CN112753194B - 无线发射/接收单元和在其中实施的方法 - Google Patents

无线发射/接收单元和在其中实施的方法 Download PDF

Info

Publication number
CN112753194B
CN112753194B CN201980063124.5A CN201980063124A CN112753194B CN 112753194 B CN112753194 B CN 112753194B CN 201980063124 A CN201980063124 A CN 201980063124A CN 112753194 B CN112753194 B CN 112753194B
Authority
CN
China
Prior art keywords
csi
resource
resources
wtru
reporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980063124.5A
Other languages
English (en)
Other versions
CN112753194A (zh
Inventor
奥盖内科梅·奥泰里
阿哈默德·雷扎·希达亚特
沙罗克·纳伊卜纳扎尔
杨瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Publication of CN112753194A publication Critical patent/CN112753194A/zh
Application granted granted Critical
Publication of CN112753194B publication Critical patent/CN112753194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述了可用于传输一个或多个DCI、CSI‑RS和/或CSI报告的系统、方法和手段。无线发射/接收单元(WTRU)可以接收包括指示两个信道状态信息参考信号(CSI‑RS)资源和四个CSI报告资源的信息的DCI。每个CSI‑RS资源可以与两个CSI报告资源相关联。WTRU可以监视第一CSI‑RS资源以得到CSI‑RS。如果WTRU未在第一CSI‑RS资源中识别到CSI‑RS,则WTRU可以监视第二CSI‑RS资源以得到CSI‑RS。WTRU可以在第一CSI‑RS资源或第二CSI‑RS资源上接收CSI‑RS。WTRU可以确定与WTRU在其上接收CSI‑RS的CSI‑RS资源相关联的第一和/或第二CSI报告资源的可用性。WTRU可以在可用的CSI报告资源上传送CSI报告。

