TW202012910A - 前驅物輸送系統及其相關方法 - Google Patents

前驅物輸送系統及其相關方法 Download PDF

Info

Publication number
TW202012910A
TW202012910A TW108127157A TW108127157A TW202012910A TW 202012910 A TW202012910 A TW 202012910A TW 108127157 A TW108127157 A TW 108127157A TW 108127157 A TW108127157 A TW 108127157A TW 202012910 A TW202012910 A TW 202012910A
Authority
TW
Taiwan
Prior art keywords
gas
diborane
filter
window
windows
Prior art date
Application number
TW108127157A
Other languages
English (en)
Other versions
TWI814874B (zh
Inventor
黃祖濱
莎拉蘭格洛斯 懷特
喬納森羅伯特 貝克
狄瓦卡N 凱德拉雅
朱安卡羅斯 羅恰
阮芳
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202012910A publication Critical patent/TW202012910A/zh
Application granted granted Critical
Publication of TWI814874B publication Critical patent/TWI814874B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

在此提供用於輸送具有期望的乙硼烷濃度的處理氣體至處理腔室的處理容積之系統與方法。在一實施例中,系統包括硼烷濃度感測器。硼烷濃度感測器包括主體與複數個窗口。在此,複數個窗口的個別窗口安置在主體的相對端且主體與複數個窗口共同地界定單元容積。硼烷濃度感測器進一步包括輻射源與輻射偵測器,輻射源安置在單元容積外並鄰近於複數個窗口的第一窗口,輻射偵測器安置在單元容積外並鄰近於複數個窗口的第二窗口。

