TW201937956A - 在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統 - Google Patents

在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統 Download PDF

Info

Publication number
TW201937956A
TW201937956A TW108104387A TW108104387A TW201937956A TW 201937956 A TW201937956 A TW 201937956A TW 108104387 A TW108104387 A TW 108104387A TW 108104387 A TW108104387 A TW 108104387A TW 201937956 A TW201937956 A TW 201937956A
Authority
TW
Taiwan
Prior art keywords
wtru
lbt
channel
transmission
gnb
Prior art date
Application number
TW108104387A
Other languages
English (en)
Other versions
TWI813622B (zh
Inventor
阿格翰柯梅 歐泰瑞
艾哈邁德雷札 希達亞特
漢卿 樓
陸 楊
博寇威斯 珍妮特A 史騰
李汶宜
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201937956A publication Critical patent/TW201937956A/zh
Application granted granted Critical
Publication of TWI813622B publication Critical patent/TWI813622B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Abstract

所揭露的是一種用於WTRU和gNB的LBT方法和裝置。一種方法可以包括接收gNB波束方向排程和LBT測量配置。WTRU可以對接收器進行切換,以便基於該波束方向排程來接收波束以及監視DCI。WTRU可被配置成確定是否存在用於該WTRU的傳輸,如果存在的話,則可以接收該傳輸。該傳輸可以是用於WTRU的上鏈傳輸的DCI。WTRU可以被配置成在MCOT開始接收gNB波束方向排程以及LBT測量配置。

Description

在無需特許頻段中新無線電(NR)操作使用多天線技術方法、裝置及系統
為了能使操作者使用特許輔助存取(LAA)和增強型特許輔助存取(eLAA)來補充其特許服務供應,目前業已引入了基於蜂巢的無需特許頻譜存取。這些技術將LTE(長期演進)操作擴展到了無需特許頻帶中,同時使用特許頻帶來為無需特許傳輸(例如控制通道資訊傳輸)提供協助。
所揭露的是一種用於無線傳輸/接收單元(WTRU)以及下一代節點B(gNB)的先聽候送(LBT)方法和裝置。一種方法可以包括接收gNB波束方向排程和LBT測量配置。WTRU可以對接收器進行切換,以便基於該波束方向排程來接收波束,以及監視下鏈控制資訊(DCI)。WTRU可被配置成確定是否存在用於該WTRU的傳輸,如果存在的話,則可以接收該傳輸。該傳輸可以是或者可以包括用於WTRU的上鏈傳輸的DCI。WTRU可以被配置成在最大通道佔用時間(MCOT)開始接收gNB波束方向排程以及先聽候送(LBT)測量配置。
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統100的圖式。該通信系統100可以是為多個無線使用者提供語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”和/或“STA”,其可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任何一個可被可交換地稱為UE。
通信系統100還可以包括基地台114a和/或基地台114b。每一個基地台114a和/或基地台114b可以是被配置成藉由以無線方式與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促進存取一個或多個通信網路(例如CN106/115、網際網路110、和/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、家庭節點B、家庭e節點B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104/113的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的一個或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以處於特許頻譜、無需特許頻譜或是授權與無需特許頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每一個扇區有一個。在一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個扇區使用多個收發器。例如,藉由使用波束成形,可以在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一個或多個進行通信,其可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速UL封包存取(HSUPA)。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以某種無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施可以建立使用新型無線電(NR)的空中介面116的無線電技術,例如NR無線電存取。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如IEEE 802.11(即無線保真度(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是無線路由器、家庭節點B、家庭e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可藉由使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/15進行通信,其可以是被配置成向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113和/或CN 106/115可以直接或間接地和其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113相連之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了共同通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置的系統。網路112可以包括由其他服務供應商擁有和/或操作的有線和/或無線通訊網路。例如,網路112可以包括與一個或多個RAN相連的另一個CN,其可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置成與使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成各別組件,然而應該瞭解,處理器118和收發器120也可以整合在一個電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸或接收往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在另一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成傳輸和/或接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何組合。
雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或多個藉由空中介面116來傳輸和接收無線電信號的傳輸/接收元件122(例如多個天線)。gNB 180a或任何傳輸器的天線可以是或可以包括天線陣列。在某些實施例中,提供給天線的信號可以以變化的振幅進行相移以產生傳輸波束(例如,一個或多個主瓣中的每個被定向,使得能量在一個方向上)。傳輸波束可以具有波束寬度、波束方向和波束增益等。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如NR和IEEE 802.11)來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體中存取資訊,以及將資料存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入這些記憶體(諸如位於伺服器或家用電腦(未顯示)上)。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊的位置資訊,和/或根據從兩個或多個附近基地台接收的信號定時來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以藉由任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路流覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動跟蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、計磁器、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、計磁器、氣壓計、手勢感測器、生物測定感測器和/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置來說,一些或所有信號(例如與用於UL(例如對傳輸而言)和下鏈(例如對接收而言)的特別子訊框相關聯)的接收或傳輸可以是並行和/或同時的。全雙工無線電裝置可以包括借助於硬體(例如扼流圈)或是憑藉處理器(例如各別的處理器(未顯示)或是憑藉處理器118)的信號處理來減小和/或基本消除自干擾的干擾管理單元139。在一個實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特別子訊框相關聯)的半雙工無線電裝置。
第1C圖是示出了根據一個實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 140a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於一個特別胞元(未顯示),並且可被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
第1C圖所示的CN 106可以包括行動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c,並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動處理,以及在WTRU 102a、102b、102c的初始附著過程中選擇特別的服務閘道等等。MME 162還可以提供一個用於在RAN 104與使用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的交接期間錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼處理,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括一個IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在代表的實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是有介面於分散式系統(DS)或是將訊務送入和/或送出BSS的別的類型的有線/無線網路。源於BSS外部往STA的訊務可以藉由AP到達並被遞送至STA。源自STA往BSS外部的目的地的訊務可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的訊務可以藉由AP來發送,例如在源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA的情況下。處於BSS內部的STA之間的訊務可被認為和/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些代表實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可以不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是借助傳訊動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些代表實施例中,所實施的可以是具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主通道。如果特別STA感測到/偵測到和/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,在任何指定時間都有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信(例如借助於將寬度為20MHz的主通道與寬度為20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。
超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料非成兩個串流。在每一個串流上可以各別執行反向快速傅立葉變換(IFFT)處理以及時域處理。該串流可被映射在兩個80MHz通道上,並且資料可以由執行傳輸的STA來傳輸。在執行接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支持次1GHz的操作模式。相比於802.11n和802.11ac使用的,在802.11af和802.11ah中通道操作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。依照代表實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC可以具有某種能力,例如包含了支援(例如只支持)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援多個通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包含了一個可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大共同操作頻寬。主通道的頻寬可以由STA設定和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支持2 MHz、4 MHz、8 MHz、16 MHz和/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持閒置並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
第1D圖是示出了根據一個實施例的RAN 113和CN 115的系統圖式。如上所述,RAN 113可以在空中介面116上使用NR無線電技術來與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或多個收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形處理來傳輸信號到向和/或接收信號自gNB 180a、180b、180c。由此,舉例來說,gNB 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。gNB 180a或任何傳輸器的天線可以是或可以包括天線陣列。在某些實施例中,提供給天線的信號可以以變化的振幅進行相移以產生傳輸波束(例如,一個或多個主瓣中的每個被定向,使得能量在一個方向上)。傳輸波束可以具有波束寬度、波束方向和波束增益等。在一個實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a傳輸多個分量載波(未顯示)。這些分量載波的一個子集可以處於無需特許頻譜上,而剩餘分量載波則可以處於特許頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間距和/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通信。在分立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多個作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無需特許頻帶中的信號來與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以實質同時的方式與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
每一個gNB 180a、180b、180c都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程、支援網路截割、實施雙連線性、實施NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c彼此可以藉由X2介面通信。
第1D圖所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的其他實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路截割(例如處理具有不同需求的不同PDU對話),選擇特別的SMF 183a、183b,管理註冊區域,終止NAS傳訊,以及行動性管理等等。AMF 182a、1823b可以使用網路截割處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、和/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS,以及提供下鏈數據通知等等。PDU對話類型可以是基於IP的、不基於IP的,以及基於乙太網的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)的存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)宿主PDU對話、處理使用者平面QoS、緩衝下鏈封包、以及提供行動性錨定處理等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與CN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並藉由UPF 184a、184b連接到本地資料網路(DN)185a、185b。
有鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的相應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b和/或這裡描述的一個或多個其他任何裝置。這些模擬裝置可以是被配置成類比這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個模擬裝置可以在被完全或部分作為有線和/或無線通訊網路一部分實施和/或部署的同時執行一個或多個或所有功能,以便測試通信網路內部的其他裝置。該一個或多個模擬裝置可以在被臨時作為有線和/或無線通訊網路的一部分實施/部署的同時執行一個或多個或所有功能。該模擬裝置可以直接耦合到別的裝置以執行測試,和/或可以使用空中無線通訊來執行測試。
一個或多個模擬裝置可以在未被作為有線和/或無線通訊網路一部分實施/部署的同時執行包括所有功能在內的一個或多個功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通訊網路中的測試場景中使用,以便實施關於一個或多個組件的測試。該一個或多個模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合和/或經由RF電路(例如,其可以包括一個或多個天線)的無線通訊來傳輸和/或接收資料。
為了能使操作者使用特許輔助存取(LAA)和增強型特許輔助存取(eLAA)來補充其特許服務供應,目前業已引入了基於蜂巢的無需特許頻譜存取。這些技術將LTE操作擴展到了無需特許頻帶中,同時使用特許頻帶來在無需特許傳輸(例如控制通道資訊傳輸)中進行協助。LAA只支援下鏈傳輸,而eLAA還添加了對上鏈傳輸的支援。
在某些代表實施例中,舉例來說,在以下的任一頻帶都可以實施基於NR的無需特許頻譜存取擴展:6GHz以下的無需特許頻帶和6GHz以上的無需特許頻帶(例如1GHz以下,1-6GHz和/或6GHz以上,這其中包括不同的頻帶/子頻帶,例如5GHz,37GHz,60GHz)。在某些代表實施例中可以支持NR特許輔助存取(NR-LAA)(例如藉由使用NR特許載波和/或LTE特許載波來支持)。在某些代表實施例中,所實施的可以是分立存取以及與傳統3GPP技術(例如LAA,eLAA)和其他RAT(例如6GHz以下的頻帶中的802.11ac和802.11ax或是6GHz以上的頻帶中的802.11ad和802.11ay)的共存。可以設想的是,NR無需特許存取可以支持多種部署場景(例如室內熱點、密集城市場景、鄉村場景、城市巨集胞元場景和/或高速場景等等)及並且它包括為NR定義的增強型行動寬頻(eMBB)、大規模機器類型(mMTC)以及超可靠及低潛時通信(URLLC)的用例。
特許輔助存取(LAA)在5GHz無需特許頻譜上操作。為了能與LAA部署及其他RAT共存,LAA使用了先聽候送(LBT)協定。舉例來說,在傳輸之前,傳輸實體可以在一段時間裡執行基於能量偵測(ED)的淨空通道評估(CCA),並且可以將測得的能量與能量臨界值相比較,以便確定通道是被占用還是淨空。一旦獲得通道存取,那麼傳輸實體可以在名為最大通道佔用時間(MCOT)的最大持續時間中佔用通道。所定義的LBT類別有四種:類別1類:無LBT;類別2:不具有隨機回退的LBT;類別3:具有隨機回退且具有固定大小的爭用視窗的LBT;以及類別4:具有隨機回退且具有可變大小的爭用視窗的LBT。
在類別1中:無LBT,無LBT程序由傳輸實體執行。
在類別2中:所執行的是不具有隨機回退的LBT,由此在傳輸實體執行傳輸之前感測通道閒置的時間的持續時間是確定性的。
在類別3中:用固定大小的爭用視窗執行了具有隨機回退的LBT,由此,LBT程序可以將以下程序作為它的一個組成部分。傳輸實體可以在爭用視窗內部抽取一個亂數N。爭用視窗的大小可以由N的最小值和最大值指定。爭用視窗的大小是固定的。在LBT過程中可以使用該亂數N來確定在傳輸實體在通道上執行傳輸之前感測到該通道為閒置的時間的持續時間。
在類別4中:用可變大小的爭用視窗來執行具有隨機回退的LBT,由此,LTE程序可以將以下程序作為它的一個組成部分。傳輸實體可以在爭用視窗內部抽取一個亂數N。爭用視窗的大小可以由N的最小值和最大值指定。當抽取亂數N時,傳輸實體可以改變爭用視窗大小。在LBT過程中可以使用亂數N來確定傳輸實體在藉由通道執行傳輸之前感測到通道閒置的時間的持續時間。
如果裝置可以執行隨機回退,那麼在表1中可以定義了不同的通道存取優先順序類別以及相應的參數。p可以表示優先順序類別索引。推遲持續時間可以包括持續時間,之後緊跟著的是個連續時槽持續時間,其中每一個時槽持續時間可以是定義了爭用視窗的最小和最大大小。在超出MCOT()的時段,eNB不會在執行一個或多個LAA SCell傳輸所在的載波上繼續執行傳輸。
1 :通道存取優先順序類別
表2提供了歐洲中基於訊框的裝置的LBT需求。對於基於訊框的裝置(FBE)和基於負載的裝置(LBE)兩者來說,在5GHz頻帶中,其LBT需求都有可能需要和/或可能使用20µs的最小CCA時間,以及10ms的MCOT和最少是通道佔用時間的5%的閒置時段。假設接收天線增益G = 0 dBi,如果傳輸器上的有效等向輻射功率EIRP = 23dBm,那麼CCA能量偵測臨界值≤ -73 dBm/MHz,否則,對於不同的傳輸功率等級PH來說,該臨界值= -73(dBm/MHz)+23(dBm)- PH(dBm)。
2 :歐洲中基於訊框的裝置的 LBT 需求
隨著頻帶/頻率在頻率方面的增大(例如在毫米波頻率),NR傳輸有可能變得更加以波束為基礎,並且傳輸有可能會更具方向性。如第2圖所示,現有的LBT機制、操作和/或程序有可能使用全向傳輸,並且有可能無法正確地評估媒體。
第2圖是一個示出了代表的先聽候送(LBT)程序的圖式。第3圖是一個示出了傳輸波束和/或接收波束的代表增益發現的圖式。
在第2圖中,gNB 210可以連接到第一WTRU 102a和第二WTRU 102b。當gNB 210執行全向LBT時,如圓形所示,其有可能無法評估媒體。作為範例,該gNB 210可以藉由實施定向LBT(例如將波束1用於WTRU 102a的LBT1,以及將波束2用於WTRU 102b的LBT2)來正確感測通道。
在LBT操作中,假設波束對應性或相互性。作為範例,聽(例如用於波束接收波束成形方向和增益)可被假設成與說(例如用於波束傳輸)是相同的。在定向LBT中,傳輸和接收波束既可以具有也可以不具有相同的增益,這一點在第3圖中被示出,對此,接收波束不同於傳輸波束,並且與接收波束相關聯的增益G1不同於與傳輸波束相關聯的增益G2。在某些代表實施例中可以實施用於補償傳輸與接收增益之間的差異的程序、操作或裝置。
第4圖是一個示出了代表的下鏈特許輔助存取(LAA)輔助胞元(SCell)的類別4的先聽候送(LBT)程序的流程圖。
參考第4圖,流程圖400可以包括初始CCA程序和/或擴展CCA程序。執行回退所在的擴展CCA程序是在至少會持續20µs的初始CCA程序之後執行。CCA程序可以由傳輸實體執行,該傳輸實體可以是WTRU或gNB。
當傳輸實體處於閒置狀態410(例如WTRU、gNB和/或其他傳輸裝置處於閒置狀態和/或未執行傳輸)時,在420,傳輸實體可以檢查是否要傳輸資料。如果該回應為否,那麼傳輸實體可以返回閒置狀態410。否則,在430,傳輸實體會檢查通道是否在初始CCA時段BCCA(例如34µs)中處於閒置。如果該回應為是,那麼在440,傳輸實體可以檢查是否將要執行傳輸(例如在傳輸機會TXOP)。如果該回應為否,那麼傳輸實體可以返回閒置狀態410。否則,在450,傳輸實體可以檢查是否需要另一次傳輸。如果該回應為否,那麼傳輸實體可以返回到閒置狀態410。否則,該處理繼續至460。
在430,如果通道在初始CCA時段中並未閒置,那麼可以藉由從[0,q-1]中產生一個隨機計數器N來在460開始執行擴展CCA程序,其中q是回應於輸入(例如ACK/NACK(應答/否定應答))而經由動態回退或半靜態回退而在462更新的介於X與Y之間的爭用視窗。在470,傳輸實體可以檢查通道是否在eCCA推遲時段DeCCA(例如34µs)處於閒置。如果該回應為否,那麼可以重複檢查處理470,直至該回應為是。如果該回應為是,那麼可以在480對N進行檢查。如果N=0,那麼該處理走到440。
如果N≠0,那麼傳輸實體可以在一個eCCA時槽持續時間T(例如9µs或10µs)感測媒體。在492,傳輸實體可以檢查媒體是否繁忙。如果該回應為是,那麼該處理可以返回到470。否則,在494,N可被遞減至N-1,並且該處理可以返回到480。
雖然針對第4圖中的不同方框的回應被顯示成了“是”或“否”,但是其他肯定或否定指示/標誌(例如1位元指示符)也是可能的,這其中包括用於此類指示的第一邏輯等級“1”或第二邏輯等級“0”。
3GPP版本13定義了僅僅用於下鏈(DL)的LAA,也就是說,LBT過程只能由gNB執行。3GPP版本14的一個主要特徵是引入了包含用於LAA的上鏈(UL)操作的增強型特許輔助存取(eLAA)。在3GPP版本15中,該技術被在題目“Further Enhanced LAA(feLAA)”下被繼續研發。
在LAA中,發現參考信號(DRS)可以包括和/或由用於胞元偵測、同步和/或無線電資源管理的同步信號和參考信號組成。DRS可以包括一個或多個CSI參考信號(CSI-RS)(例如在配置了CSI-RS的情況下)。LAA DRS可以在一個名為DRS測量定時配置(DMTC)的時間視窗(例如週期性發生的時間視窗)內部傳輸,該DMTC具有6ms的固定持續時間,40、80或160ms的可配置時段,和/或受LBT制約。網路可以在DMTC時機內部的任何子訊框中嘗試DRS傳輸。
作為範例,可以考慮到的是,某些實施例可以藉由為6GHz以下和6GHz以上的無需特許頻帶(例如5GHz,37GHz,60GHz)使用不同參數配置來實施。還可以考慮實施某些藉由雙連接以及基於CA(載波聚合)而使用5G NR錨點的聚合處理而將NR-LAA錨定到傳統LTE載波所在的實施例。更進一步,可以考慮到的是,某些實施例可以藉由在無需特許頻譜中使用分立NR操作來實施。
可以考慮的是,隨著波束變得更具方向性,針對基於波束的傳輸/接收的定向LBT機制將會考慮定向傳輸中的劣化的隱藏節點和暴露節點的問題。
NR允許在符號或微時槽的粒度上來切換波束。一個可能的傳輸場景可以是gNB在MCOT內部切換波束。表3顯示了用於NR的參數配置以及相關聯的符號持續時間。

