TW201944698A - 執行異物檢測的方法和裝置 - Google Patents

執行異物檢測的方法和裝置 Download PDF

Info

Publication number
TW201944698A
TW201944698A TW108109333A TW108109333A TW201944698A TW 201944698 A TW201944698 A TW 201944698A TW 108109333 A TW108109333 A TW 108109333A TW 108109333 A TW108109333 A TW 108109333A TW 201944698 A TW201944698 A TW 201944698A
Authority
TW
Taiwan
Prior art keywords
wireless power
foreign object
object detection
measurement
power transmission
Prior art date
Application number
TW108109333A
Other languages
English (en)
Other versions
TWI710196B (zh
Inventor
弗拉迪米爾亞歷山大 穆拉托夫
威廉 普拉柏
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201944698A publication Critical patent/TW201944698A/zh
Application granted granted Critical
Publication of TWI710196B publication Critical patent/TWI710196B/zh

Links

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一種在無線電力傳輸系統中執行異物檢測的方法,包括:在不同的時間執行複數個異物檢測測量;處理所述複數個異物檢測測量以獲得異物檢測測量結果;以及基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。

Description

執行異物檢測的方法和裝置
本發明一般涉及無線通信技術領域,並且更具體地,涉及執行異物檢測的方法和裝置。
由於無須電線或連接器即可方便地供電,無線電力傳輸系統(Wireless Power Transfer System,WPTS)越來越受歡迎。WPTS目前的發展可分為兩大類:磁感應(Magnetic Induction,MI)系統和磁諧振(Magnetic Resonance,MR)系統。兩種類型的系統都包括無線電力發射器和無線電力接收器。這樣的系統可以用來在其他應用中為智慧手機或平板電腦等移動設備供電或充電。
感應WPTS通常在分配的幾百赫茲頻率範圍內工作,使用頻率變化作為電力流控制機制。
MR WPTS通常操作於單個諧振頻率,使用輸入電壓調整以調節輸出電力。在典型應用中,MR WPTS操作於頻率6.78 MHz。
一些行業委員會一直致力於為基於無線電力傳輸的消費產品發展國際標準。
以下概述僅是說明性的,目的不在於以任何方式進行限制。也就是說,提供以下概述以介紹本文描述的新穎和非顯而易見的技術的概念、要點、益處和優點。下面在詳細描述中進一步描述選擇的實現。因此,以下發明內容的目的並非在於標識所要求保護的主題的必要特徵,也並非用於確定所要求保護的主題的範圍。
本發明提供一種在無線電力傳輸系統中執行異物檢測的方法,包括:在不同的時間執行複數個異物檢測測量;處理所述複數個異物檢測測量以獲得異物檢測測量結果;以及基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。
本發明提供一種用於執行異物檢測的裝置,包括:電路,配置為:在不同的時間執行複數個異物檢測測量;處理所述複數個異物檢測測量以獲得異物檢測測量結果;以及基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。
本發明提供另一種在無線電力傳輸系統中執行異物檢測的方法,所述無線電力傳輸系統包括無線電力發射器和無線電力接收器,所述方法包括:無線電力發射器接收來自無線電力接收器的參考值,所述參考值是參考Q因數或自諧振頻率;所述無線電力發射器基於所述參考值和所述無線電力發射器的一個或複數個特性為無線電力發射器-接收器對確定預期的Q因數或自諧振頻率;所述無線電力發射器基於為所述無線電力發射器-接收器對確定的所述預期的Q因數或自諧振頻率設置異物檢測閾值;所述無線電力發射器在存在所述無線電力接收器的情況下執行異物檢測測量,以獲得異物檢測測量結果;所述無線電力發射器基於所述異物檢測測量結果和所述異物檢測閾值確定是否啟用或禁用無線電力傳輸;以及當確定啟用無線電力傳輸時,所述無線電力發射器執行到所述無線電力接收器的無線電力傳輸。
本發明提供另一種用於在無線電力傳輸系統中執行異物檢測的裝置,所述無線電力傳輸系統包括無線電力發射器和無線電力接收器,所述裝置包括:電路配置為:從所述無線電力接收器接收參考值,所述參考值是參考Q因數或自諧振頻率;基於所述參考值和所述無線電力發射器的一個或複數個特性為無線電力發射器-接收器對確定預期的Q因數或自諧振頻率;基於為所述無線電力發射器-接收器對確定的所述預期的Q因數或自諧振頻率設置異物檢測閾值;在存在所述無線電力接收器的情況下執行異物檢測測量,以獲得異物檢測測量結果;基於所述異物檢測測量結果和所述異物檢測閾值確定是否啟用或禁用無線電力傳輸;以及當確定啟用無線電力傳輸時,執行到所述無線電力接收器的無線電力傳輸。
本發明提供另一種執行異物檢測的方法,所述方法執行於啟用從無線電力發射器到無線電力接收器的無線電力傳輸之前,所述方法由無線電力發射器執行,包括:進行第一次異物檢測測量;確定所述第一次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內;當所述第一次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第一次通信嘗試;當所述第一次通信嘗試成功後,執行第二次異物檢測測量;確定所述第二次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內;當所述第二次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第二次通信嘗試;以及當所述第二次通信嘗試成功時啟用無線電力傳輸。
本發明提供另一種在啟用從無線電力發射器到無線電力接收器的無線電力傳輸之前執行異物檢測的裝置,包括:電路配置為控制所述無線電力發射器執行如下步驟:進行第一次異物檢測測量;確定所述第一次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內;當所述第一次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第一次通信嘗試;當所述第一次通信嘗試成功後,執行第二次異物檢測測量;確定所述第二次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內;當所述第二次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第二次通信嘗試;以及當所述第二次通信嘗試成功時啟用無線電力傳輸。
由上可知,本發明的技術方案能在執行無線電力傳輸之前,可更準確地確定無線電力發射器的磁場中是否存在異物,並基於確定結果啟用或禁用無線電力傳輸。
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的“包含”及“包括”為一開放式的用語,故應解釋成“包含但不限定於”。“大體上”是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,基本達到所述技術效果。此外,“耦接”一詞在此包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表所述第一裝置可直接電性連接於所述第二裝置,或通過其它裝置或連接手段間接地電性連接至所述第二裝置。以下所述為實施本發明的較佳方式,目的在於說明本發明的精神而非用以限定本發明的保護範圍,本發明的保護範圍當視後附的申請專利範圍所界定者為准。
接下面的描述為本發明預期的最優實施例。這些描述用於闡述本發明的大致原則而不應用於限制本發明。本發明的保護範圍應在參考本發明的申請專利範圍的基礎上進行認定。
