TW201947748A - Boss-shaped avalanche photodetector - Google Patents

Boss-shaped avalanche photodetector Download PDF

Info

Publication number
TW201947748A
TW201947748A TW107115246A TW107115246A TW201947748A TW 201947748 A TW201947748 A TW 201947748A TW 107115246 A TW107115246 A TW 107115246A TW 107115246 A TW107115246 A TW 107115246A TW 201947748 A TW201947748 A TW 201947748A
Authority
TW
Taiwan
Prior art keywords
layer
type
electric field
inalas
undoped
Prior art date
Application number
TW107115246A
Other languages
Chinese (zh)
Other versions
TWI664718B (en
Inventor
許晉瑋
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW107115246A priority Critical patent/TWI664718B/en
Application granted granted Critical
Publication of TWI664718B publication Critical patent/TWI664718B/en
Publication of TW201947748A publication Critical patent/TW201947748A/en

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

An avalanche photodetector is provided. The photodetector is a novel avalanche photodiode of indium aluminum arsenide (InAlAs) and is boss-shaped. An epitaxial layer is used, where the cathode electrode is located at a lower side with the avalanche layer at bottom. The strongest electric field of the avalanche layer is coated at the bottom layer to avoid surface from breakdown. The present invention mainly thickens the i-layer. Only one light-absorbing layer is used. A DBR layer is added below the N-type ohmic contact layer. At least five pairs of InGaAsP/InP or InAlGaAs/InAlAs are used for fabrication. The second groove-graded layer is etched to form the boss-shaped photodetector. Through the single-boss-shaped structure, the avalanche layer has a high electric field in the middle while the electric field at edge is low. Limitation to the electric field of the avalanche layer is achieved. At breakdown, all of the layers have far lower electric fields except the avalanche layer has a higher electric field. Thus, the present invention changes secondary holes into secondary electrons through a p-type doping process of the light-absorbing layer. Because the electrons run faster, the carriers also run faster. The junction capacitance is reduced with the surface area increased owing to the thickened depletion layer. Hence, fast response speed is obtained while sensitivity is effectively improved.

Description

凸台狀累增光偵測器元件Boss accumulating light detector element

本發明係有關於一種凸台狀累增光偵測器元件,尤指涉及一種凸台狀累增崩潰光二極體,特別係指增厚i-本質層,僅使用一層光吸收層(p型摻雜),並於N型歐姆接觸層下方加入DBR反射層,且於結構上蝕刻出一凸台形狀,透過此單一凸台結構即可使累增層中間的電場高,而其邊緣電場低,以達到累增層電場侷限之效果,且除了累增層會碰到崩潰使電場特別高之外,所有層的電場都會遠低於崩潰(far below break down)者。The present invention relates to a convex-shaped accumulative photodetector element, in particular to a convex-shaped accumulatively collapsed photodiode, and particularly to a thickened i-essential layer using only one light-absorbing layer (p-type doped) Miscellaneous), and a DBR reflective layer is added under the N-type ohmic contact layer, and a boss shape is etched on the structure. Through this single boss structure, the electric field in the middle of the accumulation layer can be high, and the fringe electric field is low. In order to achieve the effect of the electric field limitation of the accumulating layer, and except that the accumulating layer will crash and make the electric field particularly high, the electric field of all layers will be far lower than the one that breaks down (far below break down).