表3:用於3GPP NR的參數配置
如果波束是在符號粒度上切換的(作為範例,如特許NR中所支援的那樣),那麼通道中的能量有可能變得不穩定。
第5圖是一個示出了因為兩個波束B1和B2之間的快速波束切換而導致通道中的能量不穩定的範例的圖式。
參考第5圖,如果執行快速切換,那麼對於某些參數配置(例如小至4.46或2.23µs)來說,不穩定的能量對測量CCA的裝置而言有可能會存在問題。問題可能在於,藉由對通道在某個時段的能量進行測量來估計功率的裝置/WTRU有可能會錯誤地將該能量估計成是其本應具有的大小的一部分(例如一半),並且有可能會錯誤地推斷/確定該通道是或者有可能是可用的,例如在ED(能量偵測)臨界值是在4µs的間隔上以90%的機率估計的2dB(如在802.11中那樣)以及在測量過程中以2dBm的能量接收到兩個波束B1和B2的情況下。
作為另一個範例,如果所使用的參數配置是2.23µs,並且WTRU在4µs內測量到能量,那麼WTRU有可能會錯誤地推斷/確定測得的能量是-1dBm(被2除或者被3dB修改)。在這裡揭露某些用於減小發生這種情況的機率的代表實施例。在不同的代表實施例中可以實施用於在切換新波束之前在新波束上執行定向LBT的程序、操作和/或裝置。在這裡還揭露了用於在切換前啟用逐個波束的LBT的定時和/或持續時間的方法、程序和/或操作。
LBT暗示了接收波束上的偵聽/接收程序以及傳輸波束上的通話/傳輸程序。在理想情況下,為使LBT程序有效,接收和傳輸波束具有相同的視軸和波束寬度(例如指向相同的方向),並且具有相同的增益。這一點可以在波束具有相互性和/或具波束對應性的情況下實現。
如第3圖所示,如果沒有波束對應性或者非相互的波束,那麼如第3圖所示,那麼可以使用LBT過程的修改來顧及傳輸與接收波束的差異。與傳輸波束相對應的最佳接收波束可以用一個程序來識別,並且作為範例,可以使用該程序來補償LBT臨界值過程中的傳輸波束和接收波束增益中的差值,由此確保LBT有效防止傳輸波束對媒體產生負面影響。實際上,如果存在已有傳輸,那麼執行LBT有可能會顯現該已有傳輸,並且可以阻止執行LBT的節點傳輸其自身信號以及破壞已有傳輸。
定向LBT可被設計成具有所揭露的有一個或多個特徵。可以想到的是,這些特徵既可以被單獨實施,也可以以任一組合方式被一起使用,由此實現定向LBT。
針對每一個傳輸波束或是一個或多個傳輸波束集合,可以啟用多個獨立的LBT過程。在一個範例中,可以為同時傳輸的每一個傳輸波束或傳輸波束集合指派各別的LBT過程。可以想到的是,任何數量的可配置LBT過程都可以被樣例化和/或執行,並且可以取決於WTRU能力。
針對LBT程序的相應接收波束可以被識別。可以想到的是,如果波束對應性成立,那麼傳輸和接收波束可以是相同和/或實質相同的。
針對每一個LBT過程,可以配置功率測量程序。在一個範例中,該配置(有時也被稱為LBT測量配置)可以在符號、微時槽和/或時槽的基礎上啟用時間限制。
0-dB增益CCA臨界值可以藉由接收波束與傳輸波束之間的增益差來修改,以便發現傳輸波束對所估計的接收功率和/或傳輸波束增益的確切影響,由此補償相對於0dB增益(例如dB增益天線)設定的CCA臨界值。
作為範例,如果在接收波束與傳輸波束之間沒有對應性,那麼可以藉由實施一個WTRU程序來識別最佳接收波束。在某些代表實施例中,在傳輸(例如任何傳輸)之前,在查閱資料表中可以識別出針對指定傳輸波束的最佳接收波束。
對於CCA臨界值修改而言,作為範例,傳輸器/接收器(例如任何WTRU/gNB/eNB配對)的接收波束增益和傳輸波束增益可以藉由實施一個WTRU程序來估計。在某些代表實施例中,這些增益可以是從查閱資料表中獲取的。
第6圖示出了用於基於波束的傳輸的定向LBT。為了啟用多個LBT過程,在610,WTRU可以接收來自gNB或其他網路實體的傳訊(RRC(無線電資源控制)、MAC CE(MAC控制元素)或L1(例如實體層)傳訊),其可以指示或顯性包含:(1)WTRU可以實施的LBT過程的數量,(2)用於一個或多個LBT過程(例如每一個程序)的WTRU傳輸波束和WTRU接收波束,以及(3)用於一個或多個LBT過程(例如每一個LBT過程)的LBT功率測量配置。
在620,WTRU可以從接收到的傳訊中識別出用於LBT過程的接收波束。在630,WTRU可以可選地估計接收和傳輸波束的增益。
在640,WTRU可以基於所接收的配置來測量用於LBT過程的功率。針對LBT CCA測量而言,在650,WTRU可以調整用於0dB增益補償以及用於接收與傳輸波束之間的增益差的CCA臨界值。
在660,WTRU可以基於功率測量和經過調整的臨界值來確定媒體是否空閒。如果CCA成功(例如媒體是空閒),那麼在670,WTRU可以傳輸其資料。然而,如果CCA失敗(例如媒體繁忙),那麼在680,WTRU可以推遲其傳輸。
附加參數同樣是可以發送的,作為範例,該附加參數可以是可供gNB(和/或其他存取點和/或網路實體)在某個時間的持續時間(例如時槽、微時槽、符號和/或符號群組)切換其自身的接收波束的排程。在一個範例中,具有三個波束的gNB可以發送波束排程{b1, b1, b2, b2, b3, b3, b1, b1, b1, b2, b2, b3, b3, b1}。該資訊能使WTRU知曉其自身的傳輸波束可以處於活動狀態的可能的持續時間和/或促成LBT功率測量。
對於LBT過程(例如每一個LBT過程)來說,gNB/WTRU或其他傳輸器/接收器可以發送一個用於確定LBT過程何時會活動地測量通道中的功率的配置。藉由為LBT過程(例如每一個LBT過程)啟用具有時間限制(例如基於符號/微時槽或時槽)的能量測量,可以更準確地估計用於特定傳輸的通道中的能量。
第7圖是一個示出了不具有波束聚合的代表LBT時域測量限制的圖式。
參考第7圖,WTRU和/或gNB可以跨特定波束傳輸的多個不連續的實例(採用固定樣式)執行LBT(例如藉由使用一個用於指示LBT功率測量將被停止、重設和/或在時間上被縮短(如果波束發生時間之間的持續時間過長)的參數)。該參數可以取決於都普勒效應/概況和/或網路的干擾概況。舉例來說,與第一波束B1相關聯的第一LBT過程1的測量時間可以是一組非連續間隔,並且與第二波束B2相關聯的第二LBT過程2的測量時間可以是另一組相應和插入的非連續間隔。
第8圖是一個示出了具有波束聚合的代表LBT時域測量限制的圖式。
參考第8圖,WTRU或gNB可以設定一個可傳輸波束的最小持續時間,以確保為CCA執行有效的功率測量(波束聚合)。作為範例,可以想到的是使用與2.23µs的符號持續時間相對應的240kHz的參數配置。WTRU/gNB可以將系統配置成在單個波束內部連續傳輸最少4個符號,以便確保可以有效地測量波束能量(作為範例,以便啟用波束聚合)。舉例來說,用於與第一波束B1相關聯的第一LBT過程1的測量時間以及用於與第二波束B2相關聯的第二LBT過程2的測量時間可以使得波束B1的兩個或更多測量間隔是連續的,其後跟隨的可以是用於波束B2的兩個或更多測量間隔。這一系列的測量間隔是可以重複的。
自含時槽是gNB可在與WTRU資料傳輸相同的時槽內向WTRU傳輸ACK的時槽(例如用於減小傳輸潛時)。這樣則會要求gNB在一個或多個波束上執行針對WTRU的傳輸。在一個實施例中,由於ACK的短性質,gNB可以在沒有LBT的情況下執行傳輸。在一個實施例中,gNB可以在傳輸ACK之前執行定向LBT。這可以在接收到資訊之後(例如緊接在其後)和/或在切換到另一個波束之前執行(例如,每一個波束的自含傳輸可以在切換到另一個波束之前完成)。在某些代表的實施例中,gNB可以在時間視窗的持續時間中將ACK聚合到多個波束(作為範例,這樣做允許了排程ACK傳輸的靈活性)。這樣做可以允許gNB在波束因為CCA程序而被視為繁忙的情況下切換波束。在一個實施例中,因為自含傳輸而期望瞬時的ACK的WTRU可被配置成具有一個附加時間視窗,其中在WRTU假設/確定傳輸失敗成功之前,WTRU會期待ACK。該程序可以支援最佳努力的自含時槽傳輸,其中,WTRU既有可能接收也有可能不接收ACK(例如因為gNB無法存取通道)
第9圖是一個示出了針對因波束切換在通道中產生的能量的代表測量程序(例如用於確定該通道繁忙還是淨空)的圖式,其中臨界值可被設定成等於2。
參考第9圖,gNB可以指定執行CCA測量的持續時間和/或測量集合,其中該測量集合可以與臨界值相比較,以便識別附近是否存在基於波束的干擾源。在一個範例中,LBT功率配置可以測量三個不同等級。(a)在所有時間(例如在所有符號上),(b)在偶數符號上(例如僅僅偶數符號),或者(c)在奇數符號上(例如僅僅奇數符號)。依照測量結果,如果僅僅使用配置(a)(例如在所有符號上)來執行測量,那麼即使通道並未淨空,該通道也可被設定成淨空。舉例來說,在使用配置(b)時(例如在偶數符號s0和s2上測量功率),通道可被設定成繁忙,而在使用配置(c)時(例如在奇數符號s1和s3上測量功率),通道可被設定成淨空。在某些代表實施例中,WTRU可以使用測量組合(例如測量準則和/或時間平均準則)來做出CCA決定。
對於NR-U傳輸來說,LBT功率配置LBTConfig(例如對於符號/微時槽、時槽粒度上的時域測量限制和/用於波束傳輸的聚合等級)可被用信號通告給WTRU,以便實施LBT CCA。在一個範例中,LBTConfig可以包含或者可以包括MeasRestrictionConfig-time-channel(測量限制配置-時間-通道)和/或MeasRestrictionConfig-slot/mini-slot/symbol(測量限制配置-時槽/微時槽/符號),以指定參數,從而啟動通道的時域測量限制的配置。
為了啟用定向CCA測量,CCA臨界值可以藉由波束(例如接收波束)增益而被修改,從而確保0dB增益臨界值(也就是在假設0dB增益的情況下估計的臨界值)得到保持以及LBT過程是定向的。此外,CCA臨界值還可以藉由用於LBT的接收波束與用於傳輸的波束之間的增益差來修改。對於波束聚合來說,該增益差可以為零。可以想到的是,CCA臨界值可以藉由任一修飾符來修改。以下顯示了同時使用兩個修飾符的範例:
CCA能量偵測臨界值假設傳輸天線增益G= x dBi以及接收與傳輸天線之間的差值G_delta = y dBi:
如果在傳輸器的EIRP = 23dBm,那麼臨界值≤- 73-x-y dBm/MHz
否則(不同的傳輸功率等級PH)
臨界值 = -73(dBm/MHz)+ 23(dBm)- PH - x - y(dBm)
為了發現傳輸天線增益,WTRU/gNB可以發起一個增益發現程序。該增益發現程序可以確定WTRU接收波束(Rx波束)與WTRU傳輸波束(Tx波束)之間的增益差。為了實施該增益發現程序,WTRU/gNB可以在波束管理操作期間使用全向天線來向接收器發送傳輸,並且可以請求關於使用了以下的任何一項的接收功率度量的資訊和/或指示:訊噪比(SNR)、訊擾雜比(SINR)、接收信號強度指示(RSSI)、參考信號接收功率(RSRP)和/或接收通道功率指示符(RCPI))等等。在實際的波束管理處理期間,基於波束的回饋(例如每一個基於波束的回饋)都可以包含關於接收功率度量(例如SNR、SINR、RSSI、RSRP和/或RCPI等等)的測量。全向傳輸與基於波束的傳輸之間的差值(以dB為單位)或比值(以線性單元為單位)可被估計成是所使用的增益(x)。可以想到的是,在一個實施例中,傳輸器可以指示關於參考(全向)傳輸的傳輸,並且接收器可以執行估計並回饋增益或增益表示/指示(例如實際值或是量化的碼本等等)。
第10圖和第11圖是示出了用於傳輸波束和接收波束的代表增益發現處理的圖式。
WTRU/gNB可以預先估計(例如預先確定)和/或用信號通告增益資訊(例如增益值和/或增益值指示)以及傳輸/接收波束關聯(對於沒有波束對應性的場景而言),並且該增益這些資訊可被置於查閱資料表中,以供WTRU/gNB在LBT期間將其用於CCA估計。可以想到的是,該增益發現程序可以是在用於波束管理的初始波束發現過程中和/或在任何時間各別地執行的各別的程序。
在這裡將會詳細描述用於傳輸波束的增益發現程序。現在參考第10圖,增益發現可以包括使用全向波束B2和WTRU傳輸(Tx)波束B1來傳輸一個或多個SRS(探測參考信號)傳輸,以及接收該SRS傳輸的RSRP測量。NR可以基於WTRU在先前時間實例中傳輸的SRS來指示波束發現回饋信號(例如SRS資源指示符(SRI)),其中所配置的每一個SRS資源都與至少一個UL Tx波束/預編碼器相關聯。藉由將接收到的功率度量添加到回饋(例如SRI)中,WTRU能夠估計其在指定方向上的增益。
如果UL波束管理程序是gNB引導的,那麼gNB可能需要指示專門用於全向傳輸的SRS資源。在這種情況下,WTRU可以採用全向方式來傳輸SRS。gNB可以(a)使用該SRS來估計其他所有波束的增益,以及將該增益作為回饋的一部分來進行回饋;和/或(b)確保該回饋包含功率度量,以及顯性或隱性地指示該回饋用於全向傳輸,以便允許WTRU估計增益。
如果UL波束管理程序是WTRU確定的且是gNB透明的,那麼WTRU可以將特定的SRS傳輸指示成是全向的,以便確定gNB可以:(a)用此來估計其他波束(例如所有其他波束)的增益,以及將該增益作為回饋的一部分來進行回饋,和/或(b)確保該回饋包含功率度量,和/或顯性或隱性地指示該回饋用於全向傳輸(作為範例,以便允許WTRU估計該增益)。
在某些代表實施例中,一旦接收到關於可被使用的波束的波束發現回饋值集合,則WTRU可以請求gNB發起一個其請求使用全向天線進行SRS傳輸的增益估計所在的程序。
可以想到的是,gNB可以與所選擇的一個或多個WTRU執行相同程序,以便估計其波束增益。
現在參考第11圖,為了發現接收天線增益,WTRU可以請求包含了CSI-RS的gNB傳輸,其中WTRU可以將接收天線設定到全向波束或準全向波束B2,以便接收RX2。更進一步,gNB傳輸包含了CSI-RS,其中WTRU可以將接收天線設定到定向波束B1,以便接收RX1。技術人員可以理解的是,藉由使用(例如藉由改變)信號的相位和/或傳輸功率,可以將一個或多個傳輸波束方向設定到天線陣列或多陣列結構中的一個或多個特別天線,並且一個或多個接收波束的方向可以藉由使用(例如藉由改變)用於接收信號的天線陣列或多陣列結構中的一個或多個特別天線的加權來設定。
第12圖是用於傳輸波束的增益發現程序的流程圖。在1210,WTRU可以向gNB發送增益校準SRS。對於該傳輸,WTRU可以為其使用全向波束或準全向波束。被發送的SRS可以向gNB指示增益校準(例如用於確保功率度量回饋)。在1220,WTRU可以向gNB發送一個或多個增益波束SRS。在1230,WTRU可以從gNB接收包含了功率度量的增益校準SRI。在1240,WTRU可以接收來自gNB的波束SRI。在1250,WTRU可以估計與一個或多個增益波束SRS相關聯的一個或多個相應波束的增益。在1260,WTRU可以為LBT使用LBT過程測量限制,作為範例,其可以在以下任一者上:時槽、符號和/或微時槽等級。在1270,WTRU可以藉由為LBT估計的增益來修改CCA臨界值。
雖然所揭露的是基於為LBT確定/估計的增益來修改CCA臨界值,然而在某些代表實施例中,通道功率測量可以與CCA臨界值相比較。在此類實施例中,通道中的CCA臨界值和/或測量可以基於所估計/確定的增益來修改。
在特許NR傳輸中,改變每一個符號上的傳輸波束的支援被提供。為了在NR-U中啟用該處理,在切換波束之前可以執行定向LBT。這種處理可以使用以下的任何一項來實施。
一個或多個LBT過程或每一個LBT過程可以在時間視窗(例如行動視窗)都和/或期間運行連續的CCA功率測量。該行動視窗的持續時間可以取決於所使用的波束(例如基於相應LBT過程的測量配置,例如基於用於逐個波束的LBT過程的時間排程)。
第13圖是示出使用波束切換的代表的連續LBT測量的圖式,其中在多個波束b1和b2上可以發送多個符號s0, s1, s2 ... s7。
參考第13圖的第一個範例,用於波束b1的連續LBT過程可以包括以下的任何一項:(1)在符號s0上進行用於符號s1的LBT測量;(2)在符號s1上發送DCI;(3)在符號s1上進行用於符號s4的LBT測量;(4)在符號s4上進行上鏈傳輸;和/或(5)在符號s4上進行用於符號s5的LBT測量等等。
用於波束b2的連續LBT過程可以包括以下的任何一項:(1)在符號2上進行於符號s3的LBT測量;(2)在符號s3上進行用於符號s6的LBT測量;和/或(3)在符號s6上進行用於符號s7的LBT測量等等。