由於在無線電力發射器產生的場(field)中存在異物(foreign object),無線電力傳輸可能會被減弱。由於導電物(體如,金屬物體)會引起渦流,導電物可能會吸收電力。這種物體的存在會顯著降低無線電力傳輸的效率。如果存在金屬物體,效率可以顯著減少(例如,從90%減少到40%)。此外,由於吸收電力後,物體的溫度可能會顯著增加,這可能是不期望的。已經開發了通過測量品質因數(Q因數)來感測外來物(也即,異物)的技術。存在異物降低了系統的Q因數。因此,可以使用測量Q因數確定是否存在異物。例如,如果Q因數在可接受的範圍之外,則可以確定存在異物,並且無線電力傳輸被禁用。另一方面,如果Q因數在可接受範圍內在範圍內,可以確定不存在異物和無線電力可以允許傳輸。但是,本發明人發現了一種基於Q因數的異物檢測(Foreign Object Detection,FOD)的問題。當用戶將無線電力接收器慢慢帶到無線電力發射器附近時,存在可能檢測不到存在的異物的可能性。原因是當這兩個設備慢慢彼此接近,Q因數測量可以在設備尚未非常靠近在一起時啟用,這導致更高Q因數測量。不可取的是,由於過早測量Q因數,可能無法檢測到異物,並且無線電力可能在存在異物的情形下被啟用。
第1A圖和第1B圖描述了所述問題。第1A圖描述無線電力接收器越來越靠近無線電力發射器(位置1,然後位置2,然後位置3)。在這個例子中,無線電力發射器為充電墊的形式。無線電力接收器可以包括在放置在充電墊上的移動設備中以便無線充電。第1B圖顯示了隨著無線電力接收器接近無線電力發射器,時間軸上的複數個Q因數的圖。無線充電允許的Q因數值的範圍從Q_LOW延伸到Q_HIGH。當無線電力接收器處於位置1時,測量的Q因數值相對較高,超出了無線電力傳輸被允許的範圍。在位置2處,Q因數較低並且在Q_LOW至Q_HIGH之間。在位置3,無線電力接收器最終停止,Q因數由於存在異物而低於Q_LOW。
如果執行Q因數測量發生在無線電力接收器距離無線電力發射器相對較遠,例如位置2,Q因數的測量值將高於無線電力接收器和無線電力發射器更接近彼此時的值。結果,測量的Q因數可以在Q_LOW到Q_HIGH範圍內,並且可能錯誤地啟用無線電力傳輸。最終,無線電力接收器可以進行無線電力傳輸並且即使Q因數隨著設備靠近而降低,也可能不會停止。因此,發明人已經認識到可能希望避免過早地測量Q因數。本發明人已經開發了技術使用Q因數或自諧振頻率的測量來解決這個問題。
複數個 Q 因數測量
在一些實施例中,無線電力發射器可獲得複數個FOD測量值,例如Q因數測量值及/或自諧振頻率測量值,以及可以基於複數個FOD測量值來確定是否啟用或禁用無線電力傳輸。每一個FOD測量值可以在不同時間得到。有很多方法可以分析這些複數個FOD測量值。
在一些實施例中,可以分析複數個FOD測量值,並且可以使用複數個FOD測量值中的最小FOD測量值。例如,使用最小Q因數測量值或自諧振頻率測量值。使用最小FOD測量值可以有助於確保當無線電力發射器和接收器遠離彼此時的FOD測量值不被使用。例如,如果在第1A圖和第1B圖中的無線電力接收器位於位置1、2和3處進行了三次Q因數測量,分析三個Q因數測量結果以確定最小值。在這種情況下,在位置3處進行的Q因數測量是最低的,因此被選擇用於確定是否啟用或禁用無線電力傳輸。
然而,本文描述的技術不限於確定FOD測量值的最小值,因為可以使用其他合適的值,例如平均或中值FOD測量值,例如平均或中值Q因數。確定平均或中值FOD測量值可以允許減少錯誤測量的影響。作為另一個例子,最高的Q因數測量值或一定數量的最高Q因數測量值可以丟棄,然後剩餘的Q因數可以被處理(例如,通過確定剩餘的Q因數的最小值,平均值或中值)以確定一個值用於確定是否啟用或禁用無線電力傳輸。
第2圖描述了根據一些實施例的執行異物檢測的方法200的流程圖。在步驟201中,可以在複數個時間點執行複數個FOD測量。可以進行任何合適數量的FOD測量,例如在2 - 100之間的整數(包括端值)。在一些實施例中,可以進行預定數量的FOD測量。在一些實施例中,所做的FOD測量的數量可以是自適應的。例如,在一些實施例中,一旦FOD測量收斂,可以終止FOD測量。確定FOD測量是否收斂的一個標準是確定連續的FOD測量之間存在的差異是否低於閾值,或者變化率是否低於閾值。通過確定FOD測量是否收斂,有助於確保無線電力發射器和無線電力接收器是否相對彼此不再移動(例如,無線電力接收器可能已經停留在無線電力上發射器上)。在步驟202中,可以分析複數個FOD測量以導出用於異物檢測的合適的FOD測量值。上述提及的任何一個處理可以對複數個FOD測量值執行,例如確定複數個FOD測量值的最小值,平均值或中值或子集。或者,在假設FOD測量已經收斂時,可以使用最近的FOD測量值,或最近的FOD測量值的處理後的版本。步驟202的處理結果被稱為“FOD測量結果”。在步驟203​​中,FOD測量結果用於確定是啟用或禁用無線電力傳輸。例如,可以將作為FOD測量結果的Q因數結果與Q_HIGH和Q_LOW比較,如果Q因數結果不在Q_HIGH和Q_LOW範圍之間,可以禁用電力傳輸。相反,如果Q因數結果在Q_HIGH和Q_LOW範圍內,無線電力傳輸可以被啟用。如果FOD測量結果是自諧振頻率結果,則可以使用類似的技術。
儘管上面描述了用於基於複數個FOD測量值執行異物檢測的技術,發明人已經意識到如果無線電力發射器和無線電力接收器在適宜的距離範圍內進行異物檢測,則可以解決現有技術的問題。當無線電力發射器和無線電力接收器在彼此適當接近的範圍內,各種技術,例如可以採用諸如上述FOD測量及/或其他技術用於執行異物檢測。
複數個握手事件 (Handshake Sequence)
如下麵進一步討論的,無線電力發射器和無線電力接收器可能具有彼此通信的能力,透過帶內或者帶外的方式。在提供大量無線電力之前,無線電力發射器和無線電力接收器可以執行握手事件以確認沒有異物存在且設備彼此相容。
握手事件可以包括通過無線電力發射器執行FOD測量。可以通過驅動電路在低電力電平激勵(enegize)發射線圈來執行FOD測量,所述低電力電平低於能喚醒無線電力接收器的電子設備的電力。如果FOD測量值在可接受的範圍內,無線電力發射器試圖與無線電力接收器通信。通信的嘗試可能需要無線電力發射器發送足夠水準的無線電力以喚醒無線電力接收器的電子設備並為無線電力接收器的電子設備供電,但一旦握手過程成功完成比所述足夠水準低的無線電力將會被傳輸。通信的嘗試可能需要在無線電力發射器和無線電力接收器之間交換資訊。交換的資訊可包括用於執行異物檢測的參考資訊,例如無線電力接收器的Q因數及/或無線電力接收器在沒有異物出現時用於電力傳輸的諧振頻率。這些資訊可以從中無線電力接收器發送到無線電力發射器。其他資訊可能是由無線電力接收器或無線電力發射器發送到彼此。通信的嘗試可能需要進行無線電力傳輸參數的協商。
在WPC規範中,FOD測量可以對應於“analog ping”並且建立通信的嘗試可以對應於“digital ping”。在可接受的範圍內的FOD測量可以被稱為“successful analog ping”。與無線電力接收器進行的成功通信嘗試導致的確認回復可以被稱為“successful digital ping”。然而,這裡描述的技術不限於根據WPC規範的無線電力傳輸,因為它們也適用於其他無線傳輸技術。
在握手事件成功之後,設備可能不時地嘗試交換信號以確認它們彼此仍保持通信,以及/或可以重新啟用握手事件。交換信號的常識和握手事件的重啟均可以週期性地執行及/或響應於系統事件而執行。
如上所述,發明人已經認識並理解了通過驗證無線電力發射器和無線電力接收器在彼此適當的接近範圍內,會使FOD測量更可靠。可以通過複數種方式來實現所述驗證。在一些實施例中,可以在啟用無線電力傳輸之前重複執行後面跟有通信嘗試的FOD測量(例如,“analog ping”後跟有”digital ping”)的握手事件。重複握手事件有助於確保在執行FOD測量時,無線電力發射器和無線電力接收器彼此足夠接近,以執行可靠的FOD測量。
第3A圖根據一些實施例圖描述了執行異物檢測以啟用無線電力傳輸的方法300的流程圖。在步驟301中,無線電力發射器首先進行FOD測量。可以執行任何合適類型的FOD測量,例如本文所述的那些。在步驟302中,確定FOD測量值是否在無線電力傳輸的可接受範圍內。這可能通過任何合適的技術完成,例如本文所述的技術。如果FOD測量值不在可接受的範圍內,則所述方法從步驟301重新開始。如果FOD測量值在可接受的範圍內,無線電力發射器嘗試與無線電力接收器通信。如果通信嘗試成功,則所述方法進入步驟303,如果不是,則所述方法從步驟301重新開始。在步驟303,進行第二FOD測量。可以執行任何合適類型的FOD測量,例如本文所述的那些。在步驟304中,確定第二FOD測量值是否在無線電力傳輸的可接受範圍內。這可以通過任何合適的技術完成,例如本文所述的技術。第二FOD測量可以根據與第一FOD測量採用相同的技術來執行也可以通過不同的技術來執行。如果第二次FOD測量值不在可接受的範圍,所述方法從步驟301重新開始。如果第二FOD測量值在可接受的範圍內,無線電力發射器試圖與無線電力接收器進行第二次通信。如果第二次通信嘗試成功,啟用無線電力傳輸的過程和無線電力被傳輸。如果第二次通信嘗試不成功,則所述方法從步驟301重新開始。第3A圖描述了握手事件重複一次的示例。然而,在啟用無線電力傳輸之前,握手事件可以重複一次或複數次,例如兩次或三次或更多次。