為滿足更大虛擬系統與巨量資料(bit data)之物聯網(the internet of things, IOT)需求,傳統銅線早已無法擔當傳輸重任(≥~100m),勢必只能寄望傳輸頻寬仍深不見底之光纖;在考量不同傳輸距離之市場規模、成本與可預期發展之技術等,400GbE乙太網路專案小組之目標將制訂出四種不同距離目標之傳輸介面,分別為100 m、500 m、2 km與10 km,其中100 m之400 Gbps幾乎已確定續用100GbE乙太網路中之每通道25 Gbps之垂直共振腔面射型雷射(vertical cavity surface emitting laser, VCSEL @ 850 nm)之直接調變訊號於多模光纖(multimode fiber, MMF)中傳輸,只是得將雷射與光纖數量增加為四倍來達到400 Gbps之目標。而500 m以上則將使用1310 nm之光源在單模光纖(single-mode fiber, SMF)中傳輸;在400GbE乙太網路專案小組目前的考量方案中,可能的方案包含每單一光源之訊號速度在50 Gbps或100 Gbps,再以八個或四個通道(多波長於單一光纖或單一波長於多條光纖)來達到400 Gbps之傳輸量;然而,當乙太網路中單一光源速度來到> 25 Gbps時,考量到高頻寬之光電元件(包含發射模組中之電光調變與接收模組中之光電轉換等)之輸出光功率通常較小(大約1 mW;-2至+2 dBm),若還要使用波長劃分多工(Wavelength Division Multiplexing, WDM)技術,則其被動元件內部之介入損耗將會使得功率預算(power budget)變成限制系統最大傳輸容量之關鍵。如文獻一(M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond,” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 5, pp. 984-990, March, 2015.)所載關於系統中介入損耗之成因中可知,在系統之接收端約需要-13 dBm 之敏感度。一般p-i-n之光電二極體(photodiode)所組成之接收器(receiver)在25 Gbit/sec頻寬操作下約只有-10 dBm以上之敏感度。 第5圖為文獻二(E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.)提出以平面砷化銦鋁(InAlAs)為累增層之累增崩潰光二極體橫截面結構。如該圖所示高電場區域(High-Field Region)3,其雖有鋅擴散區域將電場侷限,但無凸台(mesa)結構,使得在邊緣部分電場侷限較差。很容易超過臨限的崩潰電場(>550 kV/cm)。當累增層(Multiplication layer, M-layer)縮薄時為了達到所需要的操作增益,邊緣會有崩潰之問題。 第6圖則為目前NTT Electronic(即文獻一)在最近兩年所研發出來之25與50 Gbit/sec之崩潰光電二極體橫截面結構,其結構(from Top to Bottom)係由一N-型接觸層(N-contact layer)40、一邊緣場緩衝層(edge-field buffer layer)41、一N-型充電層(N-charge layer)42、一砷化銦鋁(InAlAs)累增層(avalanche layer)43、一P-型充電層44、一無摻雜砷化銦鎵(InGaAs)吸收層45、一P-型砷化銦鎵吸收層46、一P-型接觸層47、一半絕緣InP基板48、以及一抗反射層49所組成。如該圖所示,為了達到好的電場侷限,此結構相當特別的將砷化銦鋁累增層43與N-型接觸層40放到了接近元件表面(倒置結構),如此將會把砷化銦鋁累增層43電場大部份侷限在N-型接觸層40下方,然而為了降低表面崩潰之機率,多餘之邊緣場緩衝層41與N-型充電層42是需要的,惟如此可能會對元件之速度造成影響。而且此倒置結構(p-side down)之結構也需要使用較寬能隙之P-型InP基合金(P-type InP based alloy),如此將會造成歐姆接觸製作困難而且使整個元件之電阻變大。除此之外,此結構也會犧牲在P-型砷化銦鎵吸收層46之電場侷限,使得元件之寄生電容有可能變大,同時也因為吸收層中較強之邊緣場(fringe field)而增加元件封裝之困難度(如文獻三:F. Nakajima, M. Nada, and T. Yoshimatsu “High-Speed Avalanche Photodiode and High-Sensitivity Receiver Optical Sub-Assembly for 100-Gb/s Ethernet,” to be published in IEEE/OSA Journal of Lightwave Technology, vol. 33, 2015.)。因此,該文獻二為了侷限電場而將累增層做在外面使其曝露在空氣中,此舉將造成可靠度問題。 由文獻一中展示之元件分別在25 Gbit/sec與50 Gbit/sec操作下之靈敏度量測結果,可以清楚看到其25與50 Gbit/sec之靈敏度約在-15.5 dBm與-11 dBm。分別與pin光偵測器系列(pin PD based)之25與50 GHz光接收模組相比之下其增加之響應度約在~4 dB與~1.5 dB左右。由此結果可知,隨著資料率(data rate)之增加此崩潰光電二極體結構能增強之靈敏度將會隨之變小。這極有可能因為是隨著需要操作頻寬之增大,累增層需要變薄,惟此使得暗電流急遽地上升而導致靈敏度劣化。 有鑑於此,本案申請人先前曾申請中華民國專利證書號I595678之光偵測元件,係使用雙平台(double mesa)結構而達成累增層電場侷限之效果;惟考慮到電洞速度遠慢於電子速度,導致電洞會容易累積在本質區,形成電場遮蔽效應,造成內部電場變小,所以載子排出速度變慢,進而影響到輸出功率,導致元件速度變得很慢。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。In order to meet the needs of the Internet of Things (IOT) of larger virtual systems and huge amounts of bit data, traditional copper wires have long been unable to fulfill the heavy task of transmission (≥ ~ 100m), and they can only hope that the transmission bandwidth will still be The bottom-end optical fiber; considering the market size, cost, and technology that can be expected to develop at different transmission distances, the 400GbE Ethernet task force will work out four different distance target transmission interfaces, each 100 m , 500 m, 2 km, and 10 km, of which 400 Gbps at 100 m has almost been determined to continue to use a vertical cavity surface emitting laser (VCSEL @ 25 Gbps per channel in a 100GbE Ethernet network) 850 nm) direct modulation signal is transmitted in multimode fiber (MMF), but the number of lasers and fibers has to be quadrupled to achieve the goal of 400 Gbps. Above 500 m, a 1310 nm light source will be used for transmission in single-mode fiber (SMF). In the current consideration of the 400GbE Ethernet project team, the possible solution includes the signal speed of each single light source. At 50 Gbps or 100 Gbps, eight or four channels (multi-wavelength on a single fiber or single wavelength on multiple fibers) are used to reach 400 Gbps; however, when the speed of a single light source in Ethernet comes > 25 Gbps, the output optical power of the high-bandwidth optoelectronic components (including the electro-optic modulation in the transmitting module and the photoelectric conversion in the receiving module) is usually small (about 1 mW; -2 to +2 dBm) If Wavelength Division Multiplexing (WDM) technology is also used, the insertion loss inside its passive components will make the power budget become the key to limit the maximum transmission capacity of the system. As document one (M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, "Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb / s Systems and Beyond," IEEE / OSA Journal of Lightwave Technology, vol. 33, no. 5, pp. 984-990, March, 2015.) It is known from the cause of the insertion loss in the system that a sensitivity of about -13 dBm is required at the receiving end of the system. Generally, a receiver consisting of a photodiode of p-i-n has a sensitivity of about -10 dBm or more under a 25 Gbit / sec bandwidth operation. Figure 5 is document two (E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, "Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes, "IEEE / OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.) proposed the accumulation of collapsed photodiodes with planar indium aluminum arsenide (InAlAs) as the accumulation layer Body cross-section structure. As shown in the figure, although the high-field region 3 has a zinc diffusion region to confine the electric field, it does not have a mesa structure, which makes the electric field confinement at the edge part worse. It is easy to exceed the threshold of the collapsed electric field (> 550 kV / cm). When the multiplication layer (M-layer) is thinned, in order to achieve the required operating gain, the edge will crash. Figure 6 shows the cross-sectional structure of the collapsed photodiodes of 25 and 50 Gbit / sec developed by NTT Electronic (ie Document 1) in the past two years. Its structure (from Top to Bottom) consists of an N- N-contact layer 40, an edge-field buffer layer 41, an N-charge layer 42, an indium aluminum arsenide (InAlAs) accumulation layer (Avalanche layer) 43, a P-type charging layer 44, an undoped indium gallium arsenide (InGaAs) absorbing layer 45, a P-type indium gallium arsenide absorbing layer 46, a P-type contact layer 47, half It is composed of an insulating InP substrate 48 and an anti-reflection layer 49. As shown in the figure, in order to achieve a good electric field limitation, this structure is quite special. The indium aluminum arsenide accumulation layer 43 and the N-type contact layer 40 are placed close to the surface of the element (inverted structure). The electric field of the indium-aluminum accumulation layer 43 is mostly limited below the N-type contact layer 40. However, in order to reduce the probability of surface collapse, an extra fringe field buffer layer 41 and an N-type charging layer 42 are needed, but this may be the case. Affects the speed of the component. In addition, the structure of this p-side down structure also needs to use a P-type InP based alloy with a wider energy gap. This will cause difficulties in making ohmic contacts and change the resistance of the entire component. Big. In addition, this structure will sacrifice the electric field limitation in the P-type indium gallium arsenide absorbing layer 46, which may make the parasitic capacitance of the device larger, and also because of the stronger fringe field in the absorbing layer. And increase the difficulty of component packaging (such as reference 3: F. Nakajima, M. Nada, and T. Yoshimatsu “High-Speed Avalanche Photodiode and High-Sensitivity Receiver Optical Sub-Assembly for 100-Gb / s Ethernet,” to be published in IEEE / OSA Journal of Lightwave Technology, vol. 33, 2015.). Therefore, in order to limit the electric field, the document 2 places the accumulating layer outside and exposes it to the air, which will cause reliability problems. From the sensitivity measurement results of the components shown in the literature under 25 Gbit / sec and 50 Gbit / sec operation, it can be clearly seen that the sensitivity of 25 and 50 Gbit / sec is about -15.5 dBm and -11 dBm. Compared with the 25 and 50 GHz optical receiver modules of the pin PD based series, the increased responsivity is about ~ 4 dB and ~ 1.5 dB. From this result, it can be known that as the data rate increases, the sensitivity of the collapsed photodiode structure can be reduced accordingly. This is most likely because the accumulating layer needs to be thinned as the required operating bandwidth increases, but this causes the dark current to rise sharply and cause sensitivity degradation. In view of this, the applicant of this case has previously applied for the light detection element of the Republic of China Patent Certificate No. I595678, which uses the double mesa structure to achieve the effect of the electric field limitation of the accumulating layer; but considering that the hole speed is much slower than The electron velocity causes the holes to easily accumulate in the essential region, forming an electric field shielding effect, which causes the internal electric field to become smaller, so the carrier discharge speed becomes slower, which in turn affects the output power, which causes the element speed to become very slow. Therefore, ordinary users cannot meet the needs of users in actual use.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種採取陰極電極在下之磊晶層結構,讓累增層電場最強之區域包覆在元件內部底層以避免表面擊穿,且使用單凸台結構而達成累增層電場侷限之效果,且除了累增層會碰到崩潰使電場特別高之外,所有層的電場都會遠低於崩潰(far below break down)之凸台狀累增光偵測器元件。 