在第13圖、第14圖和第15圖中,某些符號是被散列(hashed)顯示的,由此示出用於這些符號的相應的LBT測量確認通道在這些符號期間是清空/空閒可供發送的。其他未散列顯示的符號則示出用於這些符號的相應LBT測量確認通道在這些符號期間並未淨空/空閒(例如繁忙)。
參考第13圖的第二個範例,用於波束1的連續LBT過程可以包括以下的任何一項:(1)在符號s0上進行用於符號s1的LBT測量;(2)在符號s1上進行用於符號s4的LBT測量;(3)在符號s4上進行用於符號s5的LBT測量;在符號s4上發送DCI;(4)在符號s4上進行用於符號s5的LBT測量;(5)在符號s5上進行上鏈傳輸;和/或(6)在符號s6上進行用於符號s7的LBT測量。
第14圖是示出了具有波束切換的代表的瞬時LBT的圖式,其中在多個波束b1...bN上可以發送多個符號s0, s1, s2 ... sN。在某些代表的實施例中,任何數量的符號和/或波束都是可能的。
參考第14圖,一旦接收到來自gNB或其他網路實體的觸發(例如DCI和/或任何控制信號),則可以發起一個LBT過程、某些LBT過程或每一個LBT過程。這種情況可能會使用和/或需要以下各項之間的延遲:(1)接收DCI、LBT功率測量和/或上鏈傳輸。
在第14圖的第一個範例中,用於波束b1的瞬時LBT過程包括以下的任何一項:在符號s1上發送DCI;(2)在符號s4上進行用於符號s5的LBT測量;(3)在符號s5上進行上鏈傳輸。
在第14圖的第二個範例中(其包括9個符號s0、s1、s2、...、s8),用於波束b1的瞬時LBT過程可以包括以下的任何一項:(1)在符號s4上接收DCI;(2)在符號s5上進行用於符號s8的LBT測量;和/或(3)在符號s8上進行可能導致附加傳輸延遲的上鏈傳輸。
gNB可以藉由發送信號來指示在時槽中使用的波束。在一個範例中,波束資訊可以作為時槽格式指示符(SFI)信號的一部分被發送,該信號可被用於指示時槽中的符號是上鏈、下鏈還是靈活的(例如既可以用作上鏈也可以用作下鏈)和與一個或多個時槽(例如每一個時槽)相關聯的特定波束。在一個範例中,波束資訊可以作為可以用於指示波束排程(例如與一個或多個時槽(例如每一個時槽)相關聯的一個或多個特定波束)的各別信號(例如波束格式指示符BFI信號)的一部分來發送。可以想到的是,如果可以將波束用於一個以上的時槽中的傳輸(例如波束聚合),那麼作為範例,BFI可以用信號通告關於波束何時發生變化的資訊,以便減小(例如僅僅減小)傳訊負擔。在一個範例中,gNB可以發送關於未決的波束變化以及將要發生該變化的時間(例如符號、時槽或微時槽)的指示。其可以在RRC信號、專用信號中發送,和/或可以作為廣播DCI(例如群組共同DCI)的一部分發送,和/或可以被個別發送給WTRU。
第15圖是示出了使用SFI或BFI的代表的波束資訊輔助的LBT的圖式。
參考第15圖,一旦接收到波束排程資訊,則WTRU可以在恰當時間開始LBT測量。在第15圖的第一個範例中,用於波束b1的波束輔助LBT過程可以包括以下的任何一項:(1)在符號s1上發送DCI;(2)在符號s1上進行用於符號s4的LBT測量;(3)在符號s4上進行上鏈傳輸;和/或(4)在符號s4上進行用於符號s5的LBT測量。
在第15圖的第二個範例中,用於波束b1的波束輔助LBT過程可以包括以下的任何一項:(1)在符號s1上進行用於符號s4的LBT測量;(2)在符號s4上發送DCI;(3)在符號s4上進行用於符號s5的LBT測量;和/或(4)在符號s5上進行上鏈傳輸。
SFI(例如波束資訊)可以包括可用於波束切換的波束順序,例如{b1, b1, b2, b2, b1, b1, b2, b2}。雖然所揭露的SFI波束切換使用了兩個具有特別順序的波束,但是包含任何波束順序、任何數量的波束和/或任何波束序列的SFI都是可以提供的。
對於多波束傳輸來說,有可能存在多個場景。
第16圖是示出了往/來自單個傳輸/接收點(TRP)的代表的多波束傳輸的圖式。
參考第16圖,在第一個場景中,多個波束可被同時使用。在這種情況下,針對兩個或更多波束(例如每一個波束),可以獨立實施載波感測機制。在開始傳輸時(例如在通道上的傳輸之前)可以執行一次感測程序。可以想到的是,該多波束傳輸既可以針對單個TRP,也可以針對多個TRP。在某些代表實施例中,傳輸和接收波束可以是相互的,並且可以形成波束配對BP1(作為範例,包括傳輸波束TB1和接收波束RB1)、BP2(作為範例,包括傳輸波束TB2和接收波束RB2)以及BP3(作為範例,包括傳輸波束TB3和接收波束RB3)。
在這個代表過程中,WTRU可以接收來自gNB的傳訊(例如RRC和/或L1傳訊),該傳訊可以指示即將到來的gNB波束排程、可供WTRU實施的LBT過程的數量和/或用於一個或多個LBT過程(例如每一個LBT過程)的相關LBT時域測量限制(和/或頻域限制)。WTRU可以在一個或多個傳輸波束TB1、TB2和TB3(例如每一個波束)上監視實體下鏈控制通道(PDCCH)。可以想到的是,gNB可以在一個或多個波束TB1、TB2和TB3(例如每一個波束)上發送獨立的PDCCH,並且可以在所有傳輸波束TB1、TB2和TB3或是其子集上分配資源。一旦成功解碼了PDCCH(例如在一個或多個傳輸波束TB1、TB2和B3上(例如在每一個波束上)),則WTRU可以基於針對相應波束TB1、TB2和TB3的LBT過程和/或參數而在接收波束RB1、RB2、RB3上獨立執行LBT(例如LBT1、LBT2和LBT3)。WTRU可以在被識別為淨空的波束上執行傳輸,並且不會在被識別為繁忙/非淨空的波束上執行傳輸。可以想到的是,WTRU傳輸串流以及gNB解碼串流的方式可以取決於所使用的傳輸方案。
在一個選項中,每一個波束以及與之關聯的LBT過程會向gNB發送獨立的非相干資料(例如藉由使用多串流MIMO傳輸來發送多個獨立資料串流)。在這種情況下,gNB可以藉由偵測波束上的能量以及能夠解碼WTRU特定參數(例如DMRS(解調參考信號))來識別傳輸成功。
在一個選項中,每一個波束以及與之關聯的LBT過程可以向gNB發送相關的非相干資料(例如藉由使用循環移位分集(CSD))。舉例來說,它可以採用其不相干的方式發送相同資料,並且可以因而提高可靠性(例如藉由使用循環移位分集)。
在一個選項中,WTRU可以在多個波束上發送相干資料(例如藉由使用MIMO傳輸)。舉例來說,它可以發送多個資料串流,其中一個或多個流(例如每一個流)是從相同的資料來源(例如空時塊)中導出的。
在一個選項中,WTRU可以向gNB發送用於識別所使用的波束的指示。
第17圖是示出了由TRP使用多個波束來對多個WTRU進行傳輸的圖式,其中該多個波束可能受到其他類型的RAT(例如包含了第一和第二存取點(AP)AP1和AP2的Wi-Fi網路)的影響。
參考第17圖,在第二個場景中,在MCOT內部可以使用多個波束B1和B2,其中在每一個實例都會有單個波束傳輸。舉例來說,在第一時間實例中可以將波束B1發送到WTRU1,並且在不同的第二時間實例可以將波束B2發送到WTRU2。在這種情況下,針對這些波束(例如每一個波束),可以獨立實施載波感測機制。在這種情況下,在將波束用於傳輸之前(例如恰好在此之前)可以執行載波感測機制,由此確保媒體在傳輸期間不會被各別實體獲取。
考慮這樣一個場景,其中NR TRP使用不同的波束B1和B2來執行針對多個WTRU(例如WTRU1和WTRU2)的傳輸,並且在媒體中有可能存在Wi-Fi AP AP1和AP2,作為範例,假設WiFi中的CCA測量持續時間可以是4µs,其小於某些參數配置的符號持續時間(表3中的μ=0,1,2,3和4),那麼當在波束B1和B2之間切換時,該媒體有可能會丟失。在該範例中,在切換到新的波束之前可以執行定向LBT過程。
第18圖是一個示出了用於波束切換的多個LBT的圖式,其中在波束切換前是類別2的LBT。
第18圖的第一列顯示的是波束排程,該波束排程可以包括具有相應LBT過程即LBT過程1和LBT過程2的多個波束b1和b2之間的切換。第18圖的第二和第三列顯示了用於第一波束b1上的LBT過程1和第二波束b2上的LBT過程2的可能程序。在所描述的實施方式中,LBT過程1和/或LBT過程2可以由類別4的LBT組成。當類別4的LBT過程成功時,傳輸器可以發出可能帶有前言的無線電請求(RRQ)。
參考第18圖,為了限制隱藏節點數量,可以使用基於訊框的保留系統,在該系統中,傳輸器可以發送無線電請求(RRQ),並且接收器可以發送具有關於該傳輸的MCOT的資訊的無線電回應(RRS)。在一個實施例中,RRQ/RRS可以包含或包括所識別的任何RAT的一個或多個前言,以便協助多RAT通道保留,舉例來說,如果發現Wi-Fi網路,那麼將Wi-Fi前言作為RRC RRQ消息的一部分來發送,以便指示該網路繁忙。
在一個範例過程中,gNB可以執行全面定向的LBT,該LBT可以是在獨立波束b1和b2(例如每一個獨立波束)上進行的類別4的LAA LBT,其中作為範例,該波束b1和b2在傳輸之前使用的是不同的LBT過程(例如LBT過程1和LBT過程2)。gNB可以向代表的WTRU發送RRQ,並且可以藉由請求RRS來使該gNB能在MCOT中淨空該通道。作為回應,WTRU可以向gNB發送RRS。
在任何波束切換開始,gNB都可以執行LBT,並且可以在媒體空閒的情況下執行傳輸。應該想到的是,在這種情況下,LBT可以是全面定向的LBT(例如類別4的LAA LBT)或是具有固定持續時間的定向LBT(例如類別2的LAA LBT)。gNB可以具有多個波束b1和b2(例如藉由運行一個或多個LBT(例如一個或多個LBT過程)),以使gNB能夠存取一個或多個媒體空閒的波束。可以想到的是,gNB可以指示波束排程(作為範例,包括波束順序),以使WTRU能夠獲知下一次傳輸會在何處發生。
為了減少暴露節點數量以及改善媒體的重複使用,可以為每一個WTRU提供用於識別它們自己和/或相鄰胞元的群組共同(GC)PDCCH之資訊,以便區分來自其胞元和/或相鄰胞元的下鏈訊務,以及相應地調整其CCA臨界值。
為了能在不需要顯性傳訊的情況下識別波束,在波束(例如每一個波束)上可以發送一個“可識別的”能量發射樣式,由此區分期望信號(用於波束管理)和干擾。
為了限制旁瓣對CCA測量的影響,在系統中可以添加一個附加的全向天線。在該全向天線上接收的能量可被處理,以便顧及處於天線視軸中的能量,並且處於天線視軸以外的能量可被從總能量中減去,由此在沒有旁瓣的情況下估計能量。
gNB可以為目標在/針對一個或多個WTRU的一個或多個Tx(傳輸)波束執行LBT,其中至少一個Tx波束可以以WTRU為目標。在為Tx波束執行了成功的LBT過程之後,gNB可以在該波束內部傳輸PDCCH。如果gNB不知道WTRU側的通道存取(例如,gNB有可能不知道WTRU是否成功完成了LBT過程),那麼gNB可以傳輸多個PDCCH,其中每一個PDCCH都是在用於該WTRU的波束內部傳輸的。該程序(例如為WTRU傳輸多個PDCCH)將會是有益的,因為其會導致WTRU發起由該WTRU執行的上鏈傳輸。
為了進一步說明gNB行為和WTRU行為,在這裡揭露了以下的通用範例。gNB和WTRU可以參與使用了可提供相互性的分時雙工(TDD)的DL傳輸和UL傳輸。可以想到的是,gNB和WTRU配備的陣列有可能具有不同的大小。可以想到的是,在執行了一個或多個基於波束的操作之後(例如使用NR規範),gNB可以獲知用於WTRU的最佳波束配對集合可以如下所示(依照品質度量排序):波束(i1 , j1 )、波束(i2 , j2 )以及波束(i3 , j3 )等等,其中(i1 , j1 )是最佳波束,(i2 , j2 )是次最佳波束等等。可以想到的是,i1 、i2 和i3 通常可以具有不同的值(gNB側的不同波束),同樣,j1 、j2 和j3 也可以具有不同的值(WTRU側的不同波束)。雖然在該波束操作中考慮了相互性,但是由於先聽候送程序,gNB可以為淨空的定向LBT獲取的最佳波束(用於發送下鏈通道(例如PDCCH和/或實體下鏈共用通道(PDSCH)等等)可能不是WTRU在自己側為空閒的定向LBT獲取的波束(例如在WTRU嘗試發送一個或多個上鏈通道(例如(實體上鏈控制通道/實體上鏈共用通道)(PUCCH/PUSCH))的時候)。
在一個實施例中,例如,如果向WTRU傳輸多個PDCCH,那麼gNB可以為一個或多個波束(例如每一個波束)指派各別的PDCCH搜尋空間。每一個PDCCH都可以使用不同的波束。WTRU可以跨多個搜尋空間執行偵測,並且可以偵測一個或多個PDCCH(作為範例,這一點取決於波束的通道品質和/或WTRU是否相應地改變其接收波束)。藉由在PDCCH搜尋空間內部偵測PDCCH,WTRU可以將搜尋空間與波束配對相關聯,和/或WTRU可以確定使用哪一個波束來執行後續接收(關於一個或多個其他PDCCH和/或PDSCH的接收)和/或一個或多個後續傳輸(關於一個或多個PUCCH或PUSCH的傳輸)。
WTRU可以在一個或多個預先配置的搜尋空間內部執行PDCCH偵測。一個PDCCH搜尋空間可以與一個或多個波束相關聯。在搜尋空間內部偵測到一個PDCCH的WTRU可以預備在上鏈中(如果指派了任何PUCCH或PUSCH)使用與偵測到的PDCCH相關聯的相同波束來執行傳輸(例如在所排程的PUCCH或PUSCH中)。WTRU可以使用與偵測到的PDCCH相關聯的相同波束來執行定向LBT,並且如果成功完成,則WTRU可以在所指派的資源內部傳輸任何被排程的PUCCH和/或PUSCH。可以想到的是,藉由以上範例,gNB已經成功地為所有的三個波束{(i1 , j1 ), (i2 , j2 ), (i3 , j3 )}執行了定向LBT,並且已經傳輸了多個PDCCH,其中每一個PDCCH都可以處於與其中一個波束相關聯的資源內部。由於WTRU側的接收條件,WTRU可以偵測到一個波束,並且偵測到的波束既有可能是也有可能不是最佳波束(作為範例,因為WTRU側的潛在干擾有可能會隨著波束的不同而不同)。作為範例,可以想到的是,WTRU會在波束(i2 , j2 )的搜尋空間內部偵測到PDCCH。如果PDCCH發起上鏈傳輸(例如指示了表明WTRU可以使用特定PUCCH資源的DCI),那麼WTRU可以使用所指示的資源。當gNB偵測到WTRU的PUCCH和/或PUSCH時,其相當於向gNB指示WTRU能夠偵測到三個波束中的哪一個(例如波束(i2 , j2 ))。
在一個實施例中,在被排程的PUCCH資源和/或PUSCH資源內部,gNB可以監視用於最初將PDCCH傳輸到WTRU的所有波束。在該初始傳輸之後,gNB可以獲知(例如確定)為WTRU使用哪一個波束可確保在WTRU側成功完成LBT。gNB可以使用以下任何程序來獲知這一點(確定使用哪個波束來提供成功的LBT操作):
在第一個過程中,gNB可以在WTRU期望用於發送PUCCH和/或PUSCH的波束(例如每一個波束)內部監視指派給WTRU的所有上鏈資源。在以上範例中,gNB可以在一個或多個波束(i1 , j1 )、(i2 , j2 )和(i3 , j3 )內部監視指派給WTRU的上鏈資源。由於這些資源可以藉由gNB的設計和/或選擇而在時間和/或頻率上分離(例如相互分離),因此,gNB最終可以僅僅在其中一個資源內部偵測WTRU傳輸的PUCCH/PUSCH(例如使用WTRU特定的DMRS偵測)。
在一個關於以上程序的實例中,gNB可以為波束(例如每一個波束)指派用於PUCCH的多個資源。例如,gNB可以在時間和/或頻率上為一個或多個波束(例如每一個波束)指派各別的(例如相互分離的)PUCCH。然後,WTRU最終僅僅會將這其中的一個資源用於PUCCH傳輸。gNB最終可以僅僅在一個資源內部偵測WTRU傳輸的PUCCH。
在另一個實例中,gNB可以將基本序列的多個循環移位指派給WTRU,以使每一個循環移位可以與一個波束相關聯。WTRU最終可以僅僅將這其中的一個循環移位用於PUCCH傳輸。可被gNB偵測的循環移位與能被WTRU從先前的PDCCH中偵測的波束和/或被WTRU用於傳輸PUCCH的波束相關聯。
當在gNB與WTRU之間進行了以上的初始多波束交換之後,gNB可以使用偵測到的波束來繼續發送PDCCH和/或PDSCH。在密集部署中,舉例來說,由於WTRU側的通道存取條件可能改變,和/或WTRU側用於相同波束的定向LBT過程未必會成功完成,因此gNB偏好發送多個波束。如果在gNB的通道存取條件發生變化和/或gNB沒有成功完成用於使用了相同波束的相同WTRU的定向LBT過程,那麼gNB可以重新啟動以上程序,以便識別同樣允許在gNB和WTRU側成功完成定向LBT的最佳波束。