用於啟用 (enable) 電力傳輸的可變閾值
在一些實施例中,用於確定是否啟用無線電力傳輸的閾值可以是可變的而不是靜態的。例如,相較於使用靜態Q因數閾值或自諧振頻率來確定是否應啟用無線電力傳輸,可以根據Q因數或自諧振頻率的預期值設置閾值。發明人已經認識並理解,當無線電力接收器具有相對低的Q因數時,Q因數和自諧振頻率的變化較小。例如,當異物存在時,在不存在異物時的Q因數為120的無線電力發射器-接收器對的Q因數可能會降至60以下。相比之下,當異物存在時,不存在異物時的Q因數為40的無線電力發射器-接收器對的Q因數可能會降至30以下。因此,當無線電力發射器-接收器對具有相對較低的Q因數時,Q因數的下降幅度更加微小。
在一些實施例中,用於啟用或禁用無線電力傳輸的閾值可以由無線電力發射器根據無線電力發射器和無線電力接收器對在沒有異物存在時的預期的Q因數或自諧振頻率設置。無線電力接收器可以存儲(例如,在無線電力接收器的記憶體中)參考Q因數或參考自諧振頻率,所存儲的參考Q因數或參考自諧振頻率指示參考無線電力發射器在存在無線電力接收器的情況下測得的Q因數或自諧振頻率。例如,參考無線電力發射器可以通過使用校準測量來確定這些值。無線電力發射器的特性可與參考無線電力發射器不同。因此,無線電力發射器可以存儲(例如,存儲在無線電記憶體中)指示其Q因數或自諧振頻率特性如何相較於參考無線電力發射器不同的資訊。使用無線電力接收器存儲的參考資訊和無線電力發射器存儲的特性,用於無線電力發射器-接收器對的預期的Q因數或自諧振可以被確定。這種確定可以以任何合適的方式進行,例如,任何適宜設備中描述的查閱資料表,方程式或曲線。
在一些實施例中,無線電力接收器存儲的參考Q因數或參考自諧振頻率可以從無線電力接收器發送至無線電力發射器(例如,在握手事件期間)。然後,無線電力發射器可以使用從無線電力接收器接收的參考資訊及其自身存儲的特性來計算或確定用於無線電力發射器和無線電力接收器對的預期Q因數或自諧振頻率。然後可以基於預期的Q因數或自諧振頻率確定啟用無線電力傳輸的閾值。
為了確定閾值,無線電力發射器可以存儲(例如,在記憶體中)發射器-接收器對在沒有異物出現時的Q因數及/或自諧振頻率和適宜的閾值之間的關係。所述存儲的關係可以是Q因數或自諧振頻率到合適的閾值的映射。所述映射可以採用任何形式和表示方式,例如查閱資料表,等式或曲線。指示異物的Q因數下降或自諧振頻率的增加與沒有異物出現時無線電力發射器-接收器對的Q因數成比例。例如,當無線電力發射器-接收器對具有120的預期Q因數,閾值可以設置為50%的Q因數,使得當測量的Q因數低於60將觸發異物檢測。當無線電力發射器-接收器對具有40的預期Q因數,閾值可以設置為75%的Q因數(或比預期Q因數下降25%),使得當測量的Q因數低於30將觸發異物檢測。
第3B圖描述了在具有無線電力發射器和無線電力接收器的無線電力傳輸系統中執行異物檢測的方法350。所述方法包括,在步驟351中,由無線電力發射器接收,來自無線電力接收器的參考值,所述參考值是參考Q因數或自諧振頻率。在步驟352中,無線電力發射器基於所述參考值和無線電力發射器的一個或複數個特性確定用於無線電力發射器-接收器對的預期的Q因數或自諧振頻率。在步驟353中,無線電力發射器基於用於所述無線電力發射器-接收器對的所述預期的Q因數或自諧振頻率設置異物檢測(FOD)閾值。在步驟354中,無線電力發射器在存在無線電力接收器的情況下執行FOD測量以獲得FOD測量結果。在步驟355中,無線電力發射器通過比較所述FOD測量的結果和FOD閾值確定啟用或禁用無線電力傳輸,並當確定啟用無線電力傳輸時,將無線電力傳輸到無線電力接收器。
系統描述和 Q 因數測量
本文描述的技術和設備使得能夠使用相對較低的電力水準檢測異物。在一些實施例中,檢測可以是通過激勵和控制無線電力發射器的驅動電路來執行,並測量無線電力發射器中的瞬時特性(transient characteristic)。基於所述瞬時特性,無線電力發射器可以確定無線電力發射器產生的磁場中是否存在異物。然而,Q因數可以以任何合適的方式測量,並且不限於測量瞬時特性。在一些實施例中,Q因數可以通過頻域測量值被偵測到,或通過時域和頻域的組合測量值被偵測到。有利地,在一些實施例中,可以在不需要添加額外硬體的情況下檢測異物。
第4圖描述了包括無線電力發射器1和無線電力接收器11的無線電力系統100的框圖。無線電力發射器1具有驅動電路7,驅動電路7包括通過匹配網絡6驅動發射線圈10的逆變器3。無線電力發射器1可以包括調節電壓源2(例如,電壓調節器)提供經調節的DC電壓至逆變器3。調節電壓源2響應於來自控制器5的控制刺激產生調節的DC輸出電壓。在一些實施例中,驅動電路7可以是D類或E類放大器,將逆變器3輸入端的DC電壓轉換成交流輸出(AC)電壓以驅動發射線圈10。產生交流電輸出電壓使得可通過電磁感應實現無線電力傳輸。控制器5可以控制信號發生器9以選擇的無線電力傳輸頻率驅動逆變器3。作為示例,逆變器3可以在100kHz和205kHz之間的切換頻率以將電力傳輸到設計為基於用於低電力Qi接收器的Qi規範的無線電力接收器,以及在80kHz和300kHz之間切換頻率以將電力傳輸到設計為基於用於中電力Qi接收器的Qi規範的無線電力接收器。逆變器3可以在一個更高的頻率上切換,例如ISM頻帶內且大於1 MHz的頻率,例如6.765MHz - 6.795MHz,用於向設計為使用MR技術接收無線電力的接收機。但是,描述了這些頻率僅作為示例,因為可以根據任何合適的規範以各種合適的方式發送無線電力。控制器5可以是類比電路或數位電路。控制器5可以是可編程的,也可以基於存儲的程式指令命令信號發生器9以所需的傳輸頻率產生信號,使逆變器3切換到所需的傳輸頻率。匹配網絡6可以通過向逆變器3呈現適當阻抗來促進無線電力傳遞。匹配網絡可以具有一個或複數個電容或電感元件或電容和電感的任何合適組合。由於發射線圈10可以具有感應阻抗,在某些情況下在一些實施例中,匹配網絡6可包括一個或複數個電容元件,當與發射線圈10的阻抗組合時,它為逆變器3的輸出呈現出一個適合驅動發射線圈10的阻抗。在一些實施例中,在無線電力傳輸期間匹配網絡6的諧振頻率可以設置為等於或近似等於的逆變器3的切換頻率。發射線圈10可以由任何合適類型的導體實現。導體可以是導線,包括實心導線或利茲線,或圖案導體,例如PC板的圖案化導體或集成電路。
發射線圈10中的AC電流按照安培定律(Ampere’s law)產生振盪磁場。振盪磁場根據法拉第法則(Faraday’s law)將AC電壓感應至無線電力接收器11的接收器線圈12。接收器線圈12中感應的AC電壓通過匹配網絡13提供到整流器14,整流器14產生未調節的DC電壓。整流器14可以是同步整流器或可以使用二極管實現。使用DC/DC轉換器15調節未調節的DC電壓,DC/DC轉換器15的輸出可被濾波並作為輸出電壓Vout提供給負載。在一些替代實施例中DC/DC轉換器15可以由線性調節器或電池充電器代替,或者完全取消。在一些實施例中,無線電力發射器1可以具有通過帶內通信或帶外通信與無線電力接收器11通訊的通信電路(例如,在控制器5內)。類似地,無線電力接收器11可以具有與無線電力發射器1通信的電路。無線電力接收器11可以向無線電力發射器1發送反饋資訊指示無線電力接收器11所需的電力,或者需提供的電力水準的變化。作為響應,無線電力發射器1可以相應增加或減少其電力輸出。無線電力發射器1可以通過改變電壓驅動電平及/或信號頻率來控制被傳輸的電力量。可以使用任何合適的電力控制技術。
如第4圖所示,如果導電異物20進入由無線電力發射器1的發射線圈10產生的場,無線電力傳輸效率可能降低及/或導電異物20可能經歷顯著的加熱。作為說明,導電異物20的示例包括硬幣,回形針,鍵。
根據本文描述的技術,無線電力發射器1可以被控制以在無線電力傳輸之前執行異物檢測。執行異物檢測允許無線電力發射器確定是否進行無線電力傳輸。
異物檢測可以如下進行。當無線電力發射器1執行異物檢測,它可以增加存儲在匹配網絡6及/或發射線圈10中的一個或複數個組件的能量。由此激發匹配網絡6及/或發射線圈10中的諧振並且允許衰減該諧振。該諧振的衰減的瞬時特性被測量。由於該諧振的衰減依據是否存在異物而不同,可以分析該諧振的衰減的瞬時特性來確定是否存在異物。可基於此分析啟用或禁用無線電力傳輸。如果確定存在異物,則無線電力傳輸可以被禁用。如果確定異物不存在,可以啟用無線電力傳輸。
