TW201947240A - Method of compensating offsets for chips - Google Patents
Method of compensating offsets for chips Download PDFInfo
- Publication number
- TW201947240A TW201947240A TW107115899A TW107115899A TW201947240A TW 201947240 A TW201947240 A TW 201947240A TW 107115899 A TW107115899 A TW 107115899A TW 107115899 A TW107115899 A TW 107115899A TW 201947240 A TW201947240 A TW 201947240A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- wafers
- coordinate position
- carrier
- offset
- Prior art date
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本發明係關於一種偏移量的補償方法,尤指一種晶片偏移量補償方法。The present invention relates to a method for compensating an offset, and more particularly to a method for compensating an offset of a wafer.
在半導體封裝製程的切割晶圓步驟中,晶圓經切割後會形成複數晶片;接著,將複數晶片依據預設的座標位置重新排列並黏貼於一載板上(下稱貼片),準備下一道高溫測試步驟。In the step of dicing the wafer in the semiconductor packaging process, a plurality of wafers are formed after the wafer is diced; then, the plurality of wafers are rearranged and adhered to a carrier board (hereinafter referred to as a patch) according to a preset coordinate position, and the preparation is performed. A high temperature test step.
當載板連同其上的複數晶片送入一高溫測試環境後,即可對各晶片進行高溫特性測試時,由於複數晶片與載板之間有一黏膠層,該黏膠層具有受熱軟化特性,因而造成複數晶片的位置偏移。進一步觀察晶片位置偏移量及偏移方向均不固定,也無規則性且發散,沒有整體的規律可以依循來進行偏移補償。After the carrier board and the plurality of wafers on the carrier board are sent to a high-temperature test environment, the high-temperature characteristic test can be performed on each wafer. Because there is an adhesive layer between the plurality of wafers and the carrier board, the adhesive layer has thermal softening characteristics. As a result, the positions of the plurality of wafers are shifted. It is further observed that the position deviation amount and direction of the wafer are not fixed, and there is no regularity and divergence. There is no overall rule to perform offset compensation in accordance with.
在高溫環境下,高溫測試用探針依據貼片的預設座標位置來接觸各晶片以進行高溫測試;然而,由於晶片位置偏移通常會探針無法正確地接觸晶片,而造成測試異常,故有必要進一步提出解決方案,以提升高溫測試正確率。In a high-temperature environment, the high-temperature test probe contacts various wafers for high-temperature testing according to the preset coordinate position of the patch; however, because the position of the wafer is usually offset, the probe cannot properly contact the wafer, resulting in abnormal testing. It is necessary to further propose solutions to improve the accuracy of high temperature testing.
有鑑於前揭晶片於高溫測試環境下因位置偏移造成測試異常的問題,本發明主要發明目的係提供一種晶片偏移量補償方法,以改善因晶片位置偏移使探針無法接觸測試所造成的測試異常現象。In view of the problem that the test wafer is abnormal due to position shift in a high-temperature test environment, the main object of the present invention is to provide a method for compensation of the chip shift amount to improve the result that the probe cannot contact the test due to the chip position shift. Test anomalies.
欲達上述目的所使用的主要技術手段係令該晶片偏移量補償方法包含有: (a) 準備一第一載板,並於常溫下依據第一座標位置進行第一次貼片,以將複數第一晶片分別黏貼在該第一載板上所對應的一第一座標位置; (b) 將該第一載板及其上該些第一晶片送入一高溫環境中; (c) 於高溫環境中量測該第一載板上各該第一晶片之一第二座標位置; (d) 計算各該第一晶片的第一座標位置及第二座標位置之間差異,以獲得各該第一晶片的偏移量及偏移方向; (e) 計算各該第一晶片的一第三座標位置;其中該第三座標位置係於各該第一晶片在該第一載板上的偏移方向的相反方向,並以其偏移量對其第一座標位置進行補償後的座標位置;以及 (f) 準備一第二載板,並於常溫下依據第三座標位置進行第二次貼片,以送入相同的高溫環境進行測試。The main technical means used to achieve the above purpose is to make the wafer offset compensation method include: (a) Prepare a first carrier board, and perform the first patch according to the first coordinate position at normal temperature, so that The plurality of first wafers are respectively adhered to a first coordinate position corresponding to the first carrier board; (b) the first carrier board and the first wafers thereon are placed in a high temperature environment; (c) in Measuring a second coordinate position of each of the first wafers on the first carrier plate in a high temperature environment; (d) calculating a difference between the first coordinate position and the second coordinate position of each first wafer to obtain each of the Offset and direction of the first wafer; (e) Calculate a third coordinate position of each first wafer; wherein the third coordinate position is based on the offset of each first wafer on the first carrier. The coordinate position after the first coordinate position is compensated by its offset in the opposite direction; and (f) preparing a second carrier board and performing a second paste at normal temperature based on the third coordinate position Tablets were tested in the same high temperature environment.
