 140 includes a plurality of nano silver wires, and the wire diameter of each nano silver wire is 50 nanometers to 100 nanometers, such as 50, 55, 60, 65, 70, 75. , 80, 85, 90, 95 or 100 nanometers, and the wire length is 5 to 50 microns, such as 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 microns.

在一些實施方式中,電致發光纖維100更包括保護層150包覆透明導電層140。在一些實施例中,保護層150包括聚乙烯醋酸乙烯酯(EVA)或聚醋酸乙烯酯(PVAC),但不限於此。保護層150可以是透明保護層,以保護透明導電層140,避免在使用過程中造成透明導電層140損傷。然而,本發明不限於此,在其他實施方式中,保護層150也可以被省略。在一些實施方式中,電致發光纖維100具有可撓性。電致發光纖維100的可撓性質可以藉由在樹脂材料中添加交聯劑來調整。具有可撓性的電致發光纖維100可以應用於各種不同型態的電致發光物件,例如導線、布料、廣告箱背光板等。 In some embodiments, the electroluminescent fiber 100 further includes a protective layer 150 covering the transparent conductive layer 140. In some embodiments, the protective layer 150 includes polyethylene vinyl acetate (EVA) or polyvinyl acetate (PVAC), but is not limited thereto. The protective layer 150 may be a transparent protective layer to protect the transparent conductive layer 140 and avoid damage to the transparent conductive layer 140 during use. However, the present invention is not limited to this, and in other embodiments, the protective layer 150 may also be omitted. In some embodiments, the electroluminescent fiber 100 has flexibility. The flexibility of the electroluminescent fiber 100 can be adjusted by adding a crosslinking agent to the resin material. The flexible electroluminescent fiber 100 can be applied to various types of electroluminescent objects, such as wires, cloth, advertising box backlights, etc.

在一些實施方式中,電致發光纖維100的製造方法可包括以濕式或乾式塗佈方式依序形成介電層120、電致發光層130及透明導電層140,再以拉線捲取方式將上述 膜層配置於線狀中心電極110上。 In some embodiments, the manufacturing method of the electroluminescent fiber 100 may include sequentially forming the dielectric layer 120, the electroluminescent layer 130, and the transparent conductive layer 140 in a wet or dry coating manner, and then using a wire-rolling method. The above The film layer is disposed on the linear center electrode 110.

第2圖為根據本發明之各種實施方式繪示的電致發光纖維100的剖面示意圖。請參照第2圖。在各種實施方式中,電致發光纖維100的線徑D1介於300微米至700微米的範圍內,例如300、350、400、450、500、550、600、650或700微米。在一些實施方式中,介電層120的厚度T1介於20微米至50微米的範圍內,例如20、25、30、35、40、45或50微米。在一些實施方式中,電致發光層130的厚度T2介於25微米至40微米的範圍內,例如25、30、35或40微米。 FIG. 2 is a schematic cross-sectional view of the electroluminescent fiber 100 according to various embodiments of the present invention. Please refer to Figure 2. In various embodiments, the wire diameter D1 of the electroluminescent fiber 100 is in the range of 300 micrometers to 700 micrometers, such as 300, 350, 400, 450, 500, 550, 600, 650, or 700 micrometers. In some embodiments, the thickness T1 of the dielectric layer 120 is in the range of 20 microns to 50 microns, such as 20, 25, 30, 35, 40, 45, or 50 microns. In some embodiments, the thickness T2 of the electroluminescent layer 130 is in the range of 25 to 40 microns, such as 25, 30, 35, or 40 microns.

第3圖為根據本發明之另一實施方式繪示的薄膜電致發光裝置200的立體分解示意圖。請參照第3圖,薄膜電致發光裝置200包括導電層210、介電層220、電致發光層230及透明導電層240。 FIG. 3 is a three-dimensional exploded schematic diagram of a thin film electroluminescent device 200 according to another embodiment of the present invention. Referring to FIG. 3, the thin film electroluminescent device 200 includes a conductive layer 210, a dielectric layer 220, an electroluminescent layer 230, and a transparent conductive layer 240.

在一些實施方式中,導電層210可以是銀膠導電層,且導電層210的厚度可以介於20微米至30微米的範圍內,例如20、25或30微米。 In some embodiments, the conductive layer 210 may be a silver paste conductive layer, and the thickness of the conductive layer 210 may be in the range of 20 μm to 30 μm, for example, 20, 25, or 30 μm.