第5圖根據一些實施例描述了執行異物檢測的方法的流程圖。這種方法可以由無線電力發射器1執行。具體地,控制器5可以被配置為控制該方法的執行。在步驟S1中,匹配網絡6及/或發射線圈10被激勵。可以通過增加存儲在匹配網絡6及/或發射線圈10中的一個或複數個被動組件的能量來執行步驟S1。當逆變器3由適宜的電源電壓供電時,可通過逆變器3來激勵發射線圈10及/或匹配網絡6。合適的切換頻率和電源電壓將在下麵討論。然而,網絡6及/或發射線圈10不需要通過在切換頻率切換所述逆變器來激勵。為了增加存儲的能量,將電壓提供至匹配網絡6的電容器的兩端以增加存儲在所述電容器中的能量,將電流提供給發射線圈10以增加存儲在發射線圈10中的電感中的增量,或者,存儲在發射線圈10和匹配網絡6二者中的能量均可以被增加。在一些實施例中,當無線電力發射器在異物檢測模式下激勵時,它的激勵電壓低於在無線電力發射器處於電力傳輸模式時的激勵電壓。相較於在電力傳輸模式時,更低的電壓及/或電流可以提供至匹配網絡6及/或發射線圈10,由此限制異物檢測所消耗的電力。
可以通過切換逆變器的一個或複數個開關至使匹配網絡6的電容器與所述發射線圈10的電感諧振的狀態來啟用諧振。例如,逆變器可以在合適的切換頻率處切換。當諧振被啟用時,匹配網絡6的電容器在所述諧振頻率與發射線圈10的電感交換能量。
在步驟S2中,匹配網絡和發射線圈的諧振允許被衰減。在步驟S2中禁止將能量傳輸到匹配網絡和發射線圈中,使得匹配網絡和發射線圈可以在沒有額外能量的情形下自由地諧振。作為示例,如果步驟S1包括在切換頻率下切換逆變器3,則可以在步驟S2停止所述切換,且所述逆變器保持在不允許能量流入匹配網絡或發射線圈的狀態。例如,逆變器的輸出可以保持在低阻抗狀態。可通過接通逆變器的適當晶體管使輸出電壓保持在一個恆定的電壓值(例如,共模電壓,例如,地電壓或VDC)。所述諧振可以自由衰減。如果導電異物20存在於在由發射線圈10產生的場中,在物體20中感應出渦電流加載由匹配網絡6和發射線圈10形成的諧振網絡,則導致諧振衰減相較於沒有異物存在時更快。因此,諧振的衰減速度表示是否存在導電異物20。
在步驟S3中,可以測量諧振衰減的瞬時特性(temporal characteristic)。如應當理解,步驟S3可以至少部分地與步驟S2同時執行。為了測量諧振衰減的瞬時特性,對匹配網絡6及/或發射線圈10進行一個或複數個測量來檢測諧振變化的速度有多快。測量可以由包括合適的測量電路的控制器5進行,或由單獨的測量電路進行。可以測量任何合適的參數,例如電流或電壓。如第4圖中的虛線所示,可以在匹配網絡6及/或發射線圈10進行測量。
在一些實施例中,衰減可以是指數的,並且衰減的速度可以是時間常數的指數。確定瞬時特性可以包括測量時間常數或其指示的值。在一些實施例中,可以通過計算電流或電壓隨著時間衰減的比率來確定瞬時特性。
在步驟S4中,可以分析瞬時特性以確定它是否是指示存在異物。在一些實施例中,可以基於所述瞬時特性及/或測量本身確定無線電力發射器1的品質因數Q。作為可以在步驟S4中執行的分析一個例子,瞬時特性或質量因數Q可與指示預期瞬時因素或質量因數Q的資料相比較。例如無線電力發射器1可以存儲(例如,在非易失性記憶體中)表示已知無線電力接收器的品質因數Q的資料。根據測量的瞬時特性確定的品質因數Q可以與存儲的資料進行比較,如果根據測量的瞬時特性確定的品質因數Q與預期值相差超過閾值量的話,測量的品質因數Q可以指示導電異物20的存在。作為另一個例子,無線電力發射器1可以從無線電力接收器11接收指示無線電力接收器11的品質因數Q的資料。根據測量的瞬時特性確定的品質因數Q可以與從無線電力接收器11接收的資料進行比較,如果根據測量的瞬時特性確定的品質因數Q與從無線電力接收器11接收的品質因數Q相差超過閾值的話,測量的品質因數Q可以指示導電異物20的存在。
在步驟S5中,根據分析結果啟用或禁用無線電力發射器1的無線電力傳輸。如果測量的瞬時參數或品質因數Q超出可接受的範圍,可以禁止無線電力傳輸。如果測得的衰減在可接受的範圍內,可以啟用電力傳輸,並且無線電力發射器1可以允許進入電力傳輸模式。可接受的質量因素Q可以依據無線電力接收器通過帶內或帶外通信提供給無線電力發射器的品質因數。
第6A - 6C圖描述了實現為D類放大器的驅動電路7的示例圖。第6A - 6B圖描述了單端(半橋)配置,其中逆變器3由晶體管Q1和Q2實現,匹配網絡6通過電容器CRES實現。發射線圈10由電感器LRES和等效串聯電阻(ESR)表示,圖6A - 6B中,Ires表示電流,Vres表示電壓。第6C圖描述了差分(全橋)配置,其中逆變器3由晶體管Q1 - Q4實現,匹配網絡6是由電容器CRES1,CRES2和CRES3實現。驅動電路7由DC電源電壓VDC供電。圖6C中,包括電壓Vres1和Vres2。第7A - 7C圖描述了驅動電路7為E類放大器的示例實現,其中串聯的晶體管結構,替換為由電感器和晶體管構成的串聯結構,具體的在,第7A - 7B圖中包括電感器L1和Q1形成的串聯結構,在第7C中包括由L1和Q1形成的串聯結構以及由L2和Q2形成的串聯結構。
第8圖描述了用於無線電力接收器11的電力接收電路的示例。匹配網絡13由電容器CRES實現。整流器14由具有整流濾波電容器Crec的全橋二極管整流器(具體包括二極管D1 - D4和整流濾波電容器Crec)實現,其中,Crec兩端有電壓Vrec,並由電流irec充電。DC/DC轉換器15由產生Vout的後級調節器/負載開關實現。
已經描述了用於無線電力接收器11的驅動電路7和無線電力接收電路的示例,將描述可應用於第5圖中的實施方式。
再次參考第5圖,如上所述,步驟S1涉及增加存儲在匹配網絡6及/或發射線圈10中的能量並激發它們的諧振。在第6圖和第7圖所示的驅動電路的背景下,步驟S1可以包括增加存儲在驅動器7中的任何一個或複數個電容或電感元件中的能量。最初,存儲在驅動電路7中的能量可以為零。然而本文描述的技術存儲的能量不限於從零能量開始。在一些實施例中,能量可以通過切換逆變器3的一個或複數個晶體管從電源電壓VDC傳輸到驅動電路7的電容器及/或電感器。
作為示例,逆變器3的開關可以以所選擇的切換頻率進行切換以將能量傳遞到驅動電路7中。通過切換逆變器3傳輸到驅動電路7的能量取決於電源電壓VDC的幅度,切換頻率和切換發生的次數。在一些實施例中,期望限制傳輸到驅動電路的能量以限制執行異物檢測時的功耗。通過將異物檢測期間的VDC設置得相較於電力傳輸期間更低,可以限制傳輸的能量。可替代地或另外地,可以選擇切換頻率來控制傳輸的能量。逆變器3的切換頻率離驅動電路7的諧振頻率越遠,單位時間傳輸至驅動電路7的能量越少。逆變器3的切換時長也會影響傳輸的能量。減少逆變器3切換時長可以減少傳輸到驅動器7的能量。然而,本文描述的技術不限於通過切換逆變器3傳遞能量至驅動電路7,如在一些實施例中那樣,可以通過連接驅動電路7的無源部件到VDC(例如,通過逆變器3)來將能量傳輸至驅動電路7,或者可以使用單獨的電路為無源元件提激勵量。
第9圖描述了在沒有無線電力接收器11存在,電源電壓為VDC,在單個切換頻率切換第6C圖中的逆變器3來執行步驟S1的示例波形。在此示例中,VDC為8V,這導致逆變器3產生波形61所示的8Vpp的方波。在此示例中,逆變器3的切換頻率為175kHz。步驟S1中逆變器3的切換執行206微秒。然後,通過停止逆變器3的切換來結束S1,且在步驟S2中,允許諧振自由衰減。通過電感器LRES的電流顯示為波形62。節點Vres1的電壓如波形63所示。從波形62和63可以看出,一旦步驟S1中的刺激(stimulus)停止,則諧振在步驟S2中自由衰減。
第10圖描述了與第9圖類似的示例的波形,在第10圖中,無線電力接收器11存在於由無線電力發射器1產生的場中。本發明人已經認識並理解當存在無線電力接收器11時,諧振的衰減可以根據整流濾波電容器Crec的濾波電容器的充電狀態而變化(第8圖)。如果Crec未充電至整流器14的二極管反向偏置的點,無線電力發射器1處的諧振可以通過無線電力接收器充電Crec加載。這會影響發射器諧振衰減的速率,由此可能會影響衰減的測量,從而影響異物檢測的準確性。
第10圖說明這個問題。第10圖描述了由逆變器3產生的刺激波形71,波形72表示通過電感器LRES的電流,波形73表示節點Vres1的電壓,波形74表示通過整流濾波電容器Crec的電流,波形75表示電壓整流器14的輸入端的電壓,以及波形76表示跨越整流濾波電容器Crec兩端的電壓。在所述示例中,作為說明,整流濾波電容器Crec具有40μF的電容。刺激波形71的頻率,電壓和持續時間是與第9圖的示例中所討論的一樣。在第10圖的示例中,由於無線電力接收器存在,整流濾波電容器Crec在步驟S1中施加刺激波形71的時段被充電。發明者有認識到並理解,如果電容器Crec在步驟S1結束時沒有完全充電,其可能在步驟S2期間繼續充電,這可能在發射器加載衰減諧振和歪斜(skewing)諧振衰減的測量。第10圖在波形76和74中描述整流濾波電容器Crec在步驟S1結束時沒有被充滿電,使得在S2期間電流繼續流入整流濾波電容器Crec,這可能對諧振衰減的測量產生不利影響。
