TWI678723B - High electron mobility transistor and methods for forming the same - Google Patents

High electron mobility transistor and methods for forming the same Download PDF

Info

Publication number
TWI678723B
TWI678723B TW107137951A TW107137951A TWI678723B TW I678723 B TWI678723 B TW I678723B TW 107137951 A TW107137951 A TW 107137951A TW 107137951 A TW107137951 A TW 107137951A TW I678723 B TWI678723 B TW I678723B
Authority
TW
Taiwan
Prior art keywords
layer
buffer layer
mobility transistor
layers
transistor device
Prior art date
Application number
TW107137951A
Other languages
Chinese (zh)
Other versions
TW202016977A (en
Inventor
謝祁峰
Chi Feng Hsieh
王端瑋
Tuan Wei Wang
孫健仁
Chien Jen Sun
Original Assignee
世界先進積體電路股份有限公司
Vanguard International Semiconductor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司, Vanguard International Semiconductor Corporation filed Critical 世界先進積體電路股份有限公司
Priority to TW107137951A priority Critical patent/TWI678723B/en
Application granted granted Critical
Publication of TWI678723B publication Critical patent/TWI678723B/en
Publication of TW202016977A publication Critical patent/TW202016977A/en

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

一種高電子遷移率電晶體裝置,其包含基底;超晶格緩衝層設置於基底上方,其中超晶格緩衝層包含多組交替層,每組交替層包含交錯排列的至少一AlN層和至少一AlxGa(1-x)N層,其中0

Figure TWI678723B_A0001
x<1;漸變式緩衝層設置於基底上方,其中漸變式緩衝層包含多個AlyGa(1-y)N層,其中0
Figure TWI678723B_A0002
y<1;以及通道層設置於漸變式緩衝層上方。 A high electron mobility transistor device includes a substrate; a superlattice buffer layer is disposed above the substrate, wherein the superlattice buffer layer includes a plurality of sets of alternating layers, and each set of alternating layers includes at least one AlN layer and at least one staggered array. Al x Ga (1-x) N layers, where 0
Figure TWI678723B_A0001
x <1; the gradient buffer layer is disposed above the substrate, where the gradient buffer layer includes multiple Al y Ga (1-y) N layers, where 0
Figure TWI678723B_A0002
y <1; and the channel layer is disposed above the gradient buffer layer.

Description

高電子遷移率電晶體裝置及其製造方法 High electron mobility transistor device and manufacturing method thereof

本揭露係有關於一種半導體製造技術,特別是有關於高電子遷移率電晶體裝置及其製造方法。 This disclosure relates to a semiconductor manufacturing technology, and more particularly to a high electron mobility transistor device and a method for manufacturing the same.

高電子遷移率電晶體(high electron mobility transistor,HEMT),又稱為異質結構場效電晶體(heterostructure FET,HFET)或調變摻雜場效電晶體(modulation-doped FET,MODFET),為一種場效電晶體(field effect transistor,FET),其由具有不同能隙(energy gap)的半導體材料組成。在鄰近不同半導體材料的所形成界面處會產生二維電子氣(two dimensional electron gas,2 DEG)層。由於二維電子氣的高電子移動性,高電子遷移率電晶體可以具有高崩潰電壓、高電子遷移率、低導通電阻與低輸入電容等優點,因而適合用於高功率元件上。 High electron mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a kind of Field effect transistor (FET), which is composed of semiconductor materials with different energy gaps. A two-dimensional electron gas (2 DEG) layer is generated near the formed interface adjacent to different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, the high electron mobility transistor can have advantages such as high breakdown voltage, high electron mobility, low on-resistance, and low input capacitance, and is therefore suitable for high power components.

然而,由於基底材料與半導體層材料不同,兩者間具有晶格差異、熱膨脹係數不同等問題,容易導致高電子遷移率電晶體中的結構變形,因此會在基底和半導體層之間設置緩衝層,以緩解此結構變形及其可能導致的缺陷。為了使現有的高電子遷移率電晶體在各方面獲得改善,例如形成 晶體性質更好的半導體層以及降低製造成本,仍需持續改善緩衝層的設置。 However, because the base material and the semiconductor layer material are different, the two have problems such as lattice differences and different thermal expansion coefficients, which easily lead to structural deformation in the high electron mobility transistor. Therefore, a buffer layer is provided between the base and the semiconductor layer. To alleviate this structural deformation and its possible defects. In order to improve the existing high electron mobility transistors in various aspects, such as the formation Semiconductor layers with better crystalline properties and reduced manufacturing costs need to continue to improve the placement of buffer layers.

根據本揭露的一些實施例,提供高電子遷移率電晶體裝置。此裝置包含基底;超晶格緩衝層設置於基底上方,其中超晶格緩衝層包含多組交替層,每組交替層包含交錯排列的至少一AlN層和至少一AlxGa(1-x)N層,其中0

Figure TWI678723B_D0001
x<1;漸變式緩衝層設置於基底上方,其中漸變式緩衝層包含多個AlyGa(1-y)N層,其中0
Figure TWI678723B_D0002
y<1;以及通道層設置於漸變式緩衝層上方。 According to some embodiments of the present disclosure, a high electron mobility transistor device is provided. The device includes a substrate; a superlattice buffer layer is disposed above the substrate, wherein the superlattice buffer layer includes a plurality of sets of alternating layers, each set of alternating layers including at least one AlN layer and at least one Al x Ga (1-x) arranged alternately N layers, where 0
Figure TWI678723B_D0001
x <1; the gradient buffer layer is disposed above the substrate, where the gradient buffer layer includes multiple Al y Ga (1-y) N layers, where 0
Figure TWI678723B_D0002
y <1; and the channel layer is disposed above the gradient buffer layer.

在一些實施例中,在每組交替層中,這些AlxGa(1-x)N層具有相同的x值。 In some embodiments, these Al x Ga (1-x) N layers have the same x value in each set of alternating layers.

在一些實施例中,對不同組交替層而言,這些AlxGa(1-x)N層具有不同的x值。 In some embodiments, these Al x Ga (1-x) N layers have different x values for different sets of alternating layers.

在一些實施例中,鄰近基底的這組交替層的這些AlxGa(1-x)N層的x值大於遠離基底的這組交替層的這些AlxGa(1-x)N層的x值。 In some embodiments, the x value of the Al x Ga (1-x) N layers of the set of alternating layers adjacent to the substrate is greater than the x value of the Al x Ga (1-x) N layers of the set of alternating layers away from the substrate value.

在一些實施例中,在每組交替層中,AlN層的厚度在1nm至20nm的範圍,且AlxGa(1-x)N層的厚度在5nm至100nm的範圍。 In some embodiments, in each set of alternating layers, the thickness of the AlN layer is in a range of 1 nm to 20 nm, and the thickness of the Al x Ga (1-x) N layer is in a range of 5 nm to 100 nm.

在一些實施例中,AlxGa(1-x)N層的厚度對AlN層的厚度的比值在3至10的範圍。 In some embodiments, the ratio of the thickness of the Al x Ga (1-x) N layer to the thickness of the AlN layer ranges from 3 to 10.

