TW202017187A - High electron mobility transistor and methods for forming the same - Google Patents

High electron mobility transistor and methods for forming the same Download PDF

Info

Publication number
TW202017187A
TW202017187A TW107137949A TW107137949A TW202017187A TW 202017187 A TW202017187 A TW 202017187A TW 107137949 A TW107137949 A TW 107137949A TW 107137949 A TW107137949 A TW 107137949A TW 202017187 A TW202017187 A TW 202017187A
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
electron mobility
high electron
mobility transistor
Prior art date
Application number
TW107137949A
Other languages
Chinese (zh)
Other versions
TWI713221B (en
Inventor
謝祁峰
王端瑋
孫健仁
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107137949A priority Critical patent/TWI713221B/en
Publication of TW202017187A publication Critical patent/TW202017187A/en
Application granted granted Critical
Publication of TWI713221B publication Critical patent/TWI713221B/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

A high electron mobility transistor includes a substrate; a plurality of pairs of alternating layers, disposed over the substrate and each pair of the plurality of pairs of alternating layers including a carbon doped gallium nitride layer and an undoped gallium nitride layer; at least one stress-relief layer disposed between the plurality of pairs of alternating layers; and a gallium nitride layer disposed over the plurality of pairs of alternating layers.

Description

高電子遷移率電晶體裝置及其製造方法 High electron mobility transistor device and manufacturing method thereof

本揭露係有關於一種半導體製造技術,特別是有關於高電子遷移率電晶體裝置及其製造方法。 The present disclosure relates to a semiconductor manufacturing technology, in particular to a high electron mobility transistor device and a manufacturing method thereof.

高電子遷移率電晶體(high electron mobility transistor,HEMT),又稱為異質結構場效電晶體(heterostructure FET,HFET)或調變摻雜場效電晶體(modulation-doped FET,MODFET),為一種場效電晶體(field effect transistor,FET),其由具有不同能隙(energy gap)的半導體材料組成。在鄰近不同半導體材料的所形成界面處會產生二維電子氣(two dimensional electron gas,2 DEG)層。由於二維電子氣的高電子移動性,高電子遷移率電晶體可以具有高崩潰電壓、高電子遷移率、低導通電阻與低輸入電容等優點,因而適合用於高功率元件上。 High electron mobility transistor (HEMT), also known as heterostructure field effect transistor (HFET) or modulation-doped field effect transistor (MODFET), is a kind of A field effect transistor (FET) is composed of semiconductor materials with different energy gaps. A two-dimensional electron gas (2 DEG) layer is generated at the formed interface adjacent to different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, the high electron mobility transistor can have the advantages of high breakdown voltage, high electron mobility, low on-resistance and low input capacitance, and is therefore suitable for high power components.

在高電子遷移率電晶體的氮化鎵層中摻雜碳可以增加氮化鎵材料的電阻率,使其達到高耐壓應用。然而,在摻雜碳的過程中,例如在低溫下以及低的第V族對第III族比例下生長氮化鎵,可能會引入缺陷,影響高電子遷移率電晶體的效能。因此,現有的高電子遷移率電晶體無法在每個方 面皆令人滿意。 Doping carbon in the gallium nitride layer of the high electron mobility transistor can increase the resistivity of the gallium nitride material, making it reach a high withstand voltage application. However, in the process of doping carbon, for example, the growth of gallium nitride at low temperatures and a low ratio of Group V to Group III, may introduce defects that affect the performance of high electron mobility transistors. Therefore, existing high electron mobility transistors cannot The noodles are satisfactory.

根據本揭露的一些實施例,提供高電子遷移率電晶體裝置。此裝置包含基底;多對交替層設置於基底上方且每對交替層包含摻雜碳的氮化鎵層和未摻雜的氮化鎵層;至少一應力鬆弛層設置於這些交替層之間;以及氮化鎵層設置於這些交替層上方。 According to some embodiments of the present disclosure, a high electron mobility transistor device is provided. The device includes a substrate; a plurality of pairs of alternating layers are disposed above the substrate and each pair of alternating layers includes a carbon-doped gallium nitride layer and an undoped gallium nitride layer; at least one stress relaxation layer is disposed between these alternating layers; And a gallium nitride layer is provided above these alternating layers.

在一些實施例中,應力鬆弛層為含鋁層。 In some embodiments, the stress relaxation layer is an aluminum-containing layer.

在一些實施例中,含鋁層包含氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, the aluminum-containing layer includes aluminum nitride, aluminum gallium nitride, or a combination of the foregoing.

在一些實施例中,應力鬆弛層設置於這些交替層中的每兩對之間。 In some embodiments, a stress relaxation layer is provided between every two pairs of these alternating layers.

在一些實施例中,應力鬆弛層中的厚度在0.1nm至10nm的範圍。 In some embodiments, the thickness in the stress relaxation layer is in the range of 0.1 nm to 10 nm.

在一些實施例中,摻雜碳的氮化鎵層的厚度在1nm至600nm的範圍,且未摻雜的氮化鎵層的厚度在1nm至200nm的範圍。 In some embodiments, the thickness of the carbon-doped gallium nitride layer is in the range of 1 nm to 600 nm, and the thickness of the undoped gallium nitride layer is in the range of 1 nm to 200 nm.

在一些實施例中,摻雜碳的氮化鎵層的厚度與未摻雜的氮化鎵層的厚度之比值在3.5至5的範圍。 In some embodiments, the ratio of the thickness of the carbon-doped gallium nitride layer to the thickness of the undoped gallium nitride layer is in the range of 3.5 to 5.

在一些實施例中,高電子遷移率電晶體裝置更包含成核層,設置於基底和這些交替層之間。 In some embodiments, the high electron mobility transistor device further includes a nucleation layer disposed between the substrate and these alternating layers.

在一些實施例中,成核層包含氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, the nucleation layer includes aluminum nitride, aluminum gallium nitride, or a combination of the foregoing.

在一些實施例中,高電子遷移率電晶體裝置更包 含緩衝層,設置於基底和這些交替層之間。 In some embodiments, the high electron mobility transistor device A buffer layer is included between the substrate and these alternating layers.

在一些實施例中,緩衝層包含氮化鎵、氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, the buffer layer includes gallium nitride, aluminum nitride, aluminum gallium nitride, or a combination of the foregoing.

在一些實施例中,緩衝層包含漸變式緩衝層、超晶格緩衝層或前述之組合。 In some embodiments, the buffer layer includes a graded buffer layer, a superlattice buffer layer, or a combination of the foregoing.