第11圖描述了可以在步驟S2之前對整流濾波電容器Crec完全充電的刺激的示例。在這個例子中,VDC是8V,逆變器3的切換頻率為200kHz,步驟S1持續600微秒。第11圖顯示了由逆變器3產生的刺激波形81,波形82表示通過電感器LRES的電流,波形83表示節點Vres1的電壓,波形84表示通過整流濾波電容器Crec的電流,波形85顯示整流器14的輸入端的電壓和波形86表示跨越整流濾波電容器Crec的兩端的電壓。如圖所示,通過施加刺激足夠的持續時間,整流濾波電容器Crec可以在步驟S2開始之前充滿電。然而,這種方法的一個缺點是它涉及增加步驟S1的長度,這可能是低效的,因為在步驟S1期間可以消耗電力。
在一些實施例中,可以通過在不同的能量水準提供一系列的逆變器刺激波形來減少步驟S1的持續時間。所述逆變器刺激波形可以具有施加有相對高能量水準的時間段,在該時間段後跟著施加有相對較低能量水準的時間段。最初用一個相對較高的能量水準允許對整流濾波電容器Crec快速充電。然後,可以降低能量水準以提高效率。
應用一系列逆變器刺激波形可以包括應用”雙刺激”,其中在步驟S1a中施加第一刺激和在步驟S1b施加第二刺激,步驟S1b處於比步驟S1a低的電力水準。然而,本文描述的技術不限於應用兩個不同的刺激水準,因為可以應用任何數量的不同刺激水準。
如上所述,步驟S1a施加的刺激可以具有高於步驟S1b中應用的刺激的能量水準。能量水準受用於為逆變器3供電的VDC電壓電平,切換頻率和刺激提供的時長的影響。增加VDC或施加刺激的時長將增加提供的能量。接近發射器的諧振頻率的切換頻率提供比切換頻率遠離諧振頻率更高的能量水準。這些參數的任何組合可以被改變以調節在序列刺激中步驟S1a,S1b等施加的能量水準。
第12圖描述了雙刺激的示例。第12圖顯示了由逆變器3產生的刺激波形91包括步驟S1a的第一部分和步驟S1b的第二部分。在步驟S1a中,VDC為6V,持續時間為206μs並且切換頻率為165kHz。在步驟S1b中,VDC為6V,持續時間為60s並且切換頻率為200kHz。由於發射器的諧振頻率近似位100kHz,在步驟S1a中施加的刺激具有更接近諧振頻率的切換頻率,提供相對較高的能量輸入。在步驟S1b中,通過增加切換頻率來減少能量。如圖所示,整流濾波電容器Crec在步驟S2開始之前完全充電,並且步驟S1的持續時間小於第11圖所示的例子。第12圖還描述了表示通過電感器LRES的電流的波形92,波形93表示節點Vres1的電壓,波形94表示通過整流濾波電容器Crec的電流,波形95表示整流器14的輸入端的電壓和波形96表示跨越整流濾波電容器Crec兩端的電壓。
第13圖描述了類似於第12圖的雙刺激的示例,其中在步驟S1b中通過降低電壓VDC而不是改變切換頻率來減少能量。在所述示例中,VDC在步驟S1a中是8V,然後在步驟S1b中降低到6V。
第14圖描述了類似於第12圖和第13圖的雙刺激的示例,其中,在步驟S1b中通過降低電壓VDC並改變切換頻率來減小能量。
如上所述,在步驟S2中,允許發射器的諧振衰減,並且在步驟S3中,可以測量諧振衰減的瞬時特性。例如,可以測量諧振衰減的衰減時間,以及/或可以確定質量因數Q。瞬時特性的測量可以是使用連續時間或離散時間測量進行。
第15圖描述了使用連續時間測量執行步驟S3的測量的示例。控制器5的峰值檢測器或單獨的峰值檢測器可用於檢測衰減波形的包絡。如第15圖所示,分別在時間t1和t2獲得測量值V(t1)和V(t2)。所述品質因數Q可以使用以下等式確定。
第16圖描述了使用離散時間測量來確定Q的示例。如第16圖所示波形的峰值可以被確定,然後Q可以使用以下等式確定。
如上所述,可以使用控制器5控制多模無線電力發射器,控制器5可以由任何合適類型的電路實現。例如,控制器5可以使用硬體或硬體和軟件的組合來實現。使用軟件實現時,合適的軟件代碼可以在任何合適的處理器(例如,微處理器)或處理器集合上執行。一個或複數個控制器可以以多種方式實現,例如使用微代碼或軟件編程以執行如上所述功能的專用硬體或通用硬體(例如,一個或複數個處理器)。
綜上所述,本發明的技術方案能在執行無線電力傳輸之前,可更準確地確定無線電力發射器的磁場中是否存在異物,並基於確定結果啟用或禁用無線電力傳輸。
在這方面,應理解的是本文描述的實施例包括至少一個編程有計算機程式(即,複數個可執行指令)的計算機可讀存儲介質(例如,RAM,ROM,EEPROM,閃存或其他記憶體技術,或其他用計算機有形的,非暫時性的計算機可讀存儲介質),當在一個或複數個處理器上執行時,實現上述一個或複數個實施例的功能。在另外,應所述理解的是,當參考計算機程式執行任何上述功能,不限於在主機上運行的應用程式。相反,術語計算機程式和軟件在本文中以一般意義使用以指任何類型的可以用來編程一個或複數個處理器來實現這裡討論的技術的方面的計算機代碼(例如,應用軟件,固件,微代碼或任何其他形式的計算機指令)。
本文描述的裝置和技術的各個方面可以單獨地使用,組合地使用,或者以未在前面的描述中描述的實施例中具體討論的各種安排中使用,因此不限於將它們的應用限定為前述的組件和佈置的細節或在附圖中描述的細節。例如,在一個實施例中描述的方面可以以任何方式與其他實施例描述的方面組合。
在一些實施例中,術語“大約”、“大致”和“基本上”可以用於表示小於目標值的±10%的範圍且可以包括目標值。例如:小於目標值±5%,小於目標值的±1%。
在申請專利範圍中使用諸如“第一”、”第二”、“第三”等的序數術語來修飾申請專利範圍要素,並不意味任何優先權或順序,但僅用作標籤以將具有特定名稱的一個申請專利範圍元素與具有相同名稱的另一個元素申請專利範圍區分。
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何本領域技術人員,在不脫離本發明的精神和範圍內,當可做些許的更動與潤飾,因此本發明的保護範圍當視申請專利範圍所界定者為準。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
200、300、350‧‧‧方法
201、202、203、301、302、303、304、305、351、352、353、354、355、S1、S2、S3、S4、S5、S1a、S1b‧‧‧步驟
100‧‧‧無線電力系統
1‧‧‧無線電力發射器
2‧‧‧調節電壓源
7‧‧‧驅動電路
3‧‧‧逆變器
6、13‧‧‧匹配網絡
10‧‧‧發射線圈
9‧‧‧信號發生器
5‧‧‧控制器
20‧‧‧導電異物
12‧‧‧接收器線圈
11‧‧‧無線電力接收器
14‧‧‧整流器
15‧‧‧DC/DC轉換器
Vout‧‧‧輸出電壓
VDC‧‧‧電源電壓
Q1、Q2、Q3、Q4‧‧‧晶體管
ESR‧‧‧等效串聯電阻
LRES‧‧‧電感器
Ires、irec‧‧‧電流
Vres、Vres1、Vres2、Vrec‧‧‧電壓
CRES、CRES1、CRES2、CRES3‧‧‧電容器
L1、L2‧‧‧電感器
Cres‧‧‧整流濾波電容器
D1、D2、D3、D4‧‧‧二極管
61、62、63、71、72、73、74、75、76、81、82、83、84、85、86、91、92、93、94、95、96‧‧‧波形
V(t1)、V(t2)‧‧‧峰值測量值
第1A圖描述無線電力接收器越來越靠近無線電力發射器。
第1B圖顯示了隨著無線電力接收器接近無線電力發射器,時間軸上的複數個Q因數的圖。
第2圖描述了根據一些實施例的執行異物檢測的方法200的流程圖。
第3A圖根據一些實施例圖描述了執行異物檢測以啟用無線電力傳輸的方法300的流程圖。
第3B圖描述了在具有無線電力發射器和無線電力接收器的無線電力傳輸系統中執行異物檢測的方法350。
第4圖描述了包括無線電力發射器1和無線電力接收器11的無線電力系統100的框圖。
第5圖根據一些實施例描述了執行異物檢測的方法的流程圖。
第6A - 6C圖描述了實現為D類放大器的驅動電路7的示例圖。
第7A - 7C圖描述了驅動電路7為E類放大器的示例實現。
第8圖描述了用於無線電力接收器11的電力接收電路的示例。
第9圖描述了在沒有無線電力接收器11存在,電源電壓為VDC,在單個切換頻率切換第6C圖中的逆變器3來執行步驟S1的示例波形。
第10圖描述了與第9圖類似的示例的波形,在第10圖中,無線電力接收器11存在於由無線電力發射器1產生的場中。
第11圖描述了可以在步驟S2之前對整流濾波電容器Crec完全充電的刺激的示例。
第12圖描述了雙刺激的示例。
第13圖描述了類似於第12圖的雙刺激的示例。
第14圖描述了類似於第12圖和第13圖的雙刺激的示例,其中,在步驟S1b中通過降低電壓VDC並改變切換頻率來減小能量。
第15圖描述了使用連續時間測量執行步驟S3的測量的示例。
第16圖描述了使用離散時間測量來確定Q的示例。

