TW202006816A - 研磨裝置及研磨方法 - Google Patents

研磨裝置及研磨方法 Download PDF

Info

Publication number
TW202006816A
TW202006816A TW108123414A TW108123414A TW202006816A TW 202006816 A TW202006816 A TW 202006816A TW 108123414 A TW108123414 A TW 108123414A TW 108123414 A TW108123414 A TW 108123414A TW 202006816 A TW202006816 A TW 202006816A
Authority
TW
Taiwan
Prior art keywords
polishing
film thickness
substrate
distance
eddy current
Prior art date
Application number
TW108123414A
Other languages
English (en)
Other versions
TWI788583B (zh
Inventor
中村顕
Original Assignee
日商荏原製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商荏原製作所股份有限公司 filed Critical 日商荏原製作所股份有限公司
Publication of TW202006816A publication Critical patent/TW202006816A/zh
Application granted granted Critical
Publication of TWI788583B publication Critical patent/TWI788583B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • B24B49/105Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means using eddy currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Disintegrating Or Milling (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本發明係提供一種可改善在基板之邊緣部等所獲得之測量值之精確度的研磨裝置、以及研磨方法。膜厚測量裝置231與終點檢測器241係根據設置於研磨平台320A之渦電流感測器210的輸出而監視導電膜102的膜厚。渦電流感測器210的輸出係包含阻抗成分,在使阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,對應於阻抗成分之座標系上之點的至少一部分,係形成圓的至少一部分。膜厚測量裝置231係求出座標系上的點與圓的中心的距離,且從阻抗成分求出膜厚,及使用所獲得的距離來修正所獲得的膜厚。