在一些實施例中,高電子遷移率電晶體裝置更包含阻障層,設置於氮化鎵層上方;以及源極、汲極、閘極,設置於阻障層上方。 In some embodiments, the high electron mobility transistor device further includes a barrier layer disposed above the gallium nitride layer; and the source, drain, and gate are disposed above the barrier layer.

根據本揭露的一些實施例,提供高電子遷移率電晶體裝置的製造方法。此方法包含:形成基底;在基底上方形成多對交替層,其中每對交替層包含摻雜碳的氮化鎵層和未摻雜的氮化鎵層;在這些交替層之間形成至少一應力鬆弛層;以及在這些交替層上方形成氮化鎵層。 According to some embodiments of the present disclosure, a method for manufacturing a high electron mobility transistor device is provided. The method includes: forming a substrate; forming a plurality of pairs of alternating layers above the substrate, wherein each pair of alternating layers includes a carbon-doped gallium nitride layer and an undoped gallium nitride layer; forming at least one stress between these alternating layers A relaxed layer; and forming a gallium nitride layer above these alternating layers.

在一些實施例中,這些交替層包含氮化鋁、氮化鋁鎵或前述之組合,且應力鬆弛層包含氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。 In some embodiments, these alternating layers include aluminum nitride, aluminum gallium nitride, or a combination of the foregoing, and the stress relaxation layer includes aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination of the foregoing.

在一些實施例中,高電子遷移率電晶體裝置的製造方法更包含在這些交替層中的每兩對之間形成應力鬆弛層。 In some embodiments, a method of manufacturing a high electron mobility transistor device further includes forming a stress relaxation layer between every two pairs of these alternating layers.

在一些實施例中,應力鬆弛層的厚度在0.1nm至10nm的範圍。 In some embodiments, the thickness of the stress relaxation layer is in the range of 0.1 nm to 10 nm.

在一些實施例中,摻雜碳的氮化鎵層的厚度在1nm至600nm的範圍,未摻雜的氮化鎵層的厚度在1nm至200nm的範圍,且摻雜碳的氮化鎵層的厚度與未摻雜的氮化鎵 層的厚度之比值在3.5至5的範圍。 In some embodiments, the thickness of the carbon-doped gallium nitride layer is in the range of 1 nm to 600 nm, the thickness of the undoped gallium nitride layer is in the range of 1 nm to 200 nm, and the thickness of the carbon-doped gallium nitride layer Thickness and undoped GaN The ratio of the thickness of the layers is in the range of 3.5 to 5.

在一些實施例中,高電子遷移率電晶體裝置的製造方法更包含在基底和這些交替層之間形成成核層,其中成核層包含氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, a method of manufacturing a high electron mobility transistor device further includes forming a nucleation layer between the substrate and these alternating layers, where the nucleation layer includes aluminum nitride, aluminum gallium nitride, or a combination of the foregoing.

在一些實施例中,高電子遷移率電晶體裝置的製造方法更包含在基底和這些交替層之間形成緩衝層,其中緩衝層包含漸變式緩衝層、超晶格緩衝層或前述之組合。 In some embodiments, a method of manufacturing a high electron mobility transistor device further includes forming a buffer layer between the substrate and these alternating layers, where the buffer layer includes a graded buffer layer, a superlattice buffer layer, or a combination of the foregoing.

110‧‧‧基底 110‧‧‧ base

120‧‧‧成核層 120‧‧‧Nuclear layer

130‧‧‧緩衝層 130‧‧‧buffer layer

140‧‧‧交替層 140‧‧‧ alternating layer

142‧‧‧摻雜碳的氮化鎵層 142‧‧‧Carbon-doped gallium nitride layer

144‧‧‧未摻雜的氮化鎵層 144‧‧‧ undoped gallium nitride layer

150‧‧‧應力鬆弛層 150‧‧‧stress relaxation layer

160‧‧‧氮化鎵層 160‧‧‧GaN layer

170‧‧‧阻障層 170‧‧‧ barrier layer

180‧‧‧源極 180‧‧‧Source

190‧‧‧閘極 190‧‧‧Gate

200‧‧‧汲極 200‧‧‧ Jiji

220‧‧‧超晶格緩衝層 220‧‧‧Super lattice buffer layer

222a、224a、226a‧‧‧氮化鋁鎵層 222a, 224a, 226a‧‧‧‧AlGaN layer

222b、224b、226b‧‧‧氮化鋁層 222b, 224b, 226b ‧‧‧ aluminum nitride layer

230‧‧‧漸變式緩衝層 230‧‧‧gradient buffer layer

232、234、236‧‧‧氮化鋁鎵層 232,234,236‧‧‧‧AlGaN layer

1000、2000、3000、4000‧‧‧高電子遷移率電晶體裝置 1000, 2000, 3000, 4000 ‧‧‧ high electron mobility transistor device

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that according to standard practices in the industry, various features are not drawn to scale and are used for illustration only. In fact, the size of the elements may be arbitrarily enlarged or reduced to clearly show the features of the present disclosure.

第1A-1E圖是根據一些實施例繪示在製造高電子遷移率電晶體裝置的各個階段之剖面示意圖。 FIGS. 1A-1E are schematic cross-sectional views illustrating various stages of manufacturing a high electron mobility transistor device according to some embodiments.

第2-4圖是根據一些實施例繪示高電子遷移率電晶體裝置的剖面示意圖。 Figures 2-4 are schematic cross-sectional views of a high electron mobility transistor device according to some embodiments.

以下概述一些實施例,以使得本發明所屬技術領域中具有通常知識者可以更容易理解本發明,但這些實施例並非用於限制本發明。可以理解的是,本發明所屬技術領域中具有通常知識者可以根據需求,調整以下描述的實施例,例如改變製程順序及/或包含比在此描述的更多或更少步驟。此外,還可以在以下敘述的實施例的基礎上添加其他元件。舉例來說,「在第一元件上形成第二元件」的描述可能包含第 一元件與第二元件直接接觸的實施例,也可能包含第一元件與第二元件之間具有其他元件,使得第一元件與第二元件不直接接觸的實施例,並且第一元件與第二元件的上下關係可能隨著裝置在不同方位操作或使用而改變。 Some embodiments are summarized below so that those with ordinary knowledge in the technical field to which the present invention belongs can more easily understand the present invention, but these embodiments are not intended to limit the present invention. It can be understood that those with ordinary knowledge in the technical field to which the present invention belongs can adjust the embodiments described below according to needs, for example, changing the process sequence and/or including more or fewer steps than described herein. In addition, other elements may be added on the basis of the embodiments described below. For example, the description of "forming a second element on a first element" might include Embodiments in which an element directly contacts the second element may also include embodiments in which there are other elements between the first element and the second element so that the first element does not directly contact the second element, and the first element and the second element The up and down relationship of elements may change as the device is operated or used in different orientations.