Description

无线发射/接收单元和在其中实施的方法
相关申请的交叉引用
本申请要求2018年08月08日提交的美国临时申请No.62/716,068的权益,其内容通过引用并入本文。
背景技术
在未许可频谱中的基于蜂窝的接入可以用许可辅助接入(LAA)和增强的许可辅助接入(eLAA)来补充移动服务运营商的许可服务提供。LAA和eLAA将LTE操作扩展到未许可频带,任意者可使用许可频带来辅助未许可传输,例如控制信道信息的传输。LAA可以支持下行链路传输。eLAA可以支持上行链路传输。
基于NR的接入可以被扩展到未许可频谱(例如,扩展用于3GPP NR),网络可以使用6以下和6以上的未许可频带(例如,05GHz、37GHz、60GHz),支持使用NR许可载波或LTE许可载波的许可辅助接入(NR-LAA),和/或支持与传统3GPP技术(例如,LAA、eLAA)和其它RAT(例如,在6以下频带中的802.11ac和802.11ax,或在6以上频带中的802.11ad和802.11ay)共存和/或独立接入。NR未许可的访问可能支持某些部署方案(例如,室内热点、密集的城市、农村、城市宏、高速等)和用例(增强型移动宽带(eMBB),大规模机器类型通信(mMTC)以及超可靠低等待时间通信(URLLC)),其可以针对NR应用进行描述。
发明内容
本文描述了可用于传输一个或多个DCI、CSI-RS和/或CSI报告的系统、方法和手段。无线发射/接收单元(WTRU)可以从网络接收传输(例如DCI)。该传输可以包括指示两个信道状态信息参考信号(CSI-RS)资源(例如,CSI-RS资源1和2)和四个CSI报告资源(例如,CSI报告资源1.1、1.2、2.1和2.2)的信息。每个CSI-RS资源可以与两个CSI报告资源相关联。例如,CSI-RS资源1可以与CSI报告资源1.1和1.2相关联,并且CSI-RS资源2可以与CSI报告资源2.1和2.2相关联。每个CSI报告资源可以在传输中被指示为相对于与CSI报告资源相关联的CSI-RS资源的偏移。
WTRU可以监视CSI-RS资源1以得到CSI-RS。如果WTRU未在CSI-RS资源1中识别到CSI-RS(例如,因为CSI-RS由于先听后说(LBT)失败而未被发送),则WTRU可以监视CSI-RS资源2以得到CSI-RS。WTRU可以在CSI-RS资源1或CSI-RS资源2上接收CSI-RS。
WTRU可以确定与WTRU在其上接收到CSI-RS的CSI-RS资源相关联的第一CSI报告资源的可用性。例如,如果WTRU在CSI-RS资源1上接收到CSI-RS,则WTRU可以确定CSI报告资源1.1的可用性,或者如果WTRU在CSI-RS资源上2接收到CSI-RS,则WTRU可以确定CSI报告资源2.1的可用性。WTRU可以通过执行LBT来确定CSI报告资源的可用性。
如果确定与WTRU在其上接收到CSI-RS的CSI-RS资源相关联的第一CSI报告资源是可用的,则WTRU可以在第一CSI报告资源(例如CSI报告资源1.1或2.1)上发送CSI报告。如果与WTRU在其上接收到CSI-RS的CSI-RS资源相关联的第一CSI报告资源被确定为不可用,则WTRU可以确定与WTRU在其上接收到CSI-RS的CSI-RS资源相关联的第二CSI报告资源的可用性。例如,如果WTRU在CSI-RS资源1上接收到CSI-RS,则WTRU可以确定CSI报告资源1.2的可用性,或者如果WTRU在CSI-RS资源2上接收到CSI-RS,则WTRU可以确定CSI报告资源2.2的可用性。如果确定与WTRU在其上接收到CSI-RS的CSI-RS资源相关联的第二CSI报告资源是可用的,则WTRU可以在第二CSI报告资源(例如CSI报告资源1.2或2.2)上发送CSI报告。
附图说明
此外,图中相同的附图标记表示相同的元件,以及其中:
图1A是示出了可以实施所公开的一个或多个实施例的示例通信系统的系统图示。
图1B是示出了根据实施例的可以在图1A所示的通信系统内部使用的示例的无线发射/接收单元(WTRU)的系统图示。
图1C是示出了根据实施例的可以在图1A所示的通信系统内部使用的示例无线电接入网络(RAN)和示例核心网络(CN)的系统图示。
图1D是示出了根据实施例的可以在图1A所示的通信系统内部使用的另一个示例RAN和另一个示例CN的系统图示。
图2示出了下行链路(DL)许可辅助接入(LAA)次级小区(SCell)类别4(Cat 4)先听后说(LBT)的示例。
图3示出了PUSCH上的非周期性信道状态信息参考信号(CSI-RS)和非周期性CSI报告的示例。
图4示出了PUSCH上的周期性/半持久性调度(SPS)CSI-RS和非周期性CSI报告的示例。
图5示出了PUCCH上的周期性/SPS CSI-RS和周期性/SPS CSI报告的示例。
图6示出了新无线电(NR)CSI的示例。
图7示出了非周期性CSI报告(例如,利用LBT)的示例。
图8示出了非周期性CSI-RS资源和周期性CSI报告(例如,利用LBT)的示例。
图9示出了用于目标WTRU的实现的示例。
图10示出了在信道占用时间(COT)期间未被分配的非目标WTRU的实现的示例。
图11示出了PUSCH上的非周期性CSI-RS和非周期性CSI报告以及多下行链路控制信息(DCI)(例如,不具有LBT)的示例。
图12示出了周期性/SPS CSI-RS和非周期性CSI报告(例如,具有重复)的示例。
图13示出了具有CSI资源窗口的周期性/SPS CSI-RS和非周期性CSI报告(例如,具有重复)的示例。
图14示出了同步CSI报告的示例(例如,具有重复)。
图15示出了异步CSI报告的示例(例如,具有重复)。
图16示出了近似周期性的CSI-RS和CSI-RS报告的示例。
图17示出了可用于CSI-RS和CSI报告的WTRU实现。
图18示出了可以用于探测参考信号(SRS)的WTRU实现。
具体实施方式
图1A是示出了可以实施所公开的一个或多个实施例的示例通信系统100的图示。该通信系统100可以是为多个无线用户提供诸如语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源而使多个无线用户能够访问此类内容。举例来说,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于签约的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中工作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上工作的设备等等。WTRU 102a、102b、102c、102d的任一者可被可互换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。每一个基站114a和/或基站114b可以是被配置成通过以无线方式与WTRU 102a、102b、102c、102d中的至少一者对接来促使其接入一个或多个通信网络(例如CN106/115、因特网110、和/或其他网络112)的任何类型的设备。例如,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、gNB、NR节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个部件,然而应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104/113的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于许可频谱、未许可频谱或是许可与未许可频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在实施例中,基站114a可以使用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区使用多个收发信机。例如,通过使用波束成形,可以在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一者或多者进行通信,其中所述空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、毫米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其中所述技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTE Pro(LTE-A Pro)来建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其中所述无线电技术可以使用新无线电(NR)建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如IEEE 802.11(即无线高保真(WiFi))、IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强数据速率(EDGE)以及GSM EDGE(GERAN)等等。
图1A中的基站114b例如可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在实施例中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU 102c、102d可通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN 106/115来接入因特网110。
RAN 104/113可以与CN 106/115进行通信,所述CN可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、等待时间需求、容错需求、可靠性需求、数据吞吐量需求、以及移动性需求等等。CN 106/115可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN104/113和/或CN 106/115可以直接或间接地和其他那些与RAN 104/113使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用NR无线电技术的RAN 104/113相连之外,CN 106/115还可以与使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106/115还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如传输控制协议/网际协议(TCP/IP)网际协议族中的TCP、用户数据报协议(UDP)和/或IP)的全球性互联计算机网络设备系统。网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104/113使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是示出了示例WTRU 102的系统图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他外围设备138。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以集成在一电子组件或芯片中。
发射/接收部件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在实施例中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收部件122可被配置成发射和/或接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。由此,在一个实施例中,WTRU 102可以包括两个或更多个通过空中接口116来发射和接收无线信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、数字键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将数据存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或更多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118可以进一步耦合到其他外围设备138,其中所述外围设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动跟踪器等等。外围设备138可以包括一个或多个传感器,所述传感器可以是以下的一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁强计、方位传感器、邻近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物测定传感器和/或湿度传感器。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)的特定子帧相关联)的接收或传输可以是并发和/或同时的。全双工无线电设备可以包括借助于硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减小和/或基本消除自干扰的干扰管理单元。在实施例中,WTRU 102可以包括传送或接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出了根据实施例的RAN 104和CN 106的系统图示。如上所述,RAN 104可以使用E-UTRA无线电技术来通过空中接口116与WTRU 102a、102b、102c进行通信。所述RAN104还可以与CN 106进行通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持符合实施例的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c都可以包括通过空中接口116与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施例中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c都可以关联于一个特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B 160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理网关(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个部件都被描述成是CN 106的一部分,然而应该了解,这其中的任一部件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B 162a、162b、162c,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。MME 162还可以提供一个用于在RAN 104与使用其他无线电技术(例如GSM或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。SGW 164还可以执行其他功能,例如在e节点B间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促成与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供对电路交换网络(例如PSTN 108)的接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在某些典型实施例中,此类终端与通信网络可以使用(例如临时或永久性)有线通信接口。