在一些實施例中,這些AlyGa(1-y)N層中的每一個的厚度在50nm至500nm的範圍。 In some embodiments, the thickness of each of these Al y Ga (1-y) N layers is in the range of 50 nm to 500 nm.

在一些實施例中,鄰近基底的AlyGa(1-y)N層的y值大於遠離基底的AlyGa(1-y)N層的y值。 In some embodiments, the substrate adjacent the Al y Ga (1-y) y N layer is greater than the value of the substrate remote from the Al y Ga (1-y) y N layer value.

在一些實施例中,漸變式緩衝層設置於超晶格緩衝層上方。 In some embodiments, the gradient buffer layer is disposed above the superlattice buffer layer.

在一些實施例中,高電子遷移率電晶體裝置更包含成核層,設置於基底和超晶格緩衝層之間,其中成核層包含氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, the high electron mobility transistor device further includes a nucleation layer disposed between the substrate and the superlattice buffer layer, wherein the nucleation layer includes aluminum nitride, aluminum gallium nitride, or a combination thereof.

在一些實施例中,高電子遷移率電晶體裝置更包含阻障層,設置於通道層上方;以及源極、汲極、閘極,設置於阻障層上方。 In some embodiments, the high electron mobility transistor device further includes a barrier layer disposed above the channel layer; and a source electrode, a drain electrode, and a gate electrode disposed above the barrier layer.

根據本揭露的一些實施例,提供高電子遷移率電晶體裝置的製造方法。此方法包含:形成基底;在基底上方形成超晶格緩衝層,其中超晶格緩衝層包含多組交替層,每組交替層包含交錯排列的至少一AlN層和至少一AlxGa(1-x)N層,其中0

Figure TWI678723B_D0003
x<1;在基底上方形成漸變式緩衝層,其中漸變式緩衝層包含多個AlyGa(1-y)N層,其中0
Figure TWI678723B_D0004
y<1;以及在漸變式緩衝層上方形成通道層。 According to some embodiments of the present disclosure, a method for manufacturing a high electron mobility transistor device is provided. The method includes: forming a substrate; forming a superlattice buffer layer above the substrate, wherein the superlattice buffer layer includes a plurality of sets of alternating layers, each set of alternating layers including at least one AlN layer and at least one AlxGa (1-x) staggered N layers, where 0
Figure TWI678723B_D0003
x <1; a gradient buffer layer is formed above the substrate, where the gradient buffer layer includes multiple AlyGa (1-y) N layers, where 0
Figure TWI678723B_D0004
y <1; and forming a channel layer above the gradient buffer layer.

在一些實施例中,在每組交替層中,這些AlxGa(1-x)N層具有相同的x值。 In some embodiments, these Al x Ga (1-x) N layers have the same x value in each set of alternating layers.

在一些實施例中,對不同組交替層而言,這些AlxGa(1-x)N層具有不同的x值。 In some embodiments, these Al x Ga (1-x) N layers have different x values for different sets of alternating layers.

在一些實施例中,鄰近基底的這組交替層的這些AlxGa(1-x)N層的x值大於遠離基底的這組交替層的這些AlxGa(1-x)N層的x值。 In some embodiments, the x value of the Al x Ga (1-x) N layers of the set of alternating layers adjacent to the substrate is greater than the x value of the Al x Ga (1-x) N layers of the set of alternating layers away from the substrate value.

在一些實施例中,在每組交替層中,AlN層的厚度在1nm至20nm的範圍,AlxGa(1-x)N層的厚度在5nm至100nm的範圍,且AlxGa(1-x)N層的厚度對AlN層的厚度的比值在3至10的範圍。 In some embodiments, in each set of alternating layers, the thickness of the AlN layer is in the range of 1 nm to 20 nm, the thickness of the Al x Ga (1-x) N layer is in the range of 5 nm to 100 nm, and the Al x Ga (1- x) The ratio of the thickness of the N layer to the thickness of the AlN layer is in the range of 3 to 10.

在一些實施例中,這些AlyGa(1-y)N層中的每一個的厚度在50nm至500nm的範圍。 In some embodiments, the thickness of each of these Al y Ga (1-y) N layers is in the range of 50 nm to 500 nm.

在一些實施例中,鄰近基底的AlyGa(1-y)N層的y值大於遠離基底的AlyGa(1-y)N層的y值。 In some embodiments, the substrate adjacent the Al y Ga (1-y) y N layer is greater than the value of the substrate remote from the Al y Ga (1-y) y N layer value.

在一些實施例中,漸變式緩衝層形成於超晶格緩衝層上方。 In some embodiments, a graded buffer layer is formed over the superlattice buffer layer.

在一些實施例中,高電子遷移率電晶體裝置的製造方法更包含在基底和超晶格緩衝層之間形成成核層,其中成核層包含氮化鋁、氮化鋁鎵或前述之組合。 In some embodiments, the method for manufacturing a high electron mobility transistor device further includes forming a nucleation layer between the substrate and the superlattice buffer layer, wherein the nucleation layer includes aluminum nitride, aluminum gallium nitride, or a combination thereof. .

100‧‧‧高電子遷移率電晶體裝置 100‧‧‧High Electron Mobility Transistor Device

110‧‧‧基底 110‧‧‧ substrate

120‧‧‧成核層 120‧‧‧nucleation layer

130‧‧‧超晶格緩衝層 130‧‧‧Superlattice buffer layer

132‧‧‧第一組交替層 132‧‧‧The first set of alternating layers

132a、134a、136a‧‧‧AlxGa(1-x)N層 132a, 134a, 136a‧‧‧Al x Ga (1-x) N layers

132b、134b、136b‧‧‧AlN層 132b, 134b, 136b‧‧‧AlN layer

134‧‧‧第二組交替層 134‧‧‧Second set of alternating layers

136‧‧‧第三組交替層 136‧‧‧The third group of alternating layers

140‧‧‧漸變式緩衝層 140‧‧‧ Gradient buffer layer

142‧‧‧第一AlyGa(1-y)N層 142‧‧‧First Al y Ga (1-y) N layer

144‧‧‧第二AlyGa(1-y)N層 144‧‧‧Second Al y Ga (1-y) N layer

146‧‧‧第三AlyGa(1-y)N層 146‧‧‧Third Al y Ga (1-y) N layer

150‧‧‧通道層 150‧‧‧channel floor

152‧‧‧二維電子氣 152‧‧‧Two-dimensional electron gas

160‧‧‧阻障層 160‧‧‧Barrier layer

170‧‧‧源極 170‧‧‧Source

180‧‧‧閘極 180‧‧‧Gate

190‧‧‧汲極 190‧‧‧ Drain

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various features are not drawn to scale and are for illustration purposes only. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the features of the present disclosure.

第1-5圖是根據一些實施例繪示在製造高電子遷移率電晶體裝置的各個階段之剖面示意圖。 FIGS. 1-5 are schematic cross-sectional views illustrating various stages in manufacturing a high electron mobility transistor device according to some embodiments.