Description

研磨裝置及研磨方法
本發明係關於一種研磨裝置及研磨方法。
近年來,伴隨著半導體元件(device)的高積體化、高密度化,電路的配線已趨於微細化,多層配線的層數亦日益增加。為了謀求電路的微細化同時實現多層配線,必須將半導體元件表面予以精確度良好地進行平坦化處理。
作為半導體元件表面的平坦化技術,已知有一種化學機械研磨(CMP(Chemical Mechanical Polishing))。用以進行CMP的研磨裝置,係具備:研磨平台(table),係貼附有研磨墊(pad);及頂環(top ring),係用以保持研磨對象物(例如半導體晶圓(wafer)等基板、或形成於基板之表面的各種膜)。研磨裝置係一面使研磨平台旋轉,一面將頂環所保持的研磨對象物推壓於研磨墊,藉此將研磨對象物進行研磨。
研磨裝置係具備監視導電膜之膜厚的監控(monitoring)裝置,以根據研磨對象物的膜厚而進行研磨步驟的終點偵測。監控裝置係具 備檢測研磨對象物之膜厚的膜厚感測器(sensor)。膜厚感測器具代表性的例如有渦電流感測器。
渦電流感測器係配置在形成於研磨平台上的孔等,隨著研磨平台的旋轉一同旋轉,同時在與研磨對象物相對向時檢測出膜厚。渦電流感測器係使導電膜等的研磨對象物感應渦電流,且從因為研磨對象物所感應的渦電流而產生之磁場的變化,檢測出研磨對象物之厚度的變化。
日本特開2005-121616號公報係揭示關於渦電流感測器的技術。此渦電流感測器係具備:感測器線圈(sensor coil),係配置於導電膜的附近;信號源,係對於感測器線圈供給交流信號而於導電膜形成渦電流;及檢測電路,係檢測出形成於導電膜的渦電流作為從感測器線圈觀看到的阻抗(impedance)。並且,將阻抗的電阻成分與電抗(reactance)成分顯示於正交座標軸上。從連結阻抗的座標、與所指定之中心點之座標的直線,與公報之第13圖所示之水平線所構成的角度,檢測出導電膜的膜厚。
從角度求出膜厚的方法,要事前先測量公報之第13圖所示之角度與膜厚的關係,且利用此關係,將角度直接轉換為膜厚。具體而言,係求出對應導電膜之膜質的中心點(基準點)P、及該導電膜之關於多數個膜厚的多數個仰角θ,並記憶於記憶體內。依每一仰角θ獲得一條預備測量直線。依據多數個仰角θ,獲得多數個預備測量直線。之後,在基板研磨裝置運轉時,根據連結該每一測量之阻抗的電阻成分、電抗成分的輸出值、及記憶體內的中心點P而成之正式測量直線rn的仰角θ、與預備測量直線來演算導電膜的膜厚。
以往,在基板的中心部等,已知可與基板的邊緣部等作比較,而精確度良好地測量出膜厚。這是因為渦電流感測器在基板之邊緣部等的附近,渦電流感測器所產生之磁通量的一部分存在於基板的外部,而渦電流感測器所產生之磁通量的整體無法被有效地利用之故。在日本特開2005-121616號公報中,並未考慮在基板的邊緣部等所獲得之測量值的精確度降低的情形。
[先前技術文獻] [專利文獻]
專利文獻1:日本特開2005-121616號公報
本發明之一型態係為了解決此種問題而研創者,其目的為提供一種可改善在基板之邊緣部等所獲得之測量值的精確度的研磨裝置、以及研磨方法。
為了解決上述問題,在型態1中,係採用研磨裝置之構成,該研磨裝置之特徵為具備:研磨平台,係具有研磨面,可進行旋轉;頂環,係將研磨對象的基板推壓於前述研磨面,而可將前述基板上的導電膜予以研磨;渦電流感測器,係設置於前述研磨平台;及監控裝置,係可根據前述渦電流感測器的輸出而監視前述導電膜的膜厚;前述渦電流感測器的輸 出係包含阻抗成分,且在使前述阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,對應於前述阻抗成分之前述座標系上之點的至少一部分,係形成圓的至少一部分,前述監控裝置係求出前述座標系上的點與前述圓的中心的第一距離,且從前述阻抗成分求出膜厚,並且可使用所獲得的前述第一距離來修正所獲得的前述膜厚。在此,所謂阻抗成分係指阻抗的電阻成分及/或電抗成分。
在本實施型態中,前述監控裝置係求出前述座標系上的點與前述圓的中心的第一距離,且從前述阻抗成分求出膜厚,並且可使用所獲得的前述第一距離來修正所獲得的前述膜厚。在基板的中心部等之相較於基板的邊緣部等可精確度良好地測量出膜厚的場所所獲得的測量值,係位於圓(阻抗曲線)上。然而,本實施型態著眼之點係在於:在基板的邊緣部等之相較於基板的中心部等向來無法精確度良好地測量出膜厚的場所所獲得的測量值,係未位於此圓上。
針對在基板的邊緣部等之可精確度良好地測量出膜厚的場所所獲得的測量值,係利用圓的中心至測量值的第一距離,作為精確度降低了多少的指標。結果,可較習知改善在基板的邊緣部等所獲得之測量值的精確度。就修正方法而言,例如,可對於所獲得的膜厚,乘上將在基板的中心部所獲得的測量值與圓(阻抗曲線)之中心之後述的第二距離除以第一距離所得到的比。
在型態2中,係採用如型態1所述之研磨裝置的構成,其中,前述監控裝置係使用對應前述第一距離之預定的修正係數而進行前述修正。要與所獲得之前述膜厚相乘之預定的修正係數,係例如使用基板而 針對複數個不同的第一距離事先測量者。修正係數係以函數、表單(table)等的形式保存於記憶部。
在型態3中,係採用如型態1或型態2所述之研磨裝置的構成,其中,前述監控裝置係對於在前述基板之周邊部所獲得的前述膜厚進行前述修正。修正係可針對基板整體進行,但較佳為對於在基板的周邊部(邊緣部)所獲得的膜厚進行修正。
在型態4中,係採用如型態1至型態3中任一型態所述之研磨裝置的構成,其中,前述監控裝置係求出相當於前述圓之半徑的第二距離,且使用前述第一距離與前述第二距離而進行前述修正。在此,所謂相當於圓之半徑的第二距離,係指圓的半徑、或實質上等於圓之半徑的距離。所謂實質上等於圓之半徑的距離,係指例如為在前述基板之前述周邊部以外之前述基板之部分所獲得之關於前述阻抗成分之前述座標系上的點與前述圓之中心的距離。此係因為在基板之周邊部以外之基板的部分所獲得之關於阻抗成分之座標系上的點,係實質上位於圓上之故。
在型態4的一實施型態中,例如,係從第一距離、及在基板之中心部等之向來可精確度較佳地測量出膜厚的場所所獲得的測量值與圓之中心之第二距離的比率來算出精確度降低的程度,以算出修正係數。使用修正係數修正膜厚,例如對於膜厚進行修正係數的乘法、加法、除法、及/或減法的運算。
在型態4的一實施型態中,前述監控裝置係求出在前述基板之前述周邊部以外之前述基板的部分所獲得之關於前述阻抗成分之前述座 標系上之點與前述圓之中心的第二距離,且使用前述第一距離與前述第二距離,而對於在前述基板的前述周邊部所獲得的前述膜厚進行前述修正。
在型態5中,係採用如型態1至型態4中任一型態所述之研磨裝置的構成,其中,前述研磨裝置係具有:溫度感測器,係可直接或間接測量研磨中之前述基板的溫度;及溫度修正部,係可使用所測量的前述溫度,而進一步修正經修正的前述膜厚。
在本實施型態中,係進行了溫度修正。要進行溫度修正的理由係如下所述。在監控裝置要從阻抗成分求出膜厚時,係利用了阻抗成分與膜厚的對應資訊。以金屬膜而言,當溫度因為研磨而上升時,電性傳導率就降低。對應資訊有時會在研磨前事先求出。求出對應資訊時之金屬膜的溫度,係與之後進行研磨且利用對應資訊而求出膜厚時之金屬膜的溫度不同。因此,利用對應資訊而測量膜厚時的溫度,有時會較事先求出對應資訊時的溫度更高或更低。當溫度較高時,就會測出比實際的膜厚更薄者。藉由使用由可直接或間接測量出基板之溫度的溫度感測器所獲得的溫度來修正膜厚的測量值,可算出更正確的膜厚值。
在型態6中,係採用研磨方法的構成,其係一種將研磨對象之基板進行研磨的研磨方法,其特徵具有下列步驟:將研磨對象的基板推壓於研磨面而將前述基板上的導電膜進行研磨的步驟;為了測量前述導電膜的膜厚,在前述導電膜形成渦電流,並且檢測出所形成之前述渦電流的步驟;將前述所檢測出的渦電流作為阻抗成分而予以輸出的步驟;及輸入前述阻抗成分,且從所輸入的前述阻抗成分監視前述導電膜之膜厚的監控步驟;在使前述阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交 座標軸之座標系的各軸時,對應前述阻抗成分之前述座標系上之點的至少一部分,係形成圓的至少一部分,前述監控步驟係具有:求出前述座標系上之點與前述圓之中心的第一距離,且從前述阻抗成分求出膜厚,及使用所獲得的第一距離來修正所獲得的前述膜厚的步驟。
10‧‧‧第一直線
12‧‧‧直徑
56‧‧‧溫度感測器
60‧‧‧測量點
62‧‧‧圓
64‧‧‧測量點
66‧‧‧軌跡
68‧‧‧磁通量
70‧‧‧邊緣部
72‧‧‧橢圓
74‧‧‧軌跡
76‧‧‧中心
78‧‧‧距離
80‧‧‧半徑
82‧‧‧高度
84‧‧‧直線
86、88‧‧‧距離
90‧‧‧中心
94‧‧‧資料處理部
96、96A‧‧‧路由器
96B‧‧‧控制部
97‧‧‧雲端
100‧‧‧框體
102‧‧‧研磨對象物
104‧‧‧研磨面
112‧‧‧第一電動馬達
118‧‧‧第二電動馬達
124‧‧‧交流信號源
126‧‧‧同步檢波電路
128‧‧‧端子
130‧‧‧端子
140、140A、140B、140C‧‧‧控制部
150‧‧‧研磨部
160、170‧‧‧旋轉接頭連接器
200‧‧‧裝載/卸載單元
202‧‧‧感測器線圈
203‧‧‧交流信號源
210‧‧‧渦電流感測器
220‧‧‧前裝載部
222‧‧‧承載器
230‧‧‧軌道
231‧‧‧膜厚測量裝置
232‧‧‧接收部
234‧‧‧角度算出部
238‧‧‧膜厚算出部
240‧‧‧搬運機械人
241‧‧‧終點檢測器
300‧‧‧研磨單元
300A‧‧‧第一研磨單元
300B‧‧‧第二研磨單元
300C‧‧‧第三研磨單元
300D‧‧‧第四研磨單元
302‧‧‧帶通濾波器
303‧‧‧高頻放大器
304‧‧‧相位移位電路
305‧‧‧cos同步檢波電路
306‧‧‧sin同步檢波電路
307、308‧‧‧低通濾波器
309、310‧‧‧向量演算電路
310A‧‧‧研磨墊
311‧‧‧繞線筒
312‧‧‧激磁線圈