本發明之次要目的係在於,提供一種透過光吸收層的p型摻雜把二次電洞變成二次電子,利用電子跑的比較快之特性,所以可以讓載子的速度變得更快,可以用比較厚的空乏區以降低接面電容與增加元件面積,令其具備快的響應速度並有效提升靈敏度之凸台狀累增光偵測器元件。 本發明之另一目的係在於,提供一種增厚i-本質層,僅使用一層光吸收層,並於N型歐姆接觸層下方加入DBR反射層,此DBR反射層之材料可為磷砷化銦鎵/磷化銦(InGaAsP/InP)或砷化鋁銦鎵/砷化銦鋁(InAlGaAs/InAlAs),至少5對以上,可使元件效果變好之凸台狀累增光偵測器元件。 為達以上之目的,本發明係一種凸台狀累增光偵測器元件,係包括:一P型歐姆接觸層(Ohmic Contact Layer),係為p+ -型摻雜之第一半導體;一DBR反射層,係由數對InGaAsP/InP或InAlGaAs/InAlAs組成之第二半導體;一P型透光層(Window Layer),係為p+ -型摻雜之第三半導體,並夾置於該P型歐姆接觸層與該DBR反射層之間;一第一帶溝漸變層(Graded Bandgap Layer),係為p+ 型摻雜之第四半導體,並夾置於該P型透光層與該DBR反射層之間;一P型光吸收層(Absorption Layer),係為漸變p-型摻雜之第五半導體,並夾置於該第一帶溝漸變層與該DBR反射層之間;一第二帶溝漸變層,係為無摻雜之第六半導體,並夾置於該P型光吸收層與該DBR反射層之間;一遮蔽緩衝層(Field Buffer Layer),係為無摻雜之第七半導體,並夾置於該第二帶溝漸變層與該DBR反射層之間;一第一P型電場控制層(Field Control Layer),係為p-型摻雜之第八半導體,並夾置於該遮蔽緩衝層與該DBR反射層之間;一第二P型電場控制層,係為p-型摻雜之第九半導體,並夾置於該第二帶溝漸變層與該DBR反射層之間;一間隔層(Spacer Layer),係為無摻雜之第十半導體,並夾置於該第二P型電場控制層與該DBR反射層之間;一累增層(Multiplication Layer, M-Layer),係為無摻雜之第十一半導體,並夾置於該第一P型電場控制層與該DBR反射層之間;一N型電場控制層,係為無摻雜之第十二半導體,並夾置於該累增層與該DBR反射層之間;一i-本質層,係為無摻雜之第十三半導體,並夾置於該N型電場控制層與該DBR反射層之間;以及一N型歐姆接觸層,係為n+ -型摻雜之第十四半導體,並夾置於該i-本質層與該DBR反射層之間;該凸台狀累增光偵測器元件之結構(from Top to Bottom)係由上述P型歐姆接觸層、P型透光層、第一帶溝漸變層、P型光吸收層、第二帶溝漸變層、遮蔽緩衝層、第一P型電場控制層、第二P型電場控制層、間隔層、累增層、N型電場控制層、i-本質層、N型歐姆接觸層以及DBR反射層所組成,成為陰極(n-side(M-layer) down)電極在下之磊晶層結構,且在該第二P型電場控制層與該間隔層之間具有一平台結構,俾以該平台結構將電場侷限(confine)在元件中心。 於本發明上述實施例中,該磊晶層結構係成長於一半絕緣或導電之半導體基板上。 於本發明上述實施例中,該P型歐姆接觸層為p+ -型砷化銦鎵(InGaAs) 、該P型透光層為p+ -型磷化銦(InP)或砷化銦鋁(InAlAs)、該第一帶溝漸變層為p+ -型InGaAs、該P型光吸收層為漸變p-型摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InGaAs、該遮蔽緩衝層為無摻雜之InAlAs、該第一P型電場控制層為p-型之InAlAs、該累增層為無摻雜之InAlAs、該i-本質層為無摻雜之InP或InAlAs、以及該N型歐姆接觸層為n+ -型InP。 於本發明上述實施例中,該P型歐姆接觸層為p+ -型InGaAs、該P型透光層為p+ -型InP或InAlAs、該第一帶溝漸變層為p+ -型InAlAs、該P型光吸收層為漸變p-型摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InAlAs、該遮蔽緩衝層為無摻雜之InAlAs、該第一P型電場控制層為p-型之InAlAs、該累增層為無摻雜之InAlAs、該i-本質層為無摻雜之InP或InAlAs、以及該N型歐姆接觸層為n+ -型InP。 於本發明上述實施例中,該P型歐姆接觸層為p+ -型Inx Ga1-x As、及該P型光吸收層為漸變帶溝之Inx Ga1-x As,且x係為0.53。 於本發明上述實施例中,該遮蔽緩衝層為無摻雜之Inx Al1-x As、該第一P型電場控制層為p-型之Inx Al1-x As、及該累增層為無摻雜之Inx Al1-x As、且x係為0.52。 於本發明上述實施例中,該累增層亦可為無摻雜之Inx Al1-x As與Inx1Al1-x1As 之組合,且x係為0.52,x1係小於0.52之正數。 於本發明上述實施例中,該累增層之厚度係為176±20 nm。 於本發明上述實施例中,該DBR反射層至少包含5對以上。 於本發明上述實施例中,該凸台狀累增光偵測器元件亦可為省略該DBR反射層之態樣。The main purpose of the present invention is to overcome the above problems encountered in the conventional art and provide an epitaxial layer structure with a cathode electrode underneath, so that the region with the strongest electric field in the accumulating layer is coated on the inner bottom layer of the element to avoid surface breakdown. And using a single boss structure to achieve the effect of the electric field limitation of the accumulating layer, and except that the accumulating layer will crash and make the electric field particularly high, the electric field of all layers will be far lower than the boss that collapses (far below break down) Accumulating light detector element. A secondary object of the present invention is to provide a p-type doping through a light absorbing layer to turn a secondary hole into a secondary electron and utilize the relatively fast characteristic of electron running, so that the speed of the carrier can be made faster. You can use a relatively thick empty area to reduce the junction capacitance and increase the area of the component, so that it has a fast response speed and effectively increase the sensitivity of the bump-like accumulating light detector element. Another object of the present invention is to provide a thickened i-essential layer using only one light absorbing layer and adding a DBR reflective layer under the N-type ohmic contact layer. The material of the DBR reflective layer may be indium phosphorous arsenide At least 5 pairs of gallium / indium phosphide (InGaAsP / InP) or aluminum indium gallium / indium aluminum arsenide (InAlGaAs / InAlAs) can be used to improve the effect of the device. In order to achieve the above object, the present invention is a bump-shaped accumulative photodetector element, which includes: a P-type Ohmic Contact Layer, which is a p + -type doped first semiconductor; a DBR The reflective layer is a second semiconductor composed of several pairs of InGaAsP / InP or InAlGaAs / InAlAs; a P-type light-transmitting layer (Window layer) is a p + -type doped third semiconductor and is sandwiched between the P-type Between a type ohmic contact layer and the DBR reflective layer; a first graded bandgap layer, which is a p + type doped fourth semiconductor, is sandwiched between the P type light transmitting layer and the DBR Between the reflective layers; a P-type light absorption layer (Absorption Layer), which is a graded p-type doped fifth semiconductor, sandwiched between the first grooved graded layer and the DBR reflective layer; a first The two-band groove gradient layer is an undoped sixth semiconductor and is sandwiched between the P-type light absorption layer and the DBR reflection layer; a field buffer layer is an undoped layer A seventh semiconductor, sandwiched between the second grooved gradient layer and the DBR reflective layer; a first P-type electric field control layer ( Field Control Layer) is a p-type doped eighth semiconductor and is sandwiched between the shielding buffer layer and the DBR reflective layer; a second P-type electric field control layer is a p-type doped The ninth semiconductor is sandwiched between the second grooved gradient layer and the DBR reflective layer; a spacer layer is an undoped tenth semiconductor and sandwiched between the second P-type semiconductor Between the electric field control layer and the DBR reflective layer; a multiplication layer (M-Layer), which is an undoped eleventh semiconductor, is sandwiched between the first P-type electric field control layer and the DBR Between reflective layers; an N-type electric field control layer, which is an undoped twelfth semiconductor, sandwiched between the accumulation layer and the DBR reflective layer; an i-essential layer, which is undoped A thirteenth semiconductor is sandwiched between the N-type electric field control layer and the DBR reflective layer; and an N-type ohmic contact layer is an n + -type doped fourteenth semiconductor and sandwiched Between the i-essential layer and the DBR reflective layer; the structure (from Top to Bottom) of the convex-shaped accumulating light detector element is connected by the aforementioned P-type ohmic connection Layer, P-type light-transmitting layer, first grooved gradient layer, P-type light absorption layer, second grooved gradient layer, shielding buffer layer, first P-type electric field control layer, second P-type electric field control layer, and spacer layer , Accumulating layer, N-type electric field control layer, i-essential layer, N-type ohmic contact layer, and DBR reflective layer, forming the epitaxial layer structure of the cathode (n-side (M-layer) down) electrode, and There is a platform structure between the second P-type electric field control layer and the spacer layer, and the platform structure is used to confine the electric field at the center of the element. In the above embodiments of the present invention, the epitaxial layer structure is grown on a semi-insulating or conductive semiconductor substrate. In the above embodiments of the present invention, the P-type ohmic contact layer is p + -type indium gallium arsenide (InGaAs), and the P-type light transmitting layer is p + -type indium phosphide (InP) or indium aluminum arsenide ( InAlAs), the first grooved graded layer is p + -type InGaAs, the P-type light absorption layer is graded p-type doped InGaAs, the second grooved graded layer is undoped InGaAs, and the masking buffer The layer is undoped InAlAs, the first P-type electric field control layer is p-type InAlAs, the accumulation layer is undoped InAlAs, the i-essential layer is undoped InP or InAlAs, and the The N-type ohmic contact layer is n + -type InP. In the above embodiments of the present invention, the P-type ohmic contact layer is p + -type InGaAs, the P-type light-transmitting layer is p + -type InP or InAlAs, and the first grooved gradient layer is p + -type InAlAs, The P-type light absorbing layer is a graded p-type doped InGaAs, the second grooved graded layer is undoped InAlAs, the shielding buffer layer is undoped InAlAs, and the first P-type electric field control layer is The p-type InAlAs, the accumulation layer is undoped InAlAs, the i-essential layer is undoped InP or InAlAs, and the N-type ohmic contact layer is n + -type InP. In the above embodiment of the present invention, the P-type ohmic contact layer is p + -type In x Ga 1-x As, and the P-type light absorbing layer is In x Ga 1-x As with graded grooves, and x is Is 0.53. In the above embodiments of the present invention, the shielding buffer layer is undoped In x Al 1-x As, the first P-type electric field control layer is p-type In x Al 1-x As, and the accumulation The layer is undoped In x Al 1-x As, and x is 0.52. In the above embodiments of the present invention, the accumulation layer may also be a combination of undoped In x Al 1-x As and In x1Al1-x1As , and x is 0.52, and x1 is a positive number less than 0.52. In the above embodiment of the present invention, the thickness of the accumulation layer is 176 ± 20 nm. In the above embodiment of the present invention, the DBR reflective layer includes at least five pairs. In the above embodiment of the present invention, the convex-shaped accumulative light-increasing detector element may also be in a state where the DBR reflective layer is omitted.