以下根據本發明的一些實施例,描述在高電子遷移率電晶體裝置設置包含摻雜碳的氮化鎵層和未摻雜的氮化鎵層的交替層,以在增加耐壓的同時,改善晶體品質。此外,在交替層上方設置至少一應力鬆弛層,以緩解應力,進而增加交替層和厚度,使高電子遷移率電晶體裝置達到更高的耐壓程度。 In the following, according to some embodiments of the present invention, it is described that an alternating layer including a carbon-doped gallium nitride layer and an undoped gallium nitride layer is provided in a high electron mobility transistor device to improve the withstand voltage while improving Crystal quality. In addition, at least one stress relaxation layer is provided above the alternating layer to relieve the stress, thereby increasing the alternating layer and the thickness, so that the high electron mobility transistor device reaches a higher withstand voltage level.

第1A-1E圖是根據一些實施例繪示在製造高電子遷移率電晶體裝置1000的各個階段之剖面示意圖。如第1A圖所示,高電子遷移率電晶體裝置1000包含基底110,基底110可以是整塊的(bulk)半導體基底或包含由不同材料形成的複合基底,並且可以使用任何適用於半導體裝置的基底材料,例如矽、鍺、碳化矽、氮化鎵、藍寶石。 FIGS. 1A-1E are schematic cross-sectional views illustrating various stages of manufacturing a high electron mobility transistor device 1000 according to some embodiments. As shown in FIG. 1A, the high electron mobility transistor device 1000 includes a substrate 110, which may be a bulk semiconductor substrate or a composite substrate formed of different materials, and any suitable for semiconductor devices may be used. Substrate materials, such as silicon, germanium, silicon carbide, gallium nitride, and sapphire.

在一些實施例中,在基底110上方形成成核層120,以緩解基底110與上方成長的膜層之間的晶格差異。舉例來說,成核層120的材料可以包含例如氮化鋁(Aluminium Nitride,AlN)、氮化鋁鎵(Aluminium Gallium Nitride,AlGaN)、類似的材料或前述之組合,並且成核層120的厚度可以是在約100奈米(nanometer,nm)至約1000nm的範圍,例如約200nm。成核層120的形成可以包含沉積製程,例如有機金屬化學氣相沉積(Metal Organic Chemical Vapor Deposition, MOCVD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、液相磊晶(Liquid Phase Epitaxy,LPE)或其他的沉積技術。 In some embodiments, a nucleation layer 120 is formed over the substrate 110 to alleviate the lattice difference between the substrate 110 and the film layer grown above. For example, the material of the nucleation layer 120 may include, for example, aluminum nitride (Aluminium Nitride, AlN), aluminum gallium nitride (Aluminium Gallium Nitride, AlGaN), similar materials, or a combination of the foregoing, and the thickness of the nucleation layer 120 It may be in the range of about 100 nanometers (nm) to about 1000 nm, for example about 200 nm. The formation of the nucleation layer 120 may include a deposition process, such as metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition, MOCVD), Molecular Beam Epitaxy (MBE), Liquid Phase Epitaxy (LPE) or other deposition techniques.

在一些實施例中,在成核層120上方形成緩衝層130,以緩解不同膜層之間的晶格差異。成核層120是選擇性的。在另一些實施例中,不設置成核層120,直接在基底上形成緩衝層130。緩衝層130可以包含三族氮化物,例如氮化鎵(Gallium Nitride,GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、類似的材料或前述之組合,並且緩衝層130的厚度可以是在約0.1微米(micrometer,μm)至約10μm的範圍,例如約0.3μm。緩衝層130的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。 In some embodiments, a buffer layer 130 is formed over the nucleation layer 120 to alleviate the lattice difference between different film layers. The nucleation layer 120 is selective. In other embodiments, the nucleation layer 120 is not provided, and the buffer layer 130 is formed directly on the substrate. The buffer layer 130 may include group III nitrides, such as gallium nitride (Gallium Nitride, GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), similar materials, or a combination of the foregoing, and the thickness of the buffer layer 130 It may be in the range of about 0.1 micrometer (μm) to about 10 μm, for example about 0.3 μm. The formation of the buffer layer 130 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques.

然後如第1B圖所示,在緩衝層130上方形成交替層140,交替層140包含摻雜碳的氮化鎵層(Carbon-doped Gallium Nitride,CGaN)142和未摻雜的氮化鎵層(undoped Gallium Nitride,uGaN)144。在氮化鎵層摻雜碳,形成摻雜碳的氮化鎵層(CGaN)142,可以增加電阻率,使高電子遷移率電晶體裝置1000達到高耐壓應用。在一些實施例中,摻雜碳的氮化鎵層(CGaN)142具有在約1018至約1022/立方公分的範圍的碳濃度。在摻雜碳的過程中,為了使碳容易進入氮化鎵層,可在低溫下以及低的第V族對第III族比例下生長氮化鎵。然而,這種生長條件容易導致晶體品質較差以及表面粗糙等問題,且隨著摻雜碳的氮化鎵層(CGaN)的厚度增加,上述的問題更顯著,進而對高電子遷移率電晶體裝置的性能產生不良影響,例如影響二維電子氣的特性。 Then, as shown in FIG. 1B, an alternating layer 140 is formed over the buffer layer 130. The alternating layer 140 includes a carbon-doped gallium nitride layer (Carbon-doped Gallium Nitride, CGaN) 142 and an undoped gallium nitride layer ( undoped Gallium Nitride (uGaN)144. Doping carbon in the gallium nitride layer to form a carbon-doped gallium nitride layer (CGaN) 142 can increase the resistivity and enable the high electron mobility transistor device 1000 to achieve high withstand voltage applications. In some embodiments, the carbon-doped gallium nitride layer (CGaN) 142 has a carbon concentration in the range of about 10 18 to about 10 22 /cubic centimeter. In the process of doping carbon, in order for carbon to easily enter the gallium nitride layer, gallium nitride can be grown at a low temperature and a low ratio of Group V to Group III. However, such growth conditions are likely to cause problems such as poor crystal quality and surface roughness, and as the thickness of the carbon-doped gallium nitride layer (CGaN) increases, the above-mentioned problems become more significant, which in turn affects high electron mobility transistor devices Adversely affects its performance, such as the characteristics of the two-dimensional electron gas.