由上述說明可知,本發明主要於第一次貼片後送入高溫環境,以量測各該第一晶片在高溫環境的偏移量及偏移方向,再據以調整各該晶片的第一座標位置,作為第二次貼片調整各該晶片排列於第二載板上的座標位置;如此當完成第二次貼片進入高溫環境,各晶片的偏移量即被補償,以利高溫測試用探針正確接觸到各該晶片,減少因晶片偏移所造成的測試異常。It can be known from the above description that the present invention is mainly sent to a high-temperature environment after the first placement, to measure the offset amount and direction of each first wafer in the high-temperature environment, and then adjust the first of each wafer accordingly. The coordinate position is used as the second patch to adjust the coordinate position of each chip arranged on the second carrier; so when the second patch is completed and enters a high temperature environment, the offset of each wafer is compensated for high temperature testing Correctly contact each of the wafers with a probe to reduce test abnormalities caused by wafer offset.
本發明係針對半導體封裝製程中,晶片在高溫測試環境下會因位置偏移而造成測試異常而提出的偏移補償方法,以實施例配合圖式加以說明晶片偏移量補償方法的技術內容。The present invention is a method for offset compensation for a semiconductor packaging process in which a wafer is abnormal due to a positional shift in a high-temperature test environment. The technical content of the method for offset compensation of a wafer is described with reference to the embodiments and the drawings.
首先請參閱圖1A至圖1D所示,將一晶圓10於切割後所形成複數第一批晶片(下稱第一晶片11),將各該第一晶片11以真空吸取件50拾取後,再依據被拾取的該第一晶片11所對應的第一座標位置P11(X11、Y11),將該第一晶片11黏貼於該第一載板20上;如此重覆,直到被拾取的最後一第一晶片11依據其對應的第一座標位置P1n(X1n、Y1n)黏貼於該第一載板20上,即完成該第一載板20的第一次貼片;於本實施例,該第一載板20上預先設置有一第一黏賿層21,用以黏貼該些第一晶片11。First, referring to FIG. 1A to FIG. 1D, a plurality of first batches of wafers (hereinafter referred to as first wafers 11) are formed after slicing a wafer 10, and each of the first wafers 11 is picked up by a vacuum suction member 50. According to the first coordinate position P11 (X11, Y11) corresponding to the first wafer 11 being picked up, the first wafer 11 is stuck on the first carrier plate 20; and so on until the last one picked up The first chip 11 is adhered to the first carrier plate 20 according to its corresponding first coordinate position P1n (X1n, Y1n), that is, the first patch of the first carrier plate 20 is completed; in this embodiment, the first A carrier plate 20 is provided with a first adhesive layer 21 for adhering the first wafers 11.
請參閱圖2A及圖2B所示,即為該第一載板20經第一次貼片後的俯視圖,再以其中相鄰的四顆第一晶片11a、11b、11c、11d說明本發明晶片偏移量補償方法;其中該些第一晶片11a、11b、11c、11d在常溫下完成的第一次貼片所依據的第一座標位置分別為P1i 、P1j 、P1k 、P1q ,且任二相鄰第一晶片11a/11b、11c/11d、11a/11c、11b/11d之間保持一間隔D。Please refer to FIG. 2A and FIG. 2B, which are top views of the first carrier plate 20 after the first placement, and then four adjacent first wafers 11a, 11b, 11c, and 11d are used to describe the wafer of the present invention. Offset compensation method; the first coordinate positions on which the first wafers 11a, 11b, 11c, 11d completed at room temperature based on the first coordinates are P 1i , P 1j , P 1k , P 1q , And a gap D is maintained between any two adjacent first wafers 11a / 11b, 11c / 11d, 11a / 11c, 11b / 11d.