請參閱『第1圖~第4圖』所示,係分別為本發明一較佳實施例之橫剖面示意圖、本發明模擬在崩潰操作之二維電場分佈示意圖、本發明模擬在崩潰操作之一維電場分佈示意圖、及本發明另一較佳實施例之橫剖面示意圖。如圖所示:本發明係ㄧ種凸台狀累增光偵測器元件,其結構(from Top to Bottom)係由一P型歐姆接觸層11、一P型透光層(Window Layer)12、一第一帶溝漸變層(Graded Bandgap Layer)13、一P型光吸收層(Absorption Layer)14、一第二帶溝漸變層15、一遮蔽緩衝層(Field Buffer Layer)16、一第一P型電場控制層(Field Control Layer)17、一第二P型電場控制層18、一間隔層(Spacer Layer)19、一累增層(Multiplication Layer, M-Layer)20、一N型電場控制層21、一i-本質層22、一N型歐姆接觸層23、以及一DBR反射層24所組成,成為陰極(n-side(M-layer) down)電極在下之磊晶層結構1,且在該第二P型電場控制層18與該間隔層19之間具有一凸台(mesa)結構,俾以該凸台結構將電場侷限(confine)在元件中心。 上述所提P型歐姆接觸層11係為p+ -型摻雜之砷化銦鎵(InGaAs),用以作為P型電極,且在該P型歐姆接觸層11上係可進一步包含一P型金屬導電層(圖中未示);其中該P型歐姆接觸層11之厚度係介於15~60 nm之間。 該P型透光層12係為p+ -型摻雜之磷化銦(InP)或砷化銦鋁(InAlAs),並夾置於該P型歐姆接觸層11與該DBR反射層24之間;其中該P型透光層12之厚度係介於150~250 nm之間。 該第一帶溝漸變層13係為多層漸變p+ -型摻雜之InGaAs或InAlAs,並夾置於該P型透光層12與該DBR反射層24之間;其中該第一帶溝漸變層13總厚度係介於15 nm~25 nm之間。 該P型光吸收層14係為漸變p-型摻雜之InGaAs,並夾置於該第一帶溝漸變層13與該DBR反射層24之間;其中該P型光吸收層14之厚度係減薄為3600 Å。 該第二帶溝漸變層15係為無摻雜之InGaAs或InAlAs,並夾置於該P型光吸收層14與該DBR反射層24之間;其中該第二帶溝漸變層15總厚度係介於10 nm~20 nm之間。 該遮蔽緩衝層16係為無摻雜之InAlAs,並夾置於該第二帶溝漸變層15與該DBR反射層24之間;其中該遮蔽緩衝層16之厚度係介於6.5~9.5 nm之間。 該第一P型電場控制層17係為p-型摻雜之InAlAs,並夾置於該遮蔽緩衝層16與該DBR反射層24之間;其中該第一P型電場控制層17之厚度係介於30~50 nm之間。 該第二P型電場控制層18係為p-型摻雜之InAlAs,並夾置於該第二帶溝漸變層15與該DBR反射層24之間;其中該第二P型電場控制層18之厚度係介於30~50 nm之間。 該間隔層19係為無摻雜之半導體,並夾置於該第二P型電場控制層18與該DBR反射層24之間;其中該間隔層19之厚度係介於130~190 nm之間。 該累增層20係為無摻雜之InAlAs,並夾置於該第一P型電場控制層17與該DBR反射層24之間;其中該累增層20之厚度係為176±20 nm。 該N型電場控制層21係為無摻雜之InAlAs,並夾置於該累增層20與該DBR反射層之間24。 該i-本質層22係為無摻雜之InP或InAlAs,並夾置於該N型電場控制層21與該DBR反射層24之間;其中該i-本質層22之厚度係增厚為8000 Å。 該N型歐姆接觸層23係為n+ -型摻雜之InP,並夾置於該i-本質層22與該DBR反射層24之間,用以作為N型電極,且在該N型歐姆接觸層23上係可進一步包含一N型金屬導電層(圖中未示);其中該N型歐姆接觸層23之厚度係介於800~1200 nm之間。 該DBR反射層24係由數對磷砷化銦鎵/磷化銦(InGaAsP/InP)或砷化鋁銦鎵/砷化銦鋁(InAlGaAs/InAlAs)組成,至少包含5對以上。 本發明磊晶層結構1係成長於一半絕緣或導電之半導體基板25上,該半導體基板25可由化合物半導體,如砷化鎵(GaAs)、銻化鎵(GaSb)、InP或氮化鎵(GaN)所形成,亦或可由四族元素半導體,如矽(Si)所形成。如是,藉由上述揭露之流程構成一全新之凸台狀累增光偵測器元件。 上述P型歐姆接觸層11為p+ -型Inx Ga1-x As、及該P型光吸收層14為漸變帶溝之Inx Ga1-x As,且x係為0.53。 上述遮蔽緩衝層16為無摻雜之Inx Al1-x As、該第一P型電場控制層17為p-型之Inx Al1-x As、及該累增層20為無摻雜之Inx Al1-x As(能階=1.45 eV)、且x係為0.52。其中,該累增層20亦可為無摻雜之Inx Al1-x As與Inx1Al1-x1As 之組合,且x係為0.52,x1係小於0.52之正數。 本發明凸台狀累增光偵測器元件所需求之磊晶層結構1成長方法無限制,可為任何習知之磊晶成長方法及其條件,較佳為使用分子束磊晶(Molecular Beam Epitaxy, MBE)、有機金屬化學氣相磊晶(Metalorganic Chemical Vapor Deposition, MOCVD)或氫化物氣相磊晶(Hydride Vapor Phase Epitaxy, HVPE)等磊晶成長方法形成於半導體基板25上。 本發明考量可靠度,採取陰極電極在下之磊晶層結構,讓累增層20電場最強之區域包覆在元件內部底層以避免表面擊穿(Surface breakdown),且與前述專利案(TW I595678)的第2圖相較,本發明將i-本質層22變厚,其它層往下移,將原本的第二光吸收層省略,第一光吸收層(即本發明在此所提的P型光吸收層14)略為減薄,厚度由3800 Å縮減為3600Å,使整體結構變短,再進一步於N型歐姆接觸層23下方加入DBR反射層24,此DBR反射層24之材料可為InGaAsP/InP或InAlGaAs/InAlAs,至少5對以上,可使元件效果變好。其優點在於:由於透過光吸收層的p型摻雜把二次電洞變成二次電子,利用電子跑的比較快之特性,所以可以讓載子的速度變得更快,可以用比較厚的空乏區(即增厚i-本質層)以降低接面電容與增加元件面積。 並且,由於累增層中心處之電場要很高,本發明係使用單凸台結構而達成累增層電場侷限之效果。如第2圖所示,此凸台結構可讓累增層之邊緣電場可以下壓到518 kv,而累增層之邊緣電場要壓下來,中間的電場要很高,而中間是在凸台結構裡面,有1096 kv,證明其電場之梯度很高。這是因為有透過第二帶溝漸變層蝕刻出一個凸台形狀所造成。 由第2圖可見,電場在x方向中間之地方侷限特別強,因為中間的侷限好,可讓邊緣的電場變小。 由第3圖可見,電場在y方向,電場的控制好,可讓這些層只有累增層這裡的電場特別高,i-本質層可以很平坦,遠低於崩潰(far below break down)。換言之,在y方向所有的層,除了累增層會碰到崩潰使電場特別高之外,其它層都不會碰到其崩潰電場,不會發生崩潰,意即,所有層的電場都會far below break down。 於另一實施例中,本發明凸台狀累增光偵測器元件可為省略該DBR反射層之態樣,如第4圖所示。此等採用陰極電極在下之磊晶層結構1a,在第二P型電場控制層18與間隔層19之間具有一凸台結構,俾以該凸台結構將電場侷限在元件中心。 由上述可知,本發明為新穎之InAlAs累增崩潰光二極體(Avalanche Photodiode, APD)結構,係採取陰極(累增層在底部)電極在下之磊晶層結構,讓累增層電場最強之區域包覆在元件內部底層以避免表面擊穿,本發明主要增厚i-本質層,僅使用一層光吸收層,並於N型歐姆接觸層下方加入DBR反射層,此DBR反射層之材料可為InGaAsP/InP或InAlGaAs/InAlAs,至少5對以上,且使用第二帶溝漸變層蝕刻出一凸台形狀,透過此單凸台結構即可使累增層中間的電場高 ,而其邊緣電場低,以達到累增層電場侷限之效果,且除了累增層會碰到崩潰使電場特別高之外,所有層的電場都會遠低於崩潰(far below break down)。藉此,使本發明可應用於高容量、遠距離傳輸乙太網路之高速(大於25 Gbit/sec)與高線性度累增崩潰檢光二極體之開發。 綜上所述,本發明係一種凸台狀累增光偵測器元件,可有效改善習用之種種缺點,透過光吸收層的p型參雜把二次電洞變成二次電子,利用電子跑的比較快之特性,所以可以讓載子的速度變得更快,可以用比較厚的空乏區以降低接面電容並增加元件面積,而能具備快的響應速度並有效提升靈敏度,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。Please refer to "Figures 1 to 4", which are schematic cross-sectional views of a preferred embodiment of the present invention, two-dimensional electric field distribution simulation of the crash simulation operation of the present invention, and one of the crash simulation operations of the present invention simulation. A schematic diagram of the one-dimensional electric field distribution and a schematic cross-sectional view of another preferred embodiment of the present invention. As shown in the figure: The present invention is a type of convex-shaped accumulating light detector element, and its structure (from Top to Bottom) is composed of a P-type ohmic contact layer 11 and a P-type light transmission layer (Window Layer) 12. A first Graded Bandgap Layer 13, a P-type Absorption Layer 14, a second Banded Gap Layer 15, a Field Buffer Layer 16, a first P Field control layer (field control layer) 17, a second P-type field control layer 18, a spacer layer (19), a multiplication layer (M-Layer) 20, an N-type electric field control layer 21. An i-essential layer 22, an N-type ohmic contact layer 23, and a DBR reflective layer 24 constitute the epitaxial layer structure 1 of the cathode (n-side (M-layer) down) electrode, and A mesa structure is provided between the second P-type electric field control layer 18 and the spacer layer 19, and the electric field is confined at the center of the device by the boss structure. The aforementioned P-type ohmic contact layer 11 is p + -type doped indium gallium arsenide (InGaAs), which is used as a P-type electrode, and the P-type ohmic contact layer 11 may further include a P-type A metal conductive layer (not shown); wherein the thickness of the P-type ohmic contact layer 11 is between 15 and 60 nm. The P-type light-transmitting layer 12 is p + -type doped indium phosphide (InP) or indium aluminum arsenide (InAlAs), and is sandwiched between the P-type ohmic contact layer 11 and the DBR reflective layer 24. ; Wherein the thickness of the P-type light-transmitting layer 12 is between 150 and 250 nm. The first grooved graded layer 13 is a multilayer graded p + -type doped InGaAs or InAlAs, and is sandwiched between the P-type light-transmitting layer 12 and the DBR reflective layer 24; The total thickness of layer 13 is between 15 nm and 25 nm. The P-type light absorption layer 14 is a graded p-type doped InGaAs, and is sandwiched between the first grooved graded layer 13 and the DBR reflection layer 24; wherein the thickness of the P-type light absorption layer 14 is The thinning is 3600 Å. The second grooved graded layer 15 is undoped InGaAs or InAlAs, and is sandwiched between the P-type light absorption layer 14 and the DBR reflective layer 24. The total thickness of the second grooved graded layer 15 is Between 10 nm and 20 nm. The shielding buffer layer 16 is undoped InAlAs, and is sandwiched between the second grooved gradient layer 15 and the DBR reflective layer 24. The thickness of the shielding buffer layer 16 is between 6.5 and 9.5 nm. between. The first P-type electric field control layer 17 is p-type doped InAlAs, and is sandwiched between the shielding buffer layer 16 and the DBR reflective layer 24. The thickness of the first P-type electric field control layer 17 is Between 30 and 50 nm. The second P-type electric field control layer 18 is p-type doped InAlAs and is sandwiched between the second grooved graded layer 15 and the DBR reflective layer 24. The second P-type electric field control layer 18 The thickness is between 30 and 50 nm. The spacer layer 19 is an undoped semiconductor and is sandwiched between the second P-type electric field control layer 18 and the DBR reflective layer 24. The thickness of the spacer layer 19 is between 130 and 190 nm. . The accumulating layer 20 is undoped InAlAs and is sandwiched between the first P-type electric field control layer 17 and the DBR reflective layer 24. The thickness of the accumulating layer 20 is 176 ± 20 nm. The N-type electric field control layer 21 is undoped InAlAs, and is sandwiched between the accumulation layer 20 and the DBR reflection layer 24. The i-essential layer 22 is undoped InP or InAlAs, and is sandwiched between the N-type electric field control layer 21 and the DBR reflective