對此,在摻雜碳的氮化鎵層(CGaN)142上方形成未摻雜的氮化鎵層(uGaN)144,以改善摻雜碳的氮化鎵層(CGaN)142的粗糙表面,而可以在增加摻雜碳的氮化鎵層(CGaN)142的厚度的同時,維持整體氮化鎵層的晶體品質,並且具有較不粗糙的表面。換句話說,在摻雜碳的氮化鎵層(CGaN)142上方形成未摻雜的氮化鎵層(uGaN)144可以保持高電子遷移率電晶體裝置1000的性能,例如二維電子氣特性,還可以進一步提升耐壓程度。 In this regard, an undoped gallium nitride layer (uGaN) 144 is formed over the carbon-doped gallium nitride layer (CGaN) 142 to improve the rough surface of the carbon-doped gallium nitride layer (CGaN) 142, and It is possible to increase the thickness of the carbon-doped gallium nitride layer (CGaN) 142 while maintaining the crystal quality of the overall gallium nitride layer and having a less rough surface. In other words, forming an undoped gallium nitride layer (uGaN) 144 over the carbon-doped gallium nitride layer (CGaN) 142 can maintain the performance of the high electron mobility transistor device 1000, such as two-dimensional electron gas characteristics , Can also further improve the degree of withstand voltage.

可以根據需求設置不同數量的交替層140,例如形成14對交替層140,其中每一對交替層140各自包含一層摻雜碳的氮化鎵層(CGaN)142和一層未摻雜的氮化鎵層(uGaN)144。 Different numbers of alternating layers 140 may be provided according to requirements, for example, forming 14 pairs of alternating layers 140, wherein each pair of alternating layers 140 each includes a carbon-doped gallium nitride layer (CGaN) 142 and an undoped gallium nitride layer层(uGaN)144.

在一些實施例中,摻雜碳的氮化鎵層(CGaN)142和未摻雜的氮化鎵層(uGaN)144的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。摻雜碳的氮化鎵層(CGaN)142的厚度可以是在約1nm至約600nm的範圍,例如約500nm。未摻雜的氮化鎵層(uGaN)144的厚度可以是在約1nm至約200nm的範圍,例如約125nm。摻雜碳的氮化鎵層(CGaN)142的厚度與未摻雜的氮化鎵層(uGaN)144的厚度的比值在約3.5至約5的範圍,例如約4。 In some embodiments, the formation of a carbon-doped gallium nitride layer (CGaN) 142 and an undoped gallium nitride layer (uGaN) 144 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy , Liquid phase epitaxy or other deposition techniques. The thickness of the carbon-doped gallium nitride layer (CGaN) 142 may be in the range of about 1 nm to about 600 nm, for example, about 500 nm. The thickness of the undoped gallium nitride layer (uGaN) 144 may be in the range of about 1 nm to about 200 nm, for example about 125 nm. The ratio of the thickness of the carbon-doped gallium nitride layer (CGaN) 142 to the thickness of the undoped gallium nitride layer (uGaN) 144 is in the range of about 3.5 to about 5, such as about 4.

未摻雜的氮化鎵層(uGaN)144越厚,亦即摻雜碳的氮化鎵層(CGaN)142的厚度與未摻雜的氮化鎵層(uGaN)144的厚度的比值越小,越可補償摻雜碳的氮化鎵層(CGaN)142的 晶體品質和表面粗糙度。另一方面,摻雜碳的氮化鎵層(CGaN)142的厚度越厚,亦即摻雜碳的氮化鎵層(CGaN)142的厚度與未摻雜的氮化鎵層(uGaN)144的厚度的比值越大,可以達到更好的耐壓特性。可根據需求設置摻雜碳的氮化鎵層(CGaN)142的厚度與未摻雜的氮化鎵層(uGaN)144的厚度的比值。 The thicker the undoped gallium nitride layer (uGaN) 144, that is, the smaller the ratio of the thickness of the carbon-doped gallium nitride layer (CGaN) 142 to the thickness of the undoped gallium nitride layer (uGaN) 144 , The more compensated the carbon doped gallium nitride layer (CGaN) 142 Crystal quality and surface roughness. On the other hand, the thicker the carbon-doped gallium nitride layer (CGaN) 142, the thicker the carbon-doped gallium nitride layer (CGaN) 142 and the undoped gallium nitride layer (uGaN) 144 The greater the ratio of the thickness, the better pressure resistance can be achieved. The ratio of the thickness of the carbon-doped gallium nitride layer (CGaN) 142 to the thickness of the undoped gallium nitride layer (uGaN) 144 may be set according to requirements.

如第1C圖所示,在交替層140上形成至少一應力鬆弛層150。在一些實施例中,應力鬆弛層150可以是含鋁層,例如氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合,並且應力鬆弛層150的厚度可以是在約0.1nm至約10nm的範圍,例如約1nm。應力鬆弛層150的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。 As shown in FIG. 1C, at least one stress relaxation layer 150 is formed on the alternating layer 140. In some embodiments, the stress relaxation layer 150 may be an aluminum-containing layer, such as aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination of the foregoing, and the thickness of the stress relaxation layer 150 may be about 0.1 nm to A range of about 10 nm, for example about 1 nm. The formation of the stress relaxation layer 150 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques.

如前所述,可以根據需求設置多對交替層140,然而,由於交替層140與基底110的熱膨脹係數不同,隨著交替層140的數量和厚度增加,產生的應力越大,導致曲度(bow)、裂痕與厚度不均的問題,這些問題限制了可以設置的交替層140數量。本案在交替層140上設置應力鬆弛層150,可以緩解設置交替層140的應力,因此可以增加交替層140的數量和厚度,使高電子遷移率電晶體裝置1000達到更高的耐壓程度。 As mentioned above, multiple pairs of alternating layers 140 can be provided according to requirements. However, due to the different thermal expansion coefficients of the alternating layers 140 and the substrate 110, as the number and thickness of the alternating layers 140 increase, the greater the stress, resulting in curvature ( bow), cracks and uneven thickness, these problems limit the number of alternating layers 140 that can be provided. In this case, the stress relaxation layer 150 is provided on the alternating layer 140 to relieve the stress of the alternating layer 140. Therefore, the number and thickness of the alternating layer 140 can be increased, and the high electron mobility transistor device 1000 can reach a higher withstand voltage.