請參閱圖3A所示,將第一載板20連同其上的第一晶片11a、11b、11c、11d送入一高溫測試環境中,由於該黏膠層具受熱軟化特性,而導致各該第一晶片11a、11b、11c、11d的位置偏移,即自第一座標位置P1i 、P1j 、P1k 、P1q 變成第二座標位置P2i 、P2j 、P2k 、P2q ;由於獲得各該第一晶片11a、11b、11c、11d的第一座標位置P1i 、P1j 、P1k 、P1q 及第二座標位置P2i 、P2j 、P2k 、P2q ,即進一步計算出各該第一晶片11a、11b、11c、11d在高溫測試環境下的偏移量(dx, dy)及偏移方向;在此即假設一個最差的情況,即左上第一晶片11a往右下偏移方向分別往右、往下移動最大偏移量dx/dmax、dy/dmax,右上第一晶片11b往左下偏移方向分別往左、往下分別移動最大偏移量dx/dmax、dy/dmax,右下第一晶片11c朝右上偏移方向分別往右、往上移動最大偏移量dx/dmax、dy/dmax,左上第一晶片11d朝左上偏移方向分別移動最大偏移量dx/dmax、dy/dmax。於本實施例,為了確保相鄰第一晶片11a、11b、11c、11d在偏移過程中不相互碰撞,在圖2B所示常溫下之二相鄰的第一晶片11之間間距D係大於最大偏移量dmax的二倍以上。Referring to FIG. 3A, the first carrier board 20 and the first wafers 11a, 11b, 11c, and 11d thereon are sent into a high-temperature test environment. Because the adhesive layer has thermal softening characteristics, each of the first The position of a wafer 11a, 11b, 11c, 11d is shifted, that is, from the first coordinate positions P 1i , P 1j , P 1k , P 1q to the second coordinate positions P 2i , P 2j , P 2k , P 2q ; The first coordinate positions P 1i , P 1j , P 1k , P 1q and the second coordinate positions P 2i , P 2j , P 2k , and P 2q of each of the first wafers 11a, 11b, 11c, and 11d are further calculated. Offsets (dx, dy) and offset directions of the first wafers 11a, 11b, 11c, and 11d in a high-temperature test environment; a worst case is assumed here, that is, the upper left first wafer 11a is lowered to the right The maximum offsets dx / dmax, dy / dmax are shifted to the right and down respectively, and the first wafer 11b at the top right is shifted to the left and bottom, respectively, and the maximum offsets dx / dmax, dy / dmax are moved to the left and down, respectively. , The first right wafer 11c in the lower right direction is shifted to the right and the upper direction by the maximum shift amounts dx / dmax and dy / dmax, respectively, and the first left wafer 11c is in the left direction. Maximum offset shift direction dx / dmax, dy / dmax respectively. In this embodiment, in order to ensure that adjacent first wafers 11a, 11b, 11c, and 11d do not collide with each other during the offset process, the distance D between two adjacent first wafers 11 at room temperature shown in FIG. 2B is greater than The maximum offset dmax is more than twice.