layer 24. The thickness of the i-essential layer 22 is 8000. Å. The N-type ohmic contact layer 23 is n + -type doped InP, and is sandwiched between the i-essential layer 22 and the DBR reflective layer 24 to serve as an N-type electrode. The contact layer 23 may further include an N-type metal conductive layer (not shown); wherein the thickness of the N-type ohmic contact layer 23 is between 800-1200 nm. The DBR reflective layer 24 is composed of several pairs of indium gallium arsenide / indium phosphide (InGaAsP / InP) or aluminum indium gallium arsenide / indium aluminum arsenide (InAlGaAs / InAlAs), and includes at least five pairs. The epitaxial layer structure 1 of the present invention is grown on a semi-insulating or conductive semiconductor substrate 25. The semiconductor substrate 25 can be made of a compound semiconductor, such as gallium arsenide (GaAs), gallium antimonide (GaSb), InP, or gallium nitride (GaN). ), Or it can be formed by a Group IV semiconductor such as silicon (Si). If so, a new boss-like accumulative light-increasing detector element is constituted by the above-disclosed process. The P-type ohmic contact layer 11 is a p + -type In x Ga 1-x As, and the P-type light absorption layer 14 is a graded band In x Ga 1-x As, and x is 0.53. The shielding buffer layer 16 is undoped In x Al 1-x As, the first P-type electric field control layer 17 is p-type In x Al 1-x As, and the accumulation layer 20 is undoped. Of In x Al 1-x As (energy level = 1.45 eV), and x is 0.52. The accumulation layer 20 may also be a combination of undoped In x Al 1-x As and In x1Al1-x1As , and x is 0.52, and x1 is a positive number less than 0.52. The epitaxial layer structure 1 required by the boss-like accumulative photodetector element of the present invention has no limitation on the growth method, and can be any conventional epitaxial growth method and conditions. It is preferred to use molecular beam epitaxy (Molecular Beam Epitaxy, MBE, Metalorganic Chemical Vapor Deposition (MOCVD), or Hydride Vapor Phase Epitaxy (HVPE) and other epitaxial growth methods are formed on the semiconductor substrate 25. Considering the reliability, the present invention adopts the epitaxial layer structure of the cathode electrode underneath, so that the region with the strongest electric field of the accumulating layer 20 is coated on the inner bottom layer of the element to avoid surface breakdown, and is in line with the aforementioned patent (TW I595678) Compared with the second figure, the present invention thickens the i-essential layer 22, moves the other layers down, and omits the original second light absorbing layer, and the first light absorbing layer (the P-type of the invention mentioned herein) The light absorbing layer 14) is slightly thinner, and the thickness is reduced from 3800 Å to 3600 Å, which shortens the overall structure. A DBR reflective layer 24 is further added below the N-type ohmic contact layer 23. The material of this DBR reflective layer 24 may be InGaAsP / InP or InAlGaAs / InAlAs, at least 5 pairs or more, can improve the effect of the device. The advantage is that since the p-type doping through the light absorption layer turns the secondary hole into a secondary electron, and uses the relatively fast electron running characteristic, the speed of the carrier can be made faster, and a thicker one can be used. The empty area (thicken the i-essential layer) to reduce the junction capacitance and increase the component area. In addition, since the electric field at the center of the accumulating layer is high, the present invention uses a single boss structure to achieve the effect of limiting the electric field of the accumulating layer. As shown in Figure 2, this boss structure allows the edge electric field of the accumulation layer to be pushed down to 518 kv, while the edge electric field of the accumulation layer is to be suppressed, the electric field in the middle is high, and the middle is in the boss. Inside the structure, there is 1096 kv, which proves that the gradient of its electric field is very high. This is due to the formation of a boss shape through the second grooved gradient layer. It can be seen from Figure 2 that the electric field has a particularly strong limitation in the middle of the x direction, because the limitation in the middle is good, which can make the electric field at the edge smaller. From Figure 3, it can be seen that the electric field is in the y direction and the electric field is well controlled, so that these layers are only accumulating layers. The electric field here is particularly high, and the i-essential layer can be very flat, far below break down. In other words, in all layers in the y direction, except for the accumulating layer, which will crash and make the electric field particularly high, other layers will not encounter its collapse electric field, and no collapse will occur, which means that the electric field of all layers will be far below break down. In another embodiment, the convex-shaped accumulating light detector element of the present invention may be in a state where the DBR reflective layer is omitted, as shown in FIG. 4. These adopt a cathode electrode under the epitaxial layer structure 1a, and have a boss structure between the second P-type electric field control layer 18 and the spacer layer 19, so that the electric field is limited to the center of the element by the boss structure. It can be known from the above that the present invention is a novel InAlAs accumulative collapse photodiode (APD) structure, which adopts an epitaxial layer structure with a cathode (accumulation layer at the bottom) and an electrode below, so that the electric field of the accumulation layer is the strongest. The inner layer of the element is covered to avoid surface breakdown. The present invention mainly thickens the i-essential layer, uses only one light absorption layer, and adds a DBR reflective layer under the N-type ohmic contact layer. The material of this DBR reflective layer can be InGaAsP / InP or InAlGaAs / InAlAs, at least 5 pairs, and a second grooved gradient layer is used to etch a boss shape. Through this single boss structure, the electric field in the middle of the accumulation layer can be high, and the electric field at the edge is low. In order to achieve the effect of the electric field limitation of the accumulating layer, and except that the accumulating layer will collide and make the electric field particularly high, the electric field of all layers will be far below break down. Therefore, the invention can be applied to the development of high-capacity, long-distance transmission Ethernet with high speed (greater than 25 Gbit / sec) and high linearity cumulative collapse detection photodiode. To sum up, the present invention is a convex-shaped accumulating light detector element, which can effectively improve various conventional defects. The p-type impurity of the light absorbing layer turns the secondary hole into a secondary electron. Faster characteristics, so that the speed of the carrier can be made faster. A thicker empty area can be used to reduce the junction capacitance and increase the component area. It can have a fast response speed and effectively improve the sensitivity, thereby enabling the present invention. The production can be more progressive, more practical, and more in line with the needs of users. It has indeed met the requirements for invention patent applications, and has filed patent applications according to law. However, the above are only the preferred embodiments of the present invention, and the scope of implementation of the present invention cannot be limited by this; therefore, any simple equivalent changes and modifications made in accordance with the scope of the patent application and the contents of the invention specification of the present invention , All should still fall within the scope of the invention patent.