然後如第1D圖所示,根據一些實施例,在應力鬆弛層150上方形成氮化鎵層160。氮化鎵層160具有較佳晶體品質,可以提供用於形成其他元件的平坦表面。氮化鎵層160的 形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。可以根據需求選擇氮化鎵層160的厚度。在一些實施例中,氮化鎵層160的厚度在約10nm和約1μm的範圍,例如約0.5μm。 Then, as shown in FIG. 1D, according to some embodiments, a gallium nitride layer 160 is formed over the stress relaxation layer 150. The gallium nitride layer 160 has better crystal quality and can provide a flat surface for forming other devices. GaN layer 160 The formation may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. The thickness of the gallium nitride layer 160 can be selected according to requirements. In some embodiments, the thickness of the gallium nitride layer 160 is in the range of about 10 nm and about 1 μm, for example about 0.5 μm.

然後如第1E圖所示,在氮化鎵層160上方形成阻障層170。阻障層170的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。可以根據需求選擇阻障層170的厚度。在一些實施例中,阻障層170的材料可以包含第III族氮化物,例如III-V族化合物半導體材料。阻障層170可以包含單層或多層結構。舉例來說,阻障層170包含AlN、AlGaN、AlInN、AlGaInN、類似的材料或前述之組合。可以根據需求將阻障層170摻雜或不摻雜。選擇阻障層170的材料,以在氮化鎵層160和阻障層170之間的界面產生二維電子氣。 Then, as shown in FIG. 1E, a barrier layer 170 is formed over the gallium nitride layer 160. The formation of the barrier layer 170 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. The thickness of the barrier layer 170 can be selected according to requirements. In some embodiments, the material of the barrier layer 170 may include a group III nitride, such as a group III-V compound semiconductor material. The barrier layer 170 may include a single-layer or multi-layer structure. For example, the barrier layer 170 includes AlN, AlGaN, AlInN, AlGaInN, similar materials, or a combination of the foregoing. The barrier layer 170 may be doped or undoped according to requirements. The material of the barrier layer 170 is selected to generate two-dimensional electron gas at the interface between the gallium nitride layer 160 and the barrier layer 170.

然後根據一些實施例,在阻障層170上方設置源極180、閘極190和汲極200,形成高電子遷移率電晶體裝置1000。可以使用任何合適的材料、製程和順序形成源極180、閘極190和汲極200,並且根據需求調整元件的間距和位置。在第1E圖繪示的實施例中,源極180、閘極190和汲極200位於阻障層170上,但本發明不限於此。 Then, according to some embodiments, the source electrode 180, the gate electrode 190, and the drain electrode 200 are disposed above the barrier layer 170 to form a high electron mobility transistor device 1000. The source 180, gate 190, and drain 200 can be formed using any suitable materials, processes, and sequences, and the pitch and position of the components can be adjusted according to requirements. In the embodiment shown in FIG. 1E, the source electrode 180, the gate electrode 190, and the drain electrode 200 are located on the barrier layer 170, but the present invention is not limited thereto.

此外,可以根據需求設置應力鬆弛層150和交替層140的數量及配置。第2-4圖是根據一些其他實施例繪示高電子遷移率電晶體裝置的剖面示意圖。根據一些實施例,如第2圖所示,在高電子遷移率電晶體裝置2000中,在兩對交替 層140之間設置應力鬆弛層150,隨後在交替層140上方設置接觸交替層140的氮化鎵層160。雖然並未繪示,根據一些實施例,可以在高電子遷移率電晶體裝置2000之交替層140和氮化鎵層160之間設置多對交替層140和多層應力鬆弛層150。這些應力鬆弛層150可以位於每一對交替層140上方,或者只位於特定的交替層140之間。根據需求,這些應力鬆弛層150可以具有相同或不同的厚度。 In addition, the number and configuration of the stress relaxation layer 150 and the alternating layer 140 can be set according to requirements. Figures 2-4 are schematic cross-sectional views of a high electron mobility transistor device according to some other embodiments. According to some embodiments, as shown in FIG. 2, in the high electron mobility transistor device 2000, the two pairs alternate A stress relaxation layer 150 is disposed between the layers 140, and then a gallium nitride layer 160 contacting the alternating layer 140 is disposed above the alternating layer 140. Although not shown, according to some embodiments, multiple pairs of alternating layers 140 and multiple layers of stress relaxation layer 150 may be disposed between the alternating layer 140 and the gallium nitride layer 160 of the high electron mobility transistor device 2000. These stress relaxation layers 150 may be located above each pair of alternating layers 140, or only between specific alternating layers 140. The stress relaxation layers 150 may have the same or different thicknesses according to requirements.

此外,根據另一些實施例,如第3圖所示,在高電子遷移率電晶體裝置3000中,分別在兩對交替層140上方設置兩層應力鬆弛層150,隨後在應力鬆弛層150上方設置接觸應力鬆弛層150的氮化鎵層160。雖然並未繪示,根據一些實施例,可以在高電子遷移率電晶體裝置3000之應力鬆弛層150和氮化鎵層160之間設置多對交替層140和多層應力鬆弛層150。這些應力鬆弛層150可以位於每一對交替層140上方,或者只位於特定的交替層140之間。根據需求,這些應力鬆弛層150可以具有相同或不同的厚度。 In addition, according to other embodiments, as shown in FIG. 3, in the high electron mobility transistor device 3000, two stress relaxation layers 150 are respectively disposed above the two pairs of alternating layers 140, and then disposed above the stress relaxation layer 150 The gallium nitride layer 160 in contact with the stress relaxation layer 150. Although not shown, according to some embodiments, multiple pairs of alternating layers 140 and multiple layers of stress relaxation layer 150 may be disposed between the stress relaxation layer 150 and the gallium nitride layer 160 of the high electron mobility transistor device 3000. These stress relaxation layers 150 may be located above each pair of alternating layers 140, or only between specific alternating layers 140. The stress relaxation layers 150 may have the same or different thicknesses according to requirements.

此外,根據又一些實施例,如第4圖所示,高電子遷移率電晶體裝置4000的緩衝層130可以包含漸變式緩衝層(gradient buffer layer)、超晶格緩衝層(superlattice buffer layer)、類似的緩衝層或前述之組合。雖然第4圖繪示緩衝層130包含超晶格緩衝層220和漸變式緩衝層230,但可以只使用超晶格緩衝層220或漸變式緩衝層230。 In addition, according to some embodiments, as shown in FIG. 4, the buffer layer 130 of the high electron mobility transistor device 4000 may include a gradient buffer layer, a superlattice buffer layer, Similar buffer layers or combinations of the foregoing. Although FIG. 4 shows that the buffer layer 130 includes the superlattice buffer layer 220 and the graded buffer layer 230, only the superlattice buffer layer 220 or the graded buffer layer 230 may be used.