以下概述一些實施例,以使得本發明所屬技術領域中具有通常知識者可以更容易理解本發明,但這些實施例並非用於限制本發明。可以理解的是,本發明所屬技術領域 中具有通常知識者可以根據需求,調整以下描述的實施例,例如改變製程順序及/或包含比在此描述的更多或更少步驟。此外,還可以在以下敘述的實施例的基礎上添加其他元件,舉例來說,「在第一元件上形成第二元件」的描述可能包含第一元件與第二元件直接接觸的實施例,也可能包含第一元件與第二元件之間具有其他元件,使得第一元件與第二元件不直接接觸的實施例,並且第一元件與第二元件的上下關係可能隨著裝置在不同方位操作或使用而改變。 The following summarizes some embodiments so that those with ordinary knowledge in the technical field to which the present invention pertains can more easily understand the present invention, but these embodiments are not intended to limit the present invention. It can be understood that the technical field to which the present invention belongs Those skilled in the art can adjust the embodiments described below according to requirements, such as changing the process sequence and / or including more or fewer steps than described herein. In addition, other elements may be added to the embodiments described below. For example, the description of "forming a second element on a first element" may include an embodiment in which the first element is in direct contact with the second element. It may include an embodiment in which there are other elements between the first element and the second element, so that the first element and the second element are not in direct contact, and the up-down relationship between the first element and the second element may vary with the operation of the device in different orientations Use and change.

以下根據本發明的一些實施例,描述在高電子遷移率電晶體裝置的基底和通道層之間設置超晶格緩衝層和漸變式緩衝層,以在提高產能的同時,改善高電子遷移率電晶體裝置的效能和良率。 In the following, according to some embodiments of the present invention, it is described that a superlattice buffer layer and a gradient buffer layer are provided between the substrate and the channel layer of the high electron mobility transistor device, so as to improve the productivity and improve the high electron mobility Efficiency and yield of crystal devices.

第1-5圖是根據一些實施例繪示在製造高電子遷移率電晶體裝置100的各個階段之剖面示意圖。如第1圖所示,高電子遷移率電晶體裝置100包含基底110,基底110可以是整體的(bulk)半導體基底或包含由不同材料形成的複合基底,並且可以使用任何適用於半導體裝置的基底材料,例如矽、鍺、碳化矽、氮化鎵、藍寶石。 FIGS. 1-5 are schematic cross-sectional views illustrating various stages in manufacturing the high electron mobility transistor device 100 according to some embodiments. As shown in FIG. 1, the high electron mobility transistor device 100 includes a substrate 110. The substrate 110 may be a bulk semiconductor substrate or a composite substrate formed of different materials, and any substrate suitable for a semiconductor device may be used. Materials such as silicon, germanium, silicon carbide, gallium nitride, sapphire.

在一些實施例中,在基底110上方形成成核層120,以緩解基底110與上方成長的膜層之間的晶格差異。舉例來說,成核層120的材料可以包含例如氮化鋁(Aluminium Nitride,AlN)、氮化鋁鎵(Aluminium Gallium Nitride,AlGaN)、類似的材料或前述之組合,並且成核層120的厚度可以是在約100奈米(nanometer,nm)至約1000nm的範圍,例如 約200nm。成核層120的形成可以包含沉積製程,例如有機金屬化學氣相沉積(Metal Organic Chemical Vapor Deposition,MOCVD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、液相磊晶(Liquid Phase Epitaxy,LPE)或其他的沉積技術。 In some embodiments, a nucleation layer 120 is formed above the substrate 110 to mitigate a lattice difference between the substrate 110 and a film layer grown above. For example, the material of the nucleation layer 120 may include, for example, Aluminium Nitride (AlN), Aluminium Gallium Nitride (AlGaN), a similar material, or a combination thereof, and the thickness of the nucleation layer 120 It may be in the range of about 100 nanometers (nm) to about 1000 nm, for example About 200nm. The formation of the nucleation layer 120 may include a deposition process, such as Metal Organic Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy (MBE), and Liquid Phase Epitaxy (LPE) ) Or other deposition techniques.

如第2圖所示,在一些實施例中,在成核層120上方形成超晶格緩衝層130。成核層120是選擇性的。在另一些實施例中,不設置成核層120,直接在基底上形成超晶格緩衝層130。超晶格緩衝層130的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。 As shown in FIG. 2, in some embodiments, a superlattice buffer layer 130 is formed over the nucleation layer 120. The nucleation layer 120 is selective. In other embodiments, the nucleation layer 120 is not provided, and the superlattice buffer layer 130 is directly formed on the substrate. The formation of the superlattice buffer layer 130 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques.

超晶格緩衝層130包含多組交替層,例如在第2圖繪示的實施例中,超晶格緩衝層130包含最鄰近基底的第一組交替層132、第二組交替層134和離基底最遠的第三組交替層136。每一組交替層各自包含交錯排列的至少一氮化鋁(Aluminium Nitride,AlN)層和至少一氮化鋁鎵(Aluminium Gallium Nitride,AlxGa(1-x)N)層,其中氮化鋁鎵可以根據不同的鋁含量,以AlxGa(1-x)N表示,其中0

Figure TWI678723B_D0005
x<1。如第2圖所示,第一組交替層132包含交錯排列的三層AlxGa(1-x)N層132a和三層AlN層132b,第二組交替層134包含交錯排列的三層AlxGa(1-x)N層134a和三層AlN層134b,以及第三組交替層136包含交錯排列的三層AlxGa(1-x)N層136a和三層AlN層136b。 The superlattice buffer layer 130 includes a plurality of sets of alternating layers. For example, in the embodiment shown in FIG. 2, the superlattice buffer layer 130 includes a first set of alternating layers 132, a second set of alternating layers 134, and a separation layer closest to the substrate. The third group of alternating layers 136 furthest from the base. Each set of alternating layers includes at least one Aluminium Nitride (AlN) layer and at least one Aluminium Gallium Nitride (Al x Ga (1-x) N) layer staggered, wherein aluminum nitride Gallium can be expressed as Al x Ga (1-x) N according to different aluminum content, where 0
Figure TWI678723B_D0005
x <1. As shown in FIG. 2, the first group of alternating layers 132 includes three layers of Al x Ga (1-x) N layers 132 a and three layers of AlN 132 b , and the second group of alternating layers 134 includes three layers of Al x Ga (1-x) N layers 134a and three AlN layer 134b, and a third group 136 comprising alternating layers of three staggered Al x Ga (1-x) N layers 136a and three AlN layer 136b.