(本發明部分)(Part of the invention)

1、1a‧‧‧磊晶層結構 1、1a‧‧‧Epitaxial layer structure

11‧‧‧P型歐姆接觸層 11‧‧‧P-type ohmic contact layer

12‧‧‧P型透光層 12‧‧‧P-type light-transmitting layer

13‧‧‧第一帶溝漸變層 13‧‧‧The first grooved gradient layer

14‧‧‧P型光吸收層 14‧‧‧P-type light absorption layer

15‧‧‧第二帶溝漸變層 15‧‧‧ The second grooved gradient layer

16‧‧‧遮蔽緩衝層 16‧‧‧ shielding buffer layer

17‧‧‧第一P型電場控制層 17‧‧‧The first P-type electric field control layer

18‧‧‧第二P型電場控制層 18‧‧‧Second P-type electric field control layer

19‧‧‧間隔層 19‧‧‧ spacer

20‧‧‧累增層 20‧‧‧accumulation layer

21‧‧‧N型電場控制層 21‧‧‧N-type electric field control layer

22‧‧‧i-本質層 22‧‧‧i-essential layer

23‧‧‧N型歐姆接觸層 23‧‧‧N-type ohmic contact layer

24‧‧‧DBR反射層 24‧‧‧ DBR reflective layer

25‧‧‧半導體基板 25‧‧‧Semiconductor substrate

(習用部分) (Conventional part)