在一些實施例中,超晶格緩衝層220包含多組具有濃度差異的膜層,每組膜層包含多對氮化鋁層和氮化鋁鎵 層。舉例來說,如第4圖所示,超晶格緩衝層220包含第一組包含氮化鋁鎵層222a和氮化鋁層222b的膜層、第二組包含氮化鋁鎵層224a和氮化鋁層224b的膜層、第三組包含氮化鋁鎵層226a和氮化鋁層226b的膜層,但本發明不限於此,超晶格緩衝層220可以包含更多組膜層及/或更多對氮化鋁層和氮化鋁鎵層。超晶格緩衝層220的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。根據需求,超晶格緩衝層220的每一對氮化鋁鎵層和氮化鋁層與其他對氮化鋁鎵層和氮化鋁層可以具有相同或不同的厚度和氮化鋁鎵層的鋁濃度。 In some embodiments, the superlattice buffer layer 220 includes multiple sets of film layers with different concentration, and each set of film layers includes multiple pairs of aluminum nitride layers and aluminum gallium nitride Floor. For example, as shown in FIG. 4, the superlattice buffer layer 220 includes a first group of film layers including an aluminum gallium nitride layer 222a and an aluminum nitride layer 222b, and a second group includes an aluminum gallium nitride layer 224a and nitrogen The film layer of the aluminum oxide layer 224b and the third group of film layers include the aluminum gallium nitride layer 226a and the aluminum nitride layer 226b, but the present invention is not limited thereto, and the superlattice buffer layer 220 may include more sets of film layers and/or Or more pairs of aluminum nitride layer and aluminum gallium nitride layer. The formation of the superlattice buffer layer 220 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. According to requirements, each pair of aluminum gallium nitride layer and aluminum nitride layer of superlattice buffer layer 220 and other pairs of aluminum gallium nitride layer and aluminum nitride layer may have the same or different thickness and that of aluminum gallium nitride layer Aluminum concentration.

在一些實施例中,漸變式緩衝層230包含多層具有濃度差異的氮化鋁鎵層。舉例來說,如第4圖所示,漸變式緩衝層230包含三層氮化鋁鎵層232、234、236,但本發明不限於此,可以設置更多或更少層氮化鋁鎵層。漸變式緩衝層230的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。根據需求,漸變式緩衝層230的每層氮化鋁鎵層可以各自具有相同或不同的厚度和鋁濃度。 In some embodiments, the graded buffer layer 230 includes multiple layers of aluminum gallium nitride with different concentration. For example, as shown in FIG. 4, the graded buffer layer 230 includes three aluminum gallium nitride layers 232, 234, and 236, but the present invention is not limited thereto, and more or fewer aluminum gallium nitride layers may be provided . The formation of the graded buffer layer 230 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. According to requirements, each aluminum gallium nitride layer of the graded buffer layer 230 may have the same or different thickness and aluminum concentration.

如第4圖所示,設置包含超晶格緩衝層220和漸變式緩衝層230的緩衝層130,可以減緩在緩衝層130上方設置的交替層140的應力,避免產生裂縫,因此可增加交替層140的厚度。此外,在相同厚度下,相較於只形成超晶格緩衝層220,形成包含超晶格緩衝層220和漸變式緩衝層230的緩衝層130可大幅縮短成長時間。另外,相較於只形成漸變式緩衝層 230,形成包含超晶格緩衝層220和漸變式緩衝層230的緩衝層130可以在上方形成的交替層140具有較佳的結晶品質。因此可以在提高產能的同時,提升高電子遷移率電晶體裝置的效能和良率。 As shown in FIG. 4, the provision of the buffer layer 130 including the superlattice buffer layer 220 and the graded buffer layer 230 can relieve the stress of the alternating layer 140 provided above the buffer layer 130 and avoid cracks, so the alternating layer can be added 140 thickness. In addition, at the same thickness, the formation of the buffer layer 130 including the superlattice buffer layer 220 and the graded buffer layer 230 can greatly shorten the growth time compared to the formation of the superlattice buffer layer 220 alone. In addition, compared to forming only a gradient buffer layer 230, forming an alternate layer 140 formed above the buffer layer 130 including the superlattice buffer layer 220 and the graded buffer layer 230 to have better crystal quality. Therefore, the efficiency and yield of the high electron mobility transistor device can be improved while increasing productivity.

隨後參照前述的方法、材料和配置,在漸變式緩衝層230上方設置多對交替層140和至少一層應力鬆弛層150,然後設置氮化鎵層160。然後設置阻障層170、源極180、閘極190和汲極200,形成高電子遷移率電晶體裝置4000。 Subsequently, referring to the aforementioned method, material and configuration, a plurality of pairs of alternating layers 140 and at least one stress relaxation layer 150 are provided above the graded buffer layer 230, and then a gallium nitride layer 160 is provided. Then, a barrier layer 170, a source electrode 180, a gate electrode 190, and a drain electrode 200 are provided to form a high electron mobility transistor device 4000.

綜上所述,根據本發明的一些實施例,在摻雜碳的氮化鎵層上方設置未摻雜的氮化鎵層,可以改善摻雜碳的氮化鎵層的晶體品質和表面粗糙度。因此,可以保持高電子遷移率電晶體裝置的性能,例如二維電子氣特性,進一步提升裝置耐壓程度。 In summary, according to some embodiments of the present invention, providing an undoped gallium nitride layer above the carbon-doped gallium nitride layer can improve the crystal quality and surface roughness of the carbon-doped gallium nitride layer . Therefore, it is possible to maintain the performance of the high electron mobility transistor device, such as the two-dimensional electron gas characteristics, and further improve the device withstand voltage.

此外,根據本發明的一些實施例,在包含摻雜碳的氮化鎵層和未摻雜的氮化鎵層的交替層上方設置應力鬆弛層,可以緩解設置交替層的應力,因此可以增加交替層的數量和厚度,使高電子遷移率電晶體裝置達到更高的耐壓程度。 In addition, according to some embodiments of the present invention, providing a stress relaxation layer above an alternating layer containing a carbon-doped gallium nitride layer and an undoped gallium nitride layer can relieve the stress of the alternating layer, and thus can increase the alternating The number and thickness of the layers enable the high electron mobility transistor device to reach a higher withstand voltage.