在典型的实施例中,其他网络112可以是WLAN。
采用基础设施基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以访问或是对接到分布式系统(DS)或是将业务送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务可被发送至AP,以便递送到相应的目的地。处于BSS内部的STA之间的业务可以通过AP来发送,例如在源STA可以向AP发送业务并且AP可以将业务递送至目的地STA的情况下。处于BSS内部的STA之间的业务可被认为和/或称为点到点业务。所述点到点业务可以在源与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在某些典型实施例中,DLS可以使用802.11eDLS或802.11z隧道化DLS(TDLS))。使用独立BSS(IBSS)模式的WLAN不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式有时可被称为“自组织(ad-hoc)”通信模式。
在使用802.11ac基础设施工作模式或类似的工作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或是借助信令动态设置的宽度。主信道可以是BSS的操作信道,并且可被STA用来与AP建立连接。在某些典型实施例中,所实施的可以是具有冲突避免的载波侦听多路访问(CSMA/CA)(例如在802.11系统中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在给定的BSS中,在任何给定时间都有一个STA(例如只有一个站)进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信,例如,借助于将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过一个分段解析器,所述分段解析器可以将数据分成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由执行传输的STA来传送。在执行接收的STA的接收机上,用于80+80配置的上述操作可以是相反的,并且组合数据可被发送至媒介访问控制(MAC)。
802.11af和802.11ah支持1GHz以下的工作模式。相比于802.11n和802.11ac,在802.11af和802.11ah中使用的信道工作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。依照典型实施例,802.11ah可以支持仪表类型控制/机器类型通信(例如宏覆盖区域中的MTC设备)。MTC设备可以具有某种能力,例如包含了支持(例如只支持)某些和/或有限带宽在内的受限能力。MTC设备可以包括电池,并且该电池的电池寿命高于阈值(例如用于保持很长的电池寿命)。
对于可以支持多个信道和信道带宽的WLAN系统(例如802.11n、802.11ac、802.11af以及802.11ah)来说,这些系统包含了可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共工作带宽。主信道的带宽可以由某一STA设置和/或限制,其中所述STA源自在BSS中工作的所有STA且支持最小带宽工作模式。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽工作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz工作模式)对AP进行传输),那么即使大多数的频带保持空闲并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出了根据实施例的RAN 113和CN 115的系统图示。如上所述,RAN 113可以使用NR无线电技术通过空中接口116来与WTRU 102a、102b、102c进行通信。RAN 113还可以与CN 115进行通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该了解,在保持符合实施例的同时,RAN 113可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU 102a、102b、102c通信。在一个实施例中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、180b、180c可以使用波束成形处理来向和/或从gNB 180a、180b、180c发射和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。在实施例中,gNB 180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(未显示)。这些分量载波的一子集可以处于未许可频谱上,而剩余分量载波则可以处于许可频谱上。在实施例中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU 102a可以接收来自gNB 180a和gNB 180b(和/或gNB 180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩参数配置相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的传输、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包含了不同数量的OFDM符号和/或持续不同的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B 160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用未许可频带中的信号来与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c会在与别的RAN(例如e节点B 160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B 160a、160b、160c进行通信。在非独立配置中,e节点B 160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便为WTRU 102a、102b、102c提供服务。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通处理、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过Xn接口通信。
图1D所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF 184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述部件都被描述了CN 115的一部分,但是应该了解,这其中的任一部件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、182b可以使用网络切片处理,以便基于WTRU 102a、102b、102c使用的服务类型来定制为WTRU 102a、102b、102c提供的CN支持。作为示例,针对不同的用例,可以建立不同的网络切片,例如依赖于超可靠低等待时间(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于机器类型通信(MTC)接入的服务等等。AMF 162可以提供用于在RAN 113与使用其他无线电技术(例如LTE、LTE-A、LTE-A Pro和/或诸如WiFi之类的非3GPP接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以通过UPF 184a、184b来配置业务路由。SMF 183a、183b可以执行其他功能,例如管理和分配WTRU IP地址,管理PDU会话,控制策略实施和QoS,以及提供下行链路数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,这样可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、以及提供移动性锚定处理等等。
CN 115可以促成与其他网络的通信。例如,CN 115可以包括或者可以与充当CN115与PSTN 108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)进行通信。此外,CN 115可以为WTRU 102a、102b、102c提供针对其他网络112的接入,这其中可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。在一个实施例中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与本地数据网络(DN)185a、185b之间的N6接口并通过UPF 184a、184b连接到DN 185a、185b。
有鉴于图1A-1D以及关于图1A-1D的相应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的其他任何设备。仿真设备可以是被配置成仿真这里描述的一个或多个或所有功能的一个或多个设备。举例来说,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施或部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施或部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试设备。所述仿真设备可以使用直接的RF耦合和/或借助了RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
许可辅助接入(LAA)可以在5GHz未许可频谱中操作。LAA可使用先听后说(LBT)协议,其可以使得LAA能够与其他LAA部署和其他无线接入技术(RAT)共存。LAA可以包括基于在一持续时间上的能量检测(ED)来执行畅通信道评估(CCA)。可以将ED与能量阈值进行比较,以确定信道被占用还是畅通。WTRU可以占用信道(例如,在获得对信道的接入时)达被称为最大信道占用时间(MCOT)的最大持续时间。可以定义关于LBT的四种类别。
类别1可以是没有LBT(例如,不是由发射实体执行LBT)。
类别2可以是没有随机回退的LBT。在类别2中,在发射实体发射之前信道被感测为空闲的持续时间可以是确定的。
类别3可以是具有随机回退和固定大小的竞争窗口的LBT。在类别3中,发射实体可以在竞争窗口内提取随机数N。竞争窗口的大小可以由N的最大值和最小值来指定,或者可以是固定的。随机数N可以用于LBT中,以确定在发射实体在信道上进行发射之前,信道被感测为空闲的持续时间。
类别4(例如,Cat 4或Cat4)可以是具有随机回退的LBT和可变大小的竞争窗口。在类别4中,发射实体可在竞争窗口内提取随机数N。竞争窗口的大小可以由N的最大值和最小值来指定。当提取随机数N时,发射实体可以改变竞争窗口的大小。随机数N可以用于LBT中,以确定在发射实体在信道上进行发射之前,信道被感测为空闲的持续时间。
不同的信道接入优先级分类和相应的参数可以在表1中定义(例如,针对随机回退)。p可以是优先级分类索引。推迟持续时间Td可以包括持续时间Tf 16μs,之后跟随(例如,紧接着跟随)mp个连续时隙持续时间。在(例如,每个)时隙持续时间,Tsl=9us。CWmin,p和CWmax,p可以定义竞争窗口的最小和最大尺寸。eNB可以不(例如,连续地)在执行了LAA Scell(一个或多个)传输(一个或多个)的载波上进行传送(例如,超过MCOT(Tmcot,p)的时段)。
表1:信道接入优先级分类
用于基于帧和/或基于负载需求的LBT可以包括5GHz频带中的20μs的最小CCA时间、10毫秒的最大信道占用时间、和/或最小5%的信道占用时间的空闲时段。接收天线增益可以是G=0dBi并且在发射处,有效各向同性辐射功率可以是EIRP=23dBm,并且阈值(例如,能量阈值)可以≤-73dBm/MHz。对于不同的发射功率电平和功率余量(PH),阈值可以等于-73(dBm/MHz)+23(dBm)-PH(dBm)。