在一個實施例中,WTRU可成功執行定向LBT所針對的波束有可能不是性能最佳的波束(例如使用了選擇的品質度量(例如最佳強度和/或SNR)的用於下鏈傳輸的最強波束)。在這樣的實施例中,gNB和WTRU可以參與與上文中的程序相似的程序。gNB可以使用最佳波束來傳輸PDCCH和/或PDSCH,並且WTRU可以使用被成功完成了定向LBT過程的波束的其中之一來發送所排程的PUCCH和/或PUSCH。為了成功完成該程序,首先,gNB可以在針對每一個波束的成功的定向LBT過程之後使用多個波束或者在多個波束上傳輸PDCCH。如果被排程了任何PUCCH和/或PUSCH,那麼WTRU可以使用在WTRU側成功執行了定向LBT所針對的波束來做出回應。雖然gNB會監視多個波束(或者如上該有可能為WTRU指派了逐個波束的相互分離的資源),但是gNB可以在一個波束(例如僅僅在一個波束上)偵測WTRU傳輸。在初始交換之後,gNB可以使用最佳波束(例如依照gNB選擇的品質量度)來向WTRU傳輸任何PDCCH和/或PDSCH,和/或WTRU可以使用在WTRU側被成功執行了定向LBT的波束來發送任何被排程的PUCCH和/或PUSCH。之後,已經識別出一次可供WTRU用來傳輸任何PUCCH/PUSCH的波束的gNB不會監視多個波束。
WTRU可以執行定向LBT過程。在定向LBT過程中,WTRU可以執行增益發現和/或可以調整CCA臨界值,由此慮及非相互系統的波束失配。WTRU可以識別波束方向排程,以便為波束配對(例如每一個波束/波束配對)啟用適當的LBT測量。
第19圖是示出了代表的定向LBT過程的流程圖。
參考第19圖,代表的定向LBT過程1900可以包括:在1905,gNB/WTRU藉由執行波束配對來識別用於傳輸的發送/接收波束配對。然後,在1910,WTRU可以估計接收和傳輸波束配對的增益。在一個範例中,WTRU和/或gNB可以使用波束發現訊框/封包傳輸和/或回饋來執行增益發現程序。在一個範例中,WTRU可以從一個全向波束(用於校準)和/或從一個或多個其他定向波束發送一系列SRS。gNB可以回饋一個SRS指示符(SRI),該指示符可以指示一個或多個波束(例如每一個波束)的接收能量/RSSI/RSRP/RCPI。WTRU可以使用這些值來估計增益。在第20圖中示出並且在下文中揭露了一個範例。
回到第19圖,在1915,WTRU可以接收gNB波束方向排程和/或LBT測量配置(例如在MCOT開始)。在1920,WTRU可以基於在MCOT開始指示的gNB波束排程而切換到WTRU Rx波束,和/或可以監視DCI。在1925,如果存在用於WTRU的傳輸,那麼WTRU可以接收用於上鏈傳輸的DCI。一旦識別了用於傳輸的資源,在1930,WTRU可以基於LBT測量配置來測量用於LBT的功率,作為範例,其可以包括定時資訊和/或臨界值資訊(例如指示了某個定時和/或一個或多個臨界值)。對於LBT CCA測量來說,在1935,WTRU可以調整CCA臨界值或測得的功率。WTRU可以估計Rx與Tx波束之間的增益差,和/或WTRU可以執行增益差補償(例如用於調整0dB CCA臨界值或測得的功率)。然後,WTRU可以基於LBT測量配置來執行將經過調整的CCA臨界值用於WTRU Rx波束的定向LBT,並且在1940,WTRU可以評估媒體處於空閒還是非空閒(例如繁忙)。如果媒體是空閒的,那麼在1945,WTRU可以傳輸資料。如果媒體繁忙,那麼在1950,WTRU可以推遲或停止傳輸。在1955,WTRU可以檢查是否存在波束(例如MCOT波束)切換。如果存在MCOT波束切換(例如切換到到另一個波束和/或新波束),並且WTRU將要改變其波束,那麼該處理返回到1920。如果MCOT波束中沒有切換(例如使用相同的波束來監視DCI),那麼WTRU可以返回到1925。
第20圖是示出了代表的增益發現定時的圖式。
參考第20圖,WTRU可以使用指示接收能量/RSSI/RSRP/RCPI值的SRI來估計增益。例如,WTRU可以向gNB發送多個信號,作為範例,這些信號包括與用於校準的全向或準全向波束相關聯的SRI,以及與任意數量的定向波束(例如波束1、波束i和/或波束n等等)相關聯的一個或多個SRS。在接收到來自WTRU的信號之後,gNB可以向WTRU發送多個其他信號,作為範例,這些信號包括與用於校準的全向或準全向波束相關聯的SRI和第一層(L1)RSRP,以及與相同的定向波束(例如波束1、波束i和/或波束n)相關聯的一個或多個SRI和L1 RSRP。WTRU可以從其他信號確定與特別波束相關聯的增益,並且可以基於所確定的波束增益來執行定向LBT。在執行了定向LBT之後,如果WTRU確定通道是淨空的,那麼WTRU可以在該通道上執行傳輸。
在特許存取中,從多個gNB到單個WTRU的傳輸可以使用下鏈協作多點(CoMP),並且可以實施從一個gNB到多個WTRU的傳輸。當媒體是特許的並且gNB可以被同步時,gNB可以藉由協作來實施協作傳輸。在無需特許頻譜存取中,當兩個或更多gNB使用無需特許媒介時,gNB有可能無法同時保留媒體,其會使gNB之間用於協作傳輸的協調變得困難。藉由實施代表的程序,可以確保多個gNB能夠同時保留媒體,舉例來說,所使用的是可以容納多個gNB無法同時保留媒體的可能性的CoMP程序。
藉由使用聯合傳輸,可以提升胞元邊緣使用者的性能。基地台可以使用有線和/或無線鏈路來進行協商,並且將相同的信號聯合傳輸給WTRU,以使WTRU可以具有分集增益和功率增益。
第21圖是示出了代表的聯合機會協調多點(CoMP)的圖式。
參考第21圖,在無需特許頻帶中,協商傳輸有可能會因為LBT而被推遲和/或停止。在本揭露中揭露了一個機會聯合重複傳輸程序。藉由該程序,可以為聯合傳輸分配多個傳輸時機。如有可能(例如在gNB執行了LBT並且然後獲取了通道的時候),gNB可以使用這些傳輸時機。
作為範例,藉由有線和/或無線協商,兩個或更多個gNB(即,gNB1和gNB2)可以使用多個傳輸時機(例如K次重複)來執行(例如同意執行)聯合傳輸。在該範例中,傳輸分配K0、K1、K2和K3(例如任何數量的傳輸分配,比方說K=4)可被保留,以便用於針對的WTRU(例如,WTRU 1)的聯合機會重複傳輸。
gNB(例如gNB1和gNB2)可以使用較高層傳訊來配置聯合重複傳輸。gNB可以具有用於更詳細的排程的L1信號。該配置和L1傳訊可以包括以下任何元素/資訊:重複次數;時間/頻率資源配置/分配資訊;跳頻資訊;和/或波束指派/波束指派資訊。
gNB(例如gNB1)可以藉由執行LBT操作來獲取通道。gNB1可以檢查所分配的聯合傳輸時機。其有可能會因為LBT而錯過幾個傳輸時機。如果還留有所排程的聯合傳輸時機(例如所分配的聯合傳輸時機仍有剩餘),那麼gNB1可以將他們使用來將傳輸塊(TB)傳輸到WTRU 1。
來自gNB1的觸發資訊(例如DCI)可以在一個傳輸時機、一些傳輸時機或每一個傳輸時機中被傳輸。DCI可以作為上鏈傳輸的觸發而被從gNB1傳輸到WTRU 1。依照場景,在上鏈傳輸之前可以執行LBT,舉例來說,如果DCI與上鏈傳輸之間的轉變(turnaround)小於臨界值(例如16µs),那麼可以不使用和/或不需要LBT,然而,如果DCI和傳輸之間的轉變等於或大於臨界值,那麼可以使用和/或需要LBT。在DCI中可以包含即將到來的重複傳輸的數量。gNB(例如gNB2)可以執行相同的處理。
可以想到的是,所揭露的聯合重複傳輸方案可被應用於特許頻帶。在這種情況下可以不執行LBT操作。所揭露的程序可以應用於相干和/或非相干聯合傳輸。非相干聯合傳輸可以不需要傳輸點(例如gNB1和gNB2)之間的同步,並且可以使用以分集增益為目標且能夠提升針對WTRU的傳輸功率的技術,例如單頻網路(SFN)或循環延遲分集(CDD)方案。另一方面,相干聯合傳輸可能需要和/或使用緊密同步,並且可以基於與兩個或更多傳輸點(例如gNB1和gNB2)相關的空間CSI回饋,其可以用於執行來自傳輸點的相應天線(例如使用多個傳輸點作為一個大型MIMO系統)的MIMO傳輸。
3GPP NR當前支援週期性上鏈探測參考信號(SRS)(例如從其被配置時起以固定時間間隔傳輸)、半持續性上鏈SRS(例如被配置並接著在多個間隔上(例如每一個間隔內部的固定時間)被多次傳輸)從DCI將其觸發的時候、以及非週期性上鏈SRS(例如在DCI觸發之後被傳輸一次)、下鏈CSI-RS、干擾測量和/或上鏈CSI報告程序。關於SRS、CSI-RS和/或CSI-RS回饋的設計可以考慮無需特許頻譜中的媒體存取的不確定性,並且該傳輸將會遭受LBT。為了啟用半持久性或週期性的CSI-RS和CSI-RS報告形式,gNB可以執行以下的一個或多個行動。作為範例,gNB可以在週期性傳輸視窗內部發送一種類型的信號(例如CSI-RS、CSI報告或SRS),以便容納因為不允許完美的週期性傳輸的LBT所導致的傳輸的可變性。與允許往來用於每一個WTRU的獨立傳輸相反,gNB可以將關於多個WTRU的獨立CSI-RS、CSI報告以及任何SRS分組在一起,以便最低限度地使用LBT。相比於非週期性程序,gNB可以減小負擔,例如藉由使用單個觸發機制(例如DCI和/或其他下鏈傳訊等等)來觸發被分組的(週期性/半持久性)信號請求和/或指示信號資源與觸發DCI的相對位置(作為範例,DCI可以指示可供信號使用的資源,例如,信號CSI-RS1可以使用x個符號並且CSI-RS2可使用y個符號)。
即使對於週期性CSI報告來說,WTRU也有可能因為LBT過程失敗而無法做出回應。在這裡揭露了用於緩解該故障的影響的程序/操作和裝置。
CSI報告有可能因為LBT而在具有不確定的情況下執行。為了提升接收到CSI報告的機率,CSI報告可被配置成實施由基於許可(例如,gNB可以向WTRU顯性指示用於傳輸的資源)和免許可(例如,WTRU可以基於從gNB接收的一些通用配置而自行決定執行傳輸)的通道存取嘗試構成的K次重複。在一個簡單的範例中,可以想到的是,K=K1(基於許可)+ K2(免許可)次重複。
第22圖示出了一個具有排程重複K1=2以及免許可重複K2=1的範例MCOT。參考第22圖,基於許可的重複可以基於與CSI-RS傳輸的相對時槽和/或頻率位置而被配置,和/或可以被配置成基於針對WTRU群組的DCI傳輸來傳輸。
作為範例,WTRU可以藉由執行LBT來確保其可以在所排程的時間存取通道。在一個範例中,WTRU可以在固定的持續時間執行LBT(例如用於確保通道在所排程的傳輸時間是空閒的),這一點與LAA中的類別2的LBT相似。在一個範例中,WTRU可以執行具有固定爭用視窗大小的LBT,這一點與LAA中的類別3的LBT相似。
所有重複或該重複的子集可以在不預期具有來自gNB的ACK和/或NACK的情況下傳輸。在一個範例中,如果K=4。作為範例,WTRU可被半靜態地(例如經由RRC消息或廣播)或動態地(經由L1或L2傳訊)配置成在預期ACK或NACK之前傳輸兩個CSI報告,以便減小潛時,提升報告的可靠性,和/或容納來自gNB的ACK/NACK會因為失敗的CCA而被延遲或者因為一個或多個衝突而被丟失之情況。
一旦接收到ACK,則可以終止傳輸嘗試。
回饋類型和/或回饋通道可以基於重複次數而被預先配置(舉例來說,如果WTRU被配置成執行多達四次傳輸,那麼重複次數可以與重複的索引相對應,例如1,2,3或4)。在一個範例中,如表4所示,回饋類型的負擔會隨著重複次數的增加而減小。
表4:用於CSI回饋的預先配置的通道和回饋類型
可以想到的是,該預先配置可以允許將通道和回饋類型與DCI啟動相混合。一旦基於許可的(例如所有基於許可的)傳輸失敗,那麼WTRU可以切換到在專用於CSI回饋的免許可資源內部的免許可傳輸。免許可重複可以基於以下各項來配置:相對於CSI-RS傳輸和/或基於許可的傳輸的相對時槽和/或頻率位置。WTRU可以執行具有某種形式的隨機回退的LBT來容納來自爭奪免許可資源的多個WTRU的附加競爭。所有的重複(或是其子集)都可以在不預期來自gNB的ACK和/或NACK的情況下被傳輸。一旦接收到ACK,則可以允許終止傳輸嘗試。免許可的CSI報告類型可被預先配置,例如可以僅僅允許寬頻通道上的類型1的CSI。該許可可以基於CSI報告和/或由CSI報告排程,並且可以在PUSCH和/或PUCCH中的任何一個上進行。關於特定通道的確定/選擇可以由gNB引導。可以為PUSCH和/或PUCCH中的任何一個保留免許可傳輸,並且所有這兩種通道類型都是可以多工的。
在一個範例中,免許可資源可被設定成自主上鏈資源,以便允許WTRU爭用這些資源。如果沒有可用的PUCCH資源,那麼WTRU可以在PUSCH上多工上鏈控制資訊(UCI)和/或CSI回饋。
在被排程的重複視窗/區域處於不同MCOT的場景中,可以實施用於檢查通道是否淨空的程序/機制。
在一個實施例中,一旦MCOT完成,則可以截斷/減少/停止該重複。
第23圖是示出了重複區域(例如每一個重複區域)之前的具有LBT的代表MCOT的圖式。
參考第23圖,該圖顯示了一個或多個CSI-RS區域以及相關聯的CSI報告區域,該報告區域可以具有帶有2次重複(K1, 1)和(K1, 2)的排程/許可資源(K1),以及只有一次重複(K2, 1)的非排程/免許可資源(K2)。在每一個區域之前都可以執行LBT。如所示,一個或多個區域可以執行獨立的LBT,由此,舉例來說,第一LBT傳輸機會可以出現在CSI-RS傳訊(例如CSI-RS區域)之前或者在其之前被排程,第二LBT傳輸機會可以出現在所排程的CSI報告的第一次重複之前和/或在此之前被排程,第三LBT傳輸機會可以出現在所排程的CSI報告的第二次重複之前和/或在此之前被排程,第四LBT傳輸機會可以出現在免許可的CSI報告的第一次重複之前和/或在此之前被排程。如第23圖所示,其他LBT傳輸時機可以出現在這四個LBT傳輸機會之前和/或之後。
第24圖是示出了用於NR-U中的通道狀態資訊(CSI)報告的代表的WTRU程序(例如使用了第23圖的MCOT)的流程圖。
該代表程序可以包括可包括以下的任何一項。在2405,WTRU可以接收關於CSI-RS的RRC配置。該CSI-RS配置可以識別週期性、持續時間/視窗大小、符號同步、觸發資訊和/或與觸發相關的資源配置等等。在2410,WTRU可以接收與CSI-RS報告相關聯的RRC配置。該CSI-RS報告配置可以識別以下的任何一項:重複次數、重複類型、回饋通道類型(例如PUCCH、PUSCH和/或免許可)、和/或專用於CSI-RS的資源。在一個實施例中,一個或多個重複(例如每一個重複)可被識別成是在可以由gNB觸發的視窗內部發生的。在這種情況下,一個或多個重複(例如每一個重複或重複群組)可以由DCI觸發。在一個實施例中,一個或多個重複(例如每一個重複)可以基於來自CSI-RS視窗的相對資源來識別。在這種情況下,CSI-RS DCI可以觸發跨越了多個WTRU、回饋通道類型和回饋類型等等等的整個CSI-RS傳輸和報告程序。在第一個選項中,與CSI-RS報告相關聯的RRC配置可以指示與CSI-RS相關的時間偏移。例如,CSI-RS可以是DCI之後的兩個時槽,並且CSI-RS報告可以是CSI-RS之後的2個時槽。在第二個選項中,與CSI-RS報告相關聯的RRC配置可以指示與用於CSI-RS的RRC配置相似的獨立參數。例如,CSI-RS可以是DCI之後的兩個時槽,並且CSI報告可以是DCI之後的4個時槽。在所有這兩個範例中,所涉及的都是相同的資源。
在2415,WTRU可以到達CSI視窗開始並且可以開始搜尋觸發(DCI),而gNB則可以開始LBT程序。
如果沒有接收到觸發,那麼在2420,WTRU可以向gNB發送一個表明未接收到CSI的指示,以便截斷重複。然後,在2425,CSI報告程序可以結束。
如果接收到觸發,那麼WTRU可以識別CSI-RS的位置和/或可以執行用於CSI報告的測量和/或程序。該CSI-RS可以是ZP(零功率)和/或NZP(非零功率)CSI-RS。
在一個範例中,K=3,其中K1=2並且K2=1。在2435,WTRU可以識別用於第一個被排程的CSI報告的資源,並且可以執行LBT(例如類別2或類別3的LAA LBT),以便能在精確的排程時間存取通道。一旦確定媒體淨空,則WTRU可以傳輸第一CSI報告重複。如果WTRU接收到ACK,那麼在2425,該程序可被截斷。gNB可以自由地將資源重新用於其他重傳。
如果WTRU沒有接收到ACK,那麼在2440,WTRU可以識別用於第二個被排程的CSI報告的資源,並且可以執行一個LBT(例如類別2或類別3的LAA LBT),以便能在精確的排程時間存取通道。一旦確定媒體淨空,則WTRU可以傳輸第二CSI報告重複。如果WTRU接收到ACK,那麼在2425,該程序可被截斷。gNB可以自由地將資源重新用於其他重傳。