313‧‧‧檢測線圈
314‧‧‧平衡線圈
316‧‧‧可變電阻
317‧‧‧電阻橋接電路
320A‧‧‧研磨平台
330A‧‧‧頂環
340A‧‧‧研磨液供給噴嘴
350A‧‧‧修整機
360A‧‧‧噴霧器
370‧‧‧起重機
372‧‧‧第一線性輸送機
374‧‧‧擺動輸送機
376‧‧‧第二線性輸送機
378‧‧‧暫置台
400‧‧‧洗淨單元
410‧‧‧第一洗淨室
420‧‧‧第一搬運室
430‧‧‧第二洗淨室
440‧‧‧第二搬運室
450‧‧‧乾燥室
500‧‧‧控制單元
1000‧‧‧基板處理裝置
A‧‧‧調整係數
G、G1至G3‧‧‧距離
I2‧‧‧渦電流
L1、L2‧‧‧自感
M‧‧‧互感
R1‧‧‧電阻
r1至r7(rn(n:1、2、3、…))‧‧‧膜厚直線
R2‧‧‧電阻
T0‧‧‧點
Tn‧‧‧第二點
T∞‧‧‧點
TP1‧‧‧第一搬運位置
TP2‧‧‧第二搬運位置
TP3‧‧‧第三搬運位置
TP4‧‧‧第四搬運位置
TP5‧‧‧第五搬運位置
TP6‧‧‧第六搬運位置
TP7‧‧‧第七搬運位置
VR1、VR2‧‧‧可變電阻
W‧‧‧基板
Z‧‧‧阻抗
α‧‧‧角度
第1圖係顯示本發明之一實施型態之基板處理裝置之整體構成的俯視圖。
第2圖係顯示研磨裝置之整體構成的示意圖。
第3A圖係洗淨單元的俯視圖。
第3B圖係洗淨單元的側視圖。
第4圖係顯示可測量出阻抗之渦電流感測器之構成例的方塊圖。
第5圖係第4圖之方塊圖的等效電路圖。
第6圖係顯示渦電流感測器之感測器線圈之構成例的立體圖。
第7圖係顯示第6圖之感測器線圈之連接例的電路圖。
第8圖係顯示感測器線圈輸出之同步檢波電路的方塊圖。
第9圖係顯示伴隨導電膜之厚度變化所產生之阻抗座標面中之電阻成分(X)與電抗成分(Y)之圓軌跡的曲線圖。
第10圖係使第9圖的曲線圖圖形逆時針旋轉90度,再使之平行移動所得到的曲線圖。
第11圖係顯示座標X、Y的圓弧軌跡對應相當於所使用之研磨墊之厚度的距離而變化之情形的曲線圖。
第12圖係說明不管研磨墊之厚度的差異,角度α皆相同的圖。
第13圖係顯示在基板W的中心部與邊緣部的測量值、與圓軌跡之關係的曲線圖。
第14圖係顯示基板之邊緣部中之渦電流感測器所產生的磁通量。
第15圖係在第13圖中圖示出第一距離者。
第16圖係顯示阻抗座標面中之圓的中心與測量點之距離的一例。
第17圖係說明修正係數之算出方法的圖。
第18圖係顯示修正前之膜厚的曲線圖。
第19圖係顯示修正後之膜厚的曲線圖。
第20圖係顯示使用AI之第一研磨單元之控制的方塊圖。
第21圖係顯示使用AI之第一研磨單元之控制的方塊圖。
第22圖係顯示使用AI之第一研磨單元之控制的方塊圖。
以下參照圖式來說明本發明的實施型態。另外,在以下的各實施型態中,對於相同或相等的構件,有時賦予相同符號而省略重複的說明。此外,各實施型態所示的特徵,只要未相互矛盾,亦可應用於其他實施型態。
<基板處理裝置>
第1圖係基板處理裝置的俯視圖。如第1圖所示,基板處理裝置1000係具備:裝載(load)/卸載(unload)單元200;研磨單元300;及洗淨單元400。此外,基板處理裝置1000係具備用以控制裝載/卸載單元200;研磨單元300、及洗淨單元400之各種動作的控制單元500。以下針對裝載/卸載單元200、研磨單元300、洗淨單元400進行說明。
<裝載/卸載單元>
裝載/卸載單元200係為用以將進行研磨及洗淨等處理之前的基板交遞至研磨單元300,並且從洗淨單元400接收進行研磨及洗淨等處理後之基板的單元。裝載/卸載單元200係具備複數台(在本實施型態中係4台)前裝載(front load)部220。前裝載部220中,分別搭載有用以貯存(stock)基板的承載器(cassette)222。
裝載/卸載單元200係具備:軌道(rail)230,係設置於框體100的內部;及複數個(在本實施型態中係2台)搬運機械人(robot)240,係配置於軌道230上。搬運機械人240係將進行研磨及洗淨等處理之前的基板,從承載器222予以取出並交遞至研磨單元300。此外,搬運機械人240係從洗淨單元400接收進行研磨及洗淨等處理之後的基板並送回承載器222。
<研磨單元>
研磨單元300係用以進行基板之研磨的單元。研磨單元300係具備:第一研磨單元300A、第二研磨單元300B、第三研磨單元300C、及第四研磨單元300D。第一研磨單元300A、第二研磨單元300B、第三研磨單元 300C、及第四研磨單元300D,係彼此具有相同的構成。因此,以下僅就第一研磨單元300A進行說明。
第一研磨單元300A(研磨裝置)係具備:研磨平台320A、及頂環330A。研磨平台320A係藉由未圖示的驅動源被旋轉驅動。在研磨平台320A中,係貼附有研磨墊310A。頂環330A係保持基板而推壓於研磨墊310A。頂環330A係藉由未圖示的驅動源被旋轉驅動。基板係被頂環330A固持而被推壓於研磨墊310A,藉此進行研磨。
接著說明用以搬運基板的搬運機構。搬運機構係具備:起重機(lifter)370、第一線性輸送機(linear transporter)372、擺動輸送機(swing transporter)374、第二線性輸送機376、及暫置台378。
起重機370係從搬運機械人240接收基板。第一線性輸送機372係將從起重機370所接收的基板,在第一搬運位置TP1、第二搬運位置TP2、第三搬運位置TP3、及第四搬運位置TP4之間搬運。第一研磨單元300A及第二研磨單元300B係從第一線性輸送機372接收基板進行研磨。第一研磨單元300A及第二研磨單元300B係將研磨過的基板交遞至第一線性輸送機372。
擺動輸送機374係在第一線性輸送機372與第二線性輸送機376之間進行基板的交遞接收。第二線性輸送機376係將從擺動輸送機374所接收的基板,在第五搬運位置TP5、第六搬運位置TP6、及第七搬運位置TP7之間搬運。第三研磨單元300C及第四研磨單元300D,係從第二線性輸送機376接收基板進行研磨。第三研磨單元300C及第四研磨單 元300D,係將研磨後的基板交遞至第二線性輸送機376。由研磨單元300進行過研磨處理的基板,係藉由擺動輸送機374被置放於暫置台378。
<洗淨單元>
洗淨單元400係用以進行被研磨單元300進行過研磨處理之基板的洗淨處理及乾燥處理的單元。洗淨單元400係具備:第一洗淨室410;第一搬運室420;第二洗淨室430;第二搬運室440;及乾燥室450。
被置放於暫置台378的基板,係經由第一搬運室420而被搬運至第一洗淨室410或第二洗淨室430。基板係在第一洗淨室410或第二洗淨室430被洗淨處理。在第一洗淨室410或第二洗淨室430中被洗淨處理後的基板,係經由第二搬運室440而被搬運至乾燥室450。基板係在乾燥室450中被乾燥處理。被乾燥處理後的基板,係藉由搬運機械人240從乾燥室450取出並送回承載器222。
<第一研磨單元的詳細構成>
接著說明第一研磨單元300A的詳細內容。第2圖係第一研磨單元300A的立體圖。第一研磨單元300A係具備用以對研磨墊310A供給研磨液或修整(dressing)液的研磨液供給噴嘴340A。研磨液係例如為漿料(slurry)。修整液係例如為純水。此外,第一研磨單元300A係具備用以進行研磨墊310A之調節(conditioning)的修整機(dresser)350A。此外,第一研磨單元300A係具備用以將液體、或液體與氣體的混合流體,朝向研磨墊310A噴射的噴霧器(atomizer)360A。液體係例如為純水。氣體係例如為氮氣。
第一研磨單元300A係具有用以將研磨對象物(例如半導體晶圓等的基板、或形成於基板之表面的各種導電膜)102進行研磨的研磨部150。研磨部150係具備:研磨平台320A,係可將用以研磨研磨對象物102的研磨墊310A安裝於上面;第一電動馬達(motor)112,係旋轉驅動研磨平台320A;頂環330A,係可保持研磨對象物102;及第二電動馬達118,係旋轉驅動頂環330A。
此外,研磨部150係具備用以將包含研磨材之研磨料液供給至研磨墊310A之上面的研磨液供給噴嘴340A。第一研磨單元300A係具備將關於研磨部150之各種控制信號予以輸出的研磨裝置控制部140。
第一研磨單元300A係具備渦電流感測器210,該渦電流感測器210係配置在形成於研磨平台320A的孔,且伴隨著研磨平台320A的旋轉而沿著研磨面104檢測出研磨對象物102的膜厚。
第一研磨單元300A係當將研磨對象物102進行研磨時,將包含研磨顆粒的研磨漿料從研磨液供給噴嘴340A供給至研磨墊310A的上面,且藉由第一電動馬達112而旋轉驅動研磨平台320A。並且,第一研磨單元300A係在使頂環330A繞著與研磨平台320A之旋轉軸為偏心的旋轉軸旋轉的狀態下,將被頂環330A所保持的研磨對象物102推壓於研磨墊310A。藉此,研磨對象物102係被保持著研磨漿料的研磨墊310A所研磨,而被平坦化。
接收部232係經由旋轉接頭連接器(rotary joint connector)160、170而與渦電流感測器210連接。接收部232係接收從渦電流感測器 210所輸出的信號,且作為阻抗而輸出。後述的溫度感測器56,係經由旋轉接頭連接器160、170而與研磨裝置控制部140連接。
如第2圖所示,膜厚測量裝置231係對於從接收部232所輸出的阻抗進行預定的信號處理而輸出至終點檢測器241。
終點檢測器241係根據從膜厚測量裝置231所輸出的信號而監視研磨對象物102之膜厚的變化。膜厚測量裝置231與終點檢測器241係構成監控裝置。終點檢測器241係與進行關於第一研磨單元300A之各種控制的研磨裝置控制部140連接。終點檢測器241係當檢測出研磨對象物102的研磨終點時,將顯示其內容的信號輸出至研磨裝置控制部140。研磨裝置控制部140係當從終點檢測器241接收到顯示研磨終點的信號時,結束第一研磨單元300A所進行的研磨。研磨裝置控制部140係於研磨中根據膜厚而控制研磨對象物102的推壓力。