介電層220位於導電層210與電致發光層230之間並將其分隔。在一些實施方式中,介電層220及電致發光層230的材料可以分別與前述電致發光纖維100的介電層120及電致發光層130相同或相似,故不再贅述。在一些實施方式中,介電層220的厚度介於35微米至45微米的範圍內,例如35、40或45微米。在一些實施方式中,電致發光層230的厚度介於25微米至50微米的範圍內,例如25、30、 35、40、45或50微米。 The dielectric layer 220 is located between the conductive layer 210 and the electroluminescent layer 230 and separates them. In some embodiments, the materials of the dielectric layer 220 and the electroluminescent layer 230 may be the same as or similar to the dielectric layer 120 and the electroluminescent layer 130 of the electroluminescent fiber 100 mentioned above, so they will not be described again. In some embodiments, the thickness of the dielectric layer 220 ranges from 35 microns to 45 microns, such as 35, 40, or 45 microns. In some embodiments, the thickness of the electroluminescent layer 230 ranges from 25 microns to 50 microns, such as 25, 30, 35, 40, 45 or 50 microns.

在一些實施方式中,透明導電層240的材料可以與電致發光纖維100的透明導電層140相同或相似,例如包括氧化銦錫(ITO)導電玻璃,但不限於此。在一些實施例中,透明導電層240例如是透光度約89%的氧化銦錫(ITO)導電玻璃。 In some embodiments, the material of the transparent conductive layer 240 may be the same as or similar to the transparent conductive layer 140 of the electroluminescent fiber 100, for example, including indium tin oxide (ITO) conductive glass, but is not limited thereto. In some embodiments, the transparent conductive layer 240 is, for example, indium tin oxide (ITO) conductive glass with a light transmittance of about 89%.

如第3圖所示,導電層210及透明導電層240可以在薄膜電致發光裝置200中作為電極,並分別藉由導線250及260與外部電源(未示出)連接。 As shown in FIG. 3, the conductive layer 210 and the transparent conductive layer 240 can be used as electrodes in the thin film electroluminescence device 200, and are connected to an external power source (not shown) through wires 250 and 260, respectively.

在一些實施方式中,以濕式刮棒塗佈的方式,在透明導電層240上依序配置電致發光層230、介電層220及導電層210,以形成薄膜電致發光裝置200。 In some embodiments, the electroluminescent layer 230, the dielectric layer 220, and the conductive layer 210 are sequentially arranged on the transparent conductive layer 240 by wet bar coating to form the thin film electroluminescent device 200.

以下的實施例係用以詳述本發明之特定態樣,並使本發明所屬技術領域中具有通常知識者得以實施本發明。然而,以下的實施例不應該用來限制本發明。 The following examples are used to describe specific aspects of the present invention and enable those with ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. However, the following examples should not be used to limit the present invention.

實驗例1:電致發光纖維的亮度測試Experimental example 1: Brightness test of electroluminescent fiber

在本實驗例中,實施例一及比較例一的電致發光纖維的製造方法請參照前述電致發光纖維100的製作方法,故不再贅述。實施例一及比較例一的差異在於,兩者具有不同的電致發光層,其電致發光層中各成分固含量請參以下表一。在本實驗例中,線狀中心電極為線徑為160微米、長度為10公分的銅金屬線;介電層為重量比12/4/15之PU樹脂/水/鈦酸鋇組成之配方乾燥而形成,其厚度及密度分別為40微米及4.68g/mL;以及,透明導電層為重量比2/3之 PU樹脂/銀膠組成的配方乾燥而形成,其厚度及密度為23微米及6.69g/mL。 In this experimental example, the manufacturing method of the electroluminescent fiber of Example 1 and Comparative Example 1 please refer to the manufacturing method of the aforementioned electroluminescent fiber 100, so it will not be repeated. The difference between Example 1 and Comparative Example 1 is that they have different electroluminescent layers, and the solid content of each component in the electroluminescent layer is shown in Table 1 below. In this experimental example, the linear center electrode is a copper wire with a wire diameter of 160 microns and a length of 10 cm; the dielectric layer is a formula of PU resin/water/barium titanate with a weight ratio of 12/4/15. The thickness and density are 40 microns and 4.68g/mL respectively; and the transparent conductive layer is 2/3 by weight The formula of PU resin/silver glue is dried and formed, and its thickness and density are 23 microns and 6.69g/mL.