另外,根據本發明的一些實施例,在基底上方設置包含漸變式緩衝層和超晶格緩衝層的緩衝層,可以減緩在緩衝層上方設置的交替層的應力,避免產生裂縫或翹曲,因此可增加交替層的厚度。此外,相較於只形成超晶格緩衝層或漸變式緩衝層,包含漸變式緩衝層和超晶格緩衝層的緩衝層可以在提高產能的同時,提升高電子遷移率電晶體裝置的 效能和良率。 In addition, according to some embodiments of the present invention, providing a buffer layer including a graded buffer layer and a superlattice buffer layer above the substrate can alleviate the stress of the alternating layer provided above the buffer layer to avoid cracks or warpage, so The thickness of alternating layers can be increased. In addition, compared to forming only the superlattice buffer layer or the graded buffer layer, the buffer layer including the graded buffer layer and the superlattice buffer layer can improve the productivity while improving the high electron mobility transistor device Efficacy and yield.

雖然本發明已以多個實施例描述如上,但這些實施例並非用於限定本發明。本發明所屬技術領域中具有通常知識者應可理解,他們能以本發明實施例為基礎,做各式各樣的改變、取代和替換,以達到與在此描述的多個實施例相同的目的及/或優點。本發明所屬技術領域中具有通常知識者也可理解,此類修改或設計並未悖離本發明的精神和範圍。因此,本發明之保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been described above with multiple embodiments, these embodiments are not intended to limit the present invention. Those of ordinary skill in the technical field to which the present invention belongs should understand that they can make various changes, substitutions, and replacements based on the embodiments of the present invention to achieve the same purpose as the multiple embodiments described herein And/or advantages. Those with ordinary knowledge in the technical field to which the present invention belongs can also understand that such modifications or designs do not depart from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be deemed as defined by the appended patent application scope.

110‧‧‧基底 110‧‧‧ base

120‧‧‧成核層 120‧‧‧Nuclear layer

130‧‧‧緩衝層 130‧‧‧buffer layer

140‧‧‧交替層 140‧‧‧ alternating layer

142‧‧‧摻雜碳的氮化鎵層 142‧‧‧Carbon-doped gallium nitride layer

144‧‧‧未摻雜的氮化鎵層 144‧‧‧ undoped gallium nitride layer

150‧‧‧應力鬆弛層 150‧‧‧stress relaxation layer

160‧‧‧氮化鎵層 160‧‧‧GaN layer

170‧‧‧阻障層 170‧‧‧ barrier layer

180‧‧‧源極 180‧‧‧Source

190‧‧‧閘極 190‧‧‧Gate

200‧‧‧汲極 200‧‧‧ Jiji

1000‧‧‧高電子遷移率電晶體裝置 1000‧‧‧High electron mobility transistor device

Claims (20)