Description

前驅物輸送系統及其相關方法
本發明的實施例大體上關於製造電子裝置的領域,且更明確地,關於用於輸送其中具有期望的乙硼烷濃度的處理氣體至處理腔室的處理容積之系統與方法。
含硼(硼摻雜)材料層,諸如硼摻雜矽或鍺半導體層、硼摻雜介電層、硼摻雜矽硬遮罩層、或硼摻雜鎢成核層,被廣泛地使用在製造電子裝置的領域中。通常,使用化學氣相沉積(CVD)處理形成硼摻雜材料層,其中含硼氣體與一或多種材料前驅物氣體反應或含硼氣體在一或多種材料前驅物氣體存在下解離,以在基板的表面上沉積硼摻雜材料層。
乙硼烷(B2 H6 )一般地選作為用於摻雜的硼前驅物,因為當與其他硼摻雜劑來源氣體比較時,乙硼烷是相對地易於儲存與傳輸且在相對較低的溫度期望地解離。乙硼烷通常儲存在加壓氣缸中並帶有稀釋氣體,諸如 氫(H2 )、氬(Ar)、氮(N2 )、或氦(He)中的一者或組合以形成摻雜氣體溫合物,即,硼摻雜氣體。硼摻雜氣體通常從加壓氣缸輸送至CVD處理腔室的處理容積,藉由使用流體地耦接在之間的氣體輸送導管。遺憾地,隨著時間,加壓氣缸中的乙硼烷會不期望地分解以產生游離氫與更高級的硼烷,從而造成其中乙硼烷的下降濃度。 乙硼烷濃度中的不期望變化隨著時間會致使非所期望的CVD沉積材料層中形成在其上的硼濃度的基板至基板變動。
因此,本領域中需要的是用於監控並控制硼摻雜氣體中的乙硼烷濃度的改良系統及其相關方法。
本發明的實施例大體上關於製造電子裝置的領域,且更明確地,關於用於輸送具有期望的乙硼烷濃度的摻雜氣體混合物至處理腔室的處理容積之處理系統、乙硼烷感測器、及方法。
在一實施例中,硼烷濃度感測器包括主體與複數個窗口。在此,複數個窗口的個別窗口安置在主體的相對端且主體與複數個窗口共同地界定單元容積。硼濃度感測器進一步包括輻射源與第一輻射偵測器,輻射源安置在單元容積之外並鄰近於複數個窗口的第一窗口,第一輻射偵測器安置在單元容積之外並鄰近於複數個窗口的第二窗口。
在另一實施例中,處理基板的方法包括測定取自氣體導管的氣體樣品中的乙硼烷濃度,氣體導管流體地耦接第一氣源與處理腔室。在此,測定乙硼烷濃度包含使用光學感測器。方法進一步包括藉由改變來自第一氣源的第一氣體的流率、來自第二氣源的第二氣體的流率、或第一氣體與第二氣體兩者的流率,混合具有期望的乙硼烷濃度的硼摻雜氣體,並輸送硼摻雜氣體至處理腔室的處理容積。
在另一實施例中,提供特徵為具有儲存在其上的用於處理基板的方法之指令的電腦可讀媒體之處理系統。方法包括測定取自氣體導管的氣體樣品中的乙硼烷濃度,氣體導管流體地耦接第一氣源與處理腔室。在此,測定乙硼烷濃度包含使用光學感測器。方法進一步包括藉由改變來自第一氣源的第一氣體的流率、來自第二氣源的第二氣體的流率、或第一氣體與第二氣體兩者的流率,混合具有期望的乙硼烷濃度的硼摻雜氣體,並輸送硼摻雜氣體至處理腔室的處理容積。
本發明的實施例大體上關於製造電子裝置的領域。明確地,本文的實施例關於用於輸送具有期望的乙硼烷濃度的硼摻雜氣體至處理腔室的處理容積之處理系統、硼烷濃度感測器及方法。
在用於沉積硼烷摻雜材料的典型半導體裝置製造處理中,乙硼烷從乙硼烷氣源輸送至處理腔室的處理容積。乙硼烷氣源通常是包含乙硼烷與諸如氫(H2 )、氬(Ar)、氮(N2 )、或氦(He)的稀釋氣體的加壓氣缸。遺憾地,隨著時間,氣缸中的乙硼烷會分解成氫與更高級的硼烷(例如,四硼烷),致使輸送至處理腔室的乙硼烷對於稀釋氣體的比率中的不期望與不可控變動。因此,本文的實施例藉由進一步將由加壓氣缸提供的氣體與額外的稀釋氣體混合來補償來自乙硼烷氣源之乙硼烷濃度中的變動,以提供具有期望的且已知的乙硼烷濃度的硼摻雜氣體。
在此,使用藉由本文提供的一或多個硼烷濃度感測器而取得的原位量測,以期望地控制硼摻雜氣體中二硼烷的濃度。通常,一或多個硼烷濃度感測器是基於光吸收的感測器,即,光學光譜儀。基於光吸收的感測器設置以選擇性測量藉由硼烷分子(諸如氣體樣品中的乙硼烷、四硼烷或前述的兩者)的UV或IR輻射(藉由感測器的輻射源所發射)的吸收。乙硼烷與四硼烷分子中的一者或兩者的濃度接著以量測到的吸收來測定。
圖1是根據一實施例的設置以實施本文所說明的方法的基板處理系統100的圖解剖面視圖。處理系統100以處理腔室101與前驅物輸送系統102為特徵。可與前驅物輸送系統102結合使用以實施本文所說明的方法的其他處理腔室包括Producer® ETERNA CVD® 系統、Ultima HDP CVD® 系統、或Producer® XP PrecisionTM CVD系統中的處理腔室,其全部可由加州聖克拉拉的應用材料公司取得,以及來自其他製造者的合適處理腔室。
處理腔室101包括腔室蓋組件103、一或多個側壁104、及腔室基底105。腔室蓋組件103包括腔室蓋106、安置在腔室蓋106中的噴頭107、及插入在腔室蓋106與一或多個側壁104之間的電氣絕緣環108。噴頭107、一或多個側壁104、及腔室基底105共同地界定處理容積109。安置穿過腔室蓋106的氣體入口110流體地耦接至前驅物輸送系統102。具有安置穿過其中的複數個開口111的噴頭107用於將由前驅物輸送系統102提供的處理氣體均勻地分配進入處理容積109。在某些實施例中,噴頭107電氣地耦接至第一電源112(諸如RF電源),其提供功率以透過電容耦合而點燃與維持處理氣體的電漿113。在其他實施例中,處理腔室101包含感應電漿產生器且透過將RF功率感應耦合至處理氣體來形成電漿。在某些實施例中,處理腔室不是電漿處理腔室。
在此,處理容積109透過真空出口114流體地耦接至真空源(諸如一或多個專用真空泵),其將處理容積109維持在次大氣壓狀態並從其中排空處理氣體與其他氣體。安置在處理容積109中的基板支撐件115安置在可移動支撐軸件116上,支撐軸件116密封地延伸穿過腔室基底105,諸如藉由腔室基底105下方區域中的波紋管(未示出)所圍繞。通常,處理腔室101經設置以促進基板117通過一或多個側壁104中的開口118移送至基板支撐件115及由基板支撐件115的移送,開口118在基板處理期間以門或閥(未示出)所密封。
在某些實施例中,使用安置在基板支撐件115中的諸如電阻加熱元件119的加熱器及一或多個冷卻通道120中的一者或兩者,將安置在基板支撐件115上的基板117保持在期望的處理溫度。通常,一或多個冷卻通道120流體地耦接至冷卻劑源(未示出),諸如具有相對高電阻的改進水源或冷媒源。
前驅物輸送系統102特徵為乙硼烷氣源(例如,第一氣源121)、稀釋氣源(例如,第二氣源122)、及第一與第二輸送導管123a-b,流動地耦接分別的第一氣源121與第二氣源122至混合點124。混合點124透過第三輸送導管123c流體地耦接至處理腔室101。前驅物輸送系統102進一步包括一或多個硼烷濃度感測器125、一或多個流量控制器126a-c、及一或多個壓力感測器127,各者在混合點的上游處、混合點的下游處、或混合點的上游與下游處耦接至輸送導管123a-c。