雖然在第2圖的實施例中,超晶格緩衝層130包含第一組交替層132、第二組交替層134和第三組交替層136,且這些交替層各自包含三組交錯排列的AlxGa(1-x)N層和AlN層, 但可以根據需求增加或減少交替層及/或AlxGa(1-x)N層和AlN層的數量,並且對不同組交替層而言,可以各自具有不同數量的交錯排列的AlxGa(1-x)N層和AlN層。 Although in the embodiment of FIG. 2, the superlattice buffer layer 130 includes a first group of alternating layers 132, a second group of alternating layers 134, and a third group of alternating layers 136, and each of these alternating layers includes three groups of staggered Al x Ga (1-x) N layers and AlN layers, but the number of alternating layers and / or Al x Ga (1-x) N layers and AlN layers can be increased or decreased as required, and for different sets of alternating layers, Each may have a different number of staggered Al x Ga (1-x) N layers and AlN layers.

在每組交替層中,AlxGa(1-x)N層的x值相同,而對不同組交替層而言,AlxGa(1-x)N層的x值不同。亦即,具有相同鋁含量的AlxGa(1-x)N層為同一組交替層。此外,鄰近基底的一組交替層的AlxGa(1-x)N層的x值大於遠離基底的另一組交替層的AlxGa(1-x)N層的x值。換句話說,離基底最近的一組交替層的AlxGa(1-x)N層具有最大的鋁含量,且鋁含量隨著交替層遠離基底而大致上減少。 In each set of alternating layers, the x value of the Al x Ga (1-x) N layer is the same, and for different sets of alternating layers, the x value of the Al x Ga (1-x) N layer is different. That is, Al x Ga (1-x) N layers having the same aluminum content are the same set of alternating layers. Further, Al x Ga set of alternating layers of the substrate adjacent the values of x (1-x) N layer is greater than the base away from the other set of alternating layers of Al x Ga (1-x) x N layer value. In other words, (1-x) N layer has a maximum aluminum content and the aluminum content and away from the substrate with alternating layers of Al x Ga substantially reduced from the substrate to the nearest set of alternating layers.

此外,可以根據需求調整x值,亦即AlxGa(1-x)N層中的鋁含量。舉例來說,在第2圖的實施例中,第一組交替層132的AlxGa(1-x)N層132a的x值為約0.75,第二組交替層134的AlxGa(1-x)N層134a的x值為約0.5,第三組交替層136的AlxGa(1-x)N層136a的x值為約0.25,因此AlxGa(1-x)N層132a、134a和136a也可以分別被稱為Al0.75Ga0.25N層、Al0.5Ga0.5N層和Al0.25Ga0.75N層。 In addition, the value of x, that is, the aluminum content in the Al x Ga (1-x) N layer can be adjusted according to the needs. For example, in the embodiment of FIG. 2, the x value of the Al x Ga (1-x) N layer 132 a of the first set of alternating layers 132 is about 0.75, and the Al x Ga (1 -x) The x value of the N layer 134a is about 0.5, and the x value of the Al x Ga (1-x) N layer 136a of the third set of alternating layers 136 is about 0.25, so the Al x Ga (1-x) N layer 132a , 134a, and 136a may also be referred to as Al 0.75 Ga 0.25 N layer, Al 0.5 Ga 0.5 N layer, and Al 0.25 Ga 0.75 N layer, respectively.

根據一些實施例,在每組交替層中,AlxGa(1-x)N層的厚度在約5nm至約100nm的範圍,AlN層的厚度在約1nm至約20nm的範圍,例如AlxGa(1-x)N層的厚度為約20nm,AlN層的厚度為約5nm。在一些實施例中,AlxGa(1-x)N層的厚度對AlN層的厚度的比值在約3至約10的範圍。雖然在第2圖中繪示第一組交替層132、第二組交替層134和第三組交替層136以及這些交替層中的AlxGa(1-x)N層132a、134a、136a和AlN層 132b、134b、136b具有相同的厚度,但本發明不限於此,可以根據需求調整每組交替層及/或交錯排列的AlxGa(1-x)N層和AlN層的厚度,並且對不同組交替層而言,可以各自具有不同厚度的交錯排列的AlxGa(1-x)N層和AlN層。在一些實施例中,超晶格緩衝層130的厚度在約0.05微米(micrometer,μm)至約10μm的範圍,例如約0.2μm。 According to some embodiments, in each set of alternating layers, the thickness of the Al x Ga (1-x) N layer is in a range of about 5 nm to about 100 nm, and the thickness of the AlN layer is in a range of about 1 nm to about 20 nm, such as Al x Ga The thickness of the (1-x) N layer is about 20 nm, and the thickness of the AlN layer is about 5 nm. In some embodiments, the ratio of the thickness of the Al x Ga (1-x) N layer to the thickness of the AlN layer is in a range of about 3 to about 10. Although shown in a first set of alternating layers 132 in FIG. 2, a second set of alternating layers 134 and 136 and a third set of alternating layers of the alternating layers of Al x Ga (1-x) N layers 132a, 134a, 136a, and The AlN layers 132b, 134b, and 136b have the same thickness, but the present invention is not limited thereto. The thicknesses of each group of alternating layers and / or staggered Al x Ga (1-x) N layers and AlN layers can be adjusted according to requirements, and For different sets of alternating layers, there may be staggered Al x Ga (1-x) N layers and AlN layers each having a different thickness. In some embodiments, the thickness of the superlattice buffer layer 130 is in a range of about 0.05 micrometers (μm) to about 10 μm, such as about 0.2 μm.

如第3圖所示,在一些實施例中,在超晶格緩衝層130上方形成漸變式緩衝層140。漸變式緩衝層140的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。漸變式緩衝層140包含多個氮化鋁鎵(Aluminium Gallium Nitride,AlyGa(1-y)N)層,並且可以根據不同的鋁含量,以AlyGa(1-y)N表示,其中0

Figure TWI678723B_D0006
y<1。鄰近基底的AlyGa(1-y)N層的y值大於遠離基底的另一組交替層的AlyGa(1-y)N層的y值。換句話說,離基底最近的一組交替層的AlyGa(1-y)N層具有最大的鋁含量,且鋁含量隨著交替層遠離基底而大致上減少。 As shown in FIG. 3, in some embodiments, a gradient buffer layer 140 is formed over the superlattice buffer layer 130. The formation of the gradient buffer layer 140 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. The graded buffer layer 140 includes a plurality of Aluminium Gallium Nitride (Al y Ga (1-y) N) layers, and may be represented by Al y Ga (1-y) N according to different aluminum contents, where 0
Figure TWI678723B_D0006
y <1. Adjacent to the substrate Al y Ga (1-y) y N layer is greater than the value of the Al y Ga substrate away from the other set of alternating layers (1-y) y N layer value. In other words, the Al y Ga (1-y) N layer of the set of alternating layers closest to the substrate has the largest aluminum content, and the aluminum content decreases substantially as the alternating layers move away from the substrate.