以絕對亮度計(型號:BM-7A,購自拓普康公司(TOPCON Co.)),以160伏特、11kHz的交流電對實施例一及比較例一的電致發光纖維進行亮度測試的結果請參以下表一。實施例一及比較例一之差異在於:實施例一的電致發光層包含氧化鋅。由表一可知,相較於比較例一,實施例一藉由使用氧化鋅混摻含銅硫化鋅發光粉的電致發光層,可使電致發光纖維的亮度增加約34.9%。 Using an absolute brightness meter (model: BM-7A, purchased from TOPCON Co.), the electroluminescent fiber of Example 1 and Comparative Example 1 was tested with an alternating current of 160 volts and 11 kHz. Refer to Table 1 below. The difference between Example 1 and Comparative Example 1 is that the electroluminescent layer of Example 1 contains zinc oxide. It can be seen from Table 1 that compared with Comparative Example 1, in Example 1, the brightness of the electroluminescent fiber can be increased by about 34.9% by using the electroluminescent layer of zinc oxide mixed with copper zinc sulfide luminescent powder.

Figure 107144385-A0101-12-0010-1
Figure 107144385-A0101-12-0010-1

實驗例2:氧化鋅混摻濃度與薄膜電致發光裝置亮度比較Experimental example 2: Comparison of the mixed concentration of zinc oxide and the brightness of thin film electroluminescent devices

在本實驗例中,比較例二、三及實施例二~四的薄膜電致發光裝置製造方法請參照前述薄膜電致發光裝置200的製作方法,故不再贅述。 In this experimental example, the manufacturing methods of the thin film electroluminescent device of Comparative Examples 2 and 3 and Examples 2 to 4 refer to the manufacturing method of the thin film electroluminescent device 200 described above, so the details are not repeated here.

在本實驗例中,比較例二、三及實施例二~四的 電致發光層分別混摻不同重量份的氧化鋅,其電致發光層中各成分固含量請參以下表二。此外,在本實驗例中,使用表面電阻7Ω/sq的ITO玻璃基板作為透明導電層,其中比較例二、實施例二的薄膜電致發光裝置的尺寸為1.5cm×2.5cm,比較例三及實施例三、四的薄膜電致發光裝置的尺寸為0.7cm×2.0cm。使用重量比為4/4/15的PU樹脂/水/鈦酸鋇組成的配方乾燥而形成厚度為40微米的介電層,以及使用厚度為23微米的銀膠層。 In this experimental example, comparative examples two and three and examples two to four The electroluminescent layer is mixed with different weight parts of zinc oxide, and the solid content of each component in the electroluminescent layer is shown in Table 2 below. In addition, in this experimental example, an ITO glass substrate with a surface resistance of 7Ω/sq was used as the transparent conductive layer. The size of the thin-film electroluminescent device of Comparative Example 2 and Example 2 was 1.5cm×2.5cm. Comparative Example 3 and The size of the thin film electroluminescence device of Examples 3 and 4 is 0.7 cm×2.0 cm. A formula of PU resin/water/barium titanate with a weight ratio of 4/4/15 was used to dry to form a dielectric layer with a thickness of 40 microns, and a silver paste layer with a thickness of 23 microns was used.

以亮度計(型號:TES-137,購自泰仕電子工業股份有限公司),以160伏特、11kHz交流電對比較例二、三及實施例二~四的薄膜電致發光裝置進行亮度測試,並比較亮度變化,結果請參以下表二。 Using a luminance meter (model: TES-137, purchased from Taishi Electronics Industry Co., Ltd.), the thin-film electroluminescent devices of Comparative Examples 2 and 3 and Examples 2 to 4 were tested for luminance at 160 volts and 11 kHz alternating current, and Compare the brightness changes, and see the results in Table 2 below.