表2:基于帧的设备的LBT需求
针对下行链路(DL)LAA小型小区(SCell)Cat 4LBT的LBT的示例可以在图2中示出。
扩展CCA(例如,使用回退)可以在至少为20us的(例如,初始)CCA之后执行。
LAA可用于DL。增强许可辅助接入(eLAA)可以针对LAA用于上行链路(UL)操作。LAA和eLAA可进一步包括增强型LAA(feLAA)。
LAA可包括发现参考信号(DRS)。DRS可以包括用于小区检测、同步和/或无线电资源管理的同步信号和/或参考信号。DRS可包括CSI-RS(例如,如果被配置的话),LAA DRS可在周期性发生的时间窗口(例如,DRS测量定时配置(DMTC))内被传送。时间窗口可以具有固定的持续时间(例如,6毫秒),可以具有可配置的时段(例如,40、80或160毫秒),并且可以服从LBT。网络可以尝试在DMTC时机内在(例如,任何)子帧中的DRS传输。
未许可频谱上的NR参数配置可包括6以下和6以上未许可频带(例如,5GHz、37GHz、60GHz)。NR-LAA可以通过双连接(DC)锚定到传统LTE载波,并且可包括具有5G NR锚点的基于CA的聚合。
信道状态信息(CSI)反馈可与NR一起使用。WTRU可使用时间和频率资源来报告CSI。gNB可控制时间和频率资源(例如,利用在由WTRU能力限制的时隙中活动CSI-RS资源或CSI-RS端口的数量)。CSI可以用于时间/频率跟踪、CSI计算、层1参考信号接收功率(L1-RSRP)计算和/或移动性。CSI可以用于参考信号接收功率(RSRP)反馈或非RSRP反馈。用于非RSRP反馈的CSI可以包括以下中的一者或多者:(i)信道状态信息参考符号(CSI-RS)资源指示符(CRI);(ii)排名(rank)指示符(RI);(iii)预编码器矩阵指示符(PMI);(iv)信道质量指示符(CQI);和/或(v)层指示符(LI)。
CRI可以识别用于测量的非零功率CSI-RS(NZP CSI-RS)或CSI干扰测量(CSI-IM)资源。
RI可以识别反馈的排名,并且可以依赖于CRI。
PMI可以指示反馈码本中码字。码本可以是标准分辨率(例如,类型I)或针对MU-MIMO的高分辨率(例如,类型II)。类型I码本可用于单面板或多面板天线。类型II码本可以用于非预编码的CSI-RS或预编码的CSI-RS(例如,参见表3,其可以是所使用的已知码本的示例)。码本可以被设计用于交叉极性信道。PMI可以依赖于RI和/或CRI。
表3码本比较
信道质量指示符(CQI)可以是宽带或子带。CQI可以被定义用于高达256QAM,针对目标例如为0.1或0.00001分组差错率(PER),并且可以是绝对的(例如,宽带)或s差分的(例如,子带)。CQI可以依赖于PMI、RI、和/或CRI。
CSI(例如,用于RSRP反馈)可以是以下中的一者或多者:(i)SS/PBCH块资源指示符(SSBRI),其可以标识所测量的SS/PBCH块;(ii)CSI-RS资源指示符,其可以标识测量的CSI-RS;和/或(iii)L1-RSRP,其可指示用于SSBRI或CSI-RS的接收功率。
可以使用标识资源设置、报告设置和触发状态的配置(例如,针对每个CSI反馈)。报告设置可以确定(例如,单个)下行链路BWP,并且可以包括诸如码本配置、时域行为、频率粒度、测量限制和/或要发送的指示符之类的参数。资源设置可以确定非零功率(NZP)CSI-RS(例如,用于干扰或信道测量)、CSI-IM(例如,用于干扰测量)和/或SS/PBCH块资源(例如,用于L1-RSRP测量)。资源设置可以被确定为周期性、非周期性和/或SPS资源集合。触发状态可以将资源和/或报告设置链接到STA以用于CSI测量和反馈。
CSI-RS资源和/或CSI-报告可以以不同的方式发生和/或在NR中的不同的信道上发生(例如,参见下面的表4,其可以是已知的CSI-RS配置和可能使用的CSI报告的示例)。CSI-RS报告可以是周期性的、SPS的和/或非周期性的。CSI报告可以是周期性的、SPS的和/或非周期性的。报告信道可以是控制信道(例如,PUCCH)和/或数据信道(例如,PUSCH)。
表4 CSI-RS配置和CSI报告
可能的CSI-RS、CSI报告和信道组合可以包括:(i)PUSCH上的非周期性CSI-RS和非周期性CSI报告;(ii)PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告;以及(iii)PUCCH上的周期性/SPS CSI-RS和周期性/SPS CSI报告。
图3示出了PUSCH上的非周期性CSI-RS和非周期性CSI报告的示例。gNB可以在PDCCH上发送(例如,针对PUSCH上的非周期性CSI-RS和非周期性CSI报告)DCI,该DCI具有标识用于非周期性CSI-RS的资源(例如,作为与DCI的偏移)和用于PUSCH上的传输的CSI报告的资源(例如,作为与CSI-RS资源的偏移)的信息。一个或多个配置可以链接到一个或多个CSI-RS资源设置。所述配置可以包括CSI-ReportConfig(例如,一个或多个CSI报告参数和/或建立CSI报告的配置)。例如,CSI-RS资源可以是L1-RSRP资源(例如,如果CSI-ReportConfig链接到一个CSI-RS资源设置)。第一资源可以是NZP CSI-RS信道资源,且第二资源可以是CSI-IM或NZP CSI-RS干扰资源(例如,如果CSI-ReportConfig链接到两个CSI-RS资源设置)。第一资源可以是NZP CSI-RS信道资源,第二资源可以是CSI-IM干扰资源,第三资源可以是NZP CSI-RS干扰资源(例如,如果CSI-ReportConfig链接到三个CSI-RS资源设置)。
用于非周期性CSI-RS的NZP CSI-RS资源可在一持续时间内是活动的(例如,从包含该请求的PDCCH的结束起并且在包含与周期性CSI-RS相关联的报告的PUSCH的结束处结束)。
PUSCH上的非周期性CSI-RS和非周期性CSI报告可以支持宽带/或子带频率粒度。在具有或不具有数据复用的情况下发送类型I和/或类型IICSI。
图4示出了PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告的示例。周期性CSI-RS可以由较高层(例如,周期性的)配置(例如,在PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告中)或者由DCI(例如,SPS)激活。gNB可以在PDCCH上发送DCI,该DCI具有标识用于在PUSCH上传输的CSI报告的资源的信息(例如,作为相对于DCI的偏移)。在图4中示出了在PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告的示例。一个或多个CSI-ReportConfig可以链接到一个或多个CSI-RS资源设置。CSI-RS资源可以是L1-RSRP资源(例如,如果CSI-ReportConfig链接到一个CSI-RS资源设置)。第一CSI-RS资源可以是NZP CSI-RS信道资源,并且第二CSI-RS资源可以是CSI-IM(例如,如果CSI-ReportConfig链接到两个CSI-RS资源设置)。
用于半持久性CSI-RS的NZP CSI-RS资源可以在一段持续时间内是活动的。例如,用于半持久性CSI-RS的NZP CSI-RS资源可以从以下持续时间内激活:从应用激活命令时的结束起以及在应用去激活命令时的结束处结束。
用于周期性CSI-RS的NZP CSI-RS资源可以是活动的,例如,当通过高层信令配置周期性CSI-RS时开始,并且当释放周期性CSI-RS配置时结束。可以基于用于在PUSCH上传输的PDCCH请求二发送与SPS CSI-RS相关联的报告。
PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告可支持类型I和/或类型IICSI反馈。CSI可以被拆分成两个部分(例如,部分1和部分2),其中部分1中的比特标识部分2中的比特。
图5示出PUCCH上的周期性/SPS CSI-RS和周期性/SPS CSI报告的示例。在PUCCH上的周期性/SPS CSI-RS和周期性/SPS CSI报告中,周期性CSI-RS可以由较高层配置(例如,周期性的)和/或由DCI(例如,SPS)激活。周期性CSI-RS可以由较高层配置(例如,周期性的)和/或由DCI(例如,SPS)激活以用于在PUCCH上的传输(例如,参见图5)。一个或多个CSI-ReportConfig可以被链接到一个或多个资源设置。第一CSI-RS资源可以是L1-RSRP资源(例如,如果CSI-ReportConfig被链接到一个CSI-RS资源设置),并且第二CSI-RS资源可以是CSI-IM(例如,如果CSI-ReportConfig被链接到两个CSI-RS资源设置)。
NZP CSI-RS资源在一持续时间内可以是活动的。例如,NZP CSI-RS资源可以从应用激活命令时的结束起激活以及在应用去激活命令时的结束(例如,针对半持久性CSI-RS)处结束。例如,NZP CSI-RS资源可以在通过高层信令配置周期性CSI-RS时被激活,以及在释放周期性CSI-RS配置时结束(例如,针对周期性CSI-RS)。
PUCCH上的周期性/SPS CSI报告可以支持类型I宽带、类型I子带、和/或类型II宽带CSI反馈。
图6示出NR CSI的示例。
本文公开了(例如,与NR相关联)周期性的/半永久性的和非周期性的上行链路SRS、下行链路CSI-RS、干扰测量、和/或上行链路CSI报告。SRS、CSI-RS和/或CSI反馈可以考虑未许可频谱中的不定性的媒介接入(例如,Cat1、2、3或4LBT)和/或服从LBT的传输。用于SRS、CSI-RS、和/或CSI反馈传输的机制可以确定当媒介被接入时(例如,当设备执行LBT时)媒介可能是繁忙的,例如因为媒介是共享媒介。
对于PUSCH上的非周期性CSI-RS和周期性CSI报告,NR可以在包含请求或触发的PDCCH之后使用CSI-RS的确定性传输,其中使用非周期性触发偏移来指示CSI-RS的传输。NR可以使用PUSCH的确定性传输,该PUSCH包含使用非周期性报告偏移与周期性CSI-RS相关联的CSI报告。NR-U可以考虑由于在一个或多个(例如,任何)单元的传输之前LBT的可能失败而导致的DCI、CSI-RS和/或CSI报告的非确定性传输。
为了在PUSCH上进行周期性/SPS CSI-RS和非周期性CSI报告,CSI-RS可以在配置的持续时间(例如,在周期性CSI-RS中)和/或SPS激活的持续时间(例如,在SPS CSI-RS中)以固定的周期性间隔发送。对于NR-U,gNB可能不能在调度的时间发送CSI-RS(例如,由于在传输之前LBT失败或缺少活动COT)。在接收到DCI请求时,WTRU可能传送周期性CSI报告失败(例如,由于WTRU LBT失败)。CSI-RS和/或CSI报告的传输可能是非确定性的(例如,由于在信道接入之前需要LBT)。CSI-RS和/或CSI反馈的非确定性传输可以被考虑。
对于PUSCH上的周期性/SPS CSI-RS和周期性/SPS CSI-RS报告,CSI-RS可以在配置的持续时间内(例如,在周期性CSI-RS中)和/或SPS激活的持续时间内(例如,在SPS CSI-RS中)以固定的周期性间隔发送。可以在配置的持续时间内(例如,在周期性CSI-RS中)和/或在SPS激活的持续时间内(例如,在SPS CSI-RS中)以固定的周期性间隔来发送CSI报告。
例如,由于在传输之前LBT的失败或者缺少活动COT,gNB或WTRU可能不能在调度的时间传送CSI-RS和/或或CSI报告。CSI-RS和/或CSI报告的传输是非确定性的(例如,由于在信道接入之前需要LBT)。本文公开了CSI-RS和/或CSI反馈的非确定性传输。
noLBTtimetLimit可以定义为在传输之前节点(例如gNB/WTRU)不需要LBT的持续时间。noLBTtimetLimit可以是例如16微秒的时段。
对于PUSCH上的非周期性CSI-RS和非周期性CSI报告,可能存在:没有LBT、没有用于CSI资源的LBT和用于CSI报告的LBT、用于CSI资源的LBT和用于CSI报告的LBT、和/或多个DCI/没有用于CSI报告的LBT。
在传输CSI-RS资源和CSI报告之前可能没有LBT。例如,如果非周期性触发偏移和非周期性报告偏移小于noLBTtimetLimit,LBT可能不被执行。CSI-RS和CSI报告的传输作为如在NR中一样执行。
在CSI-RS传输之前,LBT可以不被执行。LBT可以在传输CSI报告之前由WTRU执行。例如,如果非周期性触发偏移小于或等于noLBTtimetLimit并且周期性报告偏移大于noLBTtimetLimit,则在CSI报告的传输之前可以存在LBT,而在CSI-RS的传输之前可以不存在LBT。
gNB可以配置用于CSI报告传输的一个或多个时机,在LBT失败的情况下提供一个或多个资源。资源可以按时间(例如,如图7所示)或频率(使用不同频带或频带部分(BWP))提供。例如,DCI可以通过发送多个CSI报告偏移来配置多个资源,以允许在先前资源上失败(例如,LBT失败)的情况下在附加资源上传输CSI报告。DCI可以针对所使用的不同CSI报告资源配置多个CSI类型。例如,DCI可以配置两个CSI报告资源(例如,CSI报告资源1和CSI报告资源2)。第一CSI报告资源(例如,CSI报告资源1)可以配置有非周期性报告偏移1和CSI报告类型1(例如,子带CSI反馈)。第二CSI报告资源(例如,CSI报告资源2)可以配置有非周期性报告偏移2以及CSI报告类型2(例如,宽带CSI反馈)。在WTRU未能成功传输第一CSI报告(例如,由于LBT失败)时,WTRU可以尝试传输第二CSI报告(例如,如图7所示)。第一CSI报告和第二CSI报告可以是相同的和/或相同报告的衍生物。例如,在类型IICSI反馈中,可以存在宽带反馈(W1)和子带反馈(W2)。宽带反馈可以指可以定义频带(例如,整个频带)上的一个或多个特性的第一级反馈。子带反馈可以进一步细化宽带反馈。第一CSI报告和第二CSI报告可以包括W1和/或W2。例如,第一CSI报告可以包括W1和W2,而第二CSI报告可以包括W1(例如,仅W1),例如以考虑用于第二CSI报告的有限空间。