在第3圖繪示的實施例中,漸變式緩衝層140包含最鄰近基底的第一AlyGa(1-y)N層142、第二AlyGa(1-y)N層144和離基底最遠的第三AlyGa(1-y)N層146。可以根據需求增加或減少AlyGa(1-y)N層的數量,並且可以調整y值,亦即AlyGa(1-y)N層中的鋁含量。舉例來說,在第3圖的實施例中,第一AlyGa(1-y)N層142的y值為約0.75,第二AlyGa(1-y)N層144的y值為約0.5,第三AlyGa(1-y)N層146的y值為約0.25,因此第一AlyGa(1-y)N層142、第二AlyGa(1-y)N層144和第三AlyGa(1-y)N層 146也可以分別被稱為Al0.75Ga0.25N層、Al0.5Ga0.5N層和Al0.25Ga0.75N層。 In the embodiment shown in FIG. 3, the gradient buffer layer 140 includes a first Al y Ga (1-y) N layer 142 closest to the substrate, a second Al y Ga (1-y) N layer 144, and a separation layer. The third farthest Al y Ga (1-y) N layer 146. The number of Al y Ga (1-y) N layers can be increased or decreased according to demand, and the y value can be adjusted, that is, the aluminum content in the Al y Ga (1-y) N layer. For example, in the embodiment of FIG. 3, the y value of the first Al y Ga (1-y) N layer 142 is about 0.75, and the y value of the second Al y Ga (1-y) N layer 144 is about 0.75. About 0.5, the y value of the third Al y Ga (1-y) N layer 146 is about 0.25, so the first Al y Ga (1-y) N layer 142 and the second Al y Ga (1-y) N layer The 144 and the third Al y Ga (1-y) N layer 146 may also be referred to as an Al 0.75 Ga 0.25 N layer, an Al 0.5 Ga 0.5 N layer, and an Al 0.25 Ga 0.75 N layer, respectively.

根據一些實施例,AlyGa(1-y)N層的厚度在約50nm至約500nm的範圍,例如約100nm。雖然在第3圖中繪示第一AlyGa(1-y)N層142、第二AlyGa(1-y)N層144和第三AlyGa(1-y)N層146具有相同的厚度,但本發明不限於此,可以根據需求調整每層AlyGa(1-y)N層的厚度。在一些實施例中,漸變式緩衝層140的厚度在約0.1μm至約10μm的範圍,例如約0.3μm。 According to some embodiments, the thickness of the Al y Ga (1-y) N layer is in a range of about 50 nm to about 500 nm, such as about 100 nm. Although FIG. 3 illustrates that the first Al y Ga (1-y) N layer 142, the second Al y Ga (1-y) N layer 144, and the third Al y Ga (1-y) N layer 146 have The thickness is the same, but the present invention is not limited thereto, and the thickness of each layer of Al y Ga (1-y) N layer can be adjusted according to requirements. In some embodiments, the thickness of the graded buffer layer 140 is in a range of about 0.1 μm to about 10 μm, such as about 0.3 μm.

雖然在第3圖中繪示超晶格緩衝層130的厚度大於漸變式緩衝層140的厚度,但本發明不限於此,可以根據需求調整兩者各自的厚度。在一些實施例中,超晶格緩衝層130和漸變式緩衝層140的總厚度在約0.1μm至約10μm的範圍,例如約0.3μm。在一些實施例中,超晶格緩衝層130的厚度與漸變式緩衝層140的厚度的比值在約0.2至約2的範圍,例如約0.75。 Although FIG. 3 illustrates that the thickness of the superlattice buffer layer 130 is greater than the thickness of the graded buffer layer 140, the present invention is not limited thereto, and the respective thicknesses of the two can be adjusted according to requirements. In some embodiments, the total thickness of the superlattice buffer layer 130 and the graded buffer layer 140 is in a range of about 0.1 μm to about 10 μm, such as about 0.3 μm. In some embodiments, the ratio of the thickness of the superlattice buffer layer 130 to the thickness of the graded buffer layer 140 ranges from about 0.2 to about 2, such as about 0.75.

根據本發明的一些實施例,在高電子遷移率電晶體裝置100的基底110上方設置超晶格緩衝層130和漸變式緩衝層140,可以緩解基底110與在上方形成的其他膜層之間的晶格差異,避免在形成這些膜層時,因為兩者晶格不匹配所產生的翹曲(bow)或裂縫等缺陷,因此可以改善高電子遷移率電晶體裝置100的良率。 According to some embodiments of the present invention, a superlattice buffer layer 130 and a gradient buffer layer 140 are provided above the substrate 110 of the high electron mobility transistor device 100, which can alleviate the gap between the substrate 110 and other film layers formed thereon. Lattice differences can avoid defects such as bows or cracks caused by the lattice mismatch between the two when forming these films, so the yield of the high electron mobility transistor device 100 can be improved.

此外,由於漸變式緩衝層140的製程時間較超晶格緩衝層130的製程時間短,對於在基底110上方形成相同厚度的緩衝層而言,根據本發明的一些實施例形成包含超晶格 緩衝層130和漸變式緩衝層140的緩衝層,比起只形成超晶格緩衝層130,可以大幅縮短製程時間,提升高電子遷移率電晶體裝置100的產能。 In addition, since the process time of the gradient buffer layer 140 is shorter than the process time of the superlattice buffer layer 130, for forming a buffer layer of the same thickness above the substrate 110, according to some embodiments of the present invention, a superlattice is formed. The buffer layer 130 and the buffer layer of the gradient buffer layer 140 can significantly reduce the process time and increase the production capacity of the high electron mobility transistor device 100 compared to the formation of only the superlattice buffer layer 130.

另一方面,相較於超晶格緩衝層130,漸變式緩衝層140緩解晶格差異的效果較差。對於在基底上方形成相同厚度的緩衝層而言,根據本發明的一些實施例設置包含超晶格緩衝層130和漸變式緩衝層140的緩衝層,比起只形成漸變式緩衝層140,可以在上方形成結晶品質較佳的膜層,並且因此可以增加例如通道層等膜層的厚度。 On the other hand, compared with the superlattice buffer layer 130, the gradient buffer layer 140 has a lower effect of alleviating lattice differences. For forming a buffer layer of the same thickness over the substrate, according to some embodiments of the present invention, a buffer layer including a superlattice buffer layer 130 and a gradient buffer layer 140 is provided. A film layer with better crystalline quality is formed over it, and therefore the thickness of the film layer such as the channel layer can be increased.

另外,根據本發明的一些實施例,在高電子遷移率電晶體裝置100的基底110上方先設置超晶格緩衝層130,然後再設置漸變式緩衝層140,底下的超晶格緩衝層130可以阻擋基底110內的差排進入在漸變式緩衝層140上方形成的其他膜層,相較於先設置漸變式緩衝層140再設置超晶格緩衝層130,可以進一步提升上方的其他膜層的結晶品質。 In addition, according to some embodiments of the present invention, a superlattice buffer layer 130 is disposed above the substrate 110 of the high electron mobility transistor device 100, and then a gradient buffer layer 140 is disposed. The superlattice buffer layer 130 below may be Preventing the differential rows in the substrate 110 from entering other film layers formed above the gradient buffer layer 140. Compared with the gradient buffer layer 140 and the superlattice buffer layer 130, the crystallization of the other film layers above can be further enhanced. quality.