在基板處理期間,包含未知濃度乙硼烷的第一氣體從第一氣源121流入第一輸送導管123a,而包含稀釋劑的第二氣體從第二氣源122流入第二輸送導管123b。通常,第二氣體(例如, H2 )不與乙硼烷反應。第一氣體與第二氣體在混合點124混合以形成硼摻雜氣體。硼摻雜氣體從混合點124通過流體地耦接在其間的第三輸送導管123c流入處理容積109。一或多個硼烷濃度感測器125用以測定來自混合點124的上游位置的第一氣體中的乙硼烷濃度、測定來自混合點的下游位置的硼摻雜氣體(第一氣體與第二氣體的混合物)中的乙硼烷濃度、或測定上述兩者。在某些實施例中,一或多個硼烷濃度感測器125用以測定第一氣體或硼摻雜氣體中的四硼烷濃度。乙硼烷與四硼烷濃度的一者或兩者傳遞至處理系統100的系統控制器130,其使用個別的第一流量控制器126a或第二流量控制器126b來調整第一氣體或第二氣體的一者或兩者的流率。
系統控制器130包括可程式化中央處理單元(CPU 131) ,其可與記憶體132 (例如,非揮發記憶體)及支援電路133操作。支援電路133習知地耦接至CPU 131並包含快取、時鐘電路、輸入/輸出子系統、電源、及類似物,且前述物的組合耦接至處理系統100的各種部件以促進其控制。CPU 131是使用在工業設定的任何形式的通用電腦處理器的一者,諸如可程式化邏輯控制器 (PLC),用以控制處理系統100的各種部件與子處理器。耦接至CPU 131的記憶體132是非暫態且通常是一或多種的易取得記憶體,諸如隨機存取記憶體 (RAM)、唯讀記憶體(ROM)、軟碟機、硬碟、或本地或遠端的任何形式的數位儲存。
通常,記憶體132是含有指令的電腦可讀儲存媒體的形式(例如,非揮發記憶體),當由CPU 131執行指令時,促進處理系統100的操作。記憶體132中的指令是程式產品的形式,諸如實行本發明的方法的程式。程式碼可遵照若干不同程式語言的任一者。在一實例中,本發明可實行為以電腦系統使用的儲存在電腦可讀儲存媒體上的程式產品。程式產品的程式界定實施例(包括本文所述的方法)的功能。
說明性的電腦可讀儲存媒體包括但不限於:(i)非可寫儲存媒體(例如,電腦內的唯讀記憶體裝置,諸如CD-ROM機可讀的CD-ROM碟片、快閃記憶體、ROM晶片或任何類型之固態非揮發半導體記憶體),資訊永久地儲存在其上;及(ii)可寫儲存媒體(例如,軟碟機或硬碟機內的磁碟片或任何類型的固態隨機存取半導體記憶體),可變動資訊儲存在其上。當執行指引本文所述的方法的功能之電腦可讀指令時,此電腦可讀儲存媒體是本發明的實施例。在其他實施例中,本文所述的方法或此方法的某些部分藉由特定用途積體電路(ASICs)、場式可程式閘陣列(FPGAs)、或其他類型的硬體工具所執行。在一些其他實施例中,本文所述的製程藉由軟體常式、ASIC、FPGA、或其他類型的硬體工具的組合所執行
在此,一或多個硼烷濃度感測器125是光學感測器,設置以選擇性量測通過安置在其中的氣體樣品的一或多個特定波長的導入輻射(即,一或多個目標波長)的衰減。目標波長對應於將被量測的分子物種(即,諸如乙硼烷或四硼烷的目標分子物種)的吸收光譜的吸收峰。隨著樣品中的目標分子物種的濃度增加或減少,目標波長的總吸收也隨著增加或減少,因此增加或減少通過其中的輻射的目標波長的衰減。在本文的實施例中,選擇性衰減量測用以測定氣體樣品中目標分子物種的濃度。
圖2A-2B是根據一實施例之可使用作為圖1所述一或多個硼烷濃度感測器125的個別光學感測器 200a與200b的圖解剖面視圖。圖3是顯示乙硼烷的UV吸收光譜301的圖表300,在此顯示作為橫越UV光譜中一範圍波長(nm)的吸收剖面(cm2 /分子)。圖4A是顯示乙硼烷的IR吸收光譜401的圖表400a,在此顯示作為橫越IR光譜中一範圍波長(µm)的吸收度(Au.)。圖4B是顯示橫越IR光譜中一範圍波長(µm)的四硼烷的IR吸收光譜403的圖表400b。如圖3與4A所示,乙硼烷的UV吸收光譜301與IR吸收光譜401各自包含個別複數個UV吸收峰302與IR吸收峰402。在圖4B中,四硼烷的IR吸收光譜403包含複數個IR吸收峰404。
在此,藉由選擇性量測通過其中的輻射的一目標波長或多個目標波長的衰減,光學感測器200a與200b的一者或結合用於測定氣體樣品中乙硼烷、四硼烷、或兩者的濃度。在本文的實施例中,多個目標波長分別對應於UV吸收光譜310或IR吸收光譜401上的乙硼烷的吸收峰302或402,或對應於四硼烷IR吸收光譜403上的吸收峰404。
在圖2A中,光學感測器200a以主體202與複數個窗口(顯示出兩個窗口204a與204b)為特徵。在此,複數個窗口204a與204b的個別一者安置在主體202的相對端上,以在之間共同地界定單元容積206。單元容積206與氣體入口208和氣體出口210流體連通。光學感測器200進一步包括輻射源212、一或多個輻射偵測器214a-b、及一或多個濾光器216a-b。在某些實施例中,光學感測器200或其之個別部件安置在印刷電路板(PCB)217上並電氣耦接至印刷電路板(PCB)217。通常,輻射源212與一或多個輻射偵測器214a-b安置在單元容積206之外於主體202的相對端處或鄰近主體202的相對端。例如,輻射源212在此安置在單元容積206之外鄰近於主體202的第一端處的第一窗204a。一或多個輻射偵測器214a-b安置鄰近於一或多個濾光器216a-b或鄰近於主體202的第二端,一或多個濾光器216a-b插入在第二窗204b與一或多個輻射偵測器214a-b之間。
複數個窗口204a-b的各者由適於使由輻射源212發射的寬波段UV或IR輻射穿過其中傳遞的材料形成。合適的窗口材料的實例包括MgF2 、KBr、藍寶石、或前述物的組合。由輻射源發射的寬波段UV或IR輻射包括會被一或多個輻射偵測器214a-b所量測的目標UV或IR波長。在某些實施例中,輻射源212包含一或多個UV燈或一或多個UV雷射源,設置以發射UV輻射,包含波長為132 nm或更小,諸如115 nm或更小。在其他實施例中,輻射源212包含一或多個IR燈或一或多個IR雷射源,設置以發射IR輻射,包含波長為3.831 µm或更大,諸如3.968 µm或更大、6.250 µm或更大、8.532 µm或更大、或10.256 µm或更大。在其他實施例中,輻射源212包含UV燈或UV雷射源,設置以發射UV輻射,包含波長為132 nm或更小,諸如115 nm或更小,及IR燈或IR雷射源,設置以發射IR輻射,包含波長為3.831 µm或更大,諸如3.968 µm或更大、6.250 µm或更大、8.532 µm或更大、或10.256 µm或更大。
在此,包含乙硼烷分子218、稀釋氣體分子220、及四硼烷分子222的氣體樣品通過入口208流入單元容積206並通過出口210流出單元容積206。在某些實施例中,光學感測器200耦接至輸送導管,諸如圖1所述的複數個輸送導管123a-c的一者。在某些實施例中,入口208與出口兩者流體地耦接至輸送導管123a-c。在某些實施例中,出口210流體地耦接至排放導管(未示出),其將氣體樣品從單元容積206排出。在某些實施例中,光學感測器200進一步包括流體地耦接至單元容積206的壓力感測器224。