Figure 107144385-A0101-12-0011-3
Figure 107144385-A0101-12-0011-3
Figure 107144385-A0101-12-0012-4
Figure 107144385-A0101-12-0012-4

由表二可知,相較於比較例二,實施例二藉由使用氧化鋅混摻含銅硫化鋅發光粉,可使亮度增加約8.4%。相較於比較例三,實施例三、四藉由使用氧化鋅混摻含銅硫化鋅發光粉,可使亮度分別增加約47.5%及8.3%。 It can be seen from Table 2 that compared to Comparative Example 2, in Example 2, by using zinc oxide mixed with copper-containing zinc sulfide luminescent powder, the brightness can be increased by about 8.4%. Compared with Comparative Example 3, Examples 3 and 4 can increase the brightness by about 47.5% and 8.3% respectively by using zinc oxide mixed with copper-containing zinc sulfide luminescent powder.

實驗例3:混摻二氧化鈦濃度與薄膜電致發光裝置亮度比較Experimental example 3: Comparison of the concentration of doped titanium dioxide and the brightness of thin-film electroluminescent devices

在本實驗例中,比較例四及實施例五~十的薄膜電致發光裝置製造方法、材料及亮度測試方法類似於實驗例2,以下僅說明與相實驗例2相異之處。 In this experimental example, the thin-film electroluminescent device manufacturing methods, materials, and brightness test methods of Comparative Example 4 and Examples 5-10 are similar to Experimental Example 2, and only the differences from Phase Experimental Example 2 are described below.

在本實驗例中,比較例四及實施例五~十的電致發光層分別混摻不同重量份的二氧化鈦,電致發光層中各成分固含量請參以下表三。在本實驗例中,薄膜電致發光裝置的尺寸為0.7cm×2.0cm。使用PU樹脂/水/鈦酸鋇重量比為12/4/15之配方乾燥而形成厚度為40微米的介電層。 In this experimental example, the electroluminescent layers of Comparative Example 4 and Examples 5 to 10 were mixed with different weight parts of titanium dioxide, and the solid content of each component in the electroluminescent layer is shown in Table 3 below. In this experimental example, the size of the thin-film electroluminescence device is 0.7 cm×2.0 cm. A formula with a weight ratio of PU resin/water/barium titanate of 12/4/15 was used and dried to form a dielectric layer with a thickness of 40 microns.

Figure 107144385-A0101-12-0012-5
Figure 107144385-A0101-12-0012-5
Figure 107144385-A0101-12-0013-6
Figure 107144385-A0101-12-0013-6

由表三可知,相較於比較例四,實施例五~九藉由使用二氧化鈦混摻含銅硫化鋅發光粉,可使亮度分別增加約24.4%、30.8%、22.3%、19.1%、13.8%。而實施例十使用濃度過高的二氧化鈦則導致亮度下降23.4%。 It can be seen from Table 3 that compared with Comparative Example 4, Examples 5 to 9 use titanium dioxide mixed with copper-containing zinc sulfide luminescent powder, which can increase the brightness by about 24.4%, 30.8%, 22.3%, 19.1%, 13.8%, respectively. . However, in the tenth embodiment, the excessively high concentration of titanium dioxide caused a 23.4% decrease in brightness.

實驗例4:混摻鈦酸鋇濃度與薄膜電致發光裝置亮度比較Experimental example 4: Comparison of the concentration of doped barium titanate and the brightness of thin film electroluminescent device

在本實驗例中,實施例十一~十四的薄膜電致發光裝置製造方法、材料及亮度測試方法類似於實驗例3,其相異之處在於,實施例十一~十四的電致發光層分別混摻不同重量份的鈦酸鋇,其電致發光層中各成分固含量請參以下表四。 In this experimental example, the thin-film electroluminescent device manufacturing methods, materials and brightness test methods of Examples 11-14 are similar to those of Experimental Example 3. The difference is that the electroluminescent devices of Examples 11-14 The light-emitting layer is mixed with different weight parts of barium titanate, and the solid content of each component in the electroluminescent layer is shown in Table 4 below.

Figure 107144385-A0101-12-0013-7
Figure 107144385-A0101-12-0013-7
Figure 107144385-A0101-12-0014-8
Figure 107144385-A0101-12-0014-8

由表四可知,相較於比較例四,實施例十一~十三藉由使用鈦酸鋇混摻含銅硫化鋅發光粉,可使亮度分別增加約22.3%、29.8%、19.9%。而實施例十四使用濃度過高的鈦酸鋇則導致亮度下降4.3%。 It can be seen from Table 4 that compared with Comparative Example 4, Examples 11 to 13 can increase the brightness by about 22.3%, 29.8%, and 19.9% respectively by using barium titanate mixed with copper-containing zinc sulfide luminescent powder. However, the use of excessively high concentration of barium titanate in Example 14 resulted in a 4.3% decrease in brightness.