接著如第4圖所示,在漸變式緩衝層140上方形成通道層150。在一些實施例中,通道層150的材料可以包含第III族氮化物,例如III-V族化合物半導體材料。在一些實施例中,通道層150的材料包含氮化鎵(Gallium Nitride,GaN)。可以根據需求,將通道層150摻雜或不摻雜。通道層150的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。可以根據需求選擇通道層150的厚度。舉例來說,在一些實施例中,通道層150的厚度在約10nm和約1000nm之間的範圍,例如約200nm。 Next, as shown in FIG. 4, a channel layer 150 is formed above the gradient buffer layer 140. In some embodiments, the material of the channel layer 150 may include a group III nitride, such as a group III-V compound semiconductor material. In some embodiments, the material of the channel layer 150 includes Gallium Nitride (GaN). The channel layer 150 may be doped or undoped according to requirements. The formation of the channel layer 150 may include a deposition process, such as organic metal chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. The thickness of the channel layer 150 may be selected according to requirements. For example, in some embodiments, the thickness of the channel layer 150 is in a range between about 10 nm and about 1000 nm, such as about 200 nm.

如第5圖所示,根據一些實施例,在通道層150上方形成阻障層160。阻障層160的形成可以包含沉積製程,例如有機金屬化學氣相沉積、分子束磊晶、液相磊晶或其他的沉積技術。可以根據需求選擇阻障層160的厚度。在一些實施例中,阻障層160的材料可以包含第III族氮化物,例如III-V族化合物半導體材料。阻障層160可以包含單層或多層結構。舉例來說,阻障層160包含AlN、AlGaN、AlInN、AlGaInN、類似的材料或前述之組合。可以根據需求將阻障層160摻雜或不摻雜。選擇通道層150和阻障層160的材料,以在兩者之間的界面產生二維電子氣152。 As shown in FIG. 5, according to some embodiments, a barrier layer 160 is formed over the channel layer 150. The formation of the barrier layer 160 may include a deposition process, such as organometallic chemical vapor deposition, molecular beam epitaxy, liquid phase epitaxy, or other deposition techniques. The thickness of the barrier layer 160 may be selected according to requirements. In some embodiments, the material of the barrier layer 160 may include a group III nitride, such as a group III-V compound semiconductor material. The barrier layer 160 may include a single-layer or multi-layer structure. For example, the barrier layer 160 includes AlN, AlGaN, AlInN, AlGaInN, similar materials, or a combination thereof. The barrier layer 160 may be doped or undoped according to requirements. The materials of the channel layer 150 and the barrier layer 160 are selected to generate a two-dimensional electron gas 152 at the interface between the two.

然後根據一些實施例,在阻障層160上方設置源極170、閘極180和汲極190,形成高電子遷移率電晶體裝置100。可以使用任何合適的材料、製程和順序形成源極170、閘極180和汲極190,並且可以根據需求調整元件的間距和位置。如第5圖所示,根據一些實施例,源極170和汲極190穿過阻障層160進入通道層150中,並且閘極180位於阻障層160的表面上,但本發明不限於此,可以是其他各種排列或配置。舉例來說,可以在閘極180和阻障層160之間設置p型摻雜氮化鎵(p-GaN)層,使得閘極180不接觸阻障層160,形成的高電子遷移率電晶體裝置100為增強型(enhancement mode,E-mode)元件;或者,在閘極180和阻障層160之間不設置p型摻雜氮化鎵(p-GaN)層,形成的高電子遷移率電晶體裝置100為空乏型(depletion mode,D-mode)元件。 Then, according to some embodiments, a source 170, a gate 180, and a drain 190 are disposed above the barrier layer 160 to form a high electron mobility transistor device 100. The source 170, gate 180, and drain 190 can be formed using any suitable material, process, and sequence, and the pitch and position of the components can be adjusted as required. As shown in FIG. 5, according to some embodiments, the source 170 and the drain 190 pass through the barrier layer 160 into the channel layer 150, and the gate 180 is located on the surface of the barrier layer 160, but the present invention is not limited thereto , Can be a variety of other arrangements or configurations. For example, a p-type doped gallium nitride (p-GaN) layer may be provided between the gate 180 and the barrier layer 160 so that the gate 180 does not contact the barrier layer 160, and a high electron mobility transistor is formed. The device 100 is an enhancement mode (E-mode) device; or a p-doped gallium nitride (p-GaN) layer is not provided between the gate 180 and the barrier layer 160, and a high electron mobility is formed. The transistor device 100 is a depletion mode (D-mode) device.

一般而言,在形成高電子遷移率電晶體裝置的通 道層時,由於通道層和基底之間具有晶格差異,容易在通道層形成裂縫或翹曲等缺陷。這些缺陷會隨著通道層的厚度增加變得嚴重,影響高電子遷移率電晶體裝置的性能,因此通道層的厚度受到限制。本發明的一些實施例在高電子遷移率電晶體裝置的基底和通道層之間設置超晶格緩衝層和漸變式緩衝層,並且調整超晶格緩衝層和漸變式緩衝層中的鋁含量,可以緩解在上方形成的通道層和基底之間的晶格差異,減少因此產生的缺陷,提升通道層的結晶品質,而可以進一步增加通道層的厚度,改善高電子遷移率電晶體裝置的效能和良率。 Generally speaking, in the formation of high electron mobility transistor devices, In the track layer, due to the lattice difference between the channel layer and the substrate, defects such as cracks or warpage are easily formed in the channel layer. These defects will become serious as the thickness of the channel layer increases, affecting the performance of the high electron mobility transistor device, so the thickness of the channel layer is limited. In some embodiments of the present invention, a superlattice buffer layer and a gradient buffer layer are provided between the substrate and the channel layer of the high electron mobility transistor device, and the aluminum content in the superlattice buffer layer and the gradient buffer layer is adjusted. It can alleviate the lattice difference between the channel layer and the substrate formed above, reduce the defects caused thereby, improve the crystalline quality of the channel layer, and can further increase the thickness of the channel layer, improving the efficiency and goodness of the high electron mobility transistor device rate.

此外,相較於超晶格緩衝層,漸變式緩衝層的製程時間較短,但其避免通道層產生缺陷的效果卻不如超晶格緩衝層。因此,對於形成相同厚度的緩衝層而言,根據本發明的一些實施例在基底上方設置包含超晶格緩衝層和漸變式緩衝層的緩衝層,相較於只設置超晶格緩衝層,可以大幅縮短製程時間,因此可以提升高電子遷移率電晶體裝置的產能;另一方面,相較於只設置漸變式緩衝層,可以在這些緩衝層上方形成晶體品質更好的通道層,提升高電子遷移率電晶體裝置的良率。 In addition, compared to the superlattice buffer layer, the process time of the gradient buffer layer is shorter, but the effect of avoiding defects in the channel layer is not as good as the superlattice buffer layer. Therefore, for forming a buffer layer of the same thickness, according to some embodiments of the present invention, a buffer layer including a superlattice buffer layer and a gradient buffer layer is provided above the substrate, as compared with only a superlattice buffer layer, Significantly shorten the process time, so the productivity of high electron mobility transistor devices can be improved; on the other hand, compared with only the buffer layers with gradients, a channel layer with better crystal quality can be formed above these buffer layers, improving high electrons Yield of mobility transistor device.