在某些實施例中,光學感測器200a設置以測定氣體樣品中乙硼烷分子218的濃度。為了測定氣體樣品中乙硼烷分子218的濃度,來自輻射源213的輻射同時沿著第一光學路徑與第二光學路徑傳遞。第一光學路徑用於選擇性量測輻射的目標波長的衰減。輻射的目標波長對應於乙硼烷分子218的UV吸收峰302(顯示在圖3中)或IR吸收峰402(顯示在圖4A中)。在此,對應於UV吸收峰302的目標波長通常在115 nm或132 nm的約+/- 2 nm內。對應於IR吸收峰402的目標波長通常在3.831 µm、3.968 µm、6.25 µm、8.532 µm、或10.253 µm的約+/- 10 nm內。
在其他實施例中,光學感測器200a設置以測定氣體樣品中四硼烷分子222的濃度。在這些實施例中,第一光學路徑設置以選擇性量測對應於四硼烷分子222的IR吸收峰404(顯示在圖4B中)的輻射的目標波長。用於測定四硼烷的合適目標波長在四硼烷IR吸收光譜403的IR吸收峰404的+/- 10 nm內,諸如在約4.68 µm或約8.85 µm的約+/- 10 nm內。
第二光學路徑用以選擇性量測在參考波長的輻射強度,以提供參考強度量測。通常,參考波長不對應於預料在氣體樣品中發現的分子物種的吸收峰。參考強度量測用以補償相等地影響第一與第二輻射偵測器214a-b的環境、電氣、及機性變動,諸如由輻射源212提供的輻射強度中的變動及周遭壓力與溫度的變動。
在此,第一光學路徑從輻射源212延伸至第一輻射偵測器214a並依序地包括輻射源212、第一窗口204a、單元容積206、第二窗口204b、及第一輻射偵測器214a。在某些實施例中,像是在輻射源212是IR輻射源的實施例中,第一光學路徑進一步包括安置在第二窗口204b與第一輻射偵測器214a之間的第一濾光器216a。第一濾光器216a選擇性傳遞在對應於乙硼烷分子218的IR吸收峰402(圖4)的目標波長中的輻射。在某些實施例中,第一濾光器216a是具有中央傳輸波長λC 與帶寬λW 的帶通濾光器。合適的濾波器中央傳輸波長λC 對應於期望目標波長,即,乙硼烷分子218的IR吸收峰402。在光學感測器200a設置以測定乙硼烷分子濃度的某些實施例中,第一濾光器216a具有對應於目標波長為3.831 µm、3.968 µm、6.25 µm、8.532 µm、或10.253 µm中一者的中央傳輸波長λC 。在某些實施例中,中央傳輸波長λC 在對應目標波長的約+/- 250 nm內,諸如在約+/- 100 nm內,或例如在約+/- 50 nm內。在光學感測器200a設置以測定四硼烷分子濃度的某些實施例中,第一濾光器216a具有中央傳輸波長λC1 ,在IR吸收峰404(例如,約4.680 µm或約8.850 µm)的約+/- 250 nm內、約+/- 100 nm內、或約+/- 50 nm內。在某些實施例中,第一濾光器216a具有帶寬λW 為約1 µm或更小,諸如約900 nm或更小、800 nm或更小、700 nm或更小、600 nm或更小,例如約500 nm或更小。
在例如輻射源212是UV輻射源的某些實施例中,第一光學路徑不包括第一濾光器216a。
在此,第二光學路徑從輻射源212延伸至第二輻射偵測器214b並依序地包括輻射源212、第一窗口204a、單元容積206、第二窗口204b、第二濾光器216b、及第二輻射偵測器214b。第二濾光器216b選擇性傳遞不對應於乙硼烷或期望稀釋氣體的吸收峰的輻射。換言之,第二濾光器216b排除對應於乙硼烷或期望稀釋氣體的吸收峰的輻射波長。
圖2B是設置以測定安置在其中的氣體樣品中乙硼烷與四硼烷兩者濃度的光學感測器200b的圖解剖面視圖。在此,光學感測器200b類似於圖2a所述的光學感測器200a(當設置以測定乙硼烷濃度時)且進一步包括用於測定四硼烷濃度的第三光學路徑。第三光學路徑從輻射源212(在此為IR輻射源)延伸至第三輻射偵測器214c。第三光學路徑依序包括輻射源212、第一窗口204a、單元容積206、第二窗口204b、第三濾光器216c、及第三輻射偵測器214c。在此,第三濾光器216c具有中央傳輸波長λC 在四硼烷的IR吸收峰404(例如,約4.680 µm或約8.850 µm)的約+/- 250 nm內、約+/- 100 nm內、或約+/- 50 nm內。在某些實施例中,第三濾光器216c具有帶寬λW 為約1 µm或更小,諸如約900 nm或更小、800 nm或更小、700 nm或更小、600 nm或更小、例如約500 nm或更小。
圖5是圖解地繪示使用光學感測器實行的一或多個量測的圖表500,在此,光學感測器200a或200b的一者分別在圖2A與2B中說明。圖表500圖解地顯示具有變動濃度的乙硼烷的三種不同氣體樣品501a-c的吸收量測。在此,來自輻射源212的輻射沿著分別在圖2A與2B中說明的兩個或三個光學路徑的每一者而傳遞。光學路徑至少包括輻射源212、第一窗口204a、具有安置在其中的氣體樣品501a-c的一者的單元容積206、及第二窗口204b。第一光學路徑進一步包括第一濾光器216a與第一輻射偵測器214a。在此,第一濾光器216a具有中央傳輸波長λC1 與帶寬λW1 ,對應於如上方所述及分別顯示在圖4A與4B中的乙硼烷或四硼烷的IR吸收峰。第二光學路徑進一步包括第二濾光器216b與第二輻射偵測器214b。第二濾光器216b具有中央傳輸波長λC2 與帶寬λW2 ,其不對應於預料在氣體樣品中發現的分子物種的吸收峰。
當使用時,第三光學路徑進一步包括第三濾光器216c與第三輻射偵測器214c。第三濾光器216c具有中央傳輸波長λC3 與帶寬λW3 ,其對應於四硼烷的IR吸收峰。第二濾光器216b的中央傳輸波長λC2 可大於或小於第一濾光器216a的中央傳輸波長λC1 或第三濾光器216c的中央傳輸波長λC3 。同樣地,第三濾光器216c的中央傳輸波長λC3 可大於或小於第一濾光器216a的中央傳輸波長λC1
通常,由第二輻射偵測器214b取得的強度量測(即,參考強度503)用以補償相等地影響輻射偵測器214a-c的環境、電氣、及機性變動。如圖示,參考強度503對於三種氣體樣品501a-c的各者是相同的,指出在各樣品501a-c的量測之間無實質環境、電氣、及機性變動。在某些實施例中,參考強度503與使用第一輻射偵測器214a量測的樣品501a-c各者的強度之間的差異(即,衰減502a-c)用以測定其中的乙硼烷濃度。如圖5所示,通過第一氣體樣品501a的輻射具有在沿著第一與第二光學路徑傳遞的輻射之間的最高衰減502a,且因此具有複數個樣品501a-c的最高乙硼烷濃度。通過第三氣體樣品501c的輻射具有最低衰減502c且因此具有最低乙硼烷濃度。