如果WTRU沒有接收到ACK,那麼在2445,WTRU可以識別用於免許可CSI報告的資源,並且可以執行LBT(例如類別4或經過修改的LBT),以便能夠隨機存取免許可通道。在一個範例中,WTRU可以執行一個可供WTRU選擇資源的分兩個階段的存取協定。例如,WTRU可以產生一個介於0與N_gen之間的亂數(N_r),其中N_gen由gNB指派(舉例來說,N_gen可以取決於使用隨機存取時gNB估計的WTRU的數量以及所要分配的資源的數量)。如果N_r大於免許可資源的數量,那麼WTRU不會存取該通道。如果N_r小於免許可資源的數量,那麼WTRU可以:(a)選擇與N_r相關聯的免許可資源;或者(b)產生第二亂數N_a並選擇與N_a相關聯的免許可資源。
在用於傳輸的資源上可以執行LBT。然後,WTRU可以執行具有固定持續時間(例如類別2的LAA LBT)和/或具有固定回退(例如類別3的LAA LBT)的LBT。
可以想到的是,在無需特許資源中啟用免許可存取的附加方案同樣是適用的。一旦確定媒體淨空,則WTRU可以發送免許可的CSI報告重複。在這裡,通道通常被定義成是一個或多個資源(例如實體資源),作為範例,該實體資源可以是包括但不侷限於以下各項的頻率資源:(1)一個或多個相鄰或不相鄰的頻率;(2)一個或多個相鄰或不相鄰的頻帶;(3)一個或多個相鄰或不相鄰的BWP;和/或(4)一個或多個相鄰或不相鄰的分量載波等等。通道可用於運送用於上鏈、下鏈和/或側鏈路傳輸的多工資料和/或控制傳訊。
作為結論,參考第25圖,本揭露的第一範例涉及一種由無線傳輸/接收單元(WTRU)執行的先聽候送(LBT)方法。該方法可以包括以下的任何一項:
確定2502至少一個波束的增益;
測量2504通道中的能量;
基於所確定的增益,調整2506淨空通道評估(CCA)臨界值或通道中的測量能量之一;
基於以下確定2508通道是否空閒:(1)所測量的能量和經過調整的CCA臨界值,或者(2)經過調整的測量能量和該CCA臨界值;和/或
在通道空閒的條件下,傳輸2510資料。
LBT方法的以下特徵可以有利地以單獨或是不同組合的方式實施:
- 該方法可以進一步包括由WTRU從下一代節點B(gNB)接收包含了波束管理資訊的配置,其中該測量該通道中的該能量的處理是根據包含在所接收的配置中的該波束管理資訊執行的;
- 該確定該至少一個波束的該增益的處理可以包括確定以下的任何一項的增益:接收波束或傳輸波束;
- 該方法可以包括確定該接收波束與該傳輸波束之間的增益差;
- 該調整該CCA臨界值可以包括補償所確定的增益差;
- 該調整該CCA臨界值可以包括補償該接收波束的該增益;
- 該通道可以處於無需特許頻譜;
- 該測量該能量的處理可以包括確定以下的任何一項:訊噪比(SNR)、訊擾雜比(SINR)、接收信號強度指示(RSSI)、參考信號接收功率(RSRP)、或接收通道功率指示符(RCPI);
- 該測量該能量的處理可以包括使用行動視窗來運行連續的能量測量;
- 該方法可以包括接收包含在下鏈控制資訊(DCI)之中或是由下鏈控制資訊(DCI)指示的觸發;
- 該方法可以包括接收和/或解碼在該至少一個波束、別的波束、沒有執行波束成形的頻帶上運送的實體下鏈控制通道(PDCCH),其中該確定該通道是否空閒的處理可以在該PDCCH解碼成功的條件下執行;
- 在該通道空閒的條件下傳輸該資料的處理可以包括:在多個波束中的每一個都空閒的條件下,在該多個波束上傳輸該資料;
- 在該多個波束中的相應波束上傳輸的資料可以包括以下的任何一項:獨立的非相干資料、相關的非相干資料、相干資料或控制傳訊;
- 該方法可以包括傳輸關於用來傳輸該資料的該波束的指示;和/或
- 該方法可以包括在該通道不空閒的條件下,推遲或停止該通道上的該資料傳輸。
參考第1B圖,本揭露的第二範例涉及一種無線傳輸/接收單元(WTRU)102,該WTRU可以包括以下的任何一項:
處理器118,其被配置成執行以下任一處理:
確定至少一個波束的增益;
測量通道中的能量;
基於所確定的增益,調整淨空通道評估(CCA)臨界值或該通道中測量的能量之一;和/或
基於以下各項確定該通道是否空閒:(1)所測量的能量和經過調整的CCA臨界值,或者(2)經過調整的所測量的能量和該CCA臨界值;和/或
傳輸/接收單元120,其被配置成在該通道空閒的條件下,傳輸資料。
該WTRU的以下特徵可以有利地以單獨或是不同組合的方式實施:
- 該傳輸/接收單元可被配置成從下一代節點B(gNB)接收包含了波束管理資訊的配置,並且該處理器可被配置成根據接收到的配置來測量該通道中的能量;
- 該處理器可被配置成確定以下的任何一項的增益:接收波束或傳輸波束;
- 該處理器可被配置成確定該接收波束與該傳輸波束之間的增益差;
- 該處理器可被配置成調整該CCA臨界值,例如藉由補償所確定的增益差來調整;
- 該處理器可被配置成調整該CCA臨界值,例如藉由補償該接收波束的該增益來調整;
- 該傳輸/接收單元可被配置成接收觸發;
- 該觸發可被包含在下鏈控制資訊DCI中或是由其來指示;
- 該傳輸/接收單元可被配置成在至少一個波束上接收實體下鏈控制通道(PDCCH),並且該處理器可被配置成解碼該至少一個波束、別的波束、沒有執行波束成形的頻帶上運送的該PDCCH,和/或在該PDCCH解碼成功的條件下,確定該通道是否空閒;
- 該傳輸/接收單元可被配置成在多個波束中的每一個都空閒的條件下在該多個波束上傳輸該資料;
- 該傳輸/接收單元可被配置成傳輸用來傳輸資料的波束的指示;和/或
- 該處理器可被配置成在該通道不空閒的條件下,推遲或停止該通道上的該資料傳輸。
參考第26圖,本揭露的第三範例涉及一種用於先聽候送(LBT)的方法。該方法可以包括以下的任何一項:
從下一代節點B(gNB)接收2602包含或指示了波束管理資訊的配置;
基於該波束管理資訊來切換2604到接收波束;
監視和/或接收2606觸發,以便為被切換的接收波束執行LBT過程;和/或
基於所接收的觸發來執行2608用於該接收波束的該LBT過程。
LBT方法的以下特徵可以有利地以單獨或是不同組合的方式實施:
- 該觸發可被包括在下鏈控制資訊(DCI)中或是由其來指示;
- 該方法可以包括在最大通道佔用時間(MCOT)開始接收該波束管理資訊;
- 該波束管理資訊可以包括波束方向排程;和/或
- 包含或指示波束管理資訊的該配置可以包含參考信號的樣式和/或編碼。
參考第1B圖,本揭露的第四個範例涉及一種無線傳輸/接收單元(WTRU)102,該WTRU可以包括以下的任何一項:
傳輸/接收單元120,其被配置成:
從下一代節點B(gNB)接收波束管理資訊,和/或
監視用於指示執行LBT過程的觸發;和/或
處理器118,其被配置成:
基於所接收的波束管理資訊,從第一接收波束切換到第二接收波束,和/或
其中該傳輸/接收單元和該處理器被配置成在接收到被監視的觸發的條件下,在該第二接收波束上執行該LBT過程。
該WTRU的以下特徵可以有利地以單獨或不同組合的方式實施:
- 該觸發可被包括在下鏈控制資訊(DCI)中;
- 該DCI可被用於該WTRU的上鏈傳輸;
- 該傳輸/接收單元可被配置成在最大通道佔用時間(MCOT)開始接收該波束管理資訊;
- 該波束資訊可以包括波束方向排程;和/或
- 包含或指示波束管理資訊的該配置可以包含參考信號的樣式和/或編碼。
參考第27圖,本揭露的第五個範例涉一種用於定向先聽候送(LBT)的方法。該方法可以包括以下的任何一項:
接收2702一個配置,以便能夠根據該配置中指示的波束方向排程資訊來執行與波束相關聯的定向LBT過程;和/或
使用所接收的配置來執行2704所述定向LBT過程。
用於定向LBT的方法的以下特徵可以有利地以單獨或不同組合的方式實施:
- 該波束方向排程資訊被包含在時槽格式指示符(SFI)信號和/或波束格式指示符(BFI)中或是由其來指示;
- 該方法可以包括藉由執行波束配對來識別用於傳輸的傳輸/接收波束配對;
- 該方法可以包括估計該接收和傳輸波束配對的增益;
- 該方法可以包括使用源自gNB的波束發現訊框/封包和/或回饋資訊的傳輸來執行增益發現程序;和/或
該增益發現程序可以包括傳輸探測參考信號(SRS)和/或接收包含SRS資源指示符(SRI)的資訊。參考第1B圖,本揭露的第六範例涉及一種無線傳輸/接收單元(WTRU)102,該WTRU可以包括:
傳輸/接收單元120,其被配置成接收一個配置,以便能夠根據該配置中指示的波束方向排程資訊來啟用與波束相關聯的定向LBT過程;和/或
處理器118,其被配置成使用所接收的配置來執行定向LBT過程。
該WTRU的以下特徵可以有利地以單獨或不同組合的方式實施:
- 該傳輸/接收單元可以被配置成接收時槽格式指示符SFI信號或波束格式指示符(BFI);
- 該處理器可以被配置成藉由執行波束配對來識別用於傳輸的傳輸/接收波束配對;
- 該處理器可以被配置成估計該接收和傳輸波束配對的增益;
- 該處理器可以被配置成使用源自gNB的波束發現訊框/封包和/或回饋資訊傳輸來執行增益發現程序;和/或
- 該傳輸/接收單元可以被配置成傳輸探測參考信號(SRS)和/或接收包含了SRS資源指示符(SRI)的資訊。
參考第28圖,本揭露的第七個範例涉及一種由第一下一代節點B(gNB)執行的協作多點(CoMP)傳輸的方法,該方法可以包括以下的任何一項:
該第一gNB與一個或多個其他gNB協商2802聯合傳輸配置,依照該聯合傳輸配置,該第一和其他gNB被分配多個傳輸時機,以便向至少一個無線傳輸/接收單元聯合傳輸資料;和/或
該第一gNB使用所協商的配置來向該至少一個WTRU傳輸2804資料。
該COMP傳輸方法的以下特徵可以有利地以單獨或不同組合的方式實施:
- 在第一gNB與一個或多個其他gNB之間可以藉由有線和/或無線鏈路來執行該協商;
- 該協商可以藉由使用實體層和/或較高層傳訊來執行;
- 該方法可以包括向該至少一個WTRU傳輸包含了以下的至少一項的實體或較高層傳訊:包含了以下的任何一項的聯合傳輸配置或聯合傳輸排程:傳輸時機數量、時間/頻率資源配置、跳頻資訊、和/或波束指派;
- 該方法可以包括從核心網路接收該聯合傳輸配置;
- 該方法可以包括由該第一gNB執行LBT過程,以便在藉由通道傳輸資料之前獲取由第一gNB與WTRU之間的頻率資源集合定義的該通道;
- 如果因為該LBT過程而錯過傳輸時機,則可以使用所配置的下一個傳輸時機來傳輸資料;和/或
- 該方法可以包括:如果與至少一個gNB協商了能夠由該至少一個gNB和該第一gNB啟用聯合傳輸時機的聯合傳輸配置,那麼可以確定在該第一gNB在通道上傳輸資料之前,一個或多個其他gNB其中之一已經成功執行了用於獲取該通道的LBT過程。
參考第29圖,本揭露的第八個範例涉及一種由無線傳輸/接收單元(WTRU)執行的通道狀態資訊(CSI)報告方法。該方法可以包括以下的任何一項:
接收2902無線電資源控制(RRC)配置,該配置識別了多個通道狀態資訊參考信號(CSI-RS)報告參數,這些參數包含了用於報告CSI的傳輸資源集合;
使用第一傳輸資源來執行2904先聽候送(LBT)程序;
使用該第一傳輸資源來傳輸2906一個CSI報告和/或等待應答(ACK);和/或
在一段時間之後,使用該傳輸資源集合中的另一個傳輸資源來重複2908執行該LBT過程以及傳輸該CSI報告,直至接收到ACK。
該用於CSI報告的方法的以下特徵可以有利地以單獨或不同組合的方式實施:
- 該傳輸資源集合可以與以下的任何一項相關聯:不同的頻帶;不同的BWP;不同的參數配置;不同的CORESET;不同的RAT;或不同的胞元;
- 該傳輸資源集合可以包括基於許可的傳輸資源和/或免許可的傳輸資源;和/或
- 該CSI報告的該傳輸可以在實體上鏈控制通道(PUCCH)或實體上鏈共用通道(PUSCH)上進行。
雖然在較佳實施例中採用特定組合的方式描述了本發明的特徵和元素,但是每一個特徵或元素既可以在沒有較佳實施例中的其他特徵和元素的情況下單獨使用,也可以在具有或不具有本發明的其他特徵和元素的情況下以各種組合的方式使用。雖然這裡描述的實施例考慮的是新型無線電(NR)、5G或LTE、LTE-A特定協定,然而應該理解,這裡描述的實施例並不限於該場景,並且同樣適用於其他無線系統。
雖然在上文中描述了採用特定組合的特徵和元素,但是本領域普通技術人員將會認識到,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。電腦可讀媒體的範例包括電子信號(藉由有線或無線連接傳輸)以及電腦可讀儲存媒體。關於電腦可讀媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁媒體(例如內部硬碟和可移除磁片)、磁光媒體以及光媒體(例如CD-ROM碟片和數位多用途碟片(DVD))。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
此外,在上述實施例中提到了包含處理器的處理平臺、計算系統、控制器和其他裝置。這些裝置可以包括至少一個中央處理器(“CPU”)和記憶體。依照電腦程式設計領域的技術人員實踐,對於操作或指令的行為和符號性表示的引用可以由不同的CPU和記憶體來執行。此類行為和操作或指令可被稱為“運行”、“電腦運行”或“CPU運行”。
本領域普通技術人員將會瞭解,行為以及用符號表示的操作或指令包括由CPU來操縱電子信號。電子系統代表的是可能導致電子信號由此變換或減少,以及將資料位元保存在記憶體系統中的記憶體位置,由此重新配置或以其他方式變更CPU操作以及其他信號處理的資料位元。保持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特別電、磁、光或有機屬性的實體位置。應該理解的是,這裡的實施例並不侷限於上述平臺或CPU,並且其他平臺和CPU同樣可以支援所提供的方法。
資料位元還可以保持在電腦可讀媒體上,其中該媒體包括磁片、光碟以及其他任何可供CPU讀取的揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))大型存放區系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體既可以專有存在於處理系統之上,也可以分佈在多個位於處理系統本地或遠端的互連處理系統之中。應該理解的是,這些範例實施例並不侷限於上述記憶體,其他的平臺和記憶體同樣可以支援所描述的方法、操作、程序和/或功能。
在一個說明性實施例中,這裡描述的任何操作、處理等等任一者都可以作為保存在電腦可讀媒體上的電腦可讀指令來實施。該電腦可讀指令可以由行動單元、網路元件和/或其他任何計算裝置的處理器來運行。
在關於系統的各個方面的硬體和軟體實施方式之間幾乎是沒有區別的。使用硬體還是軟體通常(但也並不是始終如此,因為在某些上下文中,在硬體和軟體之間做出的選擇有可能會很重要)是代表了成本與效率之間的折衷的設計選擇。這裡描述的處理和/或系統和/或其他技術可以由各種載體來實施(例如硬體、軟體和/或韌體),並且較佳的載體可以隨著部署該處理和/或系統和/或其他技術的上下文而改變。舉例來說,如果實施方確定速度和精度是首要的,那麼實施方可以選擇主要採用硬體和/或韌體載體。如果靈活度是首要的,那麼實施方可以選擇主要採用軟體實施。作為替換,實施方可以選擇硬體、軟體和/或韌體的某種組合。
前面的詳細描述已經藉由使用框圖、流程圖和/或範例闡述了裝置和/或程序的各種實施方式。在這樣的框圖、流程圖和/或範例包含一個或多個功能和/或操作的情況下,本領域技術人員將理解,這些框圖、流程圖或範例中的每個功能和/或操作可以藉由各種硬體、軟體、韌體或其實際上任何組合單獨地和/或共同地實現。作為範例,合適的處理器包括通用處理器、專用處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、特定應用標準產品(ASSP)、現場可程式設計閘陣列(FPGA)電路、任何其他類型的積體電路(IC)和/或狀態機。
儘管以上以特定組合描述了特徵和元素,但是本領域普通技術人員將理解,每個特徵或元素可以單獨使用或與其他特徵和元素進行任何組合。本揭露不限於本申請中描述的特定實施方式,其旨在作為各個方面的說明。在不脫離本發明的精神和範圍的情況下,可以進行許多修改和變化,這對本領域技術人員來說是顯而易見的。除非另有明確說明,否則在本申請的描述中使用的元件、動作或指令不應被解釋為對本發明是關鍵或必要的。除了本文列舉的那些之外,本揭露範圍內的功能等同的方法和裝置對於本領域技術人員而言從前面的描述中是顯而易見的。這些修改和變化旨在落入所附申請專利範圍的範圍內。本揭露僅受所附申請專利範圍的條款以及這些申請專利範圍所賦予的等同物的全部範圍的限制。應理解,本揭露不限於特定方法或系統。