另外,根據本發明的一些實施例,在高電子遷移率電晶體裝置的基底上方先設置超晶格緩衝層,然後設置漸變式緩衝層,可以有效避免基底內的差排進入通道區,進一步提升通道層的結晶品質。因此,本發明的一些實施例可以在提高產能的同時,提升高電子遷移率電晶體裝置的效能和 良率。 In addition, according to some embodiments of the present invention, a superlattice buffer layer is provided above the substrate of the high-electron mobility transistor device, and then a gradient buffer layer is provided, which can effectively prevent the differential rows in the substrate from entering the channel area, and further improve The crystalline quality of the channel layer. Therefore, some embodiments of the present invention can improve the efficiency and efficiency of the high electron mobility transistor device while increasing the production capacity. Yield.

雖然本發明已以多個實施例描述如上,但這些實施例並非用於限定本發明。本發明所屬技術領域中具有通常知識者應可理解,他們能以本發明實施例為基礎,做各式各樣的改變、取代和替換,以達到與在此描述的多個實施例相同的目的及/或優點。本發明所屬技術領域中具有通常知識者也可理解,此類修改或設計並未悖離本發明的精神和範圍。因此,本發明之保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been described above with a plurality of embodiments, these embodiments are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains should understand that they can make various changes, substitutions and replacements based on the embodiments of the present invention to achieve the same purpose as the multiple embodiments described herein. And / or advantages. Those skilled in the art to which the present invention pertains can also understand that such modifications or designs do not depart from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (20)

一種高電子遷移率電晶體(HEMT)裝置,包括:一基底;一超晶格緩衝層,設置於該基底上方,其中該超晶格緩衝層包括複數組交替層,每組交替層包括交錯排列的至少一A1N層和至少一AlxGa(1-x)N層,其中0x<1,且對不同組交替層而言,該些AlxGa(1-x)N層具有不同的x值,其中鄰近該基底的該組交替層的該些AlxGa(1-x)N層的x值大於遠離該基底的該組交替層的該些AlxGa(1-x)N層的x值;一漸變式緩衝層,設置於該基底上方,其中該漸變式緩衝層包括複數個AlyGa(1-y)N層,其中0y<1;以及一通道層,設置於該漸變式緩衝層上方。A high electron mobility transistor (HEMT) device includes: a substrate; a superlattice buffer layer disposed above the substrate, wherein the superlattice buffer layer includes a plurality of alternating layers, and each group of alternating layers includes a staggered arrangement At least one A1N layer and at least one Al x Ga (1-x) N layer, where 0 x <1, and for different sets of alternating layers, the Al x Ga (1-x) N layers have different x values, where the Al x Ga (1-x ) The x value of the N layer is greater than the x value of the Al x Ga (1-x) N layers of the set of alternating layers far from the substrate; a gradient buffer layer is disposed above the substrate, wherein the gradient buffer layer Including multiple Al y Ga (1-y) N layers, where 0 y <1; and a channel layer disposed above the gradient buffer layer. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中在每組交替層中,該些AlxGa(1-x)N層具有相同的x值。The high electron mobility transistor device according to item 1 of the scope of the patent application, wherein in each set of alternating layers, the Al x Ga (1-x) N layers have the same x value. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該超晶格緩衝層的厚度與該漸變式緩衝層的厚度的比值在0.2至2的範圍。The high electron mobility transistor device according to item 1 of the scope of the patent application, wherein a ratio of a thickness of the superlattice buffer layer to a thickness of the graded buffer layer is in a range of 0.2 to 2. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該超晶格緩衝層的該AlN層直接接觸該漸變式緩衝層的該AlyGa(1-y)N層。The high electron mobility transistor device described in item 1 of the patent application scope, wherein the AlN layer of the superlattice buffer layer directly contacts the Al y Ga (1-y) N layer of the graded buffer layer. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中在每組交替層中,該AlN層的厚度在1nm至20nm的範圍,且該AlxGa(l-x)N層的厚度在5nm至100nm的範圍。The high electron mobility transistor device according to item 1 of the scope of patent application, wherein in each set of alternating layers, the thickness of the AlN layer is in a range of 1 nm to 20 nm, and the thickness of the Al x Ga (lx) N layer is In the range of 5nm to 100nm. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該AlxGa(1-x)N層的厚度對該AlN層的厚度的比值在3至10的範圍。The high electron mobility transistor device described in item 1 of the patent application range, wherein a ratio of a thickness of the Al x Ga (1-x) N layer to a thickness of the AlN layer is in a range of 3 to 10. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該些AlyGa(1-y)N層中的每一個的厚度在50nm至500nm的範圍。The high electron mobility transistor device described in item 1 of the patent application range, wherein the thickness of each of the Al y Ga (1-y) N layers is in a range of 50 nm to 500 nm. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中鄰近該基底的該AlyGa(1-y)N層的y值大於遠離該基底的該AlyGa(1-y)N層的y值。The high electron mobility transistor device described in item 1 of the scope of patent application, wherein the y value of the Al y Ga (1-y) N layer adjacent to the substrate is greater than the Al y Ga (1-y ) The y value of the N layer. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,其中該漸變式緩衝層設置於該超晶格緩衝層上方。The high-electron-mobility transistor device according to item 1 of the patent application scope, wherein the gradient buffer layer is disposed above the superlattice buffer layer. 如申請專利範圍第1項所述之高電子遷移率電晶體裝置,更包括一成核層,設置於該基底和該超晶格緩衝層之間,其中該成核層包括氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。The high-electron-mobility transistor device described in item 1 of the patent application scope further includes a nucleation layer disposed between the substrate and the superlattice buffer layer, wherein the nucleation layer includes aluminum nitride (AlN ), Aluminum gallium nitride (AlGaN), or a combination thereof. 如申請專利範圍第10項所述之高電子遷移率電晶體裝置,更包括:一阻障層,設置於該通道層上方;以及一源極、一汲極、一閘極,設置於該阻障層上方。The high electron mobility transistor device described in item 10 of the scope of patent application, further includes: a barrier layer disposed above the channel layer; and a source, a drain, and a gate disposed on the resistor Above the barrier. 一種高電子遷移率電晶體裝置的製造方法,包括:形成一基底;在該基底上方形成一超晶格緩衝層,其中該超晶格緩衝層包括複數組交替層,每組交替層包括交錯排列的至少一AlN層和至少一AlxGa(1-x)N層,其中0x<1,且對不同組交替層而言,該些AlxGa(1-x)N層具有不同的x值,其中鄰近該基底的該組交替層的該些AlxGa(1-x)N層的x值大於遠離該基底的該組交替層的該些AlxGa(1-x)N層的x值;在該基底上方形成一漸變式緩衝層,其中該漸變式緩衝層包括複數個AlyGa(1-y)N層,其中0y<1;以及在該漸變式緩衝層上方形成一通道層。A method for manufacturing a high electron mobility transistor device includes: forming a substrate; forming a superlattice buffer layer on the substrate, wherein the superlattice buffer layer comprises a plurality of alternating layers, and each group of alternating layers includes a staggered arrangement At least one AlN layer and at least one Al x Ga (1-x) N layer, where 0 x <1, and for different sets of alternating layers, the Al x Ga (1-x) N layers have different x values, where the Al x Ga (1-x ) The x value of the N layer is greater than the x value of the Al x Ga (1-x) N layers of the set of alternating layers far from the substrate; a gradient buffer layer is formed above the substrate, wherein the gradient buffer layer includes A plurality of Al y Ga (1-y) N layers, where 0 y <1; and a channel layer is formed above the gradient buffer layer. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中在每組交替層中,該些AlxGa(1-x)N層具有相同的x值。The method for manufacturing a high electron mobility transistor device according to item 12 of the scope of the patent application, wherein in each set of alternating layers, the Al x Ga (1-x) N layers have the same x value. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中該超晶格緩衝層的厚度與該漸變式緩衝層的厚度的比值在0.2至2的範圍。The method for manufacturing a high electron mobility transistor device according to item 12 of the application, wherein the ratio of the thickness of the superlattice buffer layer to the thickness of the graded buffer layer is in the range of 0.2 to 2. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中該超晶格緩衝層的該AlN層直接接觸該漸變式緩衝層的該AlyGa(1-y)N層。The method for manufacturing a high-electron-mobility transistor device according to item 12 of the application, wherein the AlN layer of the superlattice buffer layer directly contacts the Al y Ga (1-y) N of the graded buffer layer. Floor. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中在每組交替層中,該AlN層的厚度在1nm至20nm的範圍,該AlxGa(1-x)N層的厚度在5nm至100nm的範圍,且該AlxGa(1-x)N層的厚度對該AlN層的厚度的比值在3至10的範圍。The method for manufacturing a high electron mobility transistor device according to item 12 of the scope of patent application, wherein in each set of alternating layers, the thickness of the AlN layer is in a range of 1 nm to 20 nm, and the Al x Ga (1-x) The thickness of the N layer is in a range of 5 nm to 100 nm, and the ratio of the thickness of the Al x Ga (1-x) N layer to the thickness of the AlN layer is in a range of 3 to 10. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中該些AlyGa(1-y)N層中的每一個的厚度在50nm至500nm的範圍。The method for manufacturing a high electron mobility transistor device according to item 12 of the scope of the patent application, wherein the thickness of each of the Al y Ga (1-y) N layers is in a range of 50 nm to 500 nm. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中鄰近該基底的該AlyGa(1-y)N層的y值大於遠離該基底的該AlyGa(1-y)N層的y值。The method for manufacturing a high electron mobility transistor device according to item 12 of the scope of the patent application, wherein the y value of the Al y Ga (1-y) N layer adjacent to the substrate is greater than the Al y Ga ( 1-y) The y value of the N layer. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,其中該漸變式緩衝層形成於該超晶格緩衝層上方。The method for manufacturing a high-electron-mobility transistor device according to item 12 of the application, wherein the gradient buffer layer is formed above the superlattice buffer layer. 如申請專利範圍第12項所述之高電子遷移率電晶體裝置的製造方法,更包括在該基底和該超晶格緩衝層之間形成一成核層,其中該成核層包括氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合。The method for manufacturing a high-electron-mobility transistor device according to item 12 of the patent application scope, further comprising forming a nucleation layer between the substrate and the superlattice buffer layer, wherein the nucleation layer includes aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or a combination thereof.
TW107137951A 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same TWI678723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107137951A TWI678723B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107137951A TWI678723B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Publications (2)