在本實施型態中,渦電流感測器210的輸出係包含阻抗成分。在使阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,對應阻抗成分之座標系上之點的至少一部分,係形成圓的至少一部分。監控裝置係求出座標系上之點與圓之中心的第一距離,且從阻抗成分求出膜厚,再使用所獲得的第一距離來修正所求出的膜厚。
在監控裝置要從阻抗成分求出膜厚時,必須事先求出從渦電流感測器210之輸出獲得的資料與膜厚的對應關係。在本實施型態中,係從渦電流感測器210的輸出求出角度α。角度α的定義及求出方式的詳細內容將於後陳述。
如後所述,從角度α所算出的1/tanα、與膜厚t,在膜厚較厚的時候形成比例。亦即,當設1/tanα=Ta時,具有膜厚t=A_th×Ta的關係。在此,A_th係比例係數。在膜厚之實際的測量中,可從渦電流感測器210的測量值獲得Ta。
因此,膜厚較厚時,只要在事前之渦電流感測器210的校準(calibration)中,求出膜厚t=A_th×Ta之渦電流感測器210的輸出與膜厚之對應關係中之比例係數A_th即可。若求出比例係數A_th,則在校準後的本測量中,當從渦電流感測器210的輸出求出角度α時,可算出膜厚。當膜厚較薄時,渦電流感測器210的輸出與膜厚的對應關係為非線形的關係。另外,渦電流感測器210的輸出,係可包含後述的阻抗(X、Y)、或上述的角度α、tanα、1/tanα、Ta等。
監控裝置係使用對應第一距離之預定之後述的修正係數而進行修正。監控裝置係對於在基板W之周邊部所獲得的膜厚進行修正。監控裝置係求出第二距離,亦即求出圓的半徑、或在基板W之周邊部以外之基板W的部分所獲得之關於阻抗成分之座標系上之點與圓之中心的距離。監控裝置係使用第一距離與第二距離,而算出修正係數,且對於在基板W之周邊部所獲得的膜厚進行修正。此等處理係在後述的膜厚算出部238中進行。
第4圖係顯示第一研磨單元300A所具備的渦電流感測器210。渦電流感測器中,從其感測器線圈觀看到導電膜側的阻抗會變化,而從該阻抗變化檢測出膜厚。渦電流感測器210係將感測器線圈配置在檢測對象之研磨對象物102的附近,該線圈連接有交流信號源124。在此,檢 測對象的研磨對象物102,係例如為形成於半導體晶圓W上之厚度為0至2μm左右的銅鍍覆膜(亦可為Au、Cr、W等金屬材料的蒸鍍膜)。感測器線圈係配置在相對於檢測對象的導電膜例如為0.5至5mm左右的附近。同步檢波電路126係檢測出包含從感測器線圈側觀看到之檢測對象之研磨對象物102的阻抗Z(其成分為X、Y)(詳細內容將於後陳述)。
在第5圖所示的等效電路中,交流信號源124的振盪頻率係固定,當研磨對象物102的膜厚變化時,從交流信號源124觀看到感測器線圈側的阻抗Z即變化。亦即,在第5圖所示的等效電路中,流動於研磨對象物102的渦電流I2,係依據研磨對象物102之等效的電阻R2及自感L2來決定。當膜厚變化時,渦電流I2即變化,經由與感測器線圈側的互感M,被視為是從交流信號源124側觀看到之阻抗Z的變化。在此,L1係感測器線圈的自感成分,R1係感測器線圈的電阻成分。
以下具體說明渦電流感測器。交流信號源124係使用1至50MHz左右之固定頻率的振盪器,例如水晶振盪器。並且,藉由由交流信號源124所供給的交流電壓,使電流I1流動於感測器線圈。由於電流流通於配置在研磨對象物102附近的線圈,使得其磁通量與研磨對象物102交鏈,從而在其間形成互感M,而使電流I2流動於研磨對象物102中。在此,R1係為包含感測器線圈之一次側的等效電阻,L1係同樣地為包含感測器線圈之一次側的自感。在研磨對象物102側,R2係為相當於渦電流損耗的等效電阻,L2係為該自感。從交流信號源124之端子128、130觀看到感測器線圈側的阻抗Z,係隨著形成於研磨對象物102中之渦電流損耗的大小而變化。
第6圖係顯示本實施型態之渦電流感測器中之感測器線圈的構成例。感測器線圈係將用以形成渦電流於導電膜的線圈、與用以檢測出導電膜之渦電流的線圈予以分離而成者,藉由捲繞於繞線筒(bobbin)311的三層線圈所構成。在此,中央的激磁線圈312係連接於交流信號源124的激磁線圈。此激磁線圈312係藉由從交流信號源124所供給之電壓所形成的磁場,而在配置於附近之半導體晶圓W上的研磨對象物102形成渦電流。在繞線筒311的上側(導電膜側),係配置有檢測線圈313,以檢測因為形成於導電膜之渦電流而產生的磁場。並且,在與激磁線圈312之與檢測線圈313的相反側,配置有平衡線圈(balance coil)314。
第7圖係顯示各線圈的連接例。檢測線圈313與平衡線圈314係如上所述構成反相的串聯電路,其兩端係連接於包含可變電阻316之電阻橋接電路317。線圈312係連接於交流信號源203,藉由產生交替磁通量,而於屬於配置於附近之導電膜的研磨對象物102形成渦電流。藉由調整可變電阻VR1、VR2的電阻值,由線圈313、314所構成之串聯電路的輸出電壓,當不存在導電膜時可調整成零。
第8圖係顯示從交流信號源203側觀看到感測器線圈202側之阻抗Z的測量電路例。在此第8圖所示之阻抗Z的測量電路中,可取出伴隨膜厚之變化所形成之阻抗平面座標值(X、Y)、(亦即電抗成分(X)、電阻成分(Y))、阻抗(Z=X+iY)、及相位輸出(θ=tan-1 R/X)。因此,藉由使用此等信號輸出,例如可藉由阻抗之各種成分的大小測量膜厚等,進行更多面向之處理之進行狀態的檢測。
綜上所述,對於配置在成膜有檢測對象之研磨對象物102之半導體晶圓W附近的感測器線圈供給交流信號的信號源203,係由水晶振盪器所構成之固定頻率的振盪器。交流信號源203係例如供給1至50MHz之固定頻率的電壓。由信號源203所形成的交流電壓,係經由帶通濾波器(band bus filter)302而供給至激磁線圈312。由感測器線圈之端子128、130所檢測出的信號,係經由高頻放大器303及相位移位電路304而輸入至由cos同步檢波電路305及sin同步檢波電路306所構成的同步檢波部。藉由同步檢波部取出檢測信號的cos成分(X成分)與sin成分(Y成分)。在此,從由信號源203所形成的振盪信號,藉由相位移位電路304,形成信號源203的同相成分(0°)與正交成分(90°)的兩個信號。此等信號係分別被導入於cos同步檢波電路305與sin同步檢波電路306,以進行上述的同步檢波。
經過同步檢波後的信號,係藉由低通濾波器(low pass filter)307、308,去除信號成分以上之無用的例如5KHz以上的高頻成分。經過同步檢波後的信號,係為屬於cos同步檢波輸出的X成分輸出、及屬於sin同步檢波輸出的Y成分輸出。此外,藉由向量演算電路309,從X成分輸出與Y成分輸出,獲得阻抗Z的大小(X2+Y2)1/2。此外,藉由向量演算電路(θ處理電路)310,同樣地從X成分輸出與Y成分輸出,獲得相位輸出(θ=tan-1Y/X)。在此,此等濾波器係為了去除感測器信號之雜訊成分所設,設定有對應各種濾波器的截止(cut off)頻率。
接著,藉由第9圖,來說明研磨對象物102與渦電流感測器210之間之距離不同時所獲得之阻抗所對應之阻抗平面座標系上之點(座標 值(X、Y)),係形成不同之圓的情形。不同之圓之各者的中心,係位於相同的直線(第二直線)上。相對於不同的圓,有共通的一個點。茲將此稱為第一點。茲針對此進行說明。
在第5圖所示的感測器側電路與導電膜側電路中,係分別成立下式。
R1I1+L1dI1/dt+MdI2/dt=E (1)
R2I2+L2dI2/dt+MdI1/dt=0 (2)
在此,M係互感,R1係感測器側電路的等效電阻,L1係感測器側電路的自感。R2係渦電流所感應之導電膜的等效電阻,L2係渦電流所流動之導電膜的自感。
在此,設In=Anejωt(正弦波),上述式(1)、(2)表示如下。
(R1+jωL1)I1+jωMI2=E (3)
(R2+jωL2)I2+jωMI1=0 (4)
從此等式(3)、(4),導出下一式(5)。
I1=E(R2+jωL2)/((R1+jωL1)(R2+jωL2)+ω 2M2}=E/{(R1+jωL1)+ω 2M2/(R2+jωL2)} (5)
因此,感測器側電路的阻抗Z,以下式(6)來表示。
Z=E/I1={R1+ω 2M2R2/(R2 2+ω 2L2 2)}+jω{L1-ω 2L2M2/(R2 2+ω 2L2 2)} (6)
在此,將Z的實部(阻抗成分的電阻成分)、虛部(阻抗成分的感應電抗成分)分別設為X、Y,上述式(6)將成為下式。
Z=X+jωY (7)
在此,若設RX=ω 2L2M2/(R2 2+ω 2L2 2),(7)式成為:X+jωY=[R1+R2Rx]+Jω[L1-L2Rx]。
因此,成為:X=R1+R2Rx Y=ω[L1-L2Rx]
將此針對R2、L2求解,則為:R2=ω 2(X-R1)M2/((ωL1-Y)2+(X-R1)2) (8)
L2=ω(ωL1-Y)M2/((ωL1-Y)2+(X-R1)2) (9)
第9圖所示之記號k為結合係數,下一個關係式(10)成立。
M=k(L1L2)1/2 (10)
將此應用於(9)時,則為(X-R1)2+(Y-ω(1-(k2/2))L1)2=(ωL1k2/2)2 (11)
此係圓的方程式,顯示X、Y形成圓,亦即,顯示阻抗Z形成圓。
渦電流感測器210係將包含渦電流感測器210之線圈之電氣電路之阻抗的電阻成分X及感應電抗成分Y予以輸出。此等電阻成分X及感應電抗成分Y係為反映出膜厚的膜厚信號,其隨著基板上之導電膜的厚度而變化。
第9圖係顯示將隨著導電膜之厚度變化的X、Y繪製於XY座標系上所描繪之曲線的圖。點T∞的座標,係膜厚為無限大時,亦即R2為0時的X、Y。點T0的座標,若為可忽視基板的導電率,則為膜厚為0時,亦即R2為無限大時的X、Y。根據X、Y的值所定位的點Tn,係隨著導電膜的厚度減少,一面描繪圓弧狀的軌跡一面朝向點T0行進。
第10圖係顯示使第9圖的曲線圖形繞逆時針旋轉90度,再使之平行移動而成之曲線圖的圖。如第10圖所示,隨著膜厚減少,根據X、Y的值所定位的點Tn係一面描繪圓弧狀的軌跡一面朝向點T0行進。結合係數k係為藉由一方的線圈所產生的磁場,傳遞至另一方之線圈的比例。k=1為最大,當線圈間的距離拉開時,亦即研磨墊310A變厚時,k將會變小。