Claims (21)

  1. 一種在無線電力傳輸系統中執行異物檢測的方法,包括: 在不同的時間執行複數個異物檢測測量; 處理所述複數個異物檢測測量以獲得異物檢測測量結果;以及 基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。
  2. 根據申請專利範圍第1項所述的方法,其中處理所述複數個異物檢測測量包括確定所述複數個異物檢測測量的測量值的最小值,平均值及/或中值以獲得所述異物檢測測量結果。
  3. 根據申請專利範圍第1項所述的方法,其中處理所述複數個異物檢測測量包括丟棄一個或複數個異物檢測測量的測量值。
  4. 根據申請專利範圍第1項所述的方法,其中所述複數個異物檢測測量的數量在開始執行所述複數個異物檢測測量之前被確定。
  5. 根據申請專利範圍第1項所述的方法,其中所述複數個異物檢測測量的數量基於複數個異物檢測測量是否收斂。
  6. 根據申請專利範圍第1項所述的方法,其中處理所述複數個異物檢測測量包括確定所述複數個異物檢測測量是否收斂,如果是,則停止進一步的異物檢測測量。
  7. 根據申請專利範圍第1項所述的方法,其中所述複數個異物檢測測量是Q因數測量或自諧振頻率測量。
  8. 一種用於執行異物檢測的裝置,包括: 電路,被配置為: 在不同的時間執行複數個異物檢測測量; 處理所述複數個異物檢測測量以獲得異物檢測測量結果;以及 基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。
  9. 根據申請專利範圍第8項所述的裝置,其中所述電路包括: 驅動電路,被配置為無線電力發射器的匹配網絡和發射線圈激勵;以及 控制器,被配置為: 至少部分地通過控制所述驅動電路執行複數個異物檢測測量,處理所述複數個異物檢測測量以獲得異物檢測測量結果,以及 基於所述異物檢測測量結果確定是否啟用或禁用無線電力傳輸。
  10. 根據申請專利範圍第8項所述的裝置,其中所述控制器配置為通過確定所述複數個異物檢測測量的測量值的最小值,平均值及/或中值以至少部分地處理所述複數個異物檢測測量。
  11. 根據申請專利範圍第8項所述的裝置,其中所述控制器被配置為丟棄一個或複數個異物檢測測量的測量值。
  12. 根據申請專利範圍第8項所述的裝置,其中所述複數個異物檢測測量的數量在開始執行所述複數個異物檢測測量之前被確定。
  13. 根據申請專利範圍第8項所述的裝置,其中所述複數個異物檢測測量的數量基於複數個異物檢測測量是否收斂。
  14. 根據申請專利範圍第8項所述的裝置,其中所述控制器被配置為確定所述複數個異物檢測測量是否收斂,如果是,則停止進一步的異物檢測測量。
  15. 根據申請專利範圍第8項所述的裝置,其中所述複數個異物檢測測量是Q因數測量或自諧振頻率測量。
  16. 一種在無線電力傳輸系統中執行異物檢測的方法,所述無線電力傳輸系統包括無線電力發射器和無線電力接收器,所述方法包括: 無線電力發射器接收來自無線電力接收器的參考值,所述參考值是參考Q因數或自諧振頻率; 所述無線電力發射器基於所述參考值和所述無線電力發射器的一個或複數個特性為無線電力發射器-接收器對確定預期的Q因數或自諧振頻率; 所述無線電力發射器基於為所述無線電力發射器-接收器對確定的所述預期的Q因數或自諧振頻率設置異物檢測閾值; 所述無線電力發射器在存在所述無線電力接收器的情況下執行異物檢測測量,以獲得異物檢測測量結果; 所述無線電力發射器基於所述異物檢測測量結果和所述異物檢測閾值確定是否啟用或禁用無線電力傳輸;以及 當確定啟用無線電力傳輸時,所述無線電力發射器執行到所述無線電力接收器的無線電力傳輸。
  17. 根據申請專利範圍第16項所述的方法,其中所述異物檢測閾值的設置基於發射器-接收器對的Q因數或自諧振頻率與異物檢測閾值之間存儲好的關係。
  18. 一種用於在無線電力傳輸系統中執行異物檢測的裝置,所述無線電力傳輸系統包括無線電力發射器和無線電力接收器,所述裝置包括: 電路,配置為: 從所述無線電力接收器接收參考值,所述參考值是參考Q因數或自諧振頻率; 基於所述參考值和所述無線電力發射器的一個或複數個特性為無線電力發射器-接收器對確定預期的Q因數或自諧振頻率; 基於為所述無線電力發射器-接收器對確定的所述預期的Q因數或自諧振頻率設置異物檢測閾值; 在存在所述無線電力接收器的情況下執行異物檢測測量,以獲得異物檢測測量結果; 基於所述異物檢測測量結果和所述異物檢測閾值確定是否啟用或禁用無線電力傳輸;以及 當確定啟用無線電力傳輸時,執行到所述無線電力接收器的無線電力傳輸。
  19. 根據申請專利範圍第18項所述的裝置,其中,所述電路被配置為基於發射器-接收器對的Q因數或自諧振頻率與異物檢測閾值之間存儲好的關係設置所述異物檢測閾值。
  20. 一種執行異物檢測的方法,所述方法執行於啟用從無線電力發射器到無線電力接收器的無線電力傳輸之前,所述方法由無線電力發射器執行,包括: 進行第一次異物檢測測量; 確定所述第一次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內; 當所述第一次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第一次通信嘗試; 當所述第一次通信嘗試成功後,執行第二次異物檢測測量; 確定所述第二次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內; 當所述第二次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第二次通信嘗試;以及 當所述第二次通信嘗試成功時啟用無線電力傳輸。
  21. 一種在啟用從無線電力發射器到無線電力接收器的無線電力傳輸之前執行異物檢測的裝置,包括: 電路配置為控制所述無線電力發射器執行如下步驟: 進行第一次異物檢測測量; 確定所述第一次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內; 當所述第一次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第一次通信嘗試; 當所述第一次通信嘗試成功後,執行第二次異物檢測測量; 確定所述第二次異物檢測測量的測量值是否在啟用無線電力傳輸的範圍內; 當所述第二次異物檢測測量的測量值在啟用無線電力傳輸的範圍內,執行與所述無線電力接收器的第二次通信嘗試;以及 當所述第二次通信嘗試成功時啟用無線電力傳輸。
TW108109333A 2015-10-23 2019-03-19 執行異物檢測的方法和裝置 TWI710196B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562245381P 2015-10-23 2015-10-23
US201562245378P 2015-10-23 2015-10-23
US15/244,107 US10199881B2 (en) 2015-10-23 2016-08-23 Robust foreign objects detection
US15/957,704 US10868446B2 (en) 2015-10-23 2018-04-19 Detecting foreign objects in wireless power transfer systems
US15/957,704 2018-04-19