gNB可以在CSI-RS传输之前执行LBT,并且WTRU可以在CSI报告传输之前执行LBT。例如,如果非周期性触发偏移和非周期性报告偏移大于noLBTtimeLimit,则gNB和WTRU可以执行LBT。
CSI-RS资源窗口内的非周期性CSI-RS资源可在本文中公开。DCI可以定义一个或多个CSI-RS资源窗口,在该一个或多个CSI-RS资源窗口内,gNB可以在传输CSI-RS之前尝试LBT(例如,以考虑LBT失败)。配置的WTRU可以在一个或多个窗口内搜索CSI-RS。资源可以在时隙内、跨时隙和/或跨COT(例如,多时隙偏移,或单个时隙/多符号偏移)。资源的使用可以基于较早或更优先化的资源的成功(例如,在频率或BWP中的资源分离的情况下)。
在示例中,DCI可以定义两个CSI-RS资源窗口,其可以被称为窗口1和窗口2。窗口1可以具有X个时间单位的持续时间。窗口2可以具有Y个时间单位的持续时间。窗口之间可以具有Z个时间/频率/BWP单位的间隔。X和Y可以相等。CSI-RS资源(例如,每个CSI-RS资源)可以链接到相同或不同的CSI报告资源(例如,CSI报告资源)。在LBT在所述第一CSI-RS资源窗口内失败时,可以使用所述第二CSI-RS资源窗口。第二CSI-RS资源窗口可以被分配给单独的时间、频率和/或带宽部分。可以通过与DCI组合的较高层信令来发信号通知窗口配置的一个或多个元素。例如,窗口持续时间和窗口之间的间隔可以由较高层配置,其中每个窗口的开始由DCI指示。在另一示例中,DCI可以用信号发送信息。
目标WTRU可以忽略CSI-RS资源。例如,在CSI-RS资源窗口内成功接收到CSI-RS时,目标WTRU可以忽略一个或多个(例如,所有)后续的CSI-RS资源。目标WTRU可在链接到CSI-RS资源窗口的CSI报告资源中传送其CSI报告。可以忽略与忽略的CSI-RS资源链接的CSI报告资源。例如,通过使用覆写PDCCH来重新分配用于后续CSI-RS资源和CSI报告资源的资源,从而可以重新使用这些资源。
目标WTRU(例如,在任何先前PDCCH内分配的其它WTRU)可以忽略附加PDCCH分配。附加PDCCH可重新分配/重新指派CSI-RS和CSI报告资源,并且可被寻址到在当前COT中未被指派的WTRU。PDCCH可以包括一个或多个(例如,两个)部分。例如,PDCCH可以包括在组公共PDCCH和资源分配PDCCH中发送的指示符。
指示符可以指示(例如,显式地)CSI-RS传输时成功的,并且可以指示指示符在什么特定资源内发送。目标WTRU可以能够利用该信息(例如,当该信息在缓冲器中时)。在COT期间未被分配的WTRU可以能够识别CSI-RS成功和/或搜索重新分配CSI-RS和CSI报告资源的覆写PDCCH。
附加/覆写PDCCH可以在CSI-RS资源之后发送(例如,通过gNB)(例如,以防止对LBT的需要)。附加/覆写PDCCH可以指示WTRU应当停止在进一步配置的CSI资源上进行传送。目标WTRU(例如,以及其他WTRU)可以监听附加PDCCH以重新分配其上行链路PUSCH传输(例如,完全覆写情况)。
图8示出了利用LBT的非周期性CSI-RS资源和周期性CSI报告的示例。
可以执行在PUSCH上具有重复的非周期性CSI报告。DCI可以利用在LBT失败的情况下提供的附加资源来提供用于CSI报告传输的多个时机。传输时机可以与CSI-RS资源绑定。资源可以在时间上(例如,如图8所示)或在频率上(例如,不同的频带和/或BWP)提供。DCI可以发送多个CSI报告偏移,以允许在失败时发送CSI报告。DCI可以基于使用的CSI资源来修改CSI类型。例如,可以使用CSI报告偏移1和CSI报告1(例如,子带CSI反馈),和/或可以使用CSI报告偏移2和CSI报告2(例如,宽带CSI反馈)。
图9是用于PUSCH的CSI-RS和非周期CSI报告、和用于CSI资源的LBT、和用于CSI报告的LBT的WTRU(例如目标WTRU)的实现的示例。如图9所示,WTRU(例如目标WTRU)可以识别COT的开始和持续时间。WTRU可以识别一个或多个CSI-RS资源窗口(例如,在接收到DCI时)。WTRU可以监视CSI-RS的信号(例如,在第一CSI资源窗口的持续时间内),如果接收到CSI-RS,则WTRU可以识别用于传输的CSI报告资源和/或用于每个资源的相应CSI报告。WTRU可以确定与CSI-RS资源1链接的CSI报告资源1的可用性(例如对其执行LBT)。如果LBT成功,则WTRU可以在与CSI-RS资源1链接的CSI资源1上发送CSI报告。如果LBT失败,则WTRU可以确定与CSI-RS资源1链接的CSI报告资源2的可用性(例如对其执行LBT)。如果LBT是成功的,则WTRU可以在链接到CSI-RS资源1的CSI资源2上发送CSI报告。WTRU可以忽略附加CSI-RS资源和CSI报告资源。如果没有接收到CSI-RS,则WTRU可以监视GC-PDCCH以得到指示符,该指示符标识CSI-RS是否成功。如果CSI-资源1的LBT失败,则目标WTRU可以在第二CSI-RS资源窗口2的持续时间内监控CSI-RS的信号,如果接收到CSI-RS,则WTRU可以识别用于传输的CSI报告资源和/或用于每个资源的相应CSI报告。WTRU可以确定链接到CSI-RS资源2的CSI报告资源1的可用性(例如在其上执行LBT)。如果LBT成功,则WTRU可以在链接到CSI-RS资源2的CSI资源1上发送CSI报告。如果LBT失败,则WTRU可以确定与CSI-RS资源2链接的CSI报告资源2(例如,对其执行LBT)2的可用性。如果LBT成功,则WTRU可以在CSI资源上发送CSI报告2。如果没有接收到CSI-RS,则WTRU可以确定CSI-RS失败。
在示例中,WTRU(例如目标WTRU)可以识别COT的开始和持续时间。WTRU可以从网络(例如gNB)接收传输。该传输可以是DCI。该传输可以包括指示一个或多个(例如,两个)CSI-RS资源和一个或多个(例如,四个)CSI报告资源(例如,CSI报告资源)的信息。例如,该信息可以指示CSI-RS资源1和2以及CSI报告资源1.1、1.2、2.1和2.2。CSI-RS资源(例如,每个CSI-RS资源)可以与两个CSI报告资源相关联。例如,CSI-RS资源1可以与CSI报告资源1.1和1.2相关联,并且CSI-RS资源2可以与CSI报告资源2.1和2.2相关联。CSI报告资源可以在传输中被指示为相对于与CSI报告资源相关联的CSI-RS资源的偏移。例如,CSI报告资源1.1和1.2可被指示为相对于CSI-RS资源1的偏移,并且CSI报告资源2.1和2.2可被指示为相对于CSI-RS资源2的偏移。
WTRU可以基于所述传输来识别一个或多个(例如2个)CSI-RS资源窗口。WTRU可以在第一CSI资源窗口(例如,其可以被称为CSI-RS资源窗口1)的持续时间内监视第一CSI-RS资源(例如,CSI-RS资源1)以得到CSI-RS。如果CSI-RS在CSI-RS资源1上接收到,则WTRU可以识别与用于传输的CSI-RS资源1(例如,CSI报告资源1.1和1.2)相关联的CSI-RS资源和/或每个资源的相应CSI-RS报告。WTRU可以确定CSI报告资源1.1的可用性(例如,通过执行与CSI报告资源1.1相关联的LBT)。如果确定CSI报告资源1.1可用(例如,针对CSI报告资源1.1的LBT是成功的),则WTRU可以在CSI报告资源1.1上发送CSI报告。如果CSI报告资源1.1被确定为不可用(例如,针对CSI报告资源1.1的LBT是失败的),则WTRU可以确定CSI报告资源1.2的可用性(例如,通过执行与CSI报告资源1.2相关联的LBT)。如果CSI报告资源1.2被确定为可用(例如,针对CSI报告资源1.2,LBT是成功的),则WTRU可以在CSI报告资源1.2上发送CSI报告,并且WTRU可以忽略后续的CSI-RS资源和CSI报告资源。如果CSI-RS没有在CSI-RS资源1上接收,则WTRU可以监视GC-PDCCH以得到标识CSI-RS是否成功的指示符。
如果WTRU没有在CSI-RS资源1上接收到CSI-RS(例如,如果针对CSI-RS资源1的LBT在gNB失败,则可能发生),WTRU可以在第二CSI-RS资源窗口(例如,可以被称为CSI-RS资源窗口2)的持续时间内监视第二CSI-RS资源(例如,CSI-RS资源2)以得到CSI-RS。如果CSI-RS在CSI-RS资源2上被接收,则WTRU可以识别与用于传输的CSI-RS资源2(例如,CSI报告资源2.1和2.2)相关联的CSI-RS资源和/或针对每个资源的相应CSI报告。WTRU可以确定CSI报告资源2.1的可用性(例如,通过执行与CSI报告资源2.1相关联的LBT)。如果确定CSI报告资源2.1可用(例如,针对CSI报告资源2.1的LBT是成功的),则WTRU可以在CSI报告资源2.1上发送CSI报告。如果CSI报告资源2.1被确定为不可用(例如,针对CSI报告资源2.1的LBT是失败的),则WTRU可以确定CSI报告资源2.2的可用性(例如,通过执行与CSI报告资源2.2相关联的LBT)。如果CSI报告资源2.2被确定为可用(例如,针对CSI报告资源2.2的LBT是成功的),则WTRU可以在CSI报告资源2.2上发送CSI报告。如果CSI-RS没有在CSI-RS资源1或CSI-RS资源2上被接收到,则WTRU可以假设CSI-RS失败。
图10示出了在COT期间没有被分配的非目标WTRU的实现的示例。WTRU可以识别COT。WTRU可以接收DCI。WTRU可以确定WTRU未在COT中被调度。WTRU可以在GC-PDCCH中侦听(例如,连续地)CSI-RS指示符,该CSI-RS指示符标识CSI-RS传输的成功或失败。如果该指示符指示成功,则WTRU可以监视用于CSI-RS和CSI报告资源的重新分配的覆写PDCCH(例如,在单独的信道上)。如果分配了资源,则WTRU可以在未使用的资源中进行传送。
图11中示出了针对CSI报告(例如,没有利用LBT)的PUSCH和多个DCI上的周期性CSI-RS和非周期性CSI报告的示例。如图11所示,在COT建立之后,gNB可以不发送CSI报告与DCI的偏移。在CSI资源之后LBT可以不被执行。在传输之后可能发生第二DCI。gNB可在该持续时间期间进行传送。
CSI报告的传输之前LBT可不被执行。例如,如果在gNB向WTRU传输时和WTRU向gNB传输时之间存在相对较短的持续时间,则WTRU可以不执行LBT(例如,或者WTRU可以在固定持续时间内执行相对较短的LBT(例如,Cat2 LBT))。例如,如果gNB发送CSI-RS并继续发送数据,则WTRU可以(例如可能需要)在数据被发送之后(例如,立即)发送应答(例如,即使数据被发送到不同的WTRU)。DCI可以定义一个或多个CSI-RS资源窗口(例如,以考虑LBT失败)。对于这些窗口中的一个或多个窗口,gNB可尝试LBT(例如,在CSI-RS的传输之前),本文公开了gNB可以使用其接入这些资源的一者或多者的资源的属性和实现。
WTRU可以在CSI-RS资源中接收到CSI-RS之后准备和传送CSI报告(例如在16μs或更少内)。CSI-RS资源和CSI报告的传输之间的持续时间(例如,其可以是16μs或更小)可以包括一个或多个(例如,一个或两个)OFDM符号,在此期间gNB可以不发送信号。OFDM符号的数量可以取决于参数配置。如果DL和UL之间的间隙小于16μs,WTRU可以不执行LBT(例如Cat1LBT)。间隙可以大于16μs但小于25μs(例如,取决于参数配置)。如果间隙大于16μs但小于25μs,则WTRU可以执行LBT(例如,一次性LBT或Cat2 LBT)。针对CSI报告传输的偏移可以相对于CSI-RI的结束而言。WTRU可以被配置用于偏移值(例如,16μs或25μs的偏移值)。
CSI资源和CSI报告可以被解耦。第一DCI可以指示可以使用第二DCI。WTRU针对CSI报告可不执行LBT。处理可以解除WTRU对CSI报告的快速传输的资格(例如,正好在CSI-RS之后)。例如,gNB可以发送(例如,连续的)DL传输并传输第二PDCCH(例如,和/或DCI)至WTRU。gNB可以在被认为足以使WTRU准备CSI报告通过的时间量之后发送第二PDCCH。时间量可取决于一个或多个因素,其可包括例如WTRU的处理能力和/或被报告的CSI的量。例如,如果被报告的CSI的量较低(例如,仅信道的排序),则时间量可以较短,并且如果被报告的CSI的量较高(例如,用于类型II MIMO的MU-MIMO),则时间量可以较长。第二PDCCH/DCI可以不包含相对于第一DCI的附加信息。第二PDCCH/DCI可以触发WTRU在DCI之后的第一偏移(例如16μs)内传送CSI报告(例如,如本文所述的不利用LBT),或者在DCI之后的第二偏移(例如25μs)内传送CSI报告(例如,如本文所述的,WTRU执行一次性LBT)。针对CSI报告传输的偏移可以相对于第二DCI。WTRU可悲配置用于第一和/或第二偏移值(例如,16μs或25μs)。gNB可通过向WTRU指示在偏移时段(例如16μs或25μs)内期望CSI报告来指示偏移值。
执行LBT可以引起WTRU不能够发送其CSI报告(例如,取决于未许可信道上的RAT内/RAT间节点的密度)。gNB可以确定避免第二PDCCH/DCI(例如,如果gNB确定附近的RAT间/RAT内节点的密度较低)。gNB可以在第一DCI中指示是否将发送第二DCI,并且WTRU可以基于是否指示第二DCI来配置自身。
可以在当前COT之外使用非周期性报告。WTRU可以确定对于非周期CSI-RS,CSI-RS资源是活动的。例如,WTRU可以确定在从包含请求/CSI触发的PDCCH的结束开始并在当前COT的结束处结束的持续时间中CSI-RS资源是活动的。如果用于传输相关联的CSI报告的CSI资源落在当前COT时间窗口之外,WTRU可以遵循以下行为中的一者或多者。WTRU可以不(例如,可能被拒绝)发送相关联的CSI-RS报告。WTRU可以不执行LBT,并且可以等待接收后续COT中的DCI及CSI请求字段,以用于传送相关联的CSI报告。如果WTRU在随后的COT中没有接收到用于相应CSI报告的新的PDCCH/DCI,或者如果WTRU接收到PDCCH但DCI不包括CSI请求字段,则WTRU可以在由较高层提供的CSI资源中传送相关联的CSI报告。如果WTRU被配置有用于PUSCH传输的上行链路授权,则WTRU可以将CSI报告与UL数据复用和/或在配置的PUSCH资源上自主地传送CSI报告(例如,或CSI报告的一部分)。