通過第一氣體樣品501a的輻射具有沿著第二與第三光學路徑傳遞的輻射之間的最低衰減503a,且因此具有複數個樣品501a-c的最低四硼烷濃度。因為在加壓氣缸中的乙硼烷隨著時間解離以產生自由氫與四硼烷,使用第三輻射偵測器214c量測的衰減503a-c會隨著衰減502a-c降低而增加。因此,通過第三氣體樣品501c的輻射具有最高衰減503c且因此具有複數個樣品501a-c的最高四硼烷濃度。
圖6A與6B為根據另一實施例之可用於如圖1所述的一或多個硼烷濃度感測器125的個別光學感測器600a與600b的圖解剖面視圖。在圖6A中,光學感測器600a特徵為主體602、安置在主體602的相對端的複數個窗口604a-b、及分配器605,共同地界定第一單元容積606a與第二單元容積606b。第一單元容積606a與入口608與出口610流體連通,入口608用以輸送氣體樣品進入其中,出口610用以從其中排出氣體樣品。第二單元容積606b藉由分配器605與第一單元容積606a流體隔離,入口608安置在第一單元容積606a與第二單元容積606b之間。光學感測器600a進一步包括輻射源612、一或多個輻射偵測器614a-b、及一或多個濾光器616a-b。
在某些實施例中,光學感測器600a或其之個別部件安置在印刷電路板(PCB)617上並電氣耦接印刷電路板(PCB)617。通常,輻射源612與一或多個輻射偵測器614a-b安置在第一與第二單元容積606a-b之外於主體602的相對端處或鄰近主體602的相對端。例如,輻射源612在此安置在第一與第二單元容積606a-b之外而鄰近於在主體602的第一端處的第一窗口604a。一或多個輻射偵測器614a-b安置鄰近於一或多個濾光器616a-b或鄰近於主體602的第二端,一或多個濾光器616a-b插入在第二窗口604b與一或多個輻射偵測器 614a-b之間。
複數個窗口604a-b的各者由適於使由輻射源612發射的寬波帶UV或IR輻射傳遞通過其中的材料形成。合適窗口材料的實例包括MgF2 、KBr、藍寶石、或前述物的組合。由輻射源發射的寬波帶UV或IR輻射包括會被一或多個輻射偵測器614a-b量測的目標UV或IR波長。在某些實施例中,輻射源612包含一或多個 UV燈或UV雷射源,設置以發射UV輻射,包含波長為132 nm或更小,諸如115 nm或更小。在其他實施例中,輻射源612包含一或多個IR燈或IR雷射源,設置以發射IR輻射,包含波長為3.831 µm或更大,諸如3.968 µm或更大、6.250 µm或更大、8.532 µm或更大、或10.256 µm或更大。
通常,包含乙硼烷分子218、稀釋氣體分子220、及四硼烷分子222的氣體樣品通過入口608流入第一單元容積606a並通過出口610流出第一單元容積606a。在某些實施例中,光學感測器600耦接至輸送導管,諸如圖1所述的複數個輸送導管123a-c的一者。在這些實施例中,入口608流體地耦接至輸送導管123a-c而出口610流體地耦接至排氣導管(未示出),其將氣體樣品從第一單元容積606a排出。
為了測定氣體樣品中乙硼烷分子218或四硼烷分子222的濃度,來自輻射源612的輻射同時地沿著第一光學路徑與第二光學路徑傳播。第一光學路徑用於選擇性量測對應於乙硼烷分子218或四硼烷分子222的UV吸收峰302(顯示在圖3中)或IR吸收峰402或404(分別顯示在圖4A與4B中)的目標波長之輻射的衰減。第二光學路徑用於選擇性量測在參考波長之輻射的強度以提供參考強度量測。在此,參考波長可與預料將在氣體樣品中發現的分子物種的吸收峰為相同或不同的。
在此,第一光學路徑從輻射源612延伸至第一輻射偵測器614a。在某些實施例中,例如,在輻射源612是IR輻射源的實施例,第一光學路徑依序包括輻射源612、第一窗口604a、第一單元容積606a、第二窗口604b、第一濾光器616a、及第一輻射偵測器614a。第一濾光器616a選擇性傳遞對應於乙硼烷分子218的IR吸收峰402(圖4A)或四硼烷分子222的IR吸收峰404(圖4B)之目標波長中的輻射。通常,第一濾光器616a是具有中央傳輸波長λC 與帶寬λW 的帶通濾光器。在某些實施例中,第一濾光器216a具有中央輸送波長λC1 ,分別對應於上述並如圖4A-4B中顯示的乙硼烷或四硼烷的目標波長。在某些實施例中,第一濾光器616a具有帶寬λW 為約1 µm或更小,諸如約900 nm或更小、800 nm或更小、700 nm或更小、600 nm或更小、例如約500 nm或更小。
第二光學路徑從輻射源612延伸至第二輻射偵測器614b。第二光學路徑依序包括輻射源612、第一窗口604a、第二單元容積606b、第二窗口604b、第二濾光器616b、及第二輻射偵測器614b。第二濾光器616b可容許對應或不對應於乙硼烷或期望稀釋氣體的吸收峰的輻射通過其中傳輸。通常,第二單元容積606b維持在真空狀態或包含惰性氣體618。
在某些實施例中,諸如輻射源是UV輻射源的實施例,第一或第二光學路徑的一者或兩者不包括個別的第一或第二濾光器616a-b。
在某些實施例中,光學感測器600a進一步包括流體地耦接至第一單元容積606a的壓力感測器622,其用於監測安置在其中的氣體樣品的壓力。在某些實施例中,光學感測器進一步包括一或多個鏡子624,用以將來自輻射源612的輻射引導通過第一與第二單元容積606a-b。
圖6B是設置以測定安置在其中的氣體樣品中乙硼烷與四硼烷兩者的濃度之光學感測器600b的圖解剖面視圖。在此,光學感測器600b類似於圖6a所述的光學感測器600a(當設置以測定乙硼烷濃度時)並進一步包括用以測定四硼烷濃度的第三光學路徑。第三光學路徑從輻射源612(在此為IR輻射源)延伸至第三輻射偵測器614c。第三光學路徑依序包括輻射源612、第一窗口604a、單元容積606a、第二窗口604b、第三濾光器616c、及第三輻射偵測器614c。第三濾光器616c選擇性傳遞對應於四硼烷分子222的IR吸收峰404(圖4B)的目標波長中的輻射,諸如上方關於圖2B中第三濾光器216c所述的。
在某些實施例中,在安裝至處理系統之前,校準本文所述的光學感測器。通常,使用具有類似於乙硼烷吸收峰的UV或IR吸收峰的低毒性(相較於乙硼烷)代理氣體來校準光學感測器。合適的代理氣體的實例包括NH3 、甲硫醇、乙硫醇、或前述物的組合。
圖7是繪示使用光學感測器(在此為圖6B所述的光學感測器600b)取得的各自具有不同乙硼烷與四硼烷濃度的三種氣體樣品701a-c的量測之圖表700。在此,來自輻射源612的輻射沿著圖6B所述的光學路徑傳播。第一光學路徑包括輻射源612、第一窗口604a、具有安置在其中的氣體樣品701a-c中一者的第一單元容積606a、第二窗口604b、第一濾光器616a與第一輻射偵測器614a。第一濾光器616a具有中央傳輸波長λC1 及帶寬λW1 ,對應於上方所述並顯示在圖4A中的乙硼烷的IR吸收峰。