實驗例5:混摻二氧化錳濃度與薄膜電致發光裝置亮度比較Experimental example 5: Comparison of the concentration of doped manganese dioxide and the brightness of thin film electroluminescent devices

在本實驗例中,實施例十五~十七的薄膜電致發光裝置製造方法、材料及亮度測試方法類似於實驗例3,其相異之處在於,實施例十五~十七的電致發光層分別混摻不同重量份的二氧化錳,其電致發光層中各成分固含量請參以下表五。 In this experimental example, the thin-film electroluminescent device manufacturing methods, materials and brightness test methods of Examples 15-17 are similar to those of Experimental Example 3. The difference is that the electroluminescent devices of Examples 15-17 The light-emitting layer is mixed with different weight parts of manganese dioxide, and the solid content of each component in the electroluminescent layer is shown in Table 5 below.

Figure 107144385-A0101-12-0014-9
Figure 107144385-A0101-12-0014-9

由表五可知,相較於比較例四,實施例十五~十六藉由使用二氧化錳混摻含銅硫化鋅發光粉,可使亮度分別增加約17.0%、13.8%。而實施例十七使用濃度過高的鈦酸鋇則導致亮度下降27.7%。 It can be seen from Table 5 that compared with Comparative Example 4, in Examples 15 to 16 by using manganese dioxide mixed with copper-containing zinc sulfide luminescent powder, the brightness can be increased by about 17.0% and 13.8%, respectively. However, the use of excessively high concentration of barium titanate in Example 17 resulted in a 27.7% decrease in brightness.

實驗例6:胺醇類化合物及鹼金屬碳酸鹽種類對亮度之影響Experimental example 6: The influence of amine alcohol compounds and alkali metal carbonate types on brightness

在本實驗例中,實施例十八、十九的薄膜電致發光裝置製造方法、材料及亮度測試方法請參比較例三。實施例十八、十九與比較例三的差異在於,實施例十八的電致發光層摻雜0.5重量份的氧化鋅,並以二乙醇胺取代乙二醇;實施例十九的電致發光層摻雜0.5重量份的氧化鋅,並以碳酸銫取代碳酸鉀,電致發光層中各成分固含量請參以下表六。 In this experimental example, please refer to Comparative Example 3 for the manufacturing methods, materials, and brightness test methods of thin-film electroluminescent devices in Examples 18 and 19. The difference between Examples 18 and 19 and Comparative Example 3 is that the electroluminescent layer of Example 18 is doped with 0.5 parts by weight of zinc oxide, and diethanolamine is substituted for ethylene glycol; the electroluminescence of Example 19 The layer is doped with 0.5 parts by weight of zinc oxide, and cesium carbonate is substituted for potassium carbonate. The solid content of each component in the electroluminescent layer is shown in Table 6 below.

Figure 107144385-A0101-12-0015-10
Figure 107144385-A0101-12-0015-10

由表六可知,實施例十八在摻雜氧化鋅並以二乙醇胺取代乙二醇的條件下,亮度提升38.3%。實施例十九在摻雜氧化鋅並以碳酸銫取代碳酸鉀的條件下,亮度提升16.3%。 It can be seen from Table 6 that the brightness of Example 18 is improved by 38.3% under the conditions of doping zinc oxide and replacing ethylene glycol with diethanolamine. In Example 19, under the condition of doping with zinc oxide and replacing potassium carbonate with cesium carbonate, the brightness increased by 16.3%.

綜上所述,本揭示內容提供一種電致發光纖維。藉由在電致發光纖維的電致發光層中摻雜金屬氧化物,例如,氧化鋅、二氧化鈦、鈦酸鋇或二氧化錳,可以提升電致發光纖維的亮度,而不需再配置額外的功能層,因此可以減少電致發光纖維的線徑,並簡化製造程序。此外,本揭示內容的電致發光纖維不須施加高電壓即具有高亮度,因此可應用於各種不同型態的電致發光物件。 In summary, the present disclosure provides an electroluminescent fiber. By doping the electroluminescent layer of the electroluminescent fiber with a metal oxide, such as zinc oxide, titanium dioxide, barium titanate or manganese dioxide, the brightness of the electroluminescent fiber can be improved without the need for additional The functional layer can reduce the wire diameter of the electroluminescent fiber and simplify the manufacturing process. In addition, the electroluminescent fiber of the present disclosure has high brightness without applying a high voltage, so it can be applied to various types of electroluminescent objects.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in the embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make various modifications and retouching without departing from the spirit and scope of the present invention, so the protection of the present invention The scope shall be deemed as defined by the scope of the attached patent application.