還應理解,本文使用的術語僅用於描述特定實施方式的目的,而不是限制性的。如本文所使用的,當在本文中提及時,術語“站”及其縮寫“STA”,“使用者設備”及其縮寫“UE”可以表示(i)無線傳輸和/或接收單元(WTRU),例如下文描述;(ii)WTRU的許多實施方式中的任何一者,例如下文該;(iii)具有無線能力和/或有線能力(例如,可連接)裝置,尤其配置有WTRU的一些或所有結構和功能,如下該;(iii)具有少於WTRU的所有結構和功能的無線能力和/或有線能力的裝置,如下該;或(iv)類似物。以下關於第1A圖至第1D圖提供範例性WTRU的細節,其可以代表本文所述的任何UE。
在某些代表性實施方式中,本文描述的主題的若干部分可以藉由專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、數位訊號處理器(DSP)和/或其他整合格式來實現。然而,本領域技術人員將認識到,本文揭露的實施方式的一些方面的全部或部分可以等效地在積體電路中實現,作為在一個或多個電腦上運行的一個或多個電腦程式(例如,作為在一個或多個電腦系統上運行的一個或多個程式),作為在一個或多個處理器上運行的一個或多個程式(例如,作為在一個或多個微處理器上運行的一個或多個程式),作為韌體、或實際上是其任何組合,以及根據本揭露,設計電路和/或編寫用於軟體和/或韌體的代碼將在本領域技術人員的技能範圍內。另外,本領域技術人員將理解,本文描述的主題的機制可以以各種形式作為程式產品分發,並且本文描述的主題的說明性實施方式適用,而不管用於實際執行分發的特定類型的信號承載媒體。信號承載媒體的範例包括但不限於以下:可記錄型媒體,例如軟碟、硬碟驅動器、CD、DVD、數位磁帶、電腦記憶體等;以及傳輸型媒體,例如數位和/或類比通信媒體(例如,光纖電纜、波導、有線通信鏈路、無線通訊鏈路等)。
本文描述的主題有時示出包含在不同的其他元件內或與不同的其他元件連接的不同元件。要理解的是,這樣描繪的架構僅僅是範例,並且實際上可以實現達到相同功能的許多其他架構。在概念意義上,實現相同功能的任何元件的佈置有效地“關聯”,使得可以實現期望的功能。因此,這裡組合以實現特定功能的任何兩個元件可以被視為彼此“關聯”,使得實現期望的功能,而不管架構或中間組件。同樣地,如此關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”以實現期望的功能,並且能夠如此關聯的任何兩個元件也可以被視為彼此“可操作地耦合”以實現期望的功能。可操作耦合的具體範例包括但不限於實體上可配對和/或實體上相互作用的元件和/或可無線交互和/或無線交互的元件和/或邏輯上交互的元件。
關於本文中任何複數和/或單數術語的使用,本領域技術人員可以根據上下文和/或應用適當地從複數轉換為單數和/或從單數轉換為複數。為清楚起見,這裡可以明確地闡述各種單數/複數排列。
本領域技術人員將理解,通常,本文(特別是所附申請專利範圍,例如所附申請專利範圍的主體中)所用的術語通常旨在為“開放式”術語(例如,術語“包括”應解釋為“包括但不限於”,術語“具有”應理解為“至少具有”,術語“包含”應解釋為“包括但不限於”,等等)。本領域技術人員還將理解,如果意圖在於所引入的申請專利範圍記載的具體數量,則這種意圖將在申請專利範圍中明確地記載,在沒有這種記載的情況下不存在這種意圖。例如,在只有一個項目的情況下,可以使用術語“單個”或類似語言。為了幫助理解,所附申請專利範圍和/或本文的描述可包含使用引入性短語“至少一個”和“一個或多個”來引入申請專利範圍記載。然而,使用這些短語不應被解釋為暗示藉由不定冠詞“一”或“一個”引入申請專利範圍記載將包含這樣引入的申請專利範圍記載的任何特別申請專利範圍限於僅包含一個這樣的記載的實施方式,即使同一申請專利範圍包括引入性短語“一個或多個”或“至少一個”,不定冠詞“一”或“一個”(例如,“一”或“一個”應該被解釋為意指“至少一個”或“一個或多個”)。對於用於引入申請專利範圍記載的定冠詞的使用也同樣適用。另外,即使明確記載了引入的申請專利範圍記載的具體數量,本領域技術人員將認識到,這種記載應該被解釋為意指至少所記載的數量(例如,在沒有其它修飾語的情況下,無修飾的記載“兩個記載”意指至少兩個記載或者兩個或更多個記載)。
另外,在使用類似於“A、B和C中的至少一者等”的習慣用語的那些情況下,通常,這種結構旨在從本領域技術人員將理解該習慣用語的意義上講(例如,“具有A、B和C中的至少一者的系統”將包括(但不限於)僅具有A、僅具有B、僅具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B和C等的系統)。在使用類似於“A、B或C中的至少一者等”的習慣用語的那些情況下,通常,這種結構旨在從本領域技術人員將理解該習慣用語的意義上講(例如,“具有A、B或C中的至少一者的系統”將包括(但不限於)僅具有A、僅具有B、僅具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B和C等的系統)。本領域技術人員還將理解,無論在說明書、申請專利範圍書還是附圖中,表示兩個或更多個供選術語的幾乎任何連接詞和/或短語均應該被理解為涵蓋了包括該術語中的一個、該術語中的任一個、或者該術語二者的可能。例如,短語“A或B”將被理解為包括“A”或“B”或“A和B”的可能。此外,如本文中所使用,在多個項目和/或多個項目種類的列表之前的術語“中的任一者”希望包含該項目和/或項目種類個別地或結合其它項目和/或其它項目種類“中的任一者”、 “中的任何組合”、“中的任何多個”和/或“中的多個的任何組合”。另外,如本文中所使用,術語“集合”或“組”希望包含任何數目個專案,包含零個。另外,如本文中所使用,術語“數目”希望包含任何數目,包含零。
此外,在根據馬庫什群組描述本揭露的特徵或方面的情況下,本領域技術人員將認識到,本揭露也因此以馬庫西群組的任何個體成員或成員子群的形式描述。
如本領域技術人員將理解的,出於任何和所有目的,例如就提供書面描述而言,本文揭露的所有範圍還涵蓋任何和所有可能的子範圍及其子範圍的組合。任何列出的範圍都可以容易地被識別為充分描述並且使得相同的範圍被分解為至少相等的一半、三分之一、四分之一、五分之一、十分之一等。作為非限制性範例,這裡討論的每個範圍可以容易地分解為下三分之一、中三分之一和上三分之一等。如本領域技術人員還將理解的,諸如“至多”、“至少”、“大於”、“小於”等所有語言包括所述的數字,並且指的是隨後可以分解成如上所述的子範圍的範圍。最後,如本領域技術人員將理解的,範圍包括每個單獨的成員。因此,例如,具有1-3個胞元的組是指具有1、2或3個胞元的組。類似地,具有1-5個胞元的組是指具有1、2、3、4或5個胞元的組,等等。
此外,申請專利範圍不應被解讀為限於所提供的順序或元件,除非聲明該效果。此外,在任何申請專利範圍中使用術語“用於...的裝置”旨在援引35 U.S.C. §112,¶6或手段功能性用語申請專利範圍格式,沒有術語“用於...的裝置”的任何申請專利範圍並非如此。
與軟體相關聯的處理器可用於實現射頻收發器,以用於無線傳輸接收單元(WTRU)、使用者設備(UE)、終端、基地台、行動性管理實體(MME)或演進封包核心(EPC)或任何主機。WTRU可以與模組結合使用,以硬體和/或軟體實現,包括軟體定義無線電(SDR),以及其他組件,例如攝像機、視訊攝像機模組、視訊電話、對講電話、振動裝置、揚聲器、麥克風、電視收發器、免持耳機、鍵盤、藍牙®模組、調頻(FM)無線電單元、近場通信(NFC)模組、液晶顯示(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放機、媒體播放機、視訊遊戲播放機模組、網際網路瀏覽器和/或任何無線區域網路(WLAN)或超寬頻(UWB)模組。
儘管已經就通信系統描述了本發明,但是可以預期系統可以在微處理器/通用電腦(未示出)上的軟體中實現。在某些實施方式中,各種元件的一個或多個功能可以用控制通用電腦的軟體來實現。
另外,儘管在此參考特定實施方式說明和描述了本發明,但是本發明並不旨在限於所示的細節。相反,可以在申請專利範圍的等同物的範圍和範圍內對細節進行各種修改而不脫離本發明。
在整個揭露內容中,技術人員理解某些代表性實施方式可以替代使用或與其他代表性實施方式組合使用。
儘管以上以特定組合描述了特徵和元件,但是本領域普通技術人員將理解,每個特徵或元素可以單獨使用或與其他特徵和元素進行任何組合。此外,本文描述的方法可以在併入電腦可讀媒體中以供電腦或處理器執行的電腦程式、軟體或韌體中實現。非暫時性電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如,內部硬碟和抽取式磁碟的)、磁光媒體和光媒體(如CD-ROM磁片和數位通用磁片(DVD))。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC或任何主機電腦中用途的射頻收發器。
此外,在上述實施方式中,提到了處理平臺、計算系統、控制器和包含處理器的其他裝置。這些裝置可以包含至少一個中央處理單元(“CPU”)和記憶體。根據電腦程式設計領域的技術人員的實踐,可以藉由各種CPU和記憶體來執行對操作或指令的動作和符號表示的引用。這些動作和操作或指令可以被稱為“執行”、“電腦執行”或“CPU執行”。
本領域普通技術人員將理解,動作和符號表示的操作或指令包括CPU對電信號的操縱。電氣系統表示資料位元,其可以導致電信號的最終變換或減少以及記憶體系統中的記憶體位置處的資料位元的維護,從而重新配置或以其他方式改變CPU的操作以及信號的其他處理。保持資料位元的記憶體位置是具有對應於或代表資料位元的特別電、磁、光或有機屬性的實體位置。
資料位元還可以保持在電腦可讀媒體上,包括磁片、光碟和CPU可讀的任何其他揮發性(例如,隨機存取記憶體(“RAM”))或非揮發性(例如,唯讀記憶體(“ROM”))大型存放區系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,其專有存在於處理系統上或者分佈在多個互連的處理系統中,這些處理系統可以是處理系統的本地或遠端的。應當理解,代表性實施方式不限於上述記憶體,並且其他平臺和記憶體可以支援所描述的方法。
作為範例,合適的處理器包括通用處理器、專用處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、特定應用標準產品(ASSP)、現場可程式設計閘陣列(FPGA)電路、任何其他類型的積體電路(IC)和/或狀態機。
儘管已經就通信系統描述了本發明,但是可以預期系統可以在微處理器/通用電腦(未示出)上的軟體中實現。在某些實施方式中,各種組件的一個或多個功能可以用控制通用電腦的軟體來實現。
另外,儘管在此參考特定實施方式說明和描述了本發明,但是本發明並不旨在限於所示的細節。相反,可以在申請專利範圍的等同物的範圍和範圍內對細節進行各種修改而不脫離本發明。
100‧‧‧通信系統
102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU)
104/113‧‧‧無線電存取網路(RAN)
106/115‧‧‧核心網路(CN)
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧小鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移記憶體
132‧‧‧可移記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
160a、160b、160c‧‧‧e節點B
162‧‧‧行動性管理閘道(MME)
164‧‧‧服務閘道(SGW)
166‧‧‧封包資料網路(PDN)閘道(或PGW)
180a、180b、180c、210‧‧‧gNB
182a、182b‧‧‧存取和行動性管理功能(AMF)
183a、183b‧‧‧對話管理功能(SMF)
184a、184b‧‧‧使用者平面功能(UPF)
185a、185b‧‧‧資料網路(DN)
410‧‧‧閒置狀態
1900‧‧‧定向LBT過程
ACK‧‧‧應答
ACK/NACK‧‧‧應答/否定應答
AP1、AP2‧‧‧存取點
B1、B2‧‧‧波束
BP1、BP2、BP3‧‧‧波束配對
CCA‧‧‧淨空通道評估
CSI‧‧‧通道狀態資訊
CSI-RS‧‧‧通道狀態資訊參考信號
DCI‧‧‧下鏈控制資訊
G1、G2‧‧‧增益
LBT‧‧‧先聽候送
MCOT‧‧‧最大通道佔用時間
N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面
NZP‧‧‧非零功率
RB1、RB2、RB3、Rx‧‧‧接收波束
RRC‧‧‧無線電資源控制
RRQ‧‧‧無線電請求
RSRP‧‧‧參考信號接收功率
s0、s1、s2、s3、s4、s5、s6、s7、s8‧‧‧符號
SFI‧‧‧時槽格式指示符
SRI‧‧‧SRS資源指示符
SRS‧‧‧探測參考信號
STA‧‧‧站
TB1、TB2、TB3‧‧‧傳輸波束
TRP‧‧‧傳輸/接收點
TXOP‧‧‧傳輸機會
ZP‧‧‧零功率
此更詳細的理解可以從以下結合附圖舉例給出的描述中得到,其中附圖中的相同元件符號指示相同的元件,並且其中:
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統的系統圖式;
第1B圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式;
第1C圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式;
第1D圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的另一個範例RAN和另一個範例CN的系統圖式;
第2圖是一個示出了代表的先聽候送(LBT)程序的圖式;
第3圖是一個示出了用於傳輸波束和/或接收波束的代表的增益發現處理的圖式;
第4圖是一個示出了代表的下鏈特許輔助存取(LAA)輔胞元(SCell)類別4的先聽候送(LBT)程序的流程圖;
第5圖是一個示出了因為快速波束切換所導致的通道中的非固定能量的範例的圖式;
第6圖是一個示出了用於基於波束的傳輸的代表的定向LBT過程的流程圖;
第7圖是一個示出了沒有波束聚合的代表的LBT時域測量限制的圖式;
第8圖是一個示出了具有波束聚合的代表的LBT時域測量限制的圖式;
第9圖是一個示出了針對因波束切換在通道中的能量的代表測量程序(例如用於確定該通道繁忙還是淨空(clear))的圖式,其中臨界值可被設定成等於2;
第10圖是一個示出了用於傳輸波束的代表的增益發現處理的圖式;
第11圖是一個示出了用於接收波束的代表的增益發現處理的圖式;
第12圖是一個用於傳輸波束的代表的增益發現處理的流程圖;
第13圖是一個具有波束切換的代表的連續LBT測量的例圖;
第14圖是一個示出了具有波束切換的代表的瞬時LBT的圖式;
第15圖是一個示出了代表的波束資訊輔助LBT的圖式;
第16圖是一個示出了往/來自單個傳輸/接收點(TRP)的代表的多波束傳輸的圖式;
第17圖是一個示出了由TRP使用多個波束來執行針對多個WTRU的傳輸的圖式,其中該波束可能會受包含第一和第二存取點(AP1)和(AP2)的Wi-Fi網路的影響;
第18圖是一個示出了用於波束切換的多個LBT的圖式,其中在波束切換前是類別2的LBT;
第19圖是一個示出了代表的定向LBT過程的流程圖;
第20圖是一個示出了代表的增益發現定時的圖式;
第21圖是一個示出代表的聯合機會協作多點(CoMP)程序的圖式;
第22圖是一個關於代表的最大通道佔用時間(MCOT)的範例,其中被排程的重複K1 = 2,並且免許可重複K2 = 1;
第23圖是一個示出了在重複區域(例如每一個重複區域)之前具有LBT的代表MCOT的圖式;
第24圖是一個示出了用於無需特許NR(NR-U)中的通道狀態資訊(CSI)報告的代表WTRU程序的流程圖;
第25圖是一個示出了關於LBT方法的第一實施例的流程圖;
第26圖是一個示出了關於LBT方法的第二實施例的流程圖;
第27圖是一個示出了關於LBT方法的第三實施例的流程圖;
第28圖是一個示出了關於協作多點傳輸方法的一個實施例的流程圖;以及
第29圖是一個示出了關於CSI報告方法的一個實施例的流程圖。