半持久性CSI-RS可以使用较高层配置并且使用DCI激活。高层信令可以配置可以发送CSI-RS的时间(例如,特定时间或在时间窗口内)。SPS信号可以由DCI(例如,新的DCI)去激活和/或跟随(例如,立即)在信号的成功传输之后。可存在具有最小信令开销的多个传输时机(例如,通过在成功地信号传输之后(例如,立即)去激活SPS信号)。
被提供用于发送CSI-RS的描述可以用于发送下行链路共享信道。
可以在没有利用针对CSI资源的LBT而利用针对CSI报告LBT、和/或利用针对CSI资源的LBT且利用针对CSI报告LBT的情况下使用PUSCH上的周期性/SPS CSI-RS和非周期性CSI报告。
LBT可以不用于CSI资源,或者LBT可以用于CSI报告。可以使用COT内的确定性周期性/SPS CSI。可建立COT。CSI-RS资源可基于SPS或COT的持续时间内的周期性定时来被分配。可以跳过不在COT的持续时间内的周期性或SPS CSI-RS资源。gNB可以在任何CSI-RS资源之前具有(例如,连续的)信道控制。可以不使用LBT。COT可内的传输资源是确定性的。
可以使用在PUSCH上具有重复的非周期性CSI报告,DCI可以用于调度CSI报告。在CSI报告的传输(例如,如果非周期性报告偏移小于noLBTtimetLimit)之前LBT可不被使用。在CSI报告的传输(例如,如果非周期性报告偏移大于noLBTtimetLimit)之前LBT可被使用,例如,如本文所描述的。图12示出了具有重复的周期性/SPS CSI-RS和非周期性CSI报告的示例。
LBT可用于CSI资源和CSI报告。图13示出了具有CSI资源窗口的周期性/SPS CSI-RS和具有重复的非周期性CSI报告的示例。可以使用具有CSI资源窗口的周期性/SPS CSI。CSI-RS资源设置(例如,对于SPS的激活或对于周期性情况通过较高层信令用信号发送的配置)可以允许单个COT内或跨多个COT的CSI-RS资源的可变性。gNB可以定义一个或多个周期性CSI-RS资源窗口。gNB可执行LBT和/或可尝试在周期性CSI-RS资源窗口中发送CSI-RS。WTRU可以在周期性CSI-RS资源窗口中监控CSI-RS以得到测量。在COT内使用的参数(例如,CSI-RS窗口持续时间)可以与在COT外使用的参数相同或不同(例如,当gNB使用Cat 4LBT获取媒介时)。CSI-RS资源被跳过(例如,如果COT没有被建立)。CSI-RS资源窗口可以被增加。例如,在没有建立COT时可以增加窗口(例如,以使用Cat 4LBT来考虑获取媒介的gNB)。CSI-RS资源窗口可以是较小的(例如,如果COT没有被建立)。
可以使用在PUSCH上具有重复的非周期性CSI报告。WTRU定时可以与CSI资源定时异步(例如,使用DCI来触发CSI报告)。WTRU定时可以基于(例如仅基于)DCI报告偏移。WTRU可以反馈信息,该信息可以基于最近的周期性CSI-RS资源(例如,取决于WTRU是时间受限的还是非时间受限的)。非时间受限的测量配置可以将测量限制到一COT内的多个CSI测量窗口,和/或允许跨多个COT的多个CSI测量窗口的测量。
在一个或多个CSI-RS资源之后的一时段(例如,16μs或25μs)内,gNB可以调度PUSCH用于CSI报告。在该时段内的PUCCH的调度可以允许WTRU在不使用针对传输CSI报告的LBT(例如,Cat 1LBT)的情况下进行操作,或者使用一次性LBT(例如,Cat 2LBT)的操作,例如依照一个或多个监管法规。监管规则可以定义例如LBT的接收功率阈值(例如,-60dBm)。WTRU可以在紧接的下一个CSI-报告中不包括最后的CSI-RS的影响(例如,如果最后的CSI-RS与CSI报告的传输时间之间的时间短)。WTRU可以将CSI-RS的效果包括在下一个CSI报告之后的CSI报告中。例如,如果在n-k,n-j,n-i和n时隙上发送CSI-RS,其中k>j>i,则WTRU可以被调度为在时隙n和时隙n+k上发送CSI报告。WTRU可以(例如,仅)将CSI-RS的影响包括在在时隙n上发送的CSI报告中的时隙n-k,n-j和n-i中。对于关于n+k的下一个CSI报告,WTRU可以包括时隙n中的CSI-RS的影响以及CSI-RS对后续时隙(例如,n+i,n+j等)的影响。
使用Cat 1LBT或Cat 2LBT可以提供增加的信道接入时机。短时间内准备CSI报告的处理能力可能使某些WTRU失去资格。gNB可以传送第二PDCCH/DCI以触发WTRU在第二DCI之后的一时段(例如,16μs或25μs)内发送CSI报告。例如,根据监管规则,WTRU可以不执行LBT(例如,Cat 1LBT)或者可以使用一次性LBT(例如,Cat 2LBT)来进行CSI报告的传输。WTRU使用Cat 1LBT还是Cat 2LBT可以取决于间隙间隔(例如,因为gNB在PUCCH之前保持下行链路传输直到间隙符号)。
可以使用PUCCH上的周期性/SPS CSI-RS和周期性/SPS CSI报告。图14示出了同步CSI报告的示例(例如,具有重复)。图15示出了异步CSI报告的示例(例如,可能的重复)。可以在CSI-RS窗口内发送周期性/SPS CSI(例如,本文所公开的)。
可以使用PUCCH上的同步的周期性/SPS CSI报告。WTRU CSI报告定时可以与CSI-RS资源定时同步(例如,如图14所示)。CSI-RS资源激活(例如,或较高层配置)可以将CSI-RS和CSI报告的定时设置成相同的时间,例如,与在CSI报告激活(例如,或较高层配置)中具有单独的定时信息相反。对于CSI资源和CSI报告都可以有单个激活/配置。WTRU可以基于最新期望的CSI的实际位置来反馈信息。WTRU可以具有与CSI-RS资源的固定偏移。WTRU可以具有重复资源。
可以使用PUCCH上的异步周期性/SPS CSI报告。WTRU CSI报告定时可以与CSI-RS资源定时异步(例如,如图15所示)。CSI-RS资源激活/配置可以用于资源定时(例如,仅资源定时)。CSI报告激活/配置可以用于CSI报告定时(例如,仅CSI报告定时)。CSI报告与CSI资源的偏移量可以变化。在示例中,WTRU可以反馈“信道未改变”指示符。WTRU可以不反馈任何信息(例如,如果该信息自从最后的CSI报告窗口以来没有改变)。
可以执行非周期性传输。例如,非周期性发射可以包括从gNB到WTRU的CSI-RS的非周期性传输(例如ZP和NZP CSI-RS),并且可以包括用于CSI报告的定时偏移。定时偏移可以小于或等于MCOT加上从WTRU到gNB的针对CSI报告的反馈的持续时间。定时偏移可以使得CSI报告可以在单独的COT中被发送回(例如,定时偏移可以不小于或等于MCOT加上反馈的持续时间)。可以执行从WTRU到gNB的SRS的非周期性传输。
可以使用近似周期性信号传输。CSI-RS、CSI报告、干扰测量和周围参考信号可以用于NR-U中。
CSI-RS、CSI报告和/或SRS的开始可以在周期性窗口内发送。窗口内的定时可由较高层信令设定(例如,部分设定)和/或由DCI激活/去激活。信号可以在窗口内的任何时间被传送。由于LBT在传输之前引起的不确定性,窗口的大小可是确定大小的。
在周期性传输窗口内可以存在(例如,一种)类型的信号(例如,CSI-RS、CSI报告或SRS)的传输(例如,以适应由于LBT不允许完美的周期性传输而引起的传输的可变性)。CSI-RS可以从LAA DRS(例如,包括同步信号、PBCH和/或CSI-RS)解耦。将CSI-RS与LAA DRS解耦可以提供CSI-RS到特定WTRU的更灵活的周期性。
可以将用于多个WTRU的独立CSI-RS、CSI报告和SRS分组在一起。例如,可以将用于多个WTRU的独立CSI-RS、CSI报告和SRS分组在一起,以最小化对多个LBT的需求(例如,与允许到每个用户的独立CSI-RS传输相反)。gNB可将WTRU(例如NR-U网络(波束)中的所有WTRU)的CSI-RS传输对齐(例如同步)。gNB可以将CSI-RS传输对齐以减少所需的CSI-RS信道接入的量(例如,与CSI-RS是WTRU特定的且具有WTRU特定的周期的情况相比)。CSI-RS传输可以是WTRU特定的。CSI-RS周期性和定时可以是同步的。可以使用预编码CSI-RS。单个CSI-RS可以用于一组WTRU(例如,其中不使用预编码CSI-RS)。分组可以提供具有减少的DCI开销(例如,针对CSI报告和SRS)的周期性/半持久性反馈的形式。
使用近似非周期信号传输,例如与非周期性实现相比,可以减少开销。通过使用单个触发机制(例如DCI)来触发分组的(例如周期性/半持久性)信号请求,可以减少开销。可以指示信号源与触发DCI的相对位置。可以不使用DCI(例如,如果如LAA DRS中一样没有SS用于WTRU识别信号何时到达)。WTRU可以搜索一触发DCI。gNB可使用成组公共DCI来指示特定信号的触发。gNB可使用寻址到WTRU组的DCI,通过周期/半持久性信号传输来触发信号。
对于周期性和半持久性信号传输(例如,CSI-RS、CSI报告或SRS),可以以例如+/-x的周期性定时偏移和y的周期而周期性地发送信号(例如,CSI-RS、CSI报告或SRS)。信号窗口持续时间可以是2x。定时偏移可以是+/-x/2,具有x的信号窗口持续时间。
CSI-RS窗口可以独立于CSI报告窗口。CSI报告窗口可以与CSI-RS窗口相距固定的定时偏移。CSI报告可以独立于具有WTRU特定的定时偏移的每个WTRU。CSI报告可被设置使得定时偏移+反馈持续时间小于MCOT。SRS窗口可以独立于其他(例如,所有其他)窗口。
如果gNB/WTRU不能在窗口的持续时间内传送,则可以跳过周期性/非周期性信号。如果跳过信号的z个实例,则gNB可以指示信号的周期性的改变和/或(例如仅)回退至非周期性传输。
所使用的LBT类型可以取决于相对于MCOT的传输时间。信号的传输可以服从(例如,如果在MCOT内)类别2LBT(例如,gNB/WTRU侦听达固定的持续时间而没有回退)。信号的传输可以服从类别4LBT(例如,gNB/WTRU侦听并执行回退),例如,如果信号不与任何数据一起传送或MCOT被发起以启用其传输。
在CSI-RS之后可以以较高优先级发送下一传输。例如,如果由于LBT失败导致CSI-RS传输丢失,则可以以较高优先级发送CSI-RS发送之后的下一传输。WTRU可以发送指示预期的周期性传输的丢失的标志(例如,在周期性/非周期性场景中)。可以针对一个或多个传输丢失(例如,每个传输丢失)指示一传输丢失。传输丢失可以在预配置数量的CSI-RS丢失后被指示。
可以通过较高层参数(例如,或者通过DCI)针对(例如,每个)CSI-RS资源(例如,ZP或NZP CSI-RS)、CSI报告资源和/或SRS资源配置以下中的一者或多者。可配置资源窗口的周期性。周期性可以相对于网络定时。gNB可以用信号通知窗口周期的变化。可以配置相对于窗口周期性定时的资源窗口持续时间。该窗口可以在周期性或半持久性传输上具有恒定的持续时间,或者可以在半持久性传输的周期上改变。窗口持续时间可通过RRC信令或通过DCI被传达给WTRU。资源参数可以被配置。资源(例如,每个资源)可以用与触发机制相关的时间/频率和/或资源参数(例如,代码)来配置。在接收到触发机制时,WTRU可以知道其应该在何时接收(例如在CSI-RS的情况下)或发送(例如在CSI报告或SRS的情况下)以及应该接收或发送什么。触发机制参数可以被配置。gNB可以使用组公共PDCCH发送触发机制参数,该组公共PDCCH指示周期性/半持久性CSI-RS传输的开始。在该模式中配置的WTRU可以读取组公共PDCCH,并且基于配置的CSI-RS(例如,和CSI报告)参数开始CSI-RS处理。gNB可将被配置用于周期性/半持久性CSI-RS/CSI报告(例如,在NR-U中)的一个或多个(例如,所有)WTRU指派到特定ID,并可基于组ID发送DCI。
对于周期性或半持久性CSI报告,可以使用与近似周期性CSI-RS的附加定时偏移。
图16示出了近似周期性CSI-RS和CSI-RS报告(例如,在NR-U中)的示例。图16示出了具有公共CSI-RS窗口和不同周期的在gNB和2个WTRU之间的帧交换的示例,其中在用于CSI-RS的两个WTRU上使用公共触发(例如DCI),在用于CSI报告的两个WTRU上使用公共触发(例如DCI)。
对于不同的WTRU群组,可有多个周期性窗口(例如,与用于所有WTRU的一个周期性窗口相反)。
图17示出了可用于CSI-RS和CSI报告的WTRU实现。图18示出了可以用于SRS的WTRU实现。
本文描述的每个计算系统可以具有一个或多个具有存储器的计算机处理器,该存储器配置有可执行指令或硬件以实现本文描述的功能,包括确定本文描述的参数以及在实体(例如,WTRU和网络)之间发送和接收消息以实现所述功能。
上述过程可以在计算机程序、软件、和/或固件中实现,所述计算机程序、软件和/或固件被并入计算机可读媒介中以由计算机和/或处理器执行。计算机可读媒介的示例包括但不限于电子信号(通过有线和/或无线连接传输)和/或计算机可读存储媒介。计算机可读存储媒介的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓冲存储器、半导体存储器设备、诸如但不限于内部硬盘和可移动盘的磁媒介、磁光媒介和/或诸如CD-ROM盘和/或数字多功能盘(DVD)的光媒介。与软件相关联的处理器可以用于实现在WTRU、终端、基站、gNB、RNC和/或任何主机计算机中使用的射频收发信机。
尽管在特定组合中描述了特征和元件,但是每个特征或元件可以在没有其它特征和元件的情况下单独使用,或者在具有或不具有其它特征和元件的各种组合中使用。
尽管本文参考了新无线电(NR)、5G或LTE、LTE-A特定协议,但是应当理解,本文描述的解决方案不限于这种情况,并且也可以应用于其它无线系统。