一種高電子遷移率電晶體(HEMT)裝置,包括:一基底;複數對交替層,設置於該基底上方且每對交替層包括一摻雜碳的氮化鎵層和一未摻雜的氮化鎵層;至少一應力鬆弛層,設置於該些交替層之間;以及一氮化鎵層,設置於該些交替層上方。 A high electron mobility transistor (HEMT) device includes: a substrate; a plurality of pairs of alternating layers disposed on the substrate and each pair of alternating layers includes a carbon-doped gallium nitride layer and an undoped nitride A gallium layer; at least one stress relaxation layer disposed between the alternating layers; and a gallium nitride layer disposed above the alternating layers. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該應力鬆弛層為一含鋁層。 The high electron mobility transistor device described in item 1 of the patent application scope, wherein the stress relaxation layer is an aluminum-containing layer. 如申請專利範圍第2項所述之高電子遷移率電晶體裝置,其中該含鋁層包括氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。 The high electron mobility transistor device described in item 2 of the patent application range, wherein the aluminum-containing layer includes aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination of the foregoing. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該應力鬆弛層設置於該些交替層中的每兩對之間。 A high electron mobility transistor device as described in item 1 of the patent application range, wherein the stress relaxation layer is disposed between every two pairs of the alternating layers. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該應力鬆弛層中的厚度在0.1nm至10nm的範圍。 A high electron mobility transistor device as described in item 1 of the patent application range, wherein the thickness in the stress relaxation layer is in the range of 0.1 nm to 10 nm. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該摻雜碳的氮化鎵層的厚度在1nm至600nm的範圍,且該未摻雜的氮化鎵層的厚度在1nm至200nm的範圍。 The high electron mobility transistor device as described in item 1 of the patent application range, wherein the thickness of the carbon-doped gallium nitride layer is in the range of 1 nm to 600 nm, and the thickness of the undoped gallium nitride layer is 1nm to 200nm range. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該摻雜碳的氮化鎵層的厚度與該未摻雜的氮化鎵層的厚度之比值在3.5至5的範圍。 The high electron mobility transistor device as described in item 1 of the patent application range, wherein the ratio of the thickness of the carbon-doped gallium nitride layer to the thickness of the undoped gallium nitride layer is in the range of 3.5 to 5 . 如申請專利範圍第1項所述之高電子遷移率電晶體裝置, 更包括一成核層,設置於該基底和該些交替層之間。 As described in item 1 of the patent application scope, a high electron mobility transistor device, It further includes a nucleation layer disposed between the substrate and the alternating layers. 如申請專利範圍第8項所述之高電子遷移率電晶體裝置,其中該成核層包括氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。 The high electron mobility transistor device as described in item 8 of the patent application range, wherein the nucleation layer includes aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination of the foregoing. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,更包括一緩衝層,設置於該基底和該些交替層之間。 The high electron mobility transistor device described in item 1 of the patent application scope further includes a buffer layer disposed between the substrate and the alternating layers. 如申請專利範圍第10項所述之高電子遷移率電晶體裝置,其中該緩衝層包括氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。 The high electron mobility transistor device described in item 10 of the patent application range, wherein the buffer layer includes gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination of the foregoing. 如申請專利範圍第10項所述之高電子遷移率電晶體裝置,其中該緩衝層包括一漸變式緩衝層(gradient buffer layer)、一超晶格緩衝層(superlattice buffer layer)或前述之組合。 The high electron mobility transistor device as described in item 10 of the patent application range, wherein the buffer layer includes a gradient buffer layer, a superlattice buffer layer, or a combination thereof. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,更包括:一阻障層,設置於該氮化鎵層上方;以及一源極、一汲極、一閘極,設置於該阻障層上方。 The high electron mobility transistor device described in item 1 of the patent application scope further includes: a barrier layer disposed above the gallium nitride layer; and a source electrode, a drain electrode, and a gate electrode Above the barrier layer. 一種高電子遷移率電晶體裝置的製造方法,包括:形成一基底;在該基底上方形成複數對交替層,其中每對交替層包括一摻雜碳的氮化鎵層和一未摻雜的氮化鎵層;在該些交替層之間形成至少一應力鬆弛層;以及在該些交替層上方形成一氮化鎵層。 A method for manufacturing a high electron mobility transistor device includes: forming a substrate; forming a plurality of pairs of alternating layers above the substrate, wherein each pair of alternating layers includes a carbon-doped gallium nitride layer and an undoped nitrogen A gallium nitride layer; forming at least one stress relaxation layer between the alternating layers; and forming a gallium nitride layer above the alternating layers. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置 的製造方法,其中該些交替層包括氮化鋁、氮化鋁鎵或前述之組合,且該應力鬆弛層包括氮化鋁、氮化鋁鎵或前述之組合。 Transistor device with high electron mobility as described in item 14 of the patent application Wherein the alternating layers include aluminum nitride, aluminum gallium nitride, or a combination of the foregoing, and the stress relaxation layer includes aluminum nitride, aluminum gallium nitride, or a combination of the foregoing. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置的製造方法,更包括在該些交替層中的每兩對之間形成該應力鬆弛層。 The method for manufacturing a high electron mobility transistor device as described in item 14 of the patent application scope further includes forming the stress relaxation layer between every two pairs of the alternating layers. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置的製造方法,其中該應力鬆弛層的厚度在1nm至500nm的範圍。 The method for manufacturing a high electron mobility transistor device as described in item 14 of the patent application range, wherein the thickness of the stress relaxation layer is in the range of 1 nm to 500 nm. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置的製造方法,其中該摻雜碳的氮化鎵層的厚度在1nm至600nm的範圍,該未摻雜的氮化鎵層的厚度在1nm至200nm的範圍,且該摻雜碳的氮化鎵層的厚度與該未摻雜的氮化鎵層的厚度之比值在3.5至5的範圍。 The method for manufacturing a high electron mobility transistor device as described in item 14 of the patent application range, wherein the thickness of the carbon-doped gallium nitride layer is in the range of 1 nm to 600 nm, and the thickness of the undoped gallium nitride layer The thickness is in the range of 1 nm to 200 nm, and the ratio of the thickness of the carbon-doped gallium nitride layer to the thickness of the undoped gallium nitride layer is in the range of 3.5 to 5. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置的製造方法,更包括在該基底和該些交替層之間形成一成核層,其中該成核層包括氮化鋁、氮化鋁鎵或前述之組合。 The method for manufacturing a high electron mobility transistor device as described in item 14 of the patent application scope further includes forming a nucleation layer between the substrate and the alternating layers, wherein the nucleation layer includes aluminum nitride and nitrogen Aluminum gallium or a combination of the foregoing. 如申請專利範圍第14項所述之高電子遷移率電晶體裝置的製造方法,更包括在該基底和該些交替層之間形成一緩衝層,其中該緩衝層包括一漸變式緩衝層、一超晶格緩衝層或前述之組合。 The method for manufacturing a high electron mobility transistor device as described in item 14 of the patent application scope further includes forming a buffer layer between the substrate and the alternating layers, wherein the buffer layer includes a graded buffer layer, a Superlattice buffer layer or a combination of the foregoing.
TW107137949A 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same TWI713221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107137949A TWI713221B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107137949A TWI713221B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Publications (2)

Publication Number Publication Date
TW202017187A true TW202017187A (en) 2020-05-01
TWI713221B TWI713221B (en) 2020-12-11

Family

ID=71895643

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107137949A TWI713221B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI713221B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768985B (en) * 2021-06-25 2022-06-21 世界先進積體電路股份有限公司 Semiconductor structure and high electron mobility transistor
US11942519B2 (en) 2021-09-01 2024-03-26 Vanguard International Semiconductor Corporation Semiconductor structure and high electron mobility transistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10636881B2 (en) * 2016-04-11 2020-04-28 Qorvo Us, Inc. High electron mobility transistor (HEMT) device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768985B (en) * 2021-06-25 2022-06-21 世界先進積體電路股份有限公司 Semiconductor structure and high electron mobility transistor
US11942519B2 (en) 2021-09-01 2024-03-26 Vanguard International Semiconductor Corporation Semiconductor structure and high electron mobility transistor

Also Published As

Publication number Publication date
TWI713221B (en) 2020-12-11

Similar Documents

Publication Publication Date Title
US11114555B2 (en) High electron mobility transistor device and methods for forming the same
JP5309452B2 (en) Semiconductor wafer, semiconductor device, and manufacturing method
US8575660B2 (en) Group III-V semiconductor device with strain-relieving interlayers
TWI574325B (en) Normally-off gallium nitride-based semiconductor devices
JP2010232377A (en) Semiconductor device
TWI605552B (en) Semiconductor device, semiconductor substrate and method of forming the same
US20210057561A1 (en) High electron mobility transistor device and methods for forming the same
JP2009206163A (en) Heterojunction-type field effect transistor
US9337023B1 (en) Buffer stack for group IIIA-N devices
TWI678723B (en) High electron mobility transistor and methods for forming the same
TWI713221B (en) High electron mobility transistor and methods for forming the same
CN112242435A (en) Semiconductor epitaxial structure and forming method thereof
JP2019500755A (en) Non-etched gas cooled epitaxial stack for IIIA-N devices
JP5824814B2 (en) Semiconductor wafer, semiconductor element, and manufacturing method thereof
WO2018092689A1 (en) Compound semiconductor substrate manufacturing method and compound semiconductor substrate
JP5379391B2 (en) Semiconductor device comprising gallium nitride compound semiconductor and method for manufacturing the same
JP2007103778A (en) Field effect transistor
JP2012049170A (en) Nitride semiconductor device
KR101972045B1 (en) Heterostructure semiconductor device
TWM508782U (en) Semiconductor device
CN111146282B (en) High electron mobility transistor device and method of manufacturing the same
JP2005079346A (en) Semiconductor device
JP2015103665A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor
JP6264485B2 (en) Compound semiconductor device and manufacturing method thereof
JP2007329154A (en) Method of manufacturing nitride semiconductor device