由於已計算出各該第一晶片11a、11b、11c、11d經高溫測試後的偏移量及偏移方向,即可依據各該第一晶片11a、11b、11c、11d的偏移量及偏移方向,將各該第一晶片11a、11b、11c、11d所對應的第一座標位置P1i 、P1j 、P1k 、P1q 並更新成為第三座標位置P3i 、P3j 、P3k 、P3q ;接著,即可將該第一載板20上的第一晶片11a、11b、11c、11d依據第三座標位置P3i 、P3j 、P3k 、P3q 重新排列在一第二載板30上,如圖3B所示,即進行第二次貼片;此外,亦可是同一批相同晶圓切割出來的第二晶片11’,即如圖4A所示,該些第二晶片11’依據第三座標位置重新排列在該第二載板30上;其中該第二載板30上同樣設置有一第二黏著層31,用以黏著第一晶片11或第二晶片11’。於本實施例,該第二載板與第一載板的材質及尺寸相同。Since the offsets and directions of the first wafers 11a, 11b, 11c, and 11d after the high temperature test have been calculated, the offsets and offsets of the first wafers 11a, 11b, 11c, and 11d can be calculated. Move the direction, and update the first coordinate positions P 1i , P 1j , P 1k , P 1q corresponding to the first wafers 11a, 11b, 11c, and 11d to the third coordinate positions P 3i , P 3j , P 3k , P 3q ; then, the first wafers 11 a, 11 b, 11 c, and 11 d on the first carrier board 20 can be rearranged on a second carrier board according to the third coordinate positions P 3i , P 3j , P 3k , and P 3q 30, as shown in FIG. 3B, the second placement is performed; in addition, the second wafer 11 'cut from the same batch of the same wafer can also be used, that is, as shown in FIG. 4A, the second wafers 11' are based on The third coordinate position is rearranged on the second carrier plate 30. The second carrier plate 30 is also provided with a second adhesive layer 31 for adhering the first wafer 11 or the second wafer 11 '. In this embodiment, the material and dimensions of the second carrier board and the first carrier board are the same.
再以圖3B來說,左上晶片11a的第三座標位置P3i 是自第一座標位置P1i ,以其高溫偏移方向(右下)的相反方向(左上)分別往左、往上移動其偏移量而定;右上晶片11b的第三座標位置P3j 是自第一座標位置P1j ,以其高溫偏移方向(左下)的相反方向(右上)分別往右、往上移動其偏移量而定;左下晶片11c的第三座標位置P3k 是自原第一座標位置P1k ,以其高溫偏移方向(右上)的相反方向(左下)分別往左、往下移動其偏移量而定;右下晶片11d的第三座標位置P3q 是自第一座標位置P1q ,以其高溫偏移方向(左上)的相反方向(右下)分別往右、往下移動其偏移量而定。再請參閱圖4A所示,即為第二載板30依據第三座標位置完成貼片後的俯視平面圖。Referring to FIG. 3B again, the third coordinate position P 3i of the upper left wafer 11a is from the first coordinate position P 1i and is moved to the left and upward by the opposite direction (upper left) of the high temperature offset direction (lower right). The offset depends on the third coordinate position P 3j of the upper right wafer 11b from the first coordinate position P 1j and its high temperature offset direction (lower left) is opposite to the upper direction (upper right) and its offset is shifted to the right and upward The third coordinate position P 3k of the lower left wafer 11c is from the original first coordinate position P 1k , and its offset is shifted to the left and down by the high temperature shift direction (upper right) and the opposite direction (lower left). Depends on; the third coordinate position P 3q of the lower right wafer 11d is shifted from the first coordinate position P 1q to the right and down by the opposite direction (lower right) of its high temperature shift direction (upper left). It depends. Please refer to FIG. 4A again, which is a top plan view of the second carrier plate 30 after completing the patch according to the third coordinate position.
由於該第二載板30上亦設置有與第一黏著層21材質及尺寸相同的第二黏著層31,加上將經貼片後的第二載板30送入相同的高溫測試環境中,其第二黏著層31受熱軟化狀態應與第一黏著層21相同或相近,使得各該第二晶片11’位置會呈現如同圖3A的偏移現象;由於第二載板30上的第二晶片11’已依據第三座標位置重新排列,故其偏移量可被正確地補償,呈如圖4B所示的位置排列,即回到或接近各該晶片的第一座標位置。Because the second carrier plate 30 is also provided with a second adhesive layer 31 having the same material and size as the first adhesive layer 21, and the second carrier plate 30 after being patched is sent into the same high temperature test environment, The second adhesive layer 31 should be the same as or similar to the first adhesive layer 21 when heated and softened, so that the position of each of the second wafers 11 ′ will show an offset phenomenon as shown in FIG. 3A; 11 'has been rearranged according to the third coordinate position, so its offset can be correctly compensated, and it is arranged as shown in FIG. 4B, that is, it returns to or approaches the first coordinate position of each wafer.