渦電流感測器210之線圈與基板W之間的距離G,係隨著介設在此等之間之研磨墊310A的厚度而變化。結果,如第11圖所示,座標X、Y的圓弧軌跡,會隨著相當於所使用之研磨墊310A之厚度的距離G(G1至G3)而變化。從第11圖可得知,若不管線圈與研磨對象物102之間的距離G,將相同膜厚之座標X、Y以直線(以下稱等膜厚直線)連結時,該等膜厚直線會在交點P交叉。點P為第一點T0。此等膜厚直線rn(n:1、2、3、…)在第11圖中,相對於通過第一點之圓的直徑H,會以對應導電膜(研磨對象物102)之厚度的角度α(阻抗角度)傾斜。通過第一點之圓的直徑,不管距離G為何皆相同。
角度α係為連結膜厚為零時之阻抗所對應之第一點(T0)、膜厚非為零時之阻抗所對應之第二點(Tn)的第一直線、及通過第一點(T0)之圓的直徑所構成之角的角度。當導電膜的厚度相同時,不管研磨墊310A之厚度的差異,角度α皆相同。關於此點,茲藉由第12圖來說明。所謂預定的直線,亦為連結第一點(T0)與點T∞的直線。
茲使用第12圖所示的角度α來表示點Tn的座標(X、Y)。自第12圖可得知: X=R1+ω(k2/2)L1sinα (12)
Y=ω(1-(k2/2)L1-ω(k2/2)L1coaα (13)
從前述的(8)、(9)可得知:R2/L2=ω(X-R1)/(ωL1-Y)
將(12)、(13)代入此式,得出R2/L2=ωsin2α/(1+cos2α)=ωtanα (14)
R2/L2係僅依存於膜厚,而且未依存於結合係數k,因此不會依存於渦電流感測器210與研磨對象物102之間的距離,亦即不會依存於研磨墊310A的厚度。R2/L2係僅依存於膜厚,因此,角度α亦僅依存於膜厚。膜厚算出部238係算出角度α的正切,且利用(14)的關係,而從正切求出膜厚。
茲針對角度α的算出方法及膜厚的算出方法進一步具體說明。第2圖的膜厚測量裝置231,在為了測量研磨對象物的膜厚,藉由渦電流感測器210檢測出可形成於研磨對象物102的渦電流作為阻抗時,從接收部232輸入阻抗。從所輸入的阻抗求出膜厚。膜厚測量裝置231係具備角度算出部234、及膜厚算出部238。
角度算出部234係例如最初從包含所測量之第一點T0之圓上之三個阻抗成分的測量點(對應不同膜厚的三點),求出圓的中心。角度算出部234係從第一點T0與圓的中心,求出通過圓之中心的直徑12。角度算出部234係算出連結膜厚為零時之阻抗所對應的第一點T0、與膜厚非為零時之阻抗所對應之第二點Tn的第一直線10、及通過第一點T0之圓的直徑12所構成之角的角度α。膜厚算出部238係算出角度α的正切,且從正切求出膜厚。
接著說明從正切求出膜厚的膜厚算出部238。在本實施型態中,係利用正切的倒數與膜厚的關係。首先說明正切的倒數與膜厚的關係。
當膜厚較厚時,在正切、與金屬膜之電阻值之間,係有已述之(14)的關係,亦即R2/L2=ωtanα (14)
在此,R2係金屬膜的電阻值。因此,R2與tanα係成比例。再者,當膜厚較厚時,R2係與膜厚具有以下的關係。
R2=ρL/tW (15)
在此,ρ:電阻率 L、W:金屬膜的長度及寬度 t:膜厚
從(14)、(15),可得知膜厚t與角度α為以下的關係。
R2
Figure 108123414-A0202-12-0022-25
(1/t)
Figure 108123414-A0202-12-0022-26
ωtanα
亦即,1/tanα∞t
由此,1/tanα與膜厚t成比例。若事先求出已述的比例係數,可從1/tanα求出膜厚t。當膜厚較薄時,(15)不成立,因此1/tanα與膜厚t的關係以非線形的關係來表示。
接著說明膜厚算出部238對於以上述方式所獲得之膜厚t所進行之使用對應第一距離之預定之後述的修正係數所作的修正。首先,藉由第13圖、第14圖來說明需要修正的理由。在基板的中心部等,已知相較於基板的邊緣部等可更精確度良好地測量出膜厚。第9圖至第12圖所示之圓,係藉由在基板W之中心部等之可精確度良好地測量出膜厚之基板W上的場所藉由測量所獲得者。在可精確度良好地測量出膜厚之基板W上的部位,不管膜厚的大小,對應阻抗的點均在圓上。
另一方面,在基板的邊緣部等中,無法精確度良好地測量膜厚。第13圖係顯示此情形。本圖係為顯示在基板W之中心部與邊緣部的測量值、與圓軌跡之關係的曲線圖。在本圖中,測量點60係藉由在基板W之中心部等之測量所獲得者,其位於圓62上。另一方面,在被橢圓72圍起之範圍內的測量點64,係為藉由在基板之邊緣部等的測量所獲得者,其未位於圓62上。軌跡66與軌跡74,係從針對不同的基板W藉由在基板的邊緣部等的測量所獲得的測量值而作成的軌跡。
茲藉由第14圖來說明在基板W之邊緣部等的測量點64未位於圓62上的理由。第14圖係顯示基板W之邊緣部70中之渦電流感測器210所產生的磁通量68。如本圖所示,渦電流感測器210在基板W之邊緣部70等的附近,渦電流感測器210所產生之磁通量68的一部分存在於基板W的外部。由此可得知,此係因為渦電流感測器210所產生之磁通量68的整體未被有效地利用,亦即未被完整地利用。結果,渦電流感測器210的輸出降低。
在本實施型態中,係以下列方式進行修正。利用圓62之中心76至測量點64的距離78(第一距離),作為在基板W之邊緣部等之測量點64相較於測量點60有多少程度之不完整的指標。第15圖係顯示距離78。第15圖係為第13圖中圖示出第一距離者。設距離78、與阻抗之圓62之半徑80(第二距離)的比率設為不完整的程度。從不完整的程度,來算出修正係數。
亦可將其與第17圖所示之距離88的比率設為不完整的程度,其中,該距離88係從圓62之中心76至磁通量68之整體被有效利用 (也就是可認為是完整之值)的測量點60為止之距離。距離88、與阻抗之圓62的半徑80理論上係一致。然而,如第15圖所示,存在若干測量上的誤差。
第16圖係顯示距離78的測量例。本圖係針對藉由渦電流感測器210所獲得之阻抗平面座標系上的測量點求出距離78,而將距離78予以圖示而成者。本圖的橫軸,係顯示測量點與基板W之中心90(參照第2圖)的距離(mm)。茲將基板W的半徑設為L。±L係基板W的端部。縱軸係顯示距離78。縱軸為無單位,亦即無次元量。縱軸的高度82,係顯示阻抗之圓62的半徑80。從本圖可得知,距離78在基板W的邊緣部70中與半徑80不同,在邊緣部70所獲得的測量點64,未位於圓62上。
接著藉由第17圖來說明從不完整的程度算出修正量的方法。此方法係可為各種方法。例如,如已述之方式從測量點64求出本圖所的角度α,而從角度α之正切的倒數求出膜厚t。將半徑80除以距離78所得出的比,乘上所獲得的膜厚t。作為另一方法,係使用基板W且依據距離78而事先測量出應對於所獲得之膜厚t進行乘法運算等的修正係數。修正係數係可以函數、表單等的形式保存於記憶部。
再以第17圖來說明再另一方法。邊緣部70的測量值,主要考慮在基板W之中心附近的膜厚的輸出、與完全未存在基板W之導電膜時之輸出混合地輸出。茲假定渦電流感測器210的輸出位於連結在基板W之中心附近之測量點60與點T0而成的直線84上。如第17圖所示,實際上測量點64雖未位於直線84上,但假定位於直線84上。並且,以直線84 與中心76的距離86,亦即距離78中之最小的距離86為基準來考慮修正量。
具體的計算程序如下。以下的計算程序係例如由膜厚算出部238執行。點T0的座標、屬於圓弧中心之中心76的座標、圓弧的半徑,係在算出角度α而轉換為膜厚的過程中獲得。茲將未受到邊緣部70之影響之在基板W之中心附近之測量點60之在阻抗座標面之座標的平均,設為平均輸出AveragePt進行計算。算出平均輸出AveragePt的方法,係例如將複數個測量點60之在阻抗座標面的複數個X座標、與複數個Y座標分別予以平均。要求出平均輸出AveragePt時,係由使用者來指定要將從基板W的中心至何處設為中心範圍。例如,以在從基板W之中心至-100mm至100mm之範圍的圓區域所獲得的測量點60為對象。
接著,從屬於點T0之座標、圓弧之中心76的座標、測量點60之座標之平均的平均輸出AveragePt,計算最小的距離86。具體而言,係從點T0的座標、與平均輸出AveragePt的座標求出直線84的方程式。接著,求出圓弧之中心76與直線84的距離。
接著,在邊緣部70之各個測量點64中使用圓62之距離中心76的距離78,而計算以下的修正係數Coeff(修正量)。
Corff=1-A×(R_idle-R)/R_idle-R_idle_min)
在此,A:調整係數
R_idle:半徑80
R:距離78
R_idle_min:距離86。
此修正係數Coeff存在於非為邊緣部70之阻抗圓弧上的點,例如在測量點60中,會成為R=R_idle,因此修正係數成為1。因此,修正係數Coeff僅會對於邊緣部70附近以外的測量點64產生影響,因此可視為是適當的修正。
修正係數Coeff係對於修正前的膜厚t進行乘法運算。亦即,藉由下式進行修正。
Adjusted Thickness(r)=Thickness(r)×Coeff (16)
在此,r:測量點60、64之距離基板W之中心76的距離
Adjusted Thickness(r):作為距離r之函數之修正後的膜厚
Thickness(r):作為距離r之函數之修正前的膜厚t
Coeff(r):修正係數Corff。
在此式中,係將Adjusted Thickness(r)、Thickness(r)設為距離r的函數。
設為距離r之函數的理由,如第16圖所示,係取決於距離r之故。
另外,適用考慮了距離86之修正之基板W上的範圍,係可限定為邊緣部70,亦可為基板W的整體。
第18圖、第19圖係顯示應用(16)式進行修正後的結果。第18圖係顯示修正前之膜厚t((16)式的Thickness(r))。第19圖係顯示藉由(16)式修正第18圖所示之膜厚t之後之膜厚((16)式的Adjusted Thickness(r))。第18圖、第19圖的橫軸,係顯示測量點60、64之距離基板W之中心90(參照第2圖)的距離(mm)。茲設基板W的半徑為L。±L為 基板W的端部。縱軸係顯示膜厚t(nm)。從第19圖可得知,在基板W之邊緣部70中藉由修正,膜厚變大,(16)式的修正適當。