Claims (12)

1.一种无线发射/接收单元(WTRU),包括:
处理器,被配置为:
从网络接收第一信息,其中所述第一信息指示第一信道状态信息参考信号(CSI-RS)资源和第二CSI-RS资源、以及第一信道状态信息(CSI)报告资源、第二CSI报告资源、第三CSI报告资源和第四CSI报告资源,并且其中所述第一CSI报告资源和第二CSI报告资源与所述第一CSI-RS资源相关联,并且所述第三CSI报告资源和第四CSI报告资源与所述第二CSI-RS资源相关联;
监视所述第一CSI-RS资源;
在所述第一CSI-RS资源中第一CSI-RS没有被接收到的情况下,监视所述第二CSI-RS资源以得到所述第一CSI-RS;
在所述第二CSI-RS资源上接收所述第一CSI-RS;
确定所述第三CSI报告资源的可用性;
在所述第三CSI报告资源被确定为不可用的情况下,确定所述第四CSI报告资源的可用性;以及
在所述第四CSI报告资源被确定为可用的情况下,在所述第四CSI报告资源上传送所述CSI报告;
其中,所述第一CSI报告资源和所述第二CSI报告资源在所述第一信息中被指示为相对于所述第一CSI-RS资源的第一偏移和第二偏移,并且其中所述第三CSI报告资源和所述第四CSI报告资源在所述第一信息中被指示为相对于所述第二CSI-RS资源的第三偏移和第四偏移。
2.根据权利要求1所述的WTRU,其中,所述处理器被进一步配置为:
从网络接收第二信息,其中所述第二信息指示第三信道状态信息参考信号(CSI-RS)资源和第四CSI-RS资源、以及第五信道状态信息(CSI)报告资源、第六CSI报告资源、第七CSI报告资源和第八CSI报告资源,并且其中所述第五CSI报告资源和第六CSI报告资源与所述第三CSI-RS资源相关联,并且所述第七CSI报告资源和第八CSI报告资源与所述第四CSI-RS资源相关联;
监视所述第三CSI-RS资源;
在所述第三CSI-RS资源上接收第二CSI-RS;
确定所述第五CSI报告资源的可用性;
在所述第五CSI报告资源被确定为不可用的情况下,确定所述第六CSI报告资源的可用性;以及
在所述第六CSI报告资源被确定为可用的情况下,在所述第六CSI报告资源上传送CSI报告。
3.根据权利要求1所述的WTRU,其中,所述处理器被配置为通过执行与CSI报告资源相关联的先听后说(LBT)来确定该CSI报告资源的所述可用性。
4.根据权利要求1所述的WTRU,其中,所述第一信息包括下行链路控制信息(DCI)。
5.根据权利要求1所述的WTRU,其中,在所述第三CSI资源被确定为可用的情况下,所述处理器进一步被配置为在所述第三CSI报告资源上传送所述CSI报告。
6.根据权利要求2所述的WTRU,其中,在所述第五CSI报告资源被确定为可用的情况下,所述处理器进一步被配置为在所述第五CSI报告资源上传送所述CSI报告。
7.一种在WTRU中实施的方法,该方法包括:
从网络接收第一信息,其中所述第一信息指示第一信道状态信息参考信号(CSI-RS)资源和第二CSI-RS资源、以及第一信道状态信息(CSI)报告资源、第二CSI报告资源、第三CSI报告资源和第四CSI报告资源,并且其中所述第一CSI报告资源和第二CSI报告资源与所述第一CSI-RS资源相关联,并且所述第三CSI报告资源和第四CSI报告资源与所述第二CSI-RS资源相关联;
监视所述第一CSI-RS资源;
在所述第一CSI-RS资源中第一CSI-RS没有被接收到的情况下,监视所述第二CSI-RS资源以得到所述第一CSI-RS;
在所述第二CSI-RS资源上接收所述第一CSI-RS;
确定所述第三CSI报告资源的可用性;
在所述第三CSI报告资源被确定为不可用的情况下,确定所述第四CSI报告资源的可用性;以及
在所述第四CSI报告资源被确定为可用的情况下,在所述第四CSI报告资源上传送所述CSI报告;
其中,所述第一CSI报告资源和所述第二CSI报告资源在所述第一信息中被指示为相对于所述第一CSI-RS资源的第一偏移和第二偏移,并且其中,所述第三CSI报告资源和所述第四CSI报告资源在所述第一信息中被指示为相对于所述第二CSI-RS资源的第三偏移和第四偏移。
8.根据权利要求7所述的方法,进一步包括:
从网络接收第二信息,其中所述第二信息指示第三信道状态信息参考信号(CSI-RS)资源和第四CSI-RS资源、以及第五信道状态信息(CSI)报告资源、第六CSI报告资源、第七CSI报告资源和第八CSI报告资源,并且其中所述第五CSI报告资源和第六CSI报告资源与所述第三CSI-RS资源相关联,并且所述第七CSI报告资源和第八CSI报告资源与所述第四CSI-RS资源相关联;
监视所述第三CSI-RS资源;
在所述第三CSI-RS资源上接收第二CSI-RS;
确定所述第五CSI报告资源的可用性;
在所述第五CSI报告资源被确定为不可用的情况下,确定所述第六CSI报告资源的可用性;以及
在所述第六CSI报告资源被确定为可用的情况下,在所述第六CSI报告资源上传送CSI报告。
9.根据权利要求7所述的方法,其中,确定CSI报告资源的所述可用性包括执行与该CSI报告资源相关联的先听后说(LBT)。
10.根据权利要求7所述的方法,其中,所述第一信息包括下行链路控制信息(DCI)。
11.根据权利要求7所述的方法,其中,在所述第三CSI资源被确定为可用的情况下,所述方法进一步包括在所述第三CSI报告资源上传送所述CSI报告。
12.根据权利要求8所述的方法,其中,在所述第五CSI报告资源被确定为可用的情况下,所述方法进一步包括在所述第五CSI报告资源上传送所述CSI报告。
CN201980063124.5A 2018-08-08 2019-08-08 无线发射/接收单元和在其中实施的方法 Active CN112753194B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862716068P 2018-08-08 2018-08-08
US62/716,068 2018-08-08
PCT/US2019/045670 WO2020033658A1 (en) 2018-08-08 2019-08-08 Csi feedback in nr-u