Publications (2)

Publication Number Publication Date
TW201944698A true TW201944698A (zh) 2019-11-16
TWI710196B TWI710196B (zh) 2020-11-11

Family

ID=57223523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109333A TWI710196B (zh) 2015-10-23 2019-03-19 執行異物檢測的方法和裝置

Country Status (4)

Country Link
US (5) US10199881B2 (zh)
EP (1) EP3160008B1 (zh)
CN (1) CN110391697B (zh)
TW (1) TWI710196B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759972B (zh) * 2020-11-25 2022-04-01 偉詮電子股份有限公司 無線功率傳輸系統之快速異物檢測方法與相關之無線功率發送模組
US11742702B2 (en) 2020-09-23 2023-08-29 Mediatek Singapore Pte. Ltd. Rapid validation of foreign object detection in wireless power transmitters

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673287B2 (en) 2011-02-01 2020-06-02 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10289142B2 (en) 2011-02-01 2019-05-14 Fu Da Tong Technology Co., Ltd. Induction type power supply system and intruding metal detection method thereof
US10038338B2 (en) 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US10312748B2 (en) 2011-02-01 2019-06-04 Fu Da Tong Techology Co., Ltd. Signal analysis method and circuit
TWI680649B (zh) * 2018-08-30 2019-12-21 富達通科技股份有限公司 用於訊號處理電路之解碼方法及其訊號處理電路
US10587153B2 (en) 2011-02-01 2020-03-10 Fu Da Tong Technology Co., Ltd. Intruding metal detection method for induction type power supply system and related supplying-end module
US10574095B2 (en) 2011-02-01 2020-02-25 Fu Da Tong Technology Co., Ltd. Decoding method for signal processing circuit and signal processing circuit using the same
US10951063B2 (en) 2011-02-01 2021-03-16 Fu Da Tong Technology Co., Ltd. Supplying-end module of induction type power supply system and signal detection method thereof
TWI669880B (zh) * 2018-04-27 2019-08-21 富達通科技股份有限公司 感應式電源供應器之金屬異物檢測方法及其供電模組
US10630116B2 (en) 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd. Intruding metal detection method for induction type power supply system and related supplying-end module
US11128180B2 (en) 2011-02-01 2021-09-21 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
JP2017518018A (ja) * 2014-05-07 2017-06-29 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送システムにおける異物検出
CN107257167B (zh) * 2014-05-27 2020-01-21 松下知识产权经营株式会社 送电装置以及无线电力传输系统
US10581281B2 (en) 2015-10-23 2020-03-03 Mediatek Inc. In situ coil parameter measurements and foreign objects detection
US10199881B2 (en) 2015-10-23 2019-02-05 Mediatek Inc. Robust foreign objects detection
CN115603473A (zh) * 2016-07-01 2023-01-13 Lg伊诺特有限公司(Kr) 与无线电力发送器通信的方法和无线电力接收器
KR102617560B1 (ko) * 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
US11011915B2 (en) 2016-08-26 2021-05-18 Nucurrent, Inc. Method of making a wireless connector transmitter module
KR102605047B1 (ko) * 2016-12-08 2023-11-24 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
EP4047787A1 (en) * 2017-04-21 2022-08-24 MediaTek Inc. Detecting foreign objects in wireless power transfer systems
CN110622391A (zh) * 2017-05-17 2019-12-27 苹果公司 具有测量电路的无线充电系统
US10804750B2 (en) 2017-08-17 2020-10-13 Integrated Device Technology, Inc. Q-factor detection method
EP3553918B1 (en) 2018-04-09 2020-11-25 NXP USA, Inc. A power transmitter unit
EP3553917B1 (en) 2018-04-09 2021-09-01 NXP USA, Inc. A power transmitter unit
GB201808844D0 (en) * 2018-05-30 2018-07-11 Imperial Innovations Ltd Wireless power transmission system and method
CN112868162A (zh) * 2018-05-31 2021-05-28 鲍尔马特技术有限公司 确定q因子的系统和方法
US11005304B2 (en) * 2018-06-24 2021-05-11 Chargedge, Inc. Foreign object and valid receiver detection techniques in wireless power transfer
TWI742404B (zh) 2018-07-19 2021-10-11 新加坡商聯發科技(新加坡)私人有限公司 無線功率傳輸系統之異物偵測技術
WO2020015749A1 (en) 2018-07-19 2020-01-23 Mediatek Singapore Pte., Ltd. Detecting foreign objects in wireless power transfer systems
US11527915B2 (en) * 2018-11-02 2022-12-13 Nichicon Corporation Wireless electrical transfer with zero voltage switching power supply apparatus
CN111313569A (zh) 2018-12-11 2020-06-19 恩智浦美国有限公司 无线充电系统中的异物检测电路的q因子确定
US20200235612A1 (en) 2019-01-23 2020-07-23 Mediatek Singapore Pte. Ltd. Addressing borderline foreign object detection results
US11336127B2 (en) 2019-08-15 2022-05-17 Mediatek Singapore Pte. Ltd. Calibration of foreign object detection in wireless power systems with authentication
EP3793061A1 (en) 2019-09-16 2021-03-17 NXP USA, Inc. Foreign object detection method and apparatus
US11349341B2 (en) * 2019-11-22 2022-05-31 Vitesco Technologies USA, LLC Dynamic tuning using reactive voltages on a series resonator
DE112020005968T5 (de) 2019-12-03 2022-09-22 Apple Inc. Drahtlose leistungssysteme mit fremdobjekterfassung
CN112928825A (zh) * 2019-12-06 2021-06-08 恩智浦美国有限公司 确定品质因数的方法及无线充电器
US11316383B1 (en) 2019-12-10 2022-04-26 Apple Inc. Wireless power systems with foreign object detection
CN111211598B (zh) * 2020-02-12 2022-11-22 华为数字能源技术有限公司 一种无线充电电路、无线充电方法、设备和系统
DE112020006434T5 (de) * 2020-03-03 2022-10-20 Microchip Technology Incorporated Erkennung von objekten mit geringer leistung in drahtlosenmehrspulenladeystemen und zugehörige systeme, verfahren und vorrichtungen
JP2021164271A (ja) * 2020-03-31 2021-10-11 キヤノン株式会社 送電装置、受電装置、無線電力伝送システムの制御方法、およびプログラム
CN111682653B (zh) * 2020-05-11 2023-03-24 哈尔滨工业大学 无线电能传输异物检测与活体检测共用系统与识别方法
CN113852218A (zh) * 2020-06-28 2021-12-28 伏达半导体(合肥)有限公司 用于无线功率传输系统的物体检测设备和方法
CN113972728A (zh) * 2020-07-21 2022-01-25 北京小米移动软件有限公司 一种无线充电方法、装置、终端及存储介质
US11081911B1 (en) * 2020-08-21 2021-08-03 Apple Inc. Enhanced wireless power transfer
US11152822B1 (en) 2020-09-30 2021-10-19 Stmicroelectronics Asia Pacific Pte Ltd Foreign objection detection sensing circuit for wireless power transmission systems
KR20240004530A (ko) * 2021-04-16 2024-01-11 엘지전자 주식회사 무선 전력 전송 시스템에서 품질 인자를 측정하는 방법및 장치
EP4287458A1 (en) 2021-05-21 2023-12-06 Samsung Electronics Co., Ltd. Coil for detecting foreign material, and wireless power transmitter comprising same
US11462951B1 (en) * 2021-08-18 2022-10-04 Peter Kao Method for distinguishing metal objects from heating cup and wireless charging device using the same
CN114123550A (zh) * 2021-10-20 2022-03-01 伏达半导体(合肥)有限公司 异物检测电路及异物检测方法
CN117375255A (zh) * 2022-06-30 2024-01-09 恩智浦有限公司 无线充电发射器及其操作方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP5122796B2 (ja) 2006-11-30 2013-01-16 明日香エレクトロン株式会社 無接点伝送装置
WO2009081115A1 (en) 2007-12-21 2009-07-02 Amway (Europe) Limited Inductive power transfer
JP4572355B2 (ja) * 2008-06-10 2010-11-04 セイコーエプソン株式会社 送電制御装置、送電装置、無接点電力伝送システムおよびデータ判定方法
KR101035334B1 (ko) 2009-11-11 2011-05-20 주식회사 한림포스텍 무접점 충전 시스템의 충전전압 제어 방법
JP5869497B2 (ja) 2010-02-08 2016-02-24 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 入力寄生金属の検出
JP5591262B2 (ja) 2010-06-18 2014-09-17 パナソニック株式会社 通信装置及び通信方法
US9294153B2 (en) 2010-09-23 2016-03-22 Texas Instruments Incorporated Systems and methods of wireless power transfer with interference detection
JP5670869B2 (ja) * 2010-12-22 2015-02-18 パナソニックIpマネジメント株式会社 無線電力伝送システム
JP2012244732A (ja) 2011-05-18 2012-12-10 Sony Corp 電磁結合状態検知回路、送電装置、非接触電力伝送システム及び電磁結合状態検知方法
DE102011050655A1 (de) 2011-05-26 2012-11-29 Conductix-Wampfler Gmbh Verfahren zur Erkennung eines elektrisch leitfähigen Fremdkörpers und Vorrichtung zur induktiven Übertragung elektrischer Energie
US9030161B2 (en) * 2011-06-27 2015-05-12 Board Of Regents, The University Of Texas System Wireless power transmission
JP5071574B1 (ja) 2011-07-05 2012-11-14 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
JP2013059236A (ja) 2011-09-09 2013-03-28 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
US20150073768A1 (en) 2011-11-04 2015-03-12 Witricity Corporation Wireless energy transfer modeling tool
JPWO2013133141A1 (ja) * 2012-03-08 2015-07-30 ソニー株式会社 測定方法、測定装置および測定プログラム
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
JP5967989B2 (ja) 2012-03-14 2016-08-10 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム
EP2845290B1 (en) 2012-05-03 2018-08-29 Powermat Technologies Ltd. System and method for triggering power transfer across an inductive power coupling and non resonant transmission
JP5915904B2 (ja) 2012-06-22 2016-05-11 ソニー株式会社 処理装置、処理方法、及び、プログラム
US9178361B2 (en) 2012-09-27 2015-11-03 ConvenientPower, Ltd. Methods and systems for detecting foreign objects in a wireless charging system
EP2909912B1 (en) * 2012-10-19 2022-08-10 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US10050676B2 (en) 2013-04-03 2018-08-14 Pioneer Corporation Wireless power feeding apparatus, communication method, and computer program
KR102039350B1 (ko) * 2013-05-03 2019-11-27 삼성전자주식회사 무선 전력 수신기에서 비정상 상태를 제어하기 위한 방법
JP6387222B2 (ja) 2013-08-28 2018-09-05 ソニー株式会社 給電装置、受電装置、給電システム、および、給電装置の制御方法
CN105940587A (zh) * 2013-12-03 2016-09-14 犹他州立大学 确定磁耦合器之间的物理对准
TWI506916B (zh) 2013-12-27 2015-11-01 Generalplus Technology Inc 適用於行動電源之無線充電電路及使用其之行動電源
JP6392550B2 (ja) 2014-02-10 2018-09-19 ローム株式会社 ワイヤレス受電装置およびその制御回路、それを用いた電子機器、異常検出方法
US10103584B2 (en) 2014-03-25 2018-10-16 Koninklijke Philips N.V. Wireless inductive power transfer
US9939539B2 (en) 2014-04-04 2018-04-10 Texas Instruments Incorporated Wireless power receiver and/or foreign object detection by a wireless power transmitter
US10101408B2 (en) * 2014-04-25 2018-10-16 Purdue Research Foundation Wireless position sensing using magnetic field of single transmitter
JP2017518018A (ja) * 2014-05-07 2017-06-29 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送システムにおける異物検出
US10295693B2 (en) * 2014-05-15 2019-05-21 Witricity Corporation Systems, methods, and apparatus for foreign object detection loop based on inductive thermal sensing
WO2016006441A1 (ja) 2014-07-09 2016-01-14 ソニー株式会社 受電装置、給電装置、および電子機器
US20160336816A1 (en) 2015-05-12 2016-11-17 Powermat Technologies Ltd. System and method for responding to activation of over voltage protection mechanisms during wireless power transfer
JP6650219B2 (ja) * 2015-06-25 2020-02-19 ローム株式会社 送電装置及び非接触給電システム
JP6634261B2 (ja) 2015-10-15 2020-01-22 ローム株式会社 送電装置及び非接触給電システム
KR101683651B1 (ko) 2015-10-21 2016-12-20 현대자동차주식회사 무선충전장치의 이음 저감 장치 및 방법
US10581281B2 (en) 2015-10-23 2020-03-03 Mediatek Inc. In situ coil parameter measurements and foreign objects detection
US10199881B2 (en) 2015-10-23 2019-02-05 Mediatek Inc. Robust foreign objects detection
US10361586B2 (en) * 2015-12-29 2019-07-23 Motorola Solutions, Inc. Method of wirelessly transferring power
US10530196B2 (en) 2016-02-05 2020-01-07 Texas Instruments Incorporated Methods and apparatus for power loss calibration in a wireless power system
EP3440781A1 (en) 2016-04-06 2019-02-13 Koninklijke Philips N.V. Object detection in wireless power transfer system
KR20170118571A (ko) 2016-04-15 2017-10-25 엘지이노텍 주식회사 Fo 검출 방법 및 그를 위한 장치 및 시스템
TWI606666B (zh) * 2016-04-25 2017-11-21 無線電力傳輸裝置及其金屬異物偵測線圈的結構
WO2018020876A1 (ja) * 2016-07-29 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 給電装置
KR102617560B1 (ko) * 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR102605047B1 (ko) 2016-12-08 2023-11-24 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
KR102446894B1 (ko) 2017-08-07 2022-09-23 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
US20200235612A1 (en) 2019-01-23 2020-07-23 Mediatek Singapore Pte. Ltd. Addressing borderline foreign object detection results