第二光學路徑包括輻射源612、第一窗口604a、具有安置在其中之惰性氣體618的第二單元容積606b、第二窗口604b、第二濾光器616b、及第二輻射偵測器614b。第二濾光器616b具有中央傳輸波長λC2 及帶寬λW2 ,其可對應於或可不對應於預料將在氣體樣品中發現的分子物種的吸收峰。第三光學路徑包括輻射源612、第一窗口604a、具有安置在其中的氣體樣品701a-c中一者的第一單元容積606a、第二窗口604b、第三濾光器616c與第三輻射偵測器614c。第三濾光器616c具有中央傳輸波長λC3 及帶寬λW3 ,對應於上述並顯示在圖4B中的四硼烷的IR吸收峰。在此,第二濾光器616b的中央傳輸波長λC2 可大於、小於、或等同第一濾光器616a的中央傳輸波長λC1 。第三濾光器616c的中央傳輸波長λC3 可大於或小於第一濾光器616a的中央傳輸波長λC1 及大於或小於第二濾光器616b的中央傳輸波長λC2
通常,藉由第二輻射偵測器614b取得的強度量測(即,參考強度703)用於補償相等地影響第一與第二輻射偵測器614a-b的環境、電氣、及機性變動。在此,參考強度703與沿著第一光學路徑傳播的樣品701a-c的每一者的強度之間的差異(即,衰減702a-c)用以測定個別樣品中的乙硼烷濃度。參考強度703與沿著第三光學路徑傳播的樣品701a-c的每一者的強度之間的衰減703a-c用以測定個別樣品中的四硼烷濃度。如圖7所示,通過第一氣體樣品701a的輻射具有最高的衰減702a且因此具有三種樣品701a-c中最高的乙硼烷濃度,及具有最低衰減703a且因此具有三種樣品701a-c中最低四硼烷濃度。通過第三氣體樣品701c的輻射具有最低的衰減702c與最高衰減703c,且因此具有三種樣品701a-c中最低的乙硼烷濃度與最高四硼烷濃度。
圖8是根據一實施例說明處理基板的方法之流程圖。在行動801,方法800包括測定由氣體導管取得的氣體樣品的乙硼烷濃度,氣體導管流體地耦接第一氣源與處理腔室。在此,測定乙硼烷濃度包含使用光學感測器,諸如光學感測器200a、200b或600a、600b中一者,分別描述在圖2A-2B或6A-6B中。在行動802,方法800包括藉由改變來自第一氣源的第一氣體的流率、來自第二氣源的第二氣體的流率、或兩者的流率來混合具有期望乙硼烷濃度的硼摻雜氣體。在行動803,方法包括輸送硼摻雜氣體至處理腔室的處理容積。
在某些實施例中,方法800進一步包括測定由氣體導管取得的氣體樣品的四硼烷濃度,氣體導管耦接第一氣源與處理腔室。在某些實施例中,測定四硼烷濃度包含使用用於測定乙硼烷濃度的相同光學感測器或使用不同的光學感測器,諸如使用本文所述的光學感測器200a、200b與600a、600b的一者或組合。
本文提供的系統與方法有利地能夠原位監測與控制硼摻雜氣體中的乙硼烷濃度,其降低不期望的基板至基板的硼摻雜變動。
儘管前述係關於本文的實施例,但在不背離本發明的基本範疇可構思出本發明的其他與進一步實施例,而本發明的範疇藉由隨後的申請專利範圍所界定。
100:處理系統 101:處理腔室 102:前驅物輸送系統 103:腔室蓋組件 104:側壁 105:腔室基底 106:腔室蓋 107:噴頭 108:環 109:處理容積 110:氣體入口 111:開口 112:第一電源 113:電漿 114:真空出口 115:基板支撐件 116:可移動支撐軸件 117:基板 118:開口 119:電阻加熱元件 120:冷卻通道 121:第一氣源 122:第二氣源 123a-c:輸送導管 124:混合點 125:硼烷濃度感測器 126a-b:流量控制器 127:壓力感測器 130:系統控制器 131:CPU 132:記憶體 133:支援電路 200:光學感測器 202:主體 204a-b:窗口 206:單元容積 208:氣體入口 210:氣體出口 212、213:輻射源 214:第二輻射偵測器 214a-c:輻射偵測器 216a-b:濾光器 217:電路板PCB 218:乙硼烷分子 220:稀釋氣體分子 222:四硼烷分子 224:壓力感測器 300:圖表 301:UV吸收光譜 302:UV吸收峰 401、403:IR吸收光譜 402、404:IR吸收峰 500:圖表 501a-c:氣體樣品 502a-c、503a-c:衰減 503:參考強度 600:光學感測器 602:主體 604a-b:窗口 605:分配器 606a-b:單元容積 608:入口 610:出口 612:輻射源 614a-c:輻射偵測器 616a-c:濾光器 617:電路板PCB 618:惰性氣體 622:壓力感測器 624:鏡子 700:圖表 701a-c:氣體樣品 702a-c、703a-c:衰減 703:參考強度 800:方法 801、802、803:行動
藉由參照實施例,某些實施例繪示在隨附圖式中,可獲得簡短總結於上的本發明之更明確的說明,使得本發明的上述特徵可被詳細地理解。然而,將注意到隨附圖式僅繪示本發明的典型實施例且因而不被當作限制本發明範疇,由於本發明可容許其他等效實施例。
圖1是根據一實施例之設置以實施本文所說明的方法之基板處理系統的圖解剖面視圖。
圖2A是根據一實施例之光學感測器的圖解剖面視圖,此光學感測器可使用於圖1所述的基板處理系統。
圖2B是根據另一實施例之光學感測器的圖解剖面視圖,此光學感測器可使用於圖1所述的基板處理系統。
圖3是繪示乙硼烷的UV吸收光譜的圖表。
圖4A是繪示乙硼烷的IR吸收光譜的圖表。
圖4B是繪示四硼烷的IR吸收光譜的圖表。
圖5是根據一實施例之圖解地繪示通過具有各種濃度的乙硼烷與四硼烷的氣體樣品之輻射的衰減的圖表。
圖6A是根據另一實施例之光學感測器的圖解剖面視圖,此光學感測器可使用於圖1所述的基板處理系統。
圖6B是根據另一實施例之光學感測器的圖解剖面視圖,此光學感測器可使用於圖1所述的基板處理系統。
圖7是根據另一實施例之圖解地繪示通過具有各種濃度的乙硼烷與四硼烷的氣體樣品之輻射的衰減的圖表。
圖8是根據一具體例之說明處理基板的方法之流程圖。
為了易於理解,儘可能已使用相同的元件符號指代圖式中共通的相同元件。料想一實施例的元件與特徵可有利地結合到其他實施例而不需要進一步說明。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100:處理系統
101:處理腔室
102:前驅物輸送系統
103:腔室蓋組件
104:側壁
105:腔室基底
106:腔室蓋
107:噴頭
108:環
109:處理容積
110:氣體入口
111:開口
112:第一電源
113:電漿
114:真空出口
115:基板支撐件
116:可移動支撐軸件
117:基板
118:開口
119:電阻加熱元件
120:冷卻通道
121:第一氣源
122:第二氣源
124:混合點
125:硼烷濃度感測器
127:壓力感測器
130:系統控制器
131:CPU
132:記憶體
133:支援電路