另外,亦可於研磨結束後藉由設置於第一研磨單元300A或基板處理裝置1000之外部的膜厚測量機來測量基板W的膜厚,且將關於所獲得之邊緣部70之膜厚的資訊輸入至膜厚算出部238等,而進行調整係數A的逐次最佳化。此外,亦可藉由雲端(cloud)/霧端(frog)上的計算機(computer)來實施該逐次最佳化。再者,亦可將該資料應用於使用了相同種類之晶圓的其他感測器(其他半導體製造裝置用處理腔室(chamber)內的其他感測器)。以膜厚測量機而言,若可測量膜厚t,可使用公知之任意方式的測量機。例如為電磁式膜厚儀、渦電流式膜厚儀、光學式膜厚儀、電氣阻抗式膜厚儀、渦電流相位式膜厚儀等。亦可藉由以電子顯微鏡觀察剖面來測量膜厚t。
將研磨對象之基板進行研磨的研磨方法,係以下列方式實施。將研磨對象的基板W推壓於研磨面104而將基板W上的導電膜進行研磨。為了測量導電膜的膜厚,乃藉由渦電流感測器210而形成渦電流於導電膜,並且檢測出所形成的渦電流。渦電流感測器210係將所檢測出的渦電流作為阻抗成分予以輸出。膜厚測量裝置231係輸入阻抗成分,且從所輸入的阻抗成分而監視導電膜的膜厚。在使阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,阻抗成分所對應之座標系上之點的至少一部分,係形成圓62的至少一部分。膜厚測量裝置231係求出座標系上之測量點64與圓62之中心76的第一距離78,且從阻抗成分求出膜厚t,及使用所獲得的第一距離78來修正所獲得的膜厚t。
接著說明第一研磨單元300A具有可直接或間接測量研磨中之基板W之溫度的溫度感測器56、與可使用所測量的溫度來修正所求出之膜厚的終點檢測器241(溫度修正部)的實施例。第一研磨單元300A係包含用以監控第一研磨單元300A內之溫度的溫度感測器56。在第2圖中,配置成監控研磨墊310A或研磨墊310A上之基板W的溫度。溫度感測器56為了測量基板W的溫度,亦可配置於頂環330A的內部。溫度感測器56為了監控研磨墊310A或基板W之表面的溫度,亦可與研磨墊310A或基板W的表面直接接觸。溫度感測器56亦可為非接觸感測器(例如紅外線感測器)。溫度係於膜厚測量時使用。
利用研磨墊310A的溫度而修正膜厚計算的理由如下所述。以基板W上的金屬膜而言,當基板W的溫度上升時,電性傳導率降低。因此,在渦電流感測器210的正式測量時,一般而言,基板W的溫度比經過校準時的溫度上升,而被誤測量為較實際的膜厚為薄。
藉由使用研磨墊310A的溫度來修正誤測量,可算出正確的膜厚。終點檢測器241係藉由下列公式進行修正。
Thickness_adj=Thickness×(1+k×[(T-Tcal)×α+T])/(1+k×Tcal) (A1)
在此,Thickness_adj:修正後的膜厚t
Thickness:修正前的膜厚
T:研磨中的平台溫度
Tcal:將渦電流感測器210經過校準時之研磨墊310A的溫度
k:電阻率的溫度係數(金屬固有值)
α:取決於第一研磨單元300A的係數
例如,當在基體(bulk)狀態(亦即具有某程度之較大體積的狀態)之Cu的情形下,k=0.0044,當經過校準時的溫度為20℃時,於金屬膜為50℃的環境下,當測量膜厚時,膜厚成為1/1.121倍。亦即,上升10℃會被測量出約薄4%。
依據上述之(A1)式所作膜厚計算之修正的依據如下。
當將金屬之溫度為T時的膜厚設為Thickness1時,Thickness1係以下列公式來表現。
Thickness1:ρ(T)/Rs
在此,ρ(T)係金屬的溫度為T時之金屬的導電率,ρ(T)=ρo(1+kT) (A2)
ρo係經過校準時之溫度下之金屬的導電率
Rs係薄膜(sheet)電阻。
當不進行溫度修正時,第一研磨單元300A係具有校準時之溫度下的近似式,因此膜厚計算係將以ρ(Tcal)進行。在此,Tcal係經過校準時之金屬的溫度。
然而,當研磨中基板W的溫度成為T時,應使用ρ(T)而算出膜厚。因此,可藉由下列公式來修正。
Adjusted Thickness=Calculated Thickness×ρ(T)÷ρ (Tcal)
在此,Adjusted Thickness:使用ρ(T)所修正的膜厚
Calculated Thickness:以近似式所獲得之修正前的膜厚
茲將此使用(A2)式,以T來表示,則Adjusted Thickness=Calculated Thickness×(1+k×T)/(1+k×Tcal)
再者,研磨墊310A的溫度,基本上溫度較基板W的溫度更低。為了修正為基板W的溫度,於Tcal時,以修正係數成為1之方式,追加取決於系統的係數α。結果,成為已述之(A1)式。
Thickness_adj=Thickness×(1+k×[(T-Tcal)×α+T])/(1+k×Tcal) (A1)
接著使用第20圖至第22圖來說明上述之為了處理第一研磨單元300A中之資訊之構成的一例。然而,在第20圖至第22圖中,第一研磨單元300A係被簡單地描繪,省略了具體的構成(頂環330A、研磨墊310A等)。
第20圖係為顯示具備具有資料處理部94之控制部140A之第一研磨單元300A之一例的圖。在資料處理部94中,亦可搭載AI(Arrificial Intelligence,人工智慧)功能。資料處理部94係可為某種的硬體,例如可為記憶於記憶媒體的程式。在第20圖中,資料處理部94雖被描繪成與控制部140A之其他要素獨立的要素,但資料處理部94亦可例如被記憶於控制部140A所具備的儲存裝置(storage device)(未圖示)而藉由控制部140A的處理器(未圖示)來控制。資料處理部94係例如進行研磨輪廓(profile)的產生及取得、控制參數的更新、及以實際主力信號作為學習資料的反饋(feedback)等,需要圖像處理及大規模之計算之處理之方式構成。第20圖的構成,係具有可使第一研磨單元300A獨立地(stand alone)動作的優點。
第21圖係顯示經由路由器(router)96而連接於雲端(或霧端)97之第一研磨單元300A之一例的圖。路由器96係用以連接控制部140B與雲端97的裝置。路由器96亦可稱為「具有閘道(gateway)功能的 裝置」。雲端97係指透過網際網路(internet)等計算機網路而提供的計算機資源。另外,當路由器96與雲端97間的連接為區域網路(Local Area Network)時,雲端亦有被稱為霧端97的情形。例如,連接散佈於地球上的複數個工廠時,係可使用雲端97,當在某特定的工廠內建構網路時,係可使用霧端97。霧端97亦可更連接至外部的霧端或雲端。在第21圖中,係將控制部140與路由器96作有線連接,路由器96與雲端(或霧端)97作有線連接。然而,各連接亦可為無線連接。在雲端97中,係連接有複數個第一研磨單元300A(未圖示)。複數個第一研磨單元300A的各者,係經由路由器96而與雲端97連接。各第一研磨單元300A所獲得的資料(來自渦電流感測器210的膜厚資料、或其他任意資訊),係聚集於雲端97之中。此外,第21圖的雲端97係可具有AI功能,資料的處理係在雲端97中進行。然而,處理可局部地以控制部140B來進行。第21圖的構成,係具有可根據所聚集之大量的資料而控制第一研磨單元300A的優點。
第22圖係為顯示經由具有邊緣計算(edge computing)功能的路由器96A而連接於雲端(或霧端)97之第一研磨單元300A之一例的圖。第22圖的雲端97亦連接於複數個第一研磨單元300A(未圖示)。第22圖之複數個第一研磨單元300A的各者,係經由路由器96A而連接於雲端97。然而,路由器中的數個,亦可不具有邊緣計算功能(路由器中的數個亦可為第21圖的路由器96)。在路由器96A中,係設有控制部96B。然而,在第22圖中,僅代表性地在一個路由器96A圖示有控制部96B。再者,在路由器96A中,係可搭載有AI功能。控制部96B及路由器96A的AI功能,係可將從第一研磨單元300A之控制部140C所獲得的資料,在第一 研磨單元300A的附近進行處理。另外,在此所稱的附近,係指網路上之距離的用語,而非指物理上之距離的用語。然而,大多情形是網路上的距離愈近,物理上的距離就愈近。因此,若路由器96A中的演算速度與雲端97中的演算速度為相同程度,則路由器96A的處理,會較雲端97的處理更高速。即使兩者的演算速度有差異時,從控制部140C所傳送之資訊到達路由器96A的速度,也會比從控制部140C所傳送之資訊到達雲端97的速度更快。
第22圖的路由器96A,更具體而言路由器96A的控制部96B,係僅處理應處理之資料中之需要高速處理的資料。路由器96A的控制部96B,係將不需要高速處理的資料傳送至雲端97。第22圖的構成,係具有可兼具在第一研磨單元300A附近的高速處理、及根據所聚集之資料之控制的優點。
綜上,雖已說明了本發明的實施型態,但上述之發明的實施型態,係用以易於理解本發明者,非用以限定本發明。本發明在未脫離其旨趣下,可進行變更、改良,並且本發明當然包含其均等物。此外,在可解決上述之課題之至少一部分的範圍、或可達成效果之至少一部分的範圍內,亦可進行申請專利範圍及說明書所記載之各構成要素之任意的組合、或予以省略。
56‧‧‧溫度感測器
90‧‧‧中心
102‧‧‧研磨對象物
104‧‧‧研磨面
112‧‧‧第一電動馬達
118‧‧‧第二電動馬達
140‧‧‧控制部
150‧‧‧研磨部
160、170‧‧‧旋轉接頭連接器
210‧‧‧渦電流感測器
231‧‧‧膜厚測量裝置
232‧‧‧接收部
234‧‧‧角度算出部
238‧‧‧膜厚算出部
241‧‧‧終點檢測器
300A‧‧‧第一研磨單元
310A‧‧‧研磨墊
320A‧‧‧研磨平台
330A‧‧‧頂環
340A‧‧‧研磨液供給噴嘴