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742702B2 (en) 2020-09-23 2023-08-29 Mediatek Singapore Pte. Ltd. Rapid validation of foreign object detection in wireless power transmitters
TWI836272B (zh) * 2020-09-23 2024-03-21 新加坡商聯發科技(新加坡)私人有限公司 測試無線電力發射器的異物檢測能力的方法、測試裝置和電腦可讀存儲介質
TWI759972B (zh) * 2020-11-25 2022-04-01 偉詮電子股份有限公司 無線功率傳輸系統之快速異物檢測方法與相關之無線功率發送模組

Also Published As

Publication number Publication date
US20180241257A1 (en) 2018-08-23
US10916972B2 (en) 2021-02-09
TWI710196B (zh) 2020-11-11
CN110391697B (zh) 2024-04-26
CN110391697A (zh) 2019-10-29
US20210242724A1 (en) 2021-08-05
US20190199142A1 (en) 2019-06-27
US20170117755A1 (en) 2017-04-27
US11476721B2 (en) 2022-10-18
US11527921B2 (en) 2022-12-13
US10199881B2 (en) 2019-02-05
EP3160008B1 (en) 2018-12-12
US20210057939A1 (en) 2021-02-25
US10868446B2 (en) 2020-12-15
EP3160008A1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
TWI710196B (zh) 執行異物檢測的方法和裝置
EP3664254B1 (en) Detecting foreign objects in wireless power transfer systems
TWI751472B (zh) 臨界的異物檢測結果的處理
JP6704179B2 (ja) 送電装置および無線電力伝送システム
JP6304714B2 (ja) 誘導電力伝送システムにおいて受信機を検出及び特定する方法
EP2845290B1 (en) System and method for triggering power transfer across an inductive power coupling and non resonant transmission
TWI742404B (zh) 無線功率傳輸系統之異物偵測技術
CA2981695A1 (en) Inductive power transmitter
JP5690251B2 (ja) 共鳴型ワイヤレス充電装置
KR20160143044A (ko) 무전전력전송 시스템 및 이의 구동 방법.
TWI738029B (zh) 無線功率傳輸系統之異物偵測技術
EP3869667B1 (en) Calibration of foreign object detection during changes in operating conditions
EP3009866B1 (en) Foreign object detector, power transmitter, power receiver, and wireless power transmission system