Publication Number Publication Date
TWI678723B true TWI678723B (en) 2019-12-01
TW202016977A TW202016977A (en) 2020-05-01

Family

ID=69582224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107137951A TWI678723B (en) 2018-10-26 2018-10-26 High electron mobility transistor and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI678723B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732593B (en) * 2020-06-15 2021-07-01 世界先進積體電路股份有限公司 Semiconductor structure and high-electron mobility transistor device having the same
EP4154320A1 (en) * 2020-07-02 2023-03-29 Atomera Incorporated Method for making a semiconductor device using superlattices with different non-semiconductor thermal stabilities
US11387356B2 (en) 2020-07-31 2022-07-12 Vanguard International Semiconductor Corporation Semiconductor structure and high-electron mobility transistor device having the same
US20230307533A1 (en) * 2022-03-23 2023-09-28 Northrop Grumman Systems Corporation Fringe-gated castellated fet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160064488A1 (en) * 2013-05-09 2016-03-03 Rohm Co., Ltd. Nitride based semiconductor device
US20170373156A1 (en) * 2013-02-15 2017-12-28 Azurspace Solar Power Gmbh P-doping of group-iii-nitride buffer layer structure on a heterosubstrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373156A1 (en) * 2013-02-15 2017-12-28 Azurspace Solar Power Gmbh P-doping of group-iii-nitride buffer layer structure on a heterosubstrate
US20160064488A1 (en) * 2013-05-09 2016-03-03 Rohm Co., Ltd. Nitride based semiconductor device

Also Published As

Publication number Publication date
TW202016977A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
TWI678723B (en) High electron mobility transistor and methods for forming the same
TWI528581B (en) Group III nitride epitaxial substrate and its manufacturing method
JP5309452B2 (en) Semiconductor wafer, semiconductor device, and manufacturing method
JP4525894B2 (en) Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
US20210057561A1 (en) High electron mobility transistor device and methods for forming the same
US20160233327A1 (en) Group III-V Semiconductor Device with Strain-Relieving Layers
US11114555B2 (en) High electron mobility transistor device and methods for forming the same
US20090001384A1 (en) Group III Nitride semiconductor HFET and method for producing the same
JP2008205117A (en) Semiconductor wafer, semiconductor element, and manufacturing method
CN107004579B (en) Epitaxial wafer, semiconductor element, method for manufacturing epitaxial wafer, and method for manufacturing semiconductor element
US8405067B2 (en) Nitride semiconductor element
US9337023B1 (en) Buffer stack for group IIIA-N devices
US11664426B2 (en) Semiconductor device with strain relaxed layer
TWI698914B (en) Semiconductor epitaxial structure and method of forming the same
WO2022217415A1 (en) Semiconductor device and method for manufacturing the same
TWI713221B (en) High electron mobility transistor and methods for forming the same
US20220328425A1 (en) Semiconductor device and method for manufacturing the same
JP2015103665A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor
CN111146269A (en) High electron mobility transistor device and method of manufacturing the same
CN111146282B (en) High electron mobility transistor device and method of manufacturing the same
US20240170564A1 (en) Epitaxial structure
US20220328424A1 (en) Semiconductor device and method for manufacturing the same
US20220328680A1 (en) Semiconductor device and method for manufacturing the same
US20220328678A1 (en) Semiconductor device and method for manufacturing the same
US20220328679A1 (en) Semiconductor device and method for manufacturing the same