Claims (6)

  1. 一種研磨裝置,係具備:研磨平台,係具有研磨面,可進行旋轉;頂環,係將研磨對象的基板推壓於前述研磨面,而可將前述基板上的導電膜予以研磨;渦電流感測器,係設置於前述研磨平台;及監控裝置,係可根據前述渦電流感測器的輸出而監視前述導電膜的膜厚;前述渦電流感測器的輸出係包含阻抗成分;在使前述阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,對應於前述阻抗成分之前述座標系上之點的至少一部分,係形成圓的至少一部分;前述監控裝置係求出前述座標系上的點與前述圓的中心的第一距離,且從前述阻抗成分求出膜厚,並且可使用所獲得的前述第一距離來修正所獲得的前述膜厚。
  2. 如申請專利範圍第1項所述之研磨裝置,其中,前述監控裝置係使用對應前述第一距離之預定的修正係數而進行前述修正。
  3. 如申請專利範圍第1項或第2項所述之研磨裝置,其中,前述監控裝置係對於在前述基板之周邊部所獲得的前述膜厚進行前述修正。
  4. 如申請專利範圍第1項至第3項中任一項所述之研磨裝置,其中,前述監控裝置係求出相當於前述圓之半徑的第二距離,且使用前述第一距離與前述第二距離而進行前述修正。
  5. 如申請專利範圍第1項至第4項中任一項所述之研磨裝置,其中,前述研磨裝置係具有:溫度感測器,係可直接或間接測量研磨中之前述基板的溫度;及溫度修正部,係可使用所測量的前述溫度,而進一步修正經修正的前述膜厚。
  6. 一種研磨方法,係將研磨對象的基板進行研磨,該研磨方法係具有下列步驟:將研磨對象的基板推壓於研磨面而將前述基板上的導電膜進行研磨的步驟;為了測量前述導電膜的膜厚,在前述導電膜形成渦電流,並且檢測出所形成之前述渦電流的步驟;將前述所檢測出的渦電流作為阻抗成分而予以輸出的步驟;及被輸入前述阻抗成分,且從所輸入的前述阻抗成分監視前述導電膜之膜厚的監控步驟;在使前述阻抗成分的電阻成分與電抗成分分別對應於具有兩個正交座標軸之座標系的各軸時,對應前述阻抗成分之前述座標系上之點的至少一部分,係形成圓的至少一部分;前述監控步驟係具有:求出前述座標系上之點與前述圓之中心的第一距離,且從前述阻抗成分求出膜厚,及使用所獲得的第一距離來修正所獲得的前述膜厚的步驟。
TW108123414A 2018-07-13 2019-07-03 研磨裝置及研磨方法 TWI788583B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133606A JP7084811B2 (ja) 2018-07-13 2018-07-13 研磨装置および研磨方法
JP2018-133606 2018-07-13