Claims (20)

  1. 一種硼烷濃度感測器,包含: 一主體;複數個窗口,其中該複數個窗口的多個個別一者安置在該主體的多個相對端,及其中該主體與該複數個窗口界定一單元容積;一輻射源,安置在該單元容積之外並鄰近於該複數個窗口的一第一窗口;及一第一輻射偵測器,安置在該單元容積之外並鄰近於該複數個窗口的一第二窗口。
  2. 如請求項1所述之硼烷濃度感測器,其中該第一窗口與該第二窗口中的一者或兩者是由MgF2 、KBr、藍寶石、或前述物的組合所形成。
  3. 如請求項1所述之硼烷濃度感測器,進一步包含一第一濾光器,該第一濾光器插入在該第一輻射偵測器與該第二窗口之間。
  4. 如請求項3所述之硼烷濃度感測器,其中該第一濾光器具有一中央傳輸波長λC ,該中央傳輸波長λC 在乙硼烷的一IR吸收峰的約+/- 250 nm之內或在四硼烷的一IR吸收峰的約+/- 250 nm之內。
  5. 如請求項3所述之硼烷濃度感測器,進一步包含一第二輻射偵測器與安置在該輻射源與該第二輻射偵測器之間的一第二濾光器,其中該第一濾光器具有在乙硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長λC ,而該第二濾光器具有在四硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長。
  6. 一種處理一基板的方法,包含: 測定取自一氣體導管的一氣體樣品中的一乙硼烷濃度,該氣體導管流體地耦接一第一氣源與一處理腔室,其中測定該乙硼烷濃度包含使用一光學感測器;藉由改變來自該第一氣源的一第一氣體的一流率、來自一第二氣源的一第二氣體的一流率、或該第一氣體與該第二氣體兩者的流率,混合具有一期望的乙硼烷濃度的一硼摻雜氣體;以及輸送該硼摻雜氣體至該處理腔室的一處理容積。
  7. 如請求項6所述之方法,其中該光學感測器包含: 一主體; 複數個窗口,其中該複數個窗口的多個個別一者安置在該主體的多個相對端,及其中該主體與該複數個窗口界定一單元容積;一輻射源,安置在該單元容積之外並鄰近於該複數個窗口的一第一窗口;及 一第一輻射偵測器,安置在該單元容積之外並鄰近於該複數個窗口的一第二窗口。
  8. 如請求項7所述之方法,其中該第一窗口與該第二窗口中的一者或兩者是由MgF2 、KBr、藍寶石、或前述物的組合所形成。
  9. 如請求項7所述之方法,其中該光學感測器進一步包含一第二輻射偵測器。
  10. 如請求項7所述之方法,其中該光學感測器進一步包含一第一濾光器,該第一濾光器插入在該第一輻射偵測器與該第二窗口之間。
  11. 如請求項10所述之方法,其中該第一濾光器具有一中央傳輸波長λC ,該中央傳輸波長λC 在乙硼烷的一IR吸收峰的約+/- 250 nm之內或在四硼烷的一IR吸收峰的約+/- 250 nm之內。
  12. 如請求項10所述之方法,其中該光學感測器進一步包含一第二輻射偵測器與安置在該輻射源與該第二輻射偵測器之間的一第二濾光器,其中該第一濾光器具有在乙硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長λC ,而該第二濾光器具有在四硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長。
  13. 一種處理系統,包含: 一電腦可讀媒體,具有儲存在其上的多個指令以用於處理一基板的一方法,該方法包含:測定取自一氣體導管的一氣體樣品中的一乙硼烷濃度,該氣體導管流體地耦接一第一氣源與一處理腔室,其中測定該乙硼烷濃度包含使用一光學感測器;藉由改變來自該第一氣源的一第一氣體的一流率、來自一第二氣源的一第二氣體的一流率、或該第一氣體與該第二氣體兩者的流率,混合具有一期望的乙硼烷濃度的一硼摻雜氣體;以及輸送該硼摻雜氣體至一處理腔室的一處理容積。
  14. 如請求項13所述之處理系統,其中該光學感測器包含: 一主體; 複數個窗口,其中該複數個窗口的多個個別一者安置在該主體的多個相對端,及其中該主體與該複數個窗口界定一單元容積;一輻射源,安置在該單元容積之外並鄰近於該複數個窗口的一第一窗口;及 一第一輻射偵測器,安置在該單元容積之外並鄰近於該複數個窗口的一第二窗口。
  15. 如請求項14所述之處理系統,其中該光學感測器的該第一窗口與該第二窗口中的一者或兩者是由MgF2 、KBr、藍寶石、或前述物的組合所形成。
  16. 如請求項14所述之處理系統,其中該光學感測器進一步包含一第一濾光器,該第一濾光器插入在該第一輻射偵測器與該第二窗口之間。
  17. 如請求項16所述之處理系統,其中該第一濾光器具有一中央傳輸波長λC ,該中央傳輸波長λC 在乙硼烷的一IR吸收峰的約+/- 250 nm之內或在四硼烷的一IR吸收峰的約+/- 250 nm之內。
  18. 如請求項16所述之處理系統,其中該光學感測器進一步包含一第二輻射偵測器與安置在該輻射源與該第二輻射偵測器之間的一第二濾光器,其中該第一濾光器具有在乙硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長λC ,而該第二濾光器具有在四硼烷的一IR吸收峰的約+/- 250 nm之內的一中央傳輸波長。
  19. 如請求項18所述之處理系統,進一步包含該處理腔室。
  20. 如請求項18所述之處理系統,其中該方法進一步包含使用該光學感測器測定該氣體樣品中的一四硼烷濃度。
TW108127157A 2018-07-31 2019-07-31 硼烷濃度感測器 TWI814874B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862712627P 2018-07-31 2018-07-31
US62/712,627 2018-07-31
US201962805177P 2019-02-13 2019-02-13
US62/805,177 2019-02-13
US16/460,309 US11009455B2 (en) 2018-07-31 2019-07-02 Precursor delivery system and methods related thereto
US16/460,309 2019-07-02