3‧‧‧高電場區域 ‧‧‧High electric field area

40‧‧‧N-型接觸層 40‧‧‧N-type contact layer

41‧‧‧邊緣場緩衝層 41‧‧‧ fringe field buffer layer

42‧‧‧N-型充電層 42‧‧‧N-type charging layer

43‧‧‧砷化銦鋁累增層 43‧‧‧Accumulated Indium Aluminum Arsenide

44‧‧‧P-型充電層 44‧‧‧P-type charging layer

45‧‧‧無摻雜砷化銦鎵吸收層 45‧‧‧ undoped indium gallium arsenide absorbing layer

46‧‧‧P-型砷化銦鎵吸收層 46‧‧‧P-type indium gallium arsenide absorbing layer

47‧‧‧P-型接觸層 47‧‧‧P-type contact layer

48‧‧‧半絕緣InP基板 48‧‧‧Semi-Insulated InP Substrate

49‧‧‧抗反射層 49‧‧‧anti-reflective layer

第1圖,係本發明一較佳實施例之橫剖面示意圖。 第2圖,係本發明模擬在崩潰操作之二維電場分佈示意圖。 第3圖,係本發明模擬在崩潰操作之一維電場分佈示意圖。 第4圖,係本發明另一較佳實施例之橫剖面示意圖。 第5圖,係習用之InAlAs APD 結構剖面示意圖。 第6圖,係另一習用之InAlAs APD 結構剖面示意圖。FIG. 1 is a schematic cross-sectional view of a preferred embodiment of the present invention. FIG. 2 is a schematic diagram of a two-dimensional electric field distribution during a crash operation simulated by the present invention. FIG. 3 is a schematic diagram of one-dimensional electric field distribution during a crash operation according to the present invention. Figure 4 is a schematic cross-sectional view of another preferred embodiment of the present invention. Figure 5 is a schematic cross-sectional view of the conventional InAlAs APD structure. Figure 6 is a schematic cross-sectional view of another conventional InAlAs APD structure.

Claims (10)

一種凸台狀累增光偵測器元件,係包括: 一P型歐姆接觸層(Ohmic Contact Layer),係為p+ -型摻雜之第一半導體; 一DBR反射層,係由數對磷砷化銦鎵/磷化銦(InGaAsP/InP)或砷化鋁銦鎵/砷化銦鋁(InAlGaAs/InAlAs)組成之第二半導體; 一P型透光層(Window Layer),係為p+ -型摻雜之第三半導體,並夾置於該P型歐姆接觸層與該DBR反射層之間; 一第一帶溝漸變層(Graded Bandgap Layer),係為p+ 型摻雜之第四半導體,並夾置於該P型透光層與該DBR反射層之間; 一P型光吸收層(Absorption Layer),係為漸變p-型摻雜之第五半導體,並夾置於該第一帶溝漸變層與該DBR反射層之間; 一第二帶溝漸變層,係為無摻雜之第六半導體,並夾置於該P型光吸收層與該DBR反射層之間; 一遮蔽緩衝層(Field Buffer Layer),係為無摻雜之第七半導體,並夾置於該第二帶溝漸變層與該DBR反射層之間; 一第一P型電場控制層(Field Control Layer),係為p-型摻雜之第八半導體,並夾置於該遮蔽緩衝層與該DBR反射層之間; 一第二P型電場控制層,係為p-型摻雜之第九半導體,並夾置於該第二帶溝漸變層與該DBR反射層之間; 一間隔層(Spacer Layer),係為無摻雜之第十半導體,並夾置於該第二P型電場控制層與該DBR反射層之間; 一累增層(Multiplication Layer, M-Layer),係為無摻雜之第十一半導體,並夾置於該第一P型電場控制層與該DBR反射層之間; 一N型電場控制層,係為無摻雜之第十二半導體,並夾置於該累增層與該DBR反射層之間; 一i-本質層,係為無摻雜之第十三半導體,並夾置於該N型電場控制層與該DBR反射層之間;以及 一N型歐姆接觸層,係為n+ -型摻雜之第十四半導體,並夾置於該i-本質層與該DBR反射層之間; 該凸台狀累增光偵測器元件之結構(from Top to Bottom)係由上述P型歐姆接觸層、P型透光層、第一帶溝漸變層、P型光吸收層、第二帶溝漸變層、遮蔽緩衝層、第一P型電場控制層、第二P型電場控制層、間隔層、累增層、N型電場控制層、i-本質層、N型歐姆接觸層以及DBR反射層所組成,成為陰極(n-side(M-layer) down)電極在下之磊晶層結構,且在該第二P型電場控制層與該間隔層之間具有一凸台(mesa)結構,俾以該凸台結構將電場侷限(confine)在元件中心。A bump-shaped accumulating light detector element includes: a P-type Ohmic Contact Layer, which is a p + -type doped first semiconductor; a DBR reflective layer, which is composed of several pairs of phosphorus and arsenic A second semiconductor composed of InGaAs / InP or InAlGaAs / InAlAs; a P-type window layer, which is p + - Type doped third semiconductor, sandwiched between the P-type ohmic contact layer and the DBR reflective layer; a first Graded Bandgap Layer, which is a p + type doped fourth semiconductor And sandwiched between the P-type light-transmitting layer and the DBR reflective layer; a P-type light absorption layer (Absorption Layer), which is a graded p-type doped fifth semiconductor, and sandwiched between the first semiconductor A grooved graded layer and the DBR reflective layer; a second grooved graded layer, which is an undoped sixth semiconductor, sandwiched between the P-type light absorbing layer and the DBR reflecting layer; a shielding The field buffer layer is a non-doped seventh semiconductor and is sandwiched between the second grooved gradient layer and the DBR reflective layer. A first P-type electric field control layer (Field Control Layer), which is a p-type doped eighth semiconductor, sandwiched between the shielding buffer layer and the DBR reflective layer; a second P-type electric field control Layer, which is a p-type doped ninth semiconductor, and is sandwiched between the second grooved graded layer and the DBR reflective layer; a spacer layer, which is an undoped tenth semiconductor And sandwiched between the second P-type electric field control layer and the DBR reflective layer; a multiplication layer (M-Layer), which is an undoped eleventh semiconductor, sandwiched between A first P-type electric field control layer and the DBR reflective layer; an N-type electric field control layer, which is an undoped twelfth semiconductor, sandwiched between the accumulation layer and the DBR reflective layer; The i-essential layer is an undoped thirteenth semiconductor and is sandwiched between the N-type electric field control layer and the DBR reflective layer; and an N-type ohmic contact layer is n + -type doped The fourteenth semiconductor is sandwiched between the i-essential layer and the DBR reflective layer; the structure of the convex-shaped accumulating light detector element (from Top to Bottom) is composed of the aforementioned P-type ohmic contact layer, P-type light-transmitting layer, first grooved gradient layer, P-type light absorption layer, second grooved gradient layer, shielding buffer layer, and first P-type electric field control layer , The second P-type electric field control layer, the spacer layer, the accumulation layer, the N-type electric field control layer, the i-essential layer, the N-type ohmic contact layer, and the DBR reflective layer, and become a cathode (n-side (M-layer) down) The epitaxial layer structure of the electrode is below, and there is a mesa structure between the second P-type electric field control layer and the spacer layer, and the electric field is confined at the center of the element by the boss structure. . 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該磊晶層結構係成長於一半絕緣或導電之半導體基板上。According to the bump-shaped accumulative photodetector element described in item 1 of the scope of the patent application, the epitaxial layer structure is grown on a semi-insulating or conductive semiconductor substrate. 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該P型歐姆接觸層為p+ -型砷化銦鎵(InGaAs)、該P型透光層為p+ -型磷化銦(InP)或砷化銦鋁(InAlAs)、該第一帶溝漸變層為p+ -型InGaAs、該P型光吸收層為漸變p-型摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InGaAs、該遮蔽緩衝層為無摻雜之InAlAs、該第一P型電場控制層為p-型之InAlAs、該累增層為無摻雜之InAlAs、該i-本質層為無摻雜之InP或InAlAs、以及該N型歐姆接觸層為n+ -型InP。According to the convex-shaped accumulative photodetector element according to item 1 of the scope of patent application, wherein the P-type ohmic contact layer is p + -type indium gallium arsenide (InGaAs), and the P-type light-transmitting layer is p + -Type indium phosphide (InP) or indium aluminum arsenide (InAlAs), the first grooved graded layer is p + -type InGaAs, the p-type light absorption layer is graded p-type doped InGaAs, the second The grooved graded layer is undoped InGaAs, the shielding buffer layer is undoped InAlAs, the first P-type electric field control layer is p-type InAlAs, the accumulation layer is undoped InAlAs, the i -The intrinsic layer is undoped InP or InAlAs, and the N-type ohmic contact layer is n + -type InP. 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該P型歐姆接觸層為p+ -型InGaAs、該P型透光層為p+ -型InP或InAlAs、該第一帶溝漸變層為p+ -型InAlAs、該P型光吸收層為漸變p-型摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InAlAs、該遮蔽緩衝層為無摻雜之InAlAs、該第一P型電場控制層為p-型之InAlAs、該累增層為無摻雜之InAlAs、該i-本質層為無摻雜之InP或InAlAs、以及該N型歐姆接觸層為n+ -型InP。According to the convex-shaped accumulative photodetector element according to item 1 of the scope of patent application, wherein the P-type ohmic contact layer is p + -type InGaAs, and the P-type light-transmitting layer is p + -type InP or InAlAs, The first grooved graded layer is p + -type InAlAs, the P-type light absorption layer is graded p-type doped InGaAs, the second grooved graded layer is undoped InAlAs, and the shielding buffer layer is not Doped InAlAs, the first P-type electric field control layer is p-type InAlAs, the accumulation layer is undoped InAlAs, the i-essential layer is undoped InP or InAlAs, and the N-type ohm The contact layer is n + -type InP. 依申請專利範圍第3或4項所述之凸台狀累增光偵測器元件,其 中,該P型歐姆接觸層為p+ -型Inx Ga1-x As、及該P型光吸收層為漸變帶溝之Inx Ga1-x As,且x係為0.53。The mesa-shaped accumulative photodetector element according to item 3 or 4 of the scope of patent application, wherein the P-type ohmic contact layer is a p + -type In x Ga 1-x As and the P-type light absorption layer In x Ga 1-x As is a graded groove, and x is 0.53. 依申請專利範圍第3或4項所述之凸台狀累增光偵測器元件,其 中,該遮蔽緩衝層為無摻雜之Inx Al1-x As、該第一P型電場控制層為p-型之Inx Al1-x As、及該累增層為無摻雜之Inx Al1-x As、且x係為0.52。According to the convex-shaped accumulative photodetector element according to item 3 or 4 of the scope of patent application, wherein the shielding buffer layer is undoped In x Al 1-x As, and the first P-type electric field control layer is The p-type In x Al 1-x As and the accumulation layer are undoped In x Al 1-x As, and x is 0.52. 依申請專利範圍第6項所述之凸台狀累增光偵測器元件,其中, 該累增層亦可為無摻雜之Inx Al1-x As與Inx1Al1-x1As 之組合,且x係為0.52,x1係小於0.52之正數。According to the bump-shaped accumulative photodetector element according to item 6 of the scope of the patent application, the accumulating layer may also be a combination of undoped In x Al 1-x As and In x1Al1-x1As , and x Is 0.52, and x1 is a positive number less than 0.52. 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該累增層之厚度係為176±20 nm。According to the convex-shaped accumulative light-detecting element described in item 1 of the scope of patent application, the thickness of the accumulating layer is 176 ± 20 nm. 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該DBR反射層至少包含5對以上。According to the convex-shaped accumulative photodetector element according to item 1 of the scope of patent application, the DBR reflective layer includes at least five pairs. 依申請專利範圍第1項所述之凸台狀累增光偵測器元件,其中, 該凸台狀累增光偵測器元件亦可為省略該DBR反射層之態樣。According to the convex-shaped accumulative light-increasing detector element described in item 1 of the scope of the patent application, the convex-shaped accumulative light-emitting detector element may also be in a state where the DBR reflective layer is omitted.
TW107115246A 2018-05-04 2018-05-04 Boss-Shaped Avalanche Photodetector TWI664718B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107115246A TWI664718B (en) 2018-05-04 2018-05-04 Boss-Shaped Avalanche Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107115246A TWI664718B (en) 2018-05-04 2018-05-04 Boss-Shaped Avalanche Photodetector