100‧‧‧電致發光纖維 100‧‧‧Electroluminescent fiber

110‧‧‧線狀中心電極 110‧‧‧Linear center electrode

120‧‧‧介電層 120‧‧‧Dielectric layer

130‧‧‧電致發光層 130‧‧‧Electroluminescent layer

140‧‧‧透明導電層 140‧‧‧Transparent conductive layer

150‧‧‧保護層 150‧‧‧Protection layer

Claims (10)

一種電致發光纖維,包括:線狀中心電極;介電層,包覆所述線狀中心電極;電致發光層,包覆所述介電層,且所述電致發光層包括:3重量份至7重量份的含銅硫化鋅發光粉;0.05重量份至0.8重量份的金屬氧化物,所述金屬氧化物包括氧化鋅(ZnO)、二氧化鈦(TiO2)、鈦酸鋇(BaTiO3)、二氧化錳(MnO2)或其組合;0.1重量份至0.7重量份的胺醇類化合物;0.095重量份至0.24重量份的鹼金屬碳酸鹽;以及2.0重量份至2.5重量份的PU樹脂;以及透明導電層,包覆所述電致發光層。 An electroluminescent fiber comprising: a linear central electrode; a dielectric layer covering the linear central electrode; an electroluminescent layer covering the dielectric layer, and the electroluminescent layer comprises: 3 weights Parts to 7 parts by weight of copper-containing zinc sulfide luminescent powder; 0.05 parts by weight to 0.8 parts by weight of metal oxides including zinc oxide (ZnO), titanium dioxide (TiO 2 ), and barium titanate (BaTiO 3 ) , Manganese dioxide (MnO 2 ) or a combination thereof; 0.1 parts by weight to 0.7 parts by weight of amine alcohol compounds; 0.095 parts by weight to 0.24 parts by weight of alkali metal carbonates; and 2.0 parts by weight to 2.5 parts by weight of PU resin; And a transparent conductive layer covering the electroluminescent layer. 如請求項1所述的電致發光纖維,其中所述電致發光層的厚度介於25微米至40微米的範圍內。 The electroluminescent fiber according to claim 1, wherein the thickness of the electroluminescent layer is in the range of 25 to 40 microns. 如請求項1所述的電致發光纖維,其中所述電致發光纖維的線徑介於300微米至700微米的範圍內。 The electroluminescent fiber according to claim 1, wherein the wire diameter of the electroluminescent fiber is in the range of 300 micrometers to 700 micrometers. 如請求項1所述的電致發光纖維,其中所述介電層的厚度介於20微米至50微米的範圍內。 The electroluminescent fiber according to claim 1, wherein the thickness of the dielectric layer is in the range of 20 microns to 50 microns. 如請求項1所述的電致發光纖維,更包括保護層包覆所述透明導電層,其中所述保護層包括聚乙烯醋酸乙烯酯(EVA)或聚醋酸乙烯酯(PVAC)。 The electroluminescent fiber according to claim 1, further comprising a protective layer covering the transparent conductive layer, wherein the protective layer includes polyethylene vinyl acetate (EVA) or polyvinyl acetate (PVAC). 如請求項1所述的電致發光纖維,其中所述透明導電層包括多條奈米銀線,且每一所述奈米銀線的線直徑寬為50奈米至100奈米,線長為5微米至50微米。 The electroluminescent fiber according to claim 1, wherein the transparent conductive layer includes a plurality of silver nanowires, and the wire diameter of each silver nanowire is 50 nm to 100 nm, and the wire length It is 5 microns to 50 microns. 如請求項1所述的電致發光纖維,其中所述金屬氧化物為0.1重量份至0.8重量份的氧化鋅(ZnO)。 The electroluminescent fiber according to claim 1, wherein the metal oxide is 0.1 to 0.8 parts by weight of zinc oxide (ZnO). 如請求項1所述的電致發光纖維,其中所述金屬氧化物為0.05重量份至0.3重量份的二氧化鈦(TiO2)。 The electroluminescent fiber according to claim 1, wherein the metal oxide is 0.05 to 0.3 parts by weight of titanium dioxide (TiO 2 ). 如請求項1所述的電致發光纖維,其中所述金屬氧化物為0.24重量份至0.75重量份的鈦酸鋇(BaTiO3)。 The electroluminescent fiber according to claim 1, wherein the metal oxide is 0.24 parts by weight to 0.75 parts by weight of barium titanate (BaTiO 3 ). 如請求項1所述的電致發光纖維,其中所述金屬氧化物為0.05重量份至0.10重量份的二氧化錳(MnO2)。 The electroluminescent fiber according to claim 1, wherein the metal oxide is 0.05 to 0.10 parts by weight of manganese dioxide (MnO 2 ).
TW107144385A 2018-12-10 2018-12-10 Electroluminescence fiber TWI704053B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107144385A TWI704053B (en) 2018-12-10 2018-12-10 Electroluminescence fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107144385A TWI704053B (en) 2018-12-10 2018-12-10 Electroluminescence fiber