綜前所述,本發明的晶片偏移量補償方法的主要步驟包含有:(a) 準備一第一載板,並於常溫下依據第一座標位置進行第一次貼片,以將複數第一晶片分別黏貼在該第一載板上所對應的一第一座標位置;(b) 將該第一載板及其上該些第一晶片送入一高溫環境中;(c) 於高溫環境中量測該第一載板上各該第一晶片之一第二座標位置;(d) 計算各該第一晶片的第一座標位置及第二座標位置之間差異,以獲得各該第一晶片的偏移量及偏移方向;(e) 計算各該第一晶片的一第三座標位置;其中該第三座標位置係於各該第一晶片在該第一載板上的偏移方向的相反方向,並以其偏移量對其第一座標位置進行補償後的座標位置;以及(f) 準備一第二載板,並於常溫下依據第三座標位置進行第二次貼片,以送入相同的高溫環境進行測試。In summary, the main steps of the wafer offset compensation method of the present invention include: (a) preparing a first carrier board, and performing the first patch according to the first coordinate position at normal temperature to A chip is adhered to a first coordinate position corresponding to the first carrier board; (b) the first carrier board and the first wafers on the first carrier board are put into a high temperature environment; (c) in a high temperature environment Measuring a second coordinate position of each of the first wafers on the first carrier; (d) calculating a difference between a first coordinate position and a second coordinate position of each of the first wafers to obtain each of the first Offset and offset direction of the wafer; (e) Calculate a third coordinate position of each first wafer; wherein the third coordinate position is based on the offset direction of each first wafer on the first carrier plate. The coordinate position after the first coordinate position is compensated by its offset; and (f) preparing a second carrier board and performing a second patch at normal temperature based on the third coordinate position, Tested in the same high temperature environment.
因此,本發明主要於第一次貼片後送入高溫環境,以量測各該第一晶片在高溫環境的偏移量及偏移方向,再據以調整各該晶片的第一座標位置,作為第二次貼片調整各該晶片排列於第二載板上的座標位置;如此當完成第二次貼片進入高溫環境,各晶片的偏移量即被補償,以利高溫測試用探針正確接觸到各該晶片,減少因高溫造成晶片偏移造成的測試異常。Therefore, the present invention is mainly sent to a high-temperature environment after the first placement to measure the offset amount and direction of each first wafer in the high-temperature environment, and then adjust the first coordinate position of each wafer accordingly. As the second patch, adjust the coordinate position of each of the wafers arranged on the second carrier; so when the second patch is completed and enters the high temperature environment, the offset of each wafer will be compensated for the high temperature test probe. Correctly contact each wafer to reduce test abnormalities caused by wafer shift due to high temperature.
以上所述僅是本發明的實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。The above description is only an embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed by the embodiments as above, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field of the art, Within the scope not departing from the technical solution of the present invention, when the above disclosed technical content can be used to make a few changes or modifications to equivalent equivalent embodiments, as long as it does not depart from the technical solution of the present invention, it is in accordance with the technical essence of the present invention. Any simple modifications, equivalent changes, and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.