Claims (20)

  1. 一種由一無線傳輸/接收單元(WTRU)執行的先聽候送(LBT)方法,該方法包括: 確定至少一個波束的一增益; 測量一通道中的能量; 根據該所確定的增益,調整以下其中之一:淨空通道評估(CCA)臨界值或該通道中的該測量能量; 基於以下來確定該通道是否空閒:(1)該測量能量和該經過調整的CCA臨界值,或者(2)該經過調整的測量能量和該CCA臨界值;以及 在該通道空閒的條件下,傳輸資料。
  2. 如申請專利範圍第1項所述的方法,進一步包括:該WTRU從一下一代節點B(gNB)接收包含波束管理資訊的一配置,其中,該通道中該能量之該測量是根據該接收到的配置中包含的該波束管理資訊執行的。
  3. 如前述申請專利範圍任一項所述的方法,其中該確定該至少一個波束的該增益包括:確定一接收波束或一傳輸波束中的任何一個的該增益。
  4. 如申請專利範圍第3項所述的方法,包括:確定該接收波束和該傳輸波束之間的一增益差。
  5. 如申請專利範圍第4項所述的方法,其中該調整該CCA臨界值包括補償該所確定的增益差。
  6. 如申請專利範圍第3項到第5項中任一項所述的方法,其中該調整該CCA臨界值包括補償該接收波束的該增益。
  7. 如前述申請專利範圍任一項所述的方法,其中該通道處於一無需特許頻譜。
  8. 如前述申請專利範圍任一項所述的方法,其中該測量該能量包括確定以下的任何一項:一訊噪比(SNR)、一訊擾雜比(SINR)、一接收信號強度指示(RSSI)、一參考信號接收功率(RSRP)、或一接收通道功率指示符(RCPI)。
  9. 如前述申請專利範圍任一項所述的方法,其中該測量該能量包括使用一行動視窗來運行連一續的能量測量。
  10. 如前述申請專利範圍任一項所述的方法,包括:接收包含在一下鏈控制資訊(DCI)中或是由其指示的一觸發。
  11. 如前述申請專利範圍任一項所述的方法,包括:接收和解碼在該至少一個波束、另一個波束、不具有波束成形的一頻帶上運送的一實體下鏈控制通道(PDCCH),其中該確定該通道是否空閒是在該PDCCH解碼成功的條件下執行的。
  12. 如前述申請專利範圍任一項所述的方法,其中該在該通道空閒的條件下傳輸該資料之該傳輸包括:在多個波束中的每一個都空閒的條件下,在該多個波束上傳輸該資料。
  13. 如申請專利範圍第12項所述的方法,其中在該多個波束中的一相應波束上之該傳輸的資料包括以下的任何一個:獨立的非相干資料、相關的非相干資料、相干資料或控制傳訊。
  14. 如申請專利範圍第12項或第13項所述的方法,包括傳輸用來發送該資料的該波束的一指示。
  15. 如前述申請專利範圍任一項所述的方法,包括:在該通道不空閒的條件下,推遲或停止該通道上的該資料傳輸。
  16. 一種無線傳輸/接收單元(WTRU),包括: 一處理器,其被配置成: 確定至少一個波束的該增益; 測量該通道中的能量; 根據該所確定的增益,調整以下之一:淨空通道評估(CCA)臨界值或該通道中該測量的能量;以及 基於以下來確定該通道是否空閒:(1)該所測量的能量和該經過調整的CCA臨界值或(2)該經過調整的測量的能量和該CCA臨界值;以及 一傳輸/接收單元,其被配置成在該通道空閒的條件下傳輸資料。
  17. 如申請專利範圍第16項所述的WTRU,其被配置成實施如申請專利範圍第2項到第15項中任一項所述的方法。
  18. 一種用於定向的先聽候送(LBT)的方法,該方法包括: 接收一配置,以便能夠根據該配置中指示的波束方向排程資訊來啟用與一波束相關聯的定向LBT過程的執行;以及 使用該所接收的配置來執行該定向LBT過程。
  19. 一種無線傳輸/接收單元(WTRU),包括: 一傳輸/接收單元,其被配置成接收一個配置,以便能夠根據該配置中指示的一波束方向排程資訊來啟用與波束相關聯的定向LBT過程;以及 一處理器,其被配置成使用該所接收的配置來執行該定向LBT過程。
  20. 一種由一無線傳輸/接收單元(WTRU)執行的通道狀態資訊(CSI)報告方法,該方法包括: 接收一無線電資源控制(RRC)配置,該配置識別了多個通道狀態資訊參考信號(CSI-RS)報告參數,該多個通道狀態資訊參考信號(CSI-RS)報告參數包含了用於報告CSI的一傳輸資源集合; 使用一第一傳輸資源來執行一先聽候送(LBT)程序; 使用該第一傳輸資源來傳輸一CSI報告以及等待一應答(ACK);和/或 在時間之一時段之後,使用該傳輸資源集合中的另一個傳輸資源來重複該LBT過程之該執行以及該CSI報告之該傳輸,直至接收到一ACK。
TW108104387A 2018-02-14 2019-02-11 在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統 TWI813622B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862630643P 2018-02-14 2018-02-14
US62/630643 2018-02-14
US201862716093P 2018-08-08 2018-08-08
US62/716093 2018-08-08