Publications (2)

Publication Number Publication Date
TW202012910A true TW202012910A (zh) 2020-04-01
TWI814874B TWI814874B (zh) 2023-09-11

Family

ID=69227421

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108127157A TWI814874B (zh) 2018-07-31 2019-07-31 硼烷濃度感測器
TW112129930A TW202348977A (zh) 2018-07-31 2019-07-31 硼烷濃度感測器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW112129930A TW202348977A (zh) 2018-07-31 2019-07-31 硼烷濃度感測器

Country Status (2)

Country Link
US (1) US11009455B2 (zh)
TW (2) TWI814874B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328285A1 (en) * 2021-04-09 2022-10-13 Applied Materials, Inc. Methods and apparatus for processing a substrate
US20230107536A1 (en) * 2021-10-05 2023-04-06 Applied Materials, Inc. Methods for forming low resistivity tungsten features
US11939668B2 (en) 2022-04-26 2024-03-26 Applied Materials, Inc. Gas delivery for tungsten-containing layer
WO2024006088A1 (en) * 2022-06-27 2024-01-04 Lam Research Corporation Integrated high aspect ratio etching

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183473A (en) * 1975-01-20 1976-07-22 Hitachi Ltd Fujunbutsuno doopinguhoho
US6391690B2 (en) * 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US5993766A (en) * 1996-05-20 1999-11-30 Advanced Technology Materials, Inc. Gas source and dispensing system
US5980608A (en) 1998-01-07 1999-11-09 Advanced Technology Materials, Inc. Throughflow gas storage and dispensing system
US6197471B1 (en) * 1998-03-25 2001-03-06 Coulter International Corp. Amorphous silicon photoreceptor and method for making same
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films
US20020152797A1 (en) 2001-01-09 2002-10-24 Mcandrew James J.F. Gas delivery apparatus and method for monitoring a gas phase species therein
US7638161B2 (en) 2001-07-20 2009-12-29 Applied Materials, Inc. Method and apparatus for controlling dopant concentration during BPSG film deposition to reduce nitride consumption
US7129519B2 (en) 2002-05-08 2006-10-31 Advanced Technology Materials, Inc. Monitoring system comprising infrared thermopile detector
JP3973605B2 (ja) 2002-07-10 2007-09-12 東京エレクトロン株式会社 成膜装置及びこれに使用する原料供給装置、成膜方法
US6772072B2 (en) 2002-07-22 2004-08-03 Applied Materials, Inc. Method and apparatus for monitoring solid precursor delivery
US7296532B2 (en) 2002-12-18 2007-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Bypass gas feed system and method to improve reactant gas flow and film deposition
US6947138B2 (en) 2003-06-16 2005-09-20 Advanced Technology Materials, Inc. Optical sensor system and method for detection of hydrides and acid gases
US20060017055A1 (en) * 2004-07-23 2006-01-26 Eastman Kodak Company Method for manufacturing a display device with low temperature diamond coatings
US20060115591A1 (en) * 2004-11-29 2006-06-01 Olander W K Pentaborane(9) storage and delivery
US7687383B2 (en) * 2005-02-04 2010-03-30 Asm America, Inc. Methods of depositing electrically active doped crystalline Si-containing films
US7648927B2 (en) * 2005-06-21 2010-01-19 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
US7651955B2 (en) * 2005-06-21 2010-01-26 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
EP1899040A2 (en) 2005-06-22 2008-03-19 Advanced Technology Materials, Inc. Apparatus and process for integrated gas blending
US7195934B2 (en) * 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus
TWI390603B (zh) * 2005-10-05 2013-03-21 Applied Materials Inc 用於磊晶薄膜形成的方法與裝置
JP2007285842A (ja) * 2006-04-17 2007-11-01 Nippon Koden Corp ガス濃度測定装置
US20070254093A1 (en) 2006-04-26 2007-11-01 Applied Materials, Inc. MOCVD reactor with concentration-monitor feedback
JP5103983B2 (ja) 2007-03-28 2012-12-19 東京エレクトロン株式会社 ガス供給方法、ガス供給装置、半導体製造装置及び記憶媒体
US7939447B2 (en) * 2007-10-26 2011-05-10 Asm America, Inc. Inhibitors for selective deposition of silicon containing films
US7713757B2 (en) * 2008-03-14 2010-05-11 Applied Materials, Inc. Method for measuring dopant concentration during plasma ion implantation
JP5690498B2 (ja) 2009-03-27 2015-03-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 基体上に膜を堆積する方法および気化前駆体化合物を送達する装置
US20120142172A1 (en) * 2010-03-25 2012-06-07 Keith Fox Pecvd deposition of smooth polysilicon films
US20130157466A1 (en) * 2010-03-25 2013-06-20 Keith Fox Silicon nitride films for semiconductor device applications
US20130284090A1 (en) 2012-04-26 2013-10-31 Ganesh Balasubramanian Compensating concentration uncertainity
US9188574B2 (en) * 2012-06-05 2015-11-17 International Business Machines Corporation Mobile gas detection cart with wireless transceiver
US8921207B2 (en) * 2012-09-24 2014-12-30 Asm Ip Holding B.V., Inc. Tin precursors for vapor deposition and deposition processes
US9157730B2 (en) * 2012-10-26 2015-10-13 Applied Materials, Inc. PECVD process
TWI694494B (zh) * 2014-07-08 2020-05-21 美商應用材料股份有限公司 處理基板之方法及設備
FR3031246B1 (fr) * 2014-12-29 2018-02-09 Universite de Bordeaux Systeme et procede de generation d'impulsions lumineuses ultrabreves a forte densite spectrale de puissance et accordables en longueur d'onde
WO2017044435A1 (en) * 2015-09-10 2017-03-16 Honeywell International Inc. Gas detector with normalized response and improved sensitivity
WO2017062624A1 (en) * 2015-10-06 2017-04-13 The Research Foundation For The State University Of New York Boron nanoparticle compositions and methods for making and using the same
JP6795371B2 (ja) 2016-10-14 2020-12-02 株式会社神鋼エンジニアリング&メンテナンス ホウ素濃度計及びホウ素濃度の推定方法
KR102084296B1 (ko) * 2016-12-15 2020-03-03 도쿄엘렉트론가부시키가이샤 성막 방법, 붕소 막 및 성막 장치

Also Published As

Publication number Publication date
TWI814874B (zh) 2023-09-11
US20200041407A1 (en) 2020-02-06
TW202348977A (zh) 2023-12-16
US11009455B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
TWI814874B (zh) 硼烷濃度感測器
TWI806964B (zh) 在高溫環境下偵測或監測化學前體的設備
US9297705B2 (en) Smart temperature measuring device
CN107240541B (zh) 用于执行边缘环表征的系统和方法
KR100415368B1 (ko) 반도체 제조 장치의 보수 시기 판단 방법
US11257693B2 (en) Methods and systems to improve pedestal temperature control
US9396964B2 (en) Plasma processing apparatus, plasma processing method, and non-transitory computer-readable medium
JP5885736B2 (ja) ツインチャンバ処理システム
US8697578B2 (en) Film formation apparatus and method for using same
US9951423B2 (en) Systems and methods for measuring entrained vapor
US20070021935A1 (en) Methods for verifying gas flow rates from a gas supply system into a plasma processing chamber
US9453683B2 (en) Heat treatment system, heat treatment method, and program
KR20040005702A (ko) 성막 장치 및 이것을 사용하는 원료 공급 장치, 가스 농도검출 방법
JP2009521595A (ja) 前置ポンプの反応性気体噴射システムへの反応性気体の供給量を監視し且つ制御するための分光計測技術の使用
US10267728B2 (en) Systems and methods for detecting oxygen in-situ in a substrate area of a substrate processing system
CN112673456A (zh) 使用亚稳的活化自由基物质的原子层处理工艺
JP7485652B2 (ja) 前駆体供給システム及びそれに関連する方法
TWI596645B (zh) 電漿加工系統及在半導體製造中用於控制電漿的方法
TW201907150A (zh) 半導體處理中自由基濃度之量測
WO2004085704A1 (ja) 処理装置
CN107768224B (zh) 检查等离子体处理装置的喷淋板的方法
US20140261703A1 (en) Method to detect valve deviation
TWI673754B (zh) 加熱過濾器組件
CN116926504A (zh) 前驱体输出装置和原子层沉积设备
KR20230045543A (ko) 기판 처리를 행하는 장치, 가스 샤워 헤드, 및 기판 처리를 행하는 방법