10‧‧‧晶圓10‧‧‧ wafer
11‧‧‧第一晶片11‧‧‧ the first chip
11’‧‧‧第二晶片11’‧‧‧ second chip
20‧‧‧第一載板20‧‧‧ the first carrier board
21‧‧‧第一黏著層21‧‧‧The first adhesive layer
30‧‧‧第二載板30‧‧‧Second carrier board
31‧‧‧第二黏著層31‧‧‧Second adhesive layer
50‧‧‧真空吸取件50‧‧‧Vacuum suction piece
圖1A至1D:本發明於常溫下一第一載板經第一次貼片後的動作示意圖。 圖2A:圖1D的俯視平面圖。 圖2B:圖2A的局部放大圖。 圖3A:圖2A於高溫環境下部分晶片偏移後的示意圖。 圖3B:本發明於常溫下一第二載板經第二次貼片後的部分俯視平面圖。 圖4A:本發明於常溫下該第二載板經第二次貼片後的俯視平面圖。 圖4B:圖4A於高溫環境下晶片偏移後的示意圖。FIGS. 1A to 1D are schematic diagrams illustrating the operation of the first carrier plate after the first placement at the next room temperature according to the present invention. FIG. 2A: a top plan view of FIG. 1D. Fig. 2B: a partially enlarged view of Fig. 2A. FIG. 3A is a schematic diagram of FIG. 2A after a part of the wafer is shifted in a high-temperature environment. FIG. 3B is a partial top plan view of the second carrier after the second patching at the normal temperature of the present invention. FIG. 4A is a top plan view of the second carrier board after the second placement at normal temperature according to the present invention. FIG. 4B is a schematic diagram of FIG. 4A after the wafer is shifted in a high-temperature environment.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107115899A TWI662286B (en) | 2018-05-10 | 2018-05-10 | Method of compensating offsets for chips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107115899A TWI662286B (en) | 2018-05-10 | 2018-05-10 | Method of compensating offsets for chips |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI662286B TWI662286B (en) | 2019-06-11 |
TW201947240A true TW201947240A (en) | 2019-12-16 |
Family
ID=67764131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107115899A TWI662286B (en) | 2018-05-10 | 2018-05-10 | Method of compensating offsets for chips |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI662286B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI724597B (en) * | 2019-10-31 | 2021-04-11 | 力成科技股份有限公司 | Chip probe testing system without positioning by wafer cutting channel and method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7054007B2 (en) * | 2002-02-08 | 2006-05-30 | Koninklijke Philips Electronics N.V. | Calibration wafer for a stepper |
US7265536B2 (en) * | 2005-03-01 | 2007-09-04 | Suss Microtec Test Systems Gmbh | Procedure for reproduction of a calibration position of an aligned and afterwards displaced calibration substrate in a probe station |
CN100547752C (en) * | 2005-05-19 | 2009-10-07 | 琳得科株式会社 | Adhering apparatus |
TWI267159B (en) * | 2006-03-01 | 2006-11-21 | Au Optronics Corp | Alignment mark and inspection method using the same |
JP6307730B1 (en) * | 2016-09-29 | 2018-04-11 | 株式会社新川 | Semiconductor device manufacturing method and mounting apparatus |
-
2018
- 2018-05-10 TW TW107115899A patent/TWI662286B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI662286B (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI491884B (en) | Method for aligning probe contacts with wafer contacts | |
US8836780B2 (en) | Process control and manufacturing method for fan out wafers | |
US11346861B2 (en) | Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection apparatus | |
KR20100063786A (en) | Wafer bow metrology arrangements and methods thereof | |
US20230148420A1 (en) | Die attach systems, and methods for integrated accuracy verification and calibration using such systems | |
JP2008053624A (en) | Alignment apparatus | |
CN105329850B (en) | The method of testing of Wafer-level Chip Scale Package | |
TWI662286B (en) | Method of compensating offsets for chips | |
TW202425201A (en) | Device and method for calibrating position of silicon wafer relative to base and epitaxial equipment | |
KR20110122447A (en) | Method for aligning semiconductor wafer | |
CN107342254B (en) | The calibration method of crystal edge etching machine bench | |
TW202227786A (en) | Test apparatus, test method, and computer-readable storage medium | |
CN103887204B (en) | Silicon wafer quality factor eliminating method related to problems of laser annealing process | |
KR101990822B1 (en) | Apparatus for bonding chip | |
TW202218005A (en) | A chip pick-and-place transfer device and method for chip positioning thereof | |
CN112180691A (en) | On-line monitoring method for spliced chips | |
US20240194636A1 (en) | Bonding apparatus, bonding method, and article manufacturing method | |
US20230207368A1 (en) | Bonding apparatus and bonding method | |
KR20010092087A (en) | Method and apparatus for measuring the dimensional parameter of wafer | |
US20240243094A1 (en) | Bonding method, bonding apparatus, article manufacturing method, determination method, information processing apparatus, and storage medium | |
KR100866451B1 (en) | certified reference material for calibrating of defect inspection apparatus of semiconductor and its manufacturing method | |
JP3938876B2 (en) | Manufacturing method of semiconductor device | |
TW202310144A (en) | Workpiece handling system, method of calibrating workpiece handling system and method of manufacturing semiconductor package | |
CN116931381A (en) | IC process method capable of realizing 8-inch to 6-inch accurate alignment | |
CN115966482A (en) | Wafer measuring method |