Publications (2)

Publication Number Publication Date
TW202021808A true TW202021808A (en) 2020-06-16
TWI704053B TWI704053B (en) 2020-09-11

Family

ID=72175773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144385A TWI704053B (en) 2018-12-10 2018-12-10 Electroluminescence fiber

Country Status (1)

Country Link
TW (1) TWI704053B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247291A (en) * 2021-09-15 2022-10-28 青岛大学 Electroluminescent fiber and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2191695A1 (en) * 2007-09-04 2010-06-02 Bayer MaterialScience AG Electroluminescence arrangement on textile materials
CN101952750B (en) * 2008-12-18 2012-05-30 凸版印刷株式会社 Color filter for liquid-crystal display device and liquid-crystal display device
CN103215029B (en) * 2013-03-21 2014-11-26 江苏华天通科技有限公司 Nanometer complex phase photochromic material and preparation method
US9899575B2 (en) * 2015-04-30 2018-02-20 Nano And Advanced Materials Institute Limited Method of continuous flow synthesis and method of correcting emission spectrum of light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247291A (en) * 2021-09-15 2022-10-28 青岛大学 Electroluminescent fiber and preparation method and application thereof

Also Published As

Publication number Publication date
TWI704053B (en) 2020-09-11

Similar Documents

Publication Publication Date Title
KR102232550B1 (en) Electroluminescent devices and their manufacture
CN102695310B (en) Method for preparing high-brightness electroluminescence line
CN111286975B (en) Electroluminescent fiber
WO2016205484A2 (en) Planar electroluminescent devices and uses thereof
TWI704053B (en) Electroluminescence fiber
Park et al. Flexible powder electroluminescent device on silver nanowire electrode
JPH0878164A (en) Conductive paste, translucent conductive film, and dispersion type electroluminescent element using them
JPS6081798A (en) Dispersive electroluminescent element
US3154712A (en) Electroluminescent lamp
CN103053219A (en) Organic el device
TWI666968B (en) Electroluminescent structure and manufacturing method thereof
CN211295151U (en) Flexible electroluminescent sheet
JP2008210780A (en) Dispersion-type electroluminescence element and method of manufacturing the same
JPH04132189A (en) Organic thin film el element
Kathirgamanathan et al. Intense pulsed light (IPL) annealed sol–gel derived ZnO electron injector for the production of high efficiency inverted quantum dot light emitting devices (QLEDs)
TW202134763A (en) Electroluminescence wire
TWM593071U (en) Electroluminescence equipment
KR101064166B1 (en) Inorganic Electro Luminescence device and manufacturing method thereof
WO2013011890A1 (en) Phosphor for dispersion-type el, and dispersion-type el element
TW201311042A (en) Fluorescent substance for dispersion type EL, dispersion type el element, and method of manufacturing thereof
KR101222896B1 (en) Electroluminescence device emitting high brightness light and method for fabricating the same
JPH0278191A (en) Electro-luminescence
TW202123504A (en) Electrically-excited light emission device
JP2015118820A (en) Dispersion-type inorganic el element and method for manufacturing dispersion-type inorganic el element
KR101430866B1 (en) Electrochemiluminescence cell using gel-type luminescence material