Publications (2)

Publication Number Publication Date
TWI664718B TWI664718B (en) 2019-07-01
TW201947748A true TW201947748A (en) 2019-12-16

Family

ID=68049465

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115246A TWI664718B (en) 2018-05-04 2018-05-04 Boss-Shaped Avalanche Photodetector

Country Status (1)

Country Link
TW (1) TWI664718B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728694B (en) * 2020-02-12 2021-05-21 國立中央大學 Mixed-layer composite charging layer accumulatively increasing breakdown photodiode
CN111312835B (en) * 2020-02-19 2023-04-11 中国电子科技集团公司第四十四研究所 Single electron transmission avalanche photodiode structure and manufacturing method
TWI724886B (en) * 2020-05-05 2021-04-11 國立中央大學 Single photon detector with multiple accumulation layers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW373341B (en) * 1995-09-29 1999-11-01 Nat Science Council Separate absorption and multiplication avalanche photodiode
JP4220688B2 (en) * 2001-02-26 2009-02-04 日本オプネクスト株式会社 Avalanche photodiode
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
TWI595678B (en) * 2016-02-18 2017-08-11 Univ Nat Central Light detecting element

Also Published As

Publication number Publication date
TWI664718B (en) 2019-07-01

Similar Documents

Publication Publication Date Title
US9818893B2 (en) Microstructure enhanced absorption photosensitive devices
US6104047A (en) Avalanche photodiode with thin built-in depletion region
US20190371956A1 (en) Avalanche Photodetector with Single Mesa Shape
US6963089B2 (en) Avalanche photo-detector with high saturation power and high gain-bandwidth product
CN106098836B (en) Communication avalanche photodide and preparation method thereof
TWI595678B (en) Light detecting element
CN101552303B (en) Photodiode and method of fabrication
US7851782B2 (en) Photodetector including multiple waveguides
TWI664718B (en) Boss-Shaped Avalanche Photodetector
US9466751B1 (en) Avalanche photodiode having electric-field confinement by mesas
US20070249109A1 (en) Optical device and optical module
US20160240718A1 (en) Double-pass photodiode with embedded reflector
US9318639B2 (en) Gallium arsenide avalanche photodiode
JP4755341B2 (en) Highly doped p-type contact for high speed front illuminated photodiodes
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
TWI728694B (en) Mixed-layer composite charging layer accumulatively increasing breakdown photodiode
Bandyopadhyay et al. Photodetectors for optical fiber communications
Huang et al. Highly Reliable, Cost-effective and Temperature-stable Top-illuminated Avalanche Photodiode (APD) for 100G Inter-Datacenter ER4-Lite Applications.
TWI724886B (en) Single photon detector with multiple accumulation layers
US11056604B1 (en) Photodiode of avalanche breakdown having mixed composite charge layer
JP7471550B1 (en) Semiconductor photodetector, optical line terminal, multilevel intensity modulation transmitter/receiver, digital coherent receiver, optical fiber radio system, SPAD sensor system, and lidar device
CN115036789B (en) GaAs-based high-speed vertical cavity surface emitting laser based on type-II tunnel junction
JP7511793B1 (en) Semiconductor photodetector, optical line terminal, multilevel intensity modulation transmitter/receiver, digital coherent receiver, optical fiber radio system, SPAD sensor system, and lidar device
US20240274742A1 (en) Avalanche Photodiode with Cascaded Multiplication Layers for High Speed and Wide Dynamic Range Applications
TW202433769A (en) Front-side light-collecting cumulative avalanche diode with cascaded cumulative layers for high-speed and large dynamic range applications