Publications (2)

Publication Number Publication Date
TW201937956A true TW201937956A (zh) 2019-09-16
TWI813622B TWI813622B (zh) 2023-09-01

Family

ID=65496996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104387A TWI813622B (zh) 2018-02-14 2019-02-11 在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統

Country Status (7)

Country Link
US (2) US11457475B2 (zh)
EP (1) EP3753359A1 (zh)
JP (1) JP7227263B2 (zh)
CN (1) CN111699748B (zh)
MX (1) MX2020008365A (zh)
TW (1) TWI813622B (zh)
WO (1) WO2019160741A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188516A (zh) * 2020-08-28 2021-01-05 国家无线电监测中心检测中心 一种lbt设备的信道接入机制的测试系统和方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085868B2 (ja) * 2018-03-15 2022-06-17 シャープ株式会社 端末装置、基地局装置、および、通信方法
WO2019194603A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역에서 간섭을 완화하는 방법 및 장치
CN112119669A (zh) * 2018-05-10 2020-12-22 康维达无线有限责任公司 用于频谱重用、功率节省和共存的信道接入指示
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
WO2020047080A1 (en) * 2018-08-28 2020-03-05 Hua Zhou Uplink transmission in a wireless communication system
CN110536432A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种信息传输的方法、装置和设备
US11330638B2 (en) * 2018-11-01 2022-05-10 Beijing Xiaomi Mobile Software Co., Ltd. Frame structure and channel access in a radio system
US11382129B2 (en) * 2018-11-08 2022-07-05 Acer Incorporated Device and method for handling channel access procedure
US11297613B2 (en) * 2019-01-31 2022-04-05 Qualcomm Incorporated Beam definition for directional communications
EP3709528A1 (en) * 2019-03-15 2020-09-16 Nokia Technologies Oy Spatial reuse for wireless communications
WO2020197162A1 (en) * 2019-03-22 2020-10-01 Lg Electronics Inc. Method and apparatus for handling radio link failure on unlicensed frequency in a wireless communication system
US11395154B2 (en) * 2019-04-18 2022-07-19 Qualcomm Incorporated Methods and apparatuses for determining sensing beam for an LBT procure
US11882461B2 (en) * 2019-07-08 2024-01-23 Qualcomm Incorporated Bidirectional listen-before-talk operation
EP4005330A1 (en) * 2019-08-16 2022-06-01 Convida Wireless, LLC Channel access for unlicensed spectrum in mmw operation
CN110808821A (zh) * 2019-09-30 2020-02-18 中国信息通信研究院 一种上行控制信息冲突解决方法和设备
ES2928170T3 (es) * 2019-10-10 2022-11-15 Nokia Technologies Oy Gestión de la transmisión
US11438772B2 (en) 2019-10-18 2022-09-06 Qualcomm Incorporated Configured grant transmission in new radio-unlicensed (NR-U)
EP4096286A4 (en) * 2020-02-21 2023-01-11 Huawei Technologies Co., Ltd. SIGNAL TRANSMISSION METHOD AND APPARATUS
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
CN113395764B (zh) * 2020-03-11 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
KR20210126289A (ko) * 2020-04-10 2021-10-20 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어 채널 모니터링 방법 및 장치
US11705949B2 (en) * 2020-04-24 2023-07-18 Qualcomm Incorporated Techniques for channel state information report transmission triggered by negative acknowledgment (NACK)
US11956044B2 (en) * 2020-05-13 2024-04-09 Qualcomm Incorporated Dynamic adaptation of semi-persistent CSI report setting
US20210360696A1 (en) * 2020-05-18 2021-11-18 Qualcomm Incorporated Trigger-based joint tx-rx sensing for channel access
WO2021108817A2 (en) * 2020-05-22 2021-06-03 Futurewei Technologies, Inc. Methods and apparatus for channel sensing for beamformed transmissions
EP4175341A4 (en) * 2020-06-29 2024-01-24 Ntt Docomo Inc TERMINAL DEVICE
US20230262757A1 (en) * 2020-08-05 2023-08-17 Lg Electronics Inc. Method for performing channel access procedure and apparatus therefor
US11956818B2 (en) * 2020-08-06 2024-04-09 Samsung Electronics Co., Ltd. Multi-beam LBT for NR-U at 60 GHz
WO2022028952A1 (en) * 2020-08-07 2022-02-10 Sony Group Corporation Beam configuration for accessing an open spectrum
JP2023531342A (ja) * 2020-08-07 2023-07-24 中興通訊股▲ふん▼有限公司 チャネルアクセス手順
US20220053562A1 (en) * 2020-08-11 2022-02-17 Qualcomm Incorporated Channel occupancy time (cot) sharing under heterogeneous bandwidth conditions
US20220110117A1 (en) * 2020-10-05 2022-04-07 Qualcomm Incorporated Techniques for slot aggregation in full duplex wireless communications systems
CN114337960A (zh) * 2020-10-10 2022-04-12 北京紫光展锐通信技术有限公司 Pucch数据上传方法及装置、存储介质、终端、基站
WO2022077356A1 (en) * 2020-10-15 2022-04-21 Apple Inc. Techniques of beamforming in reference signal (rs) transmissions
CN116325546A (zh) * 2020-10-15 2023-06-23 松下电器(美国)知识产权公司 无线装置及无线方法
US20240008007A1 (en) * 2020-10-15 2024-01-04 Nokia Technologies Oy Beam specific slot combination
CN114375065A (zh) * 2020-10-19 2022-04-19 展讯通信(上海)有限公司 下行lbt的方法、装置、设备及存储介质
CN114390579A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 信道状态信息的处理方法及装置、终端
US11516844B2 (en) * 2020-10-22 2022-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming in listen-before-talk environments
CN112423349B (zh) * 2020-10-27 2021-11-05 中国水利水电科学研究院 一种新能源大数据平台数据清洗方法及系统
WO2022122908A1 (en) * 2020-12-10 2022-06-16 Sony Group Corporation A method for accessing a channel and related wireless nodes
US11576188B2 (en) * 2020-12-17 2023-02-07 T-Mobile Usa, Inc. External interference radar
EP4282216A4 (en) * 2021-01-19 2024-02-28 Zte Corp CHANNEL ACCESS METHOD
US11601182B2 (en) * 2021-03-19 2023-03-07 Lg Electronics Inc. Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
WO2022217422A1 (en) * 2021-04-12 2022-10-20 Qualcomm Incorporated Receiver-assisted listen-before-talk procedures with explicit beam indication
US11528707B2 (en) * 2021-04-26 2022-12-13 Nokia Technologies Oy Primary and secondary beams based channel access
EP4335221A1 (en) * 2021-05-08 2024-03-13 Qualcomm Incorporated Energy detection threshold adjustment based on sensing and transmission beams
US11968546B2 (en) * 2021-05-11 2024-04-23 Qualcomm Incorporated Beam coverage assessment for channel access
CN117480850A (zh) * 2021-09-10 2024-01-30 Oppo广东移动通信有限公司 通信方法及装置
WO2023050346A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 能量检测门限的确定方法、装置、设备及存储介质
CN117099437A (zh) * 2021-10-02 2023-11-21 惠州Tcl云创科技有限公司 用于cot共享的ed阈值配置的用户设备、基站和方法
EP4243296A1 (en) 2022-03-07 2023-09-13 Nokia Solutions and Networks Oy Hybrid beamforming
US20230388815A1 (en) * 2022-05-26 2023-11-30 Samsung Electronics Co., Ltd. Directional sensing in cellular systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891355A1 (en) * 2012-08-28 2015-07-08 Interdigital Patent Holdings, Inc. Dynamic point-to-point spectrum licensing
WO2016069144A1 (en) * 2014-09-24 2016-05-06 Interdigital Patent Holdings, Inc. Channel usage indication and synchronization for lte operation in unlicensed bands
US10064066B2 (en) 2014-10-20 2018-08-28 Lg Electronics Inc. Method for transmitting and receiving wireless signal in wireless communication system and apparatus therefor
US10148392B2 (en) * 2015-01-27 2018-12-04 Qualcomm Incorporated Group acknowledgement/negative acknowledgement and triggering GACK/channel state information
US10028303B2 (en) * 2015-10-26 2018-07-17 Intel IP Corporation Clear channel assessment (CCA) in wireless networks
US11153905B2 (en) * 2015-11-01 2021-10-19 Lg Electronics Inc. Method for supporting full duplex radio (FDR) operation in wireless communication system and apparatus therefor
JP7300833B2 (ja) 2016-05-11 2023-06-30 アイディーエーシー ホールディングス インコーポレイテッド ビームフォーミングされたアップリンク送信のためのシステムおよび方法
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US11184775B2 (en) * 2017-01-09 2021-11-23 Lg Electronics, Inc Method for transmitting frame on basis of spatial reuse in wireless LAN system and wireless terminal using same
KR102169260B1 (ko) * 2017-09-08 2020-10-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 빔 포밍 전송을 고려한 무허가 스펙트럼에서의 채널 사용 방법 및 장치
EP3726919B1 (en) * 2018-02-12 2022-06-15 LG Electronics Inc. Method for adjusting size of contention window in wireless communication system, and communication device using method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188516A (zh) * 2020-08-28 2021-01-05 国家无线电监测中心检测中心 一种lbt设备的信道接入机制的测试系统和方法

Also Published As

Publication number Publication date
CN111699748B (zh) 2024-04-30
US11457475B2 (en) 2022-09-27
US20220330337A1 (en) 2022-10-13
MX2020008365A (es) 2020-10-19
WO2019160741A1 (en) 2019-08-22
JP7227263B2 (ja) 2023-02-21
EP3753359A1 (en) 2020-12-23
CN111699748A (zh) 2020-09-22
JP2021514574A (ja) 2021-06-10
TWI813622B (zh) 2023-09-01
US20210058967A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
TWI813622B (zh) 在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統
CN111480388B (zh) 用于未许可频带中的定向系统的信道接入过程
CN110800220B (zh) Mimo信道接入
JP2022188297A (ja) 新無線/新無線-無認可(nr/nr-u)における最初のアクセスおよびチャネルアクセス
TW202118323A (zh) 頻寬部分操作系統及方法
US11412446B2 (en) Network energy efficiency
TW202025657A (zh) 可靠側鏈資料傳輸
TW202123730A (zh) 報告通道故障方法
TWI746969B (zh) Ieee 802.11存取點(ap)及在其中使用的方法
CN113853825A (zh) 用于支持bss边缘用户传输的方法
JP2022520805A (ja) 無認可スペクトルにおけるコンテンションウィンドウサイズ調整の方法
CN114365448A (zh) Nr-u中csi-rs和csi反馈的接收方法
WO2021163411A1 (en) Channel access in unlicensed spectrum
KR20220073782A (ko) 반송파 내 보호 대역들을 사용하기 위한 방법들
US20240106585A1 (en) Trigger frame and uora trigger enhancements for wlan system
CN110546894B (zh) Mmw wlan系统中的增强分段扇区级扫描过程
TW201907743A (zh) 無上鏈許可上鏈傳輸
TW202220492A (zh) 受控環境中的所配置授權傳輸
CN112753194B (zh) 无线发射/接收单元和在其中实施的方法
US20230156681A1 (en) Receiving node channel assessment
EP4315623A1 (en) Methods and apparatus for inter-cell multi trp operation in wireless communication systems
CN112753194A (zh) Nr-u中的csi反馈
CN117044067A (zh) 反向散射通信