Publications (2)

Publication Number Publication Date
TW202006816A true TW202006816A (zh) 2020-02-01
TWI788583B TWI788583B (zh) 2023-01-01

Family

ID=69139013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123414A TWI788583B (zh) 2018-07-13 2019-07-03 研磨裝置及研磨方法

Country Status (6)

Country Link
US (1) US20200016720A1 (zh)
JP (1) JP7084811B2 (zh)
KR (1) KR20200007670A (zh)
CN (1) CN110712118B (zh)
SG (1) SG10201906330YA (zh)
TW (1) TWI788583B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390945B2 (ja) 2020-03-19 2023-12-04 株式会社荏原製作所 研磨装置、情報処理システム及びプログラム
KR20240042494A (ko) * 2021-08-10 2024-04-02 도쿄엘렉트론가부시키가이샤 기판 두께 측정 장치, 기판 처리 시스템 및 기판 두께 측정 방법
JP2023148801A (ja) * 2022-03-30 2023-10-13 株式会社東京精密 研磨終点検出装置及びcmp装置
KR102581184B1 (ko) * 2023-01-26 2023-09-21 주식회사 민테크 임피던스 추정 방법 및 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4451111B2 (ja) 2003-10-20 2010-04-14 株式会社荏原製作所 渦電流センサ
EP1758711B1 (en) * 2004-06-21 2013-08-07 Ebara Corporation Polishing apparatus and polishing method
US20070205112A1 (en) * 2004-08-27 2007-09-06 Masako Kodera Polishing apparatus and polishing method
JP5094320B2 (ja) * 2007-10-11 2012-12-12 株式会社荏原製作所 研磨監視方法、研磨装置、およびモニタリング装置
JP5080933B2 (ja) * 2007-10-18 2012-11-21 株式会社荏原製作所 研磨監視方法および研磨装置
US20130065493A1 (en) * 2011-08-09 2013-03-14 Taro Takahashi Polishing monitoring method, polishing end point detection method, and polishing apparatus
JP5894833B2 (ja) * 2012-03-30 2016-03-30 株式会社荏原製作所 渦電流センサ並びに研磨方法および装置
JP6030041B2 (ja) * 2013-11-01 2016-11-24 株式会社荏原製作所 研磨装置および研磨方法
US9636797B2 (en) 2014-02-12 2017-05-02 Applied Materials, Inc. Adjusting eddy current measurements
JP6795337B2 (ja) * 2016-06-29 2020-12-02 株式会社荏原製作所 膜厚信号処理装置、研磨装置、膜厚信号処理方法、及び、研磨方法
JP6842851B2 (ja) * 2016-07-13 2021-03-17 株式会社荏原製作所 膜厚測定装置、研磨装置、膜厚測定方法、及び、研磨方法
JP2018083267A (ja) * 2016-11-25 2018-05-31 株式会社荏原製作所 研磨装置及び研磨方法
KR102538861B1 (ko) * 2017-12-26 2023-06-01 가부시키가이샤 에바라 세이사꾸쇼 자성 소자 및 그것을 사용한 와전류식 센서
JP7153490B2 (ja) * 2018-07-13 2022-10-14 株式会社荏原製作所 研磨装置およびキャリブレーション方法

Also Published As

Publication number Publication date
JP2020011315A (ja) 2020-01-23
CN110712118B (zh) 2023-05-09
JP7084811B2 (ja) 2022-06-15
TWI788583B (zh) 2023-01-01
CN110712118A (zh) 2020-01-21
KR20200007670A (ko) 2020-01-22
US20200016720A1 (en) 2020-01-16
SG10201906330YA (en) 2020-02-27

Similar Documents

Publication Publication Date Title
TWI788583B (zh) 研磨裝置及研磨方法
US11806828B2 (en) Polishing apparatus and calibration method
CN108789154B (zh) 涡电流传感器的校准方法和研磨装置控制部
US9573245B2 (en) Polishing method
CN101413780B (zh) 抛光监视方法和抛光设备
JP4558014B2 (ja) 渦電流センサおよび該渦電流センサを用いた膜厚測定方法
US20150262893A1 (en) Method of correcting film thickness measurement value, film thickness corrector and eddy current sensor
US20150125971A1 (en) Polishing apparatus and polishing method
US10138548B2 (en) Film thickness measuring device, polishing apparatus, film thickness measuring method and polishing method
US10625390B2 (en) Polishing apparatus and polishing method
US20150221562A1 (en) Polishing method and polishing apparatus
CN114473843B (zh) 一种金属膜厚测量方法和化学机械抛光设备