Publications (2)

Publication Number Publication Date
CN112753194A CN112753194A (zh) 2021-05-04
CN112753194B true CN112753194B (zh) 2024-05-07

Family

ID=67734830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980063124.5A Active CN112753194B (zh) 2018-08-08 2019-08-08 无线发射/接收单元和在其中实施的方法

Country Status (4)

Country Link
US (2) US20210391906A1 (zh)
EP (1) EP3834346A1 (zh)
CN (1) CN112753194B (zh)
WO (1) WO2020033658A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032558A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
EP3832933B1 (en) * 2018-08-10 2023-09-27 Huawei Technologies Co., Ltd. Channel state information reporting method and apparatus
WO2020036362A1 (ko) * 2018-08-16 2020-02-20 엘지전자 주식회사 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치
WO2020069879A1 (en) * 2018-10-04 2020-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods of resource selection for sidelink multi-stream transmission in wireless communications systems and related apparatuses
WO2020163987A1 (en) * 2019-02-12 2020-08-20 Qualcomm Incorporated Differential reporting mode for amplitude and/or co-phase
US11595912B2 (en) 2019-08-13 2023-02-28 Qualcomm Incorporated Sidelink power control
US11805435B2 (en) * 2019-09-06 2023-10-31 Qualcomm Incorporated Deriving CSI using a subset of configured CSI-RS resources
EP4252356A1 (en) * 2021-01-25 2023-10-04 Nokia Technologies Oy Apparatuses and methods for facilitating qcl source reference signal reception in beam based unlicenced operation
US11672011B2 (en) * 2021-04-02 2023-06-06 Qualcomm Incorporated Eligible transmission beams based on directional listen-before-talk

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170942A (zh) * 2014-02-18 2016-11-30 Lg 电子株式会社 在支持无线资源的使用变化的无线通信系统中报告信道状态信息的方法及其设备
WO2017135344A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107113647A (zh) * 2014-11-14 2017-08-29 交互数字专利控股公司 用于无授权频带中的长期演进(lte)操作的信道测量和报告机制的方法和过程
CN107771378A (zh) * 2015-06-17 2018-03-06 Lg 电子株式会社 使用非周期性信道状态信息‑参考信号的信道状态报告的方法及其装置
CN108141267A (zh) * 2015-09-24 2018-06-08 Lg 电子株式会社 无线通信系统中发送和接收信道状态信息的方法及其设备
CN108352879A (zh) * 2015-11-03 2018-07-31 Lg电子株式会社 用于在无线通信系统中报告信道状态的方法及其设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104777B (zh) * 2011-02-09 2020-05-01 瑞典爱立信有限公司 分层的异构小区部署中的参考符号资源的有效率的使用
WO2016202374A1 (en) * 2015-06-17 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a radio network node, and methods therein
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20230064881A1 (en) * 2020-02-27 2023-03-02 Lenovo (Beijing) Ltd. Method and apparatus for wireless communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170942A (zh) * 2014-02-18 2016-11-30 Lg 电子株式会社 在支持无线资源的使用变化的无线通信系统中报告信道状态信息的方法及其设备
CN107113647A (zh) * 2014-11-14 2017-08-29 交互数字专利控股公司 用于无授权频带中的长期演进(lte)操作的信道测量和报告机制的方法和过程
CN107771378A (zh) * 2015-06-17 2018-03-06 Lg 电子株式会社 使用非周期性信道状态信息‑参考信号的信道状态报告的方法及其装置
CN108141267A (zh) * 2015-09-24 2018-06-08 Lg 电子株式会社 无线通信系统中发送和接收信道状态信息的方法及其设备
CN108352879A (zh) * 2015-11-03 2018-07-31 Lg电子株式会社 用于在无线通信系统中报告信道状态的方法及其设备
WO2017135344A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Also Published As

Publication number Publication date
US20210391906A1 (en) 2021-12-16
WO2020033658A1 (en) 2020-02-13
US20240072866A1 (en) 2024-02-29
EP3834346A1 (en) 2021-06-16
CN112753194A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN111758278B (zh) 用于带宽部分操作的系统和方法
CN111699748B (zh) 用于非授权频带中的新型无线电(nr)操作的技术
CN112753194B (zh) 无线发射/接收单元和在其中实施的方法
CN111527722B (zh) 用于物理下行链路控制信道(pdcch)候选确定的方法
CN109923819B (zh) 接收机带宽适配
CN111406436B (zh) 新无线电/新无线电-未许可中的初始接入和信道接入
JP2024023820A (ja) 新無線(nr)におけるページングの手順のための方法および装置
CN111869307A (zh) 用于非授权资源选择的方法
CN113243138A (zh) 用于无线系统中的带宽部分和补充上行链路操作的方法
CN113475032A (zh) 在nr-u中接收控制信息
CN113711686B (zh) 用于宽带未许可信道接入的方法
CN112075116B (zh) 针对非对称的全双工无线局域网(wlan)的全双工时机发现和传输
CN114365448A (zh) Nr-u中csi-rs和csi反馈的接收方法
US20220407663A1 (en) Methods for using in-carrier guard bands
WO2022155170A1 (en) Methods and systems for efficient uplink (ul) synchronization maintenance with a deactivated secondary cell group (scg)
CN116114340A (zh) 用于无线发射/接收单元(wtru)发起的信道占用时间(cot)的方法和装置
JP2024512706A (ja) 無線通信システムにおけるセル間マルチtrp動作のための方法及び装置
EP4014412A1 (en) Shared channel occupancy time operation
US20230354327A1 (en) Methods and apparatus for dynamic spectrum sharing
EP4133882A1 (en) Receiving node channel assessment
US20240188015A1 (en) Methods and apparatus for inter-cell multi trp operation in wireless communication systems
WO2024102627A1 (en) Apparatus and methods of beam management for an access link in a new radio network-controlled repeater (nr-ncr)
WO2023014545A1 (en) Sidelink collision detection and indication
CN117917160A (zh) 支持大规模QoS状态转变的方法和装置
CN116783979A (zh) 增强信道接入

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230608

Address after: Delaware

Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Applicant before: IDAC HOLDINGS, Inc.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant