TWI746969B - Ieee 802.11存取點(ap)及在其中使用的方法 - Google Patents

Ieee 802.11存取點(ap)及在其中使用的方法 Download PDF

Info

Publication number
TWI746969B
TWI746969B TW108115354A TW108115354A TWI746969B TW I746969 B TWI746969 B TW I746969B TW 108115354 A TW108115354 A TW 108115354A TW 108115354 A TW108115354 A TW 108115354A TW I746969 B TWI746969 B TW I746969B
Authority
TW
Taiwan
Prior art keywords
wtrus
wtru
frame
transmit
transmission
Prior art date
Application number
TW108115354A
Other languages
English (en)
Other versions
TW201947958A (zh
Inventor
阿格翰柯梅 歐泰瑞
國棟 張
立祥 孫
羅勃特L 奥勒森
Original Assignee
美商內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商內數位專利控股公司 filed Critical 美商內數位專利控股公司
Publication of TW201947958A publication Critical patent/TW201947958A/zh
Application granted granted Critical
Publication of TWI746969B publication Critical patent/TWI746969B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述了用於無線802.11網路中的全雙工傳輸機會發現及傳輸的方法和裝置。全雙工相容存取點可以將全雙工(FD)傳輸機會(TxOP)建立訊框傳輸到多個無線傳輸/接收單元(WTRU)。這賦能該多個WTRU中的每一個傳輸測量訊框以供其他WTRU中每一個WTRU進行干擾測量,以確定哪些WTRU可以參與FD通訊。AP接收回饋,並且該AP基於該回饋確定該AP可以與該多個WTRU中的哪一個WTRU執行FD通訊。然後開始與所確定的WTRU的FD通訊。

Description

IEEE 802.11存取點(AP)及在其中使用的方法 相關申請的交叉引用
本申請要求2018年5月3日提交的美國臨時申請序號62/666,523的權益,其內容藉由引用結合在此。
傳統的無線通訊系統典型限於使用時間/頻率/空間/極化維度的任何組合的傳輸/接收,以將下鏈與上鏈傳輸分開。這種限制是由無線電技術中的現有技術強加的,其由於硬體隔離能力的限制,使得特別頻帶上的無線電在特別時刻僅能夠傳輸或接收。實際上,這可以使用分頻雙工(FDD)或分時雙工(TDD)傳輸方案來調節,其中如所述,使用頻率或時間來完成傳輸和接收信號的分離。由於近年來自干擾消除技術(硬體和軟體)的進步,已經證明了在實體層之全雙工的可行性。然而,在給定裝置處,來自主傳輸的干擾可能妨礙來自另一裝置的輔助傳輸的接收。因此,期望具有全雙工機會發現機制和相應的全雙工傳輸建立程序。
本文描述了用於無線802.11網路中的全雙工傳輸機會發現及傳輸的方法和裝置。全雙工相容存取點可以將全雙工(FD)傳輸機會(TxOP)建立訊框傳輸到多個無線傳輸/接收單元(WTRU)。這賦能該多個WTRU中的每一 個傳輸測量訊框以供每個其他WTRU進行干擾測量,以確定哪些WTRU可以參與FD通訊。AP接收回饋,並且該AP基於該回饋確定該AP可以與該多個WTRU中的哪個WTRU執行FD通訊。然後開始與所確定的WTRU的FD通訊。
100:通訊系統
102、102a、102b、102c、102d、310、420、430、520、530、720、730、740、750、920、930、1020、1030、1220、1230、1240、1250:無線傳輸/接收單元(WTRU)
104、113:無線電存取網路
106、115:核心網路
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b:基地台
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:行動性管理實體(MME)
164:服務閘道
166:封包資料網路(PDN)閘道
180a、180b、180c:gNB
182a、182b:存取和行動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
200:天線
210:循環器
220:類比消除電路
230:數位消除功能
320、410、510、710、900、1010、1210:存取點(AP)
1110:請求發送(B-RTS)訊框
1111:訊框控制元素
1112、1122:持續時間欄位
1113、1123:接收器地址(RA)欄位
1114:傳輸器地址(TA)欄位
1115:WTRU點陣圖欄位
1116、1124:訊框控制序列(FCS)欄位
1120:清除發送/否定清除發送(B-CTS/NCTS)訊框
1121:訊框控制欄位
AP:存取點
BA:塊應答
CSMA:載波感測多重存取
CTS:清除發送
DL:下鏈
FD TxOP:全雙工傳輸機會
MU-RTS:多使用者(MU)請求發送
NDP:空資料封包
RTS:準備發送
TF:觸發訊框
可以從以下結合附圖以範例性方式給出的描述中獲得更詳細的理解,此外,附圖中相同的附圖標記表示相同的元件,並且其中:第1A圖是示出其中可以實施一個或多個揭露的實施例的範例性通訊系統的系統圖;第1B圖是示出了根據實施例的可在第1A圖中所示的通訊系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖;第1C圖是示出了根據實施例的可在第1A圖中所示的通訊系統內使用的範例性無線電存取網路(RAN)和範例性核心網路(CN)的系統圖;第1D圖是示出了根據實施例的可在第1A圖中所示的通訊系統內使用的另一範例性RAN和另一範例性CN的系統圖;第2圖是示出了範例性全雙工收發器的框圖;第3圖是示出了範例性成對全雙工操作的示圖;第4圖是示出了範例性不對稱全雙工操作的示圖;第5圖是示出了全雙工操作中的範例性干擾的示圖;第6圖是示出了具有存取點(AP)的範例性無線網路的示圖,其示出WTRU之間的全雙工相容性;第7圖是示出了在報告階段中具有輪詢的範例性全雙工相容性發現程序的示圖; 第8圖是示出了在報告階段中具有空(null)資料封包(NDP)報告觸發的範例性全雙工相容性發現程序的示圖;第9圖是示出了基於觸發訊框之前的媒體感測感測的範例性全雙工傳輸機會(TXOP)的示圖,其有可能向後相容於下鏈(DL)站;第10圖是示出了具有對上鏈/下鏈(UL/DL)站的可能向後相容性的範例性全雙工傳輸機會(TXOP)的示圖;第11圖是示出了用於廣播請求發送/清除發送/否定清除發送(B-RTS/CTS/NCTS)的範例性訊框結構的示圖;以及第12圖是示出了來自站的範例性B-CTS回應的示圖。
第1A圖是示出了可以實施一個或多個所揭露的實施例的範例通訊系統100的示圖。該通訊系統100可以是為多個無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通訊系統100可以藉由共用包括無線頻寬在內的系統資源而賦能多個無線使用者存取此類內容。舉例來說,通訊系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通訊系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、 102d可以是被配置成在無線環境中操作和/或通訊的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”和/或“STA”,其可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費者電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c及102d中的任意者可被可交換地稱為UE。
通訊系統100還可以包括基地台114a和/或基地台114b。每一個基地台114a、114b可以是被配置成與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促成存取一個或多個通訊網路(例如CN 106/115、網際網路110、和/或其他網路112)的任何類型的裝置。舉例來說,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b中的每一者都被描述成了單個元件,然而應該瞭解。基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104/113的一部分,其還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的一個或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一 步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每一個扇區有一個。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個扇區使用多個收發器。舉例來說,藉由使用波束成形,可以在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一者或多者進行通訊,其中該空中介面116可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(R-AT)來建立。
更具體地說,如上所述,通訊系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通訊協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速UL封包存取(HSUPA)。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如NR無線電存取,其可以使用新型無線電(NR)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。舉例來說,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)傳輸的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線保真度(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且例如可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在另一實施例中,基地台114b和WTRU 102c、102d可藉由使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如 第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通訊,其可以是被配置成向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113和/或CN 106/115可以直接或間接地和與RAN 104/113使用相同RAT或不同RAT的其他RAN進行通訊。例如,除了與使用NR無線電技術的RAN 104/113相連之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通訊。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了共同通訊協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料包協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置之系統。網路112可以包括由其他服務操作者擁有和/或操作的有線和/或無線通訊網路。例如,網路112可以包括與一個或多個RAN相連的另一個CN,其中該一個或多個RAN可以與RAN 104/113使用相同RAT或不同RAT。
通訊系統100中WTRU 102a、102b、102c、102d中的一些或所有可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通訊的多個收發器)。例如,第1A圖所示的WTRU 102c 可被配置成與可以使用基於蜂巢的無線電技術的基地台114a通訊,以及與可以使用IEEE 802無線電技術的基地台114b通訊。
第1B圖是示出了範例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138等等。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何賦能WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成各別組件,然而應該瞭解,處理器118和收發器120也可以整合在一個電子封裝或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸或接收往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的放射器/檢測器。在另一實施例中,傳輸/接收元件122可被配置成傳輸和/或接收RF和光信號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何組合。
雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可 以使用MIMO技術。由此,在實施例中,WTRU 102可以包括兩個或多個藉由空中介面116來傳輸和接收無線信號的傳輸/接收元件122(例如多個天線)。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括賦能WTRU 102經由多種RAT(例如NR和IEEE 802.11)來進行通訊的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何類型的適當記憶體存取資訊,以及將資料存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入該記憶體,作為範例,該記憶體可以位於伺服器或家用電腦(未顯示)上。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置成提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或更多個附近基地台接收的信號的定時來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以經由任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動跟蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、計磁器、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、計磁器、氣壓計、手勢感測器、生物測定感測器和/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對於該全雙工無線電裝置,一些或所有信號(例如與用於UL(例如對傳輸而言)和下鏈(例如對接收而言)的特別子訊框相關聯)的接收或傳輸可以是並行和/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如各別的處理器(未顯示)或是經由處理器118)的信號處理來減小和/或實質消除自干擾的干擾管理單元139。在實施例中,WTRU 102可以包括傳輸和接收一些或所有信號 (例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特別子訊框相關聯)所針對的半雙工無線電裝置。
第1C圖是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以經由空中介面116使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通訊。該RAN 104還可以與CN 106進行通訊。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一者都可以包括經由空中介面116與WTRU 102a、102b、102c通訊的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c中的每一者都可以關聯於一個特別胞元(未顯示),並且可被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通訊。
第1C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中e節點B 160a、160b、160c中的每一者,並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,承載啟動/去啟動,以及在WTRU 102a、102b、102c的初始附著程序中選擇特別的服務閘道等等。MME 162還可以提供一個用於在 RAN 104與使用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中e節點B 160a、160b、160c中的每一者。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在eNB間的交接期間錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼,以及管理並儲存WTRU 102a、102b、102c的內容等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通訊。
CN 106可以促成與其他網路的通訊。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以便促成WTRU 102a、102b、102c與傳統的陸線通訊裝置之間的通訊。例如,CN 106可以包括一個IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通訊,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路可以包括其他服務操作者擁有和/或操作的其他有線和/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通訊網路可以使用(例如臨時或永久性)有線通訊介面。
在典型實施例中,該其他網路112可以是WLAN。
基礎架構基本服務集(BSS)模式中的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是有介面於分散式系統(DS)或是將訊務送入和/或送出BSS的別的類型的有線/ 無線網路。源於BSS外部往STA的訊務可以藉由AP到達並被遞送至STA。源自STA往BSS外部的目的地的訊務可被發送至AP,以便遞送到分別的目的地。處於BSS內部的STA之間的訊務可以藉由AP來發送,例如源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。處於BSS內部的STA之間的訊務可被認為和/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通訊。在這裡,IBSS通訊模式有時可被稱為“特定(ad-hoc)”通訊模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以是固定寬度(例如20MHz的頻寬)或是經由傳訊動態設置的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些代表實施例中,所實施的可以是具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主通道。如果特別STA感測到/檢測到和/或確定主通道繁忙,那麼該特別STA可以回退。在指定的BSS中,在任何指定時間可有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通訊(例如經由於將20MHz的主通道與20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。
超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來 說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料分成兩個串流。在每一個串流上可以各別執行逆快速傅裡葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由執行傳輸的STA來傳輸。在執行接收的STA的接收器,用於80+80配置的上述操作可以是相反的,並且組合資料可被傳輸至媒體存取控制(MAC)。
802.11af和802.11ah支援1GHz以下的操作模式。與802.11n和802.11ac中使用的相對,在802.11af和802.11ah中通道操作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。根據代表實施例,802.11ah可以支援儀錶類型控制/機器類型通訊(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某些能力,例如包含了支援(例如只支援)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援多個通道和通道頻寬的WLAN系統(例如,802.11n、802.11ac、802.11af以及802.11ah)包括一個可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大共同操作頻寬。主通道的頻寬可以由STA設置和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支援2MHz、4MHz、8MHz、16MHz和/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測和/或網路分配向量(NAV)設置可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902MHz到928MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
第1D圖是示出了根據實施例的RAN 113和CN 115的系統圖式。如上所述,RAN 113可以藉由空中介面116使用NR無線電技術來與WTRU 102a、102b、102c進行通訊。RAN 113還可以與CN 115進行通訊。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。gNB 180a、180b、180c中的每一者都可以包括一個或多個收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通訊。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形來向和/或從gNB 180a、180b、180c傳輸和/或接收信號。由此,舉例來說,gNB 180a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸多個分量載波(未顯示)。這些分量載波的一個子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸來與gNB 180a、180b、180c進行通訊。例如,對於不同的傳輸、不同的胞元和/或無線傳輸頻譜的不同部分來說,OFDM符號間距和/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續變化的絕對時間長度)來與gNB 180a、180b、180c進行通訊。
gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通訊。在分立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通訊。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通訊。在非分立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通訊/相連的同時與gNB 180a、180b、180c進行通訊/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以實質同時的方式與一個或多個gNB 180a、180b、180c以及一或多個e節點B 160a、160b、160c進行通訊。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
gNB 180a、180b、180c中的每一者都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程、支援網路截割、實施雙連線性、實施NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c彼此可以藉由X2介面通訊。
第1D圖所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述成CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的其他實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中gNB 180a、180b、180c中的一者或多者,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路截割(例如處理具有不同需求的不同PDU對話),選擇特別的SMF 183a、183b,管理註冊區域,終止NAS傳訊,以及行動性管理等等。AMF 182a、1823b可以使用網路截割處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。舉例來說,針對不同的使用情況,可以建立不同的網路截割,該使用情況例如為依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、和/或用於機器類型通訊(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS,以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的,以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中gNB 180a、180b、180c中的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通訊,UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝下鏈封包、以及提供行動性錨定處理等等。
CN 115可以促成與其他網路的通訊。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通訊。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其可以包括其他服務操作者擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面藉由UPF 184a、184b而連接到本地資料網路(DN)185a、185b。
有鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的相應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN 185a-b和/或這裡描述的其他任何裝置(一個或多個)。這些模擬裝置可以是被配置成模擬這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個模擬裝置可以在被完全或部分作為有線和/或無線通訊網路一部分實施和/或部署的同時執行一個或多個或所有功能,以便測試通訊網路內部的其他裝置。該一個或多個模擬裝置可以在被臨時作為有線和/或無線通訊網路的一部分實施/部署的同時執行一個或多個或所有功能。該模擬裝置可以直接耦合到別的裝置以執行測試,和/或可以使用空中無線通訊來執行測試。
該一個或多個模擬裝置可以在未被作為有線和/或無線通訊網路一部分實施/部署的同時執行包括所有功能在內的一個或多個功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通訊網路中 的測試場景中使用,以便實施關於一個或多個組件的測試。該一個或多個模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合和/或經由RF電路(作為範例,該RF電路可以包括一個或多個天線)的無線通訊來傳輸和/或接收資料。
第2圖示出了範例性全雙工收發器,其可以在本文描述的其他實施例的任何組合中使用。第2圖提供了範例全雙工無線(FDW)無線傳輸/接收單元(WTRU)的概覽。如第2圖中所示,FDW WTRU可以包括至少三個功能硬體/軟體分組:(1)天線隔離;(2)類比消除;(3)數位消除。可以注意到,這些功能中的每一者旨在藉由一組獨特的設計約束和限制來提供特定程度的傳輸和接收隔離/消除。
天線隔離功能可以在傳輸和接收信號路徑之間提供25到40dB的隔離。類比消除功能可提供額外的25至30dB的隔離。最後,數位消除功能可以提供進一步的10到25dB的隔離。使用這些功能的組合,FDW WTRU可以在傳輸和接收信號路徑之間提供高達80dB的隔離。這可以被認為是實際FDW WTRU所需的最小值。
仍然參考第2圖,為了促成全雙工傳輸(也就是說,同時傳輸和接收),第一步驟可以是傳輸和接收天線(統稱為天線200)的天線隔離。可以使用一定數量的不同的方法來完成隔離,例如實體對準、定位、相位消除、使用循環器的隔離等。第2圖示出了循環器210,但是這是範例性的,並且本領域技術人員將認識到,這裡可以使用多種實現天線隔離的方式。使用這些方法進行天線隔離可以大約提供30dB的隔離。
仍然參考第2圖,類比消除功能可以解決由影響接收路徑的傳輸路徑所產生的干擾。這可以藉由使用應用於接收信號的消除信號來實現。類比消除的範例可以包括但不限於:(1)使用平衡-不平衡變換器(balun)來耦合傳輸信號的一部分並在接收路徑中的消除之前反轉;(2)使用類比消除電路主動 調整消除信號;(3)使用支線耦合器以促進類比消除。第2圖示出了類比消除電路220,其被配置為執行任何和/或所有上述程序以實現類比消除。當然,本領域技術人員還將認識到其他類比消除技術可以由類比消除電路220執行。
仍然參考第2圖,數位消除功能230可用於在天線隔離功能和類比消除功能之後去除接收信號中的殘留干擾。如上所述,數位消除可以提供10到25dB的隔離。然而,沒有信號消除的其他元素,這可能是不夠的。寬頻數位轉換器技術的量化限制的結果可能是難以實現更高程度的數位消除的一個原因。
該數位消除功能可以包括兩個組件:被配置為估計所接收的波形的自干擾的電路,以及被配置為對已知傳輸信號使用通道估計以產生用於從接收信號中減去的數位參考樣本的電路。由於數位消除的品質可能取決於通道估計的品質,如果在WLAN系統中實施FDW WTRU,則由於在接收的訓練時段期間引起干擾的其他WTRU,通道估計可能特別容易受到干擾。該問題的潛在解決方案是藉由載波感測機制使用無干擾時段進行通道估計。
為了實施FDW WTRU,需要支援WLAN網路中的全雙工操作的全雙工媒體存取控制(MAC)設計。可能存在兩種類型的全雙工操作:成對(對稱)全雙工和不對稱全雙工。
第3圖示出了範例性成對全雙工操作,其可以在本文描述的其他實施例的任何組合中使用。如第3圖中所示,在成對全雙工場景中,可能有兩個WTRU涉及全雙工操作。兩個節點(如第3圖中所示,WTRU 310和存取點(AP)320)都是有全雙工能力的(即,FDW WTRU)並且可以同時傳輸和接收。
第4圖示出了範例性不對稱全雙工操作,其可以在本文描述的其他實施例的任何組合中使用。如第4圖中所示,在不對稱全雙工場景中,全雙工操作中可能涉及三個WTRU。AP 410可以是有全雙工能力的,因為它是同時傳輸 和接收的WTRU。其他兩個WTRU(WTRU 420和WTRU 430)可以是半雙工能力的或全雙工能力的。
如第3圖和第4圖所示,全雙工操作中的第一傳輸可以被定義為主傳輸。該主傳輸的相應傳輸器和接收器可以被定義為主傳輸器和主接收器。第二傳輸可以被定義為全雙工操作的輔助傳輸。該輔助傳輸的相應傳輸器和接收器可以被定義為輔助傳輸器和輔助接收器。
用於全雙工操作的MAC設計特徵的範例可以包括但不限於:(1)基於載波感測多重存取/衝突避免(CSMA/CA)的演算法;(2)支援成對和不受限制的同時傳輸和接收(STR)場景的協定;(3)修改目前應答(ACK)方案(例如,指定在全雙工傳輸之後發送ACK的順序);(4)在輔助傳輸的想法之增加(例如,根據基於歷史的干擾表,確定輔助傳輸(secondary transmission)的目的地);(5)主傳輸衝突機制(例如,使用輔助傳輸作為隱式ACK);(6)要求所有節點具有同時傳輸和接收(STR)意識;及(7)不支援傳統的IEEE 802.11裝置。
用於全雙工操作的MAC設計特徵的其他範例可以包括但不限於:(1)僅允許成對的STR場景;(2)要求修改目前的ACK方案,以將發送ACK的優先順序修改為高於等待ACK;(3)要求修改目前的偷聽(overhear)行為(例如,在一次成功的全雙工傳輸之後,每個節點可能等待EIFS以開始下一次爭用);(4)成對輔助傳輸方案(例如,在準備發送-清除發送(RTS-CTS)交換中嵌入輔助傳輸的發起);(5)與具有較高爭用開銷(例如EIFS)的現有IEEE 802.11裝置相容。
用於全雙工操作的MAC設計特徵的其他範例可以包括但不限於:(1)AP集中演算法;(2)支援成對和不受限制的STR場景;(3)要求集中式媒體存取機制;(4)要求所有節點都具有STR意識;及(5)不支援傳統的802.11 裝置。該集中式媒體存取機制可以由AP控制並以3步循環操作。例如,在第一步,AP可以從WTRU收集關於資料長度和干擾關係的資訊。在第二步,AP可以廣播排程決定封包並發起資料傳輸。在第三步,WTRU可以以嵌入在排程決定封包中的預定義順序發送ACK。
為了最大化頻譜利用,可以考慮將帶內全雙工用於IEEE 802.11ax。用於帶內全雙工MAC的高級設計的範例可以包括但不限於:(1)添加STR前導碼以支援帶內全雙工;(2)在指示PPDU的接收者的超高輸送量信號A1(VHT-SIGA1)欄位中包括部分關聯識別符(AID);(3)第二WTRU的群組ID/部分AID,其指示第二WTRU也應該傳輸;(4)要求第二WTRU在L_LENGTH(L_長度)持續時間之前結束PPDU傳輸;(5)能夠同時傳輸和接收ACK的帶內STR能力AP;(6)WTRU發送關於該WTRU傳輸緩衝器狀態的回饋給AP,以幫助AP排程UL傳輸。
第5圖示出了可能在全雙工操作中存在的干擾的範例。如第5圖中的不對稱全雙工操作所示,AP 510可以從第一WTRU 520接收主傳輸,同時傳輸輔助傳輸到第二WTRU 530。AP 510執行自干擾消除,使得它可以在輔助傳輸的同時接收主傳輸。然而,來自主傳輸的干擾可能阻礙第二WTRU 530接收輔助傳輸。因此,為了支援WLAN中的全雙工操作,期望設計全雙工機會發現機制和相應的全雙工傳輸建立程序,使得主傳輸的傳輸器(WTRU)不會對輔助傳輸的接收器(WTRU)造成干擾。
下面詳述的解決方案可以在WTRU或AP中實施,並且可以包括但不限於:(1)全雙工相容性發現程序;(2)基於在觸發訊框之前的無線媒體感測的全雙工傳輸機會(TXOP),其可能具有與下鏈WTRU向後相容性;(3)全雙工傳輸機會(TXOP),其可能具有與上鏈/下鏈傳統WTRU的向後相容性;及(4)廣播RTS/CTS/否定CTS(NCTS)。
該全雙工相容性發現程序確保WTRU之間不存在干擾,但是可能需要仔細選擇上鏈和下鏈WTRU,並且可能需要仔細估計AP使用的傳輸功率。在一個實施例中,WTRU基於窮盡性識別程序而被選擇以限制干擾,其中該窮盡識別程序(exhaustive identification procedure)將可以一起傳輸/接收的WTRU進行配對(即,識別使用全雙工(FD)可以被傳輸到的WTRU(在其從不同WTRU接收時))。這可以被稱為前向FD相容性(即,關於以下能力:WTRU A在上鏈中向AP發送訊框,而AP在下鏈中向不同的WTRU B發送訊框,其中WTRU B處的干擾小於臨界值)。
還可能需要識別反向FD相容性,其中WTRU B向WTRU A提供小於臨界值的干擾。應當注意,該反向FD相容性可具有與前向FD相容性不同的臨界值。在一個範例中,在需要反向FD傳輸來支援FD ACK的情況下,反向方向可以容忍更多干擾,因為它們可以以較低調變和編碼方案(MCS)或更高編碼速率被傳輸。還應注意,可以定義前向和反向不相容性,其中識別可能不一起傳輸/接收的WTRU。
該FD相容性發現程序可以包括測量階段和報告階段。在該測量階段,AP可以將FD_發現(FD_discovery)建立訊框發送到發起發現程序的WTRU或WTRU群組。該FD_發現建立訊框可以包括以下一者或多者:WTRU(一個或多個)的識別、干擾臨界值(一個或多個)、關於是否識別相容或不相容的WTRU的指示、WTRU數量或其他建立參數。WTRU的識別可用於執行該程序。識別的範例可以包括但不限於WTRU識別符(例如,STA ID)、WTRU識別符列表(STA ID)或WTRU的群組ID。該干擾臨界值(一個或多個)可用於識別FD相容或FD不相容的WTRU。在一個範例中,該臨界值(一個或多個)可以是AP可配置或固定的。在另一範例中,該臨界值(一個或多個)可以是WTRU特定的或對於所有WTRU是共同的。在另一範例中,對於前向和反向FD相容性測量,該臨界值 (一個或多個)可以相同或不同。該WTRU數量可用於在前向相容性場景中進行識別。例如,可以要求每個WTRU識別固定數量的最佳WTRU。
在FD_發現建立訊框中用信號通知的每個WTRU可以發出FD測量訊框。例如,可以傳輸服務品質(QoS)空(null)或包含WTRU使用的傳輸功率的特殊化訊框。WTRU可以以預定順序發出該訊框。例如,WTRU可以基於在FD_發現建立訊框中確定的順序發出該訊框。
FD發現階段可以使用波束成形和/或功率控制來限制干擾量。在測量階段,每個傳輸WTRU可以發出定向用於最大化AP處的接收信號的能量的訊框。在一個範例中,傳輸發現訊框的WTRU可以使用波束成形或扇區化天線來限制其他WTRU所經歷的干擾量。在測量階段,不傳輸發現訊框的每個WTRU可以修改其接收天線以最小化來自除AP之外的所有WTRU的能量,例如,使用波束成形或扇區化天線,以限制從其他WTRU接收的干擾量。該傳輸WTRU還可以(例如,僅)發送賦能成功解碼封包所需的傳輸功率量,以限制對其他WTRU的干擾量。
所有其他WTRU可以測量從每個傳輸WTRU接收的干擾量,並藉由將接收信號強度與臨界值進行比較來確定其相容性。如果所傳輸的訊框中包括關於傳輸功率的指示,則WTRU能夠藉由估計起源WTRU處的接收功率來確定反向FD相容性(如果它必須傳輸到該WTRU)。WTRU B還能夠發送關於WTRU A可能能夠使用的傳輸功率(或功率差)的AP回饋以確保FD相容性。
在報告階段,每個WTRU可以向AP發送相容或不相容的WTRU的列表。在一個範例中,AP可以輪詢每個WTRU(例如,WTRU B)以請求其列表(例如,前向或反向FD(不)相容WTRU中的一者或多者)。在另一範例中,AP可以向多個WTRU傳輸NDP回饋請求,並且請求WTRU使用OFDMA來回饋它們的列表。對於該列表上的每個WTRU(例如,WTRU A),該回饋可以包括 WTRU識別符。例如,該WTRU識別符包括該FD_發現建立請求中的WTRU ID或WTRU的索引(例如,發出其測量訊框的第一WTRU被識別為WTRU 0,第二WTRU被識別為WTRU 1等等)。對於該列表上的每個WTRU(例如,WTRU A),該回饋可以包括可以由該WTRU(WTRU A)使用的功率值(或功率差),以確保與回饋該列表的WTRU的FD相容性。當WTRU(WTRU A)被排程用於與被排程用於下鏈傳輸的WTRU B進行上鏈傳輸時,AP可以將該資訊中繼到該WTRU(WTRU A)。WTRU(例如,WTRU A)可以在來自WTRU B的回饋期間偷聽該資訊。
第6圖示出了具有FD AP的範例性無線網路,其示出了站(WTRU)之間的全雙工相容性。WTRU的FD相容性如下表1所示。在連接誓言中由X鏈結的WTRU在該鏈路上不是FD相容的。
第7圖示出了在報告階段中具有輪詢的範例性全雙工相容性發現程序,其可以在本文描述的其他實施例的任何組合中使用。具體地,AP 710傳輸FD TxOP建立訊框,接著是發現建立訊框。在一些實施例中,可以組合這兩個訊框,或者完全省略一個訊框。WTRU1 720、WTRU2 730、WTRU3 740和WTRU4 750中的每一者傳輸測量訊框。當每一個別的WTRU傳輸測量訊框時,其他WTRU中的每一個在測量訊框傳輸期間進行收聽。因此,例如,基於發現建立訊框中包含的資訊,WTRU1 720傳輸第一測量訊框。WTRU2 730、WTRU3 740和WTRU4 750中的每一個在WTRU1 720傳輸測量訊框的時段期間進行收聽。WTRU2 730、WTRU3 740和WTRU4 750中的每一個對由WTRU1 720傳輸的測量訊框執行測量(如果該分別的WTRU確實接收到測量訊框)。然後為每個WTRU重複該程序。這是測量階段。
在報告階段,在該實施例中,AP 710傳輸報告輪詢訊框,並且每個WTRU依次報告其測量結果。因此,在該範例中,WTRU1 720將回報其關於 其可以感測的其他WTRU(在這種情況下是WTRU2 730和WTRU4 750)的測量。類似地,WTRU2 730、WTRU3 740和WTRU4 750中的每一個依次報告其測量結果。
第8圖示出了範例全雙工相容性發現程序,其在報告階段中具有空資料封包(NDP)報告觸發,隨後由WTRU使用MU傳輸進行報告,其可以在本文描述的其他實施例的任何組合中使用。該實施例類似於上面參考第7圖描述的實施例,除了該報告階段是由WTRU使用MU傳輸完成的(即,同時)。
Figure 108115354-A0305-02-0028-1
第9圖示出了在觸發訊框之前基於無線媒體感測的範例全雙工傳輸機會(FD TXOP),其可能具有與下鏈(DL)站的向後相容性,其可以在本文描述的其他實施例的任何組合中使用。為了避免可能妨礙輔助傳輸的接收的來自主傳輸器的干擾,UL的傳輸可以基於在從AP接收到觸發訊框之前的載波感測,如第9圖所示。例如,AP 910將藉由向一個或多個DL WTRU(例如,WTRU1 920和WTRU2 930)發送請求發送(RTS)訊框來執行全雙工TXOP。該RTS訊框可以是多使用者(MU)請求發送(MU-RTS)。由該RTS/MU-RTS定址的WTRU可以是AP希望對其執行DL傳輸的WTRU。由該RTS/MU-RTS定址的WTRU可以用清除發送(CTS)訊框/同時CTS訊框進行回應。然後,AP可以排程定址到一個或多個UL WTRU(例如,WTRU1 920)的觸發訊框(TF)(在(預期的)CTS訊框傳輸結束之後的一訊框間間距(IFS)(例如,短IFS,SIFS))。
UL WTRU可以基於在接收到TF之前的持續時間T的媒體繁忙狀態(可能在TF之後的IFS之後額外感測媒體繁忙狀態)來確定是否執行由TF排程的UL TB PPDU傳輸。TF之前的感測可以被稱為CTS測試。例如,如果WTRU1 920已經從WTRU2 930接收到CTS訊框,或者在TF之前的T感測到媒體繁忙,則WTRU1 920可以不執行TB PPDU傳輸。AP 910可以配置UL WTRU以在波束成形天線模式而不是全向設置中執行CCA/CTS程序。相同的波束成形天線模式可以用於UL TB PPDU傳輸。基於通道相互性和CTS程序,如果WTRU1 920不能從WTRU2 920接收,則WTRU1 920的UL傳輸不會干擾WTRU2 930的接收。
仍然參考第9圖,AP 910可以在TF傳輸的同時或之後執行DL資料傳輸。AP 910可以在同時傳輸DL資料的同時接收UL TB PPDU。如果AP 910從WTRU1 920接收到TB PPDU,則它可以執行DL應答/塊應答/多塊應答(ACK/BA/MBA)傳輸。DL WTRU可以同時執行UL ACK/BA。從AP 910接收BA的UL WTRU(例如WTRU1 920)可能不會受到UL ACK/BA的干擾。這可以基於CTS測試,使得WTRU1 920不能從WTRU2 930接收。
在上述實施例中,DL WTRU(例如,WTRU2 930)可以是傳統WTRU。TF可以在利用MU-MIMO或OFDMA的DL MU PPDU中與DL資料一起被傳輸。在MU-PPDU中,在TF之後可以或可以不應用填充(例如,用於確保所有接收器的相同PPDU持續時間)。AP 910可以不要求UL WTRU(例如,WTRU1920)執行載波感測(TF之後的SIFS間隔)。TF可以在具有SIFS分離的各別PPDU中與DL資料一起被傳輸(即,TF+SIFS+DL PPDU)。AP 910可以要求UL WTRU(例如,WTRU1 920)執行載波感測(TF之後的SIFS)。上述實施例中的RTS/MU-RTS可以是觸發來自DL WTRU(一個或多個)的回應的另一訊息。上述實施例中的CTS可以是回應來自AP的觸發訊息的另一訊息。TF的資訊可以被包括在MU-RTS訊框中,使得傳統WTRU不會解碼該附加資訊。在這種情況下,如果CTS 程序成功獲取媒體,則TB PPDU傳輸可以在預期的CTS訊框結束之後的IFS(例如,SIFS)之後。該TF可以在DL MU PPDU(例如,OFDMA的MU-MIMO)中與MU-RTS訊框多工。在這種情況下,如果CTS程序成功,則TB PPDU傳輸可以在期望CTS訊框結束之後的IFS(例如,SIFS)之後。
第10圖示出了可能具有與上鏈/下鏈(UL/DL)站兩者的向後相容性的範例全雙工傳輸機會(TXOP),其可以與本文描述的其他實施例的任何組合使用。在全雙工能力(或全雙工感知)裝置和傳統裝置共存於BSS的場景中,期望全雙工操作不應對傳統裝置的操作和性能產生負面影響是合理的。為了避免可能阻礙輔助傳輸的接收的來自主傳輸器的干擾,在具有向後相容性的可能性的情況下,傳輸UL訊框可以基於來自AP的觸發訊框的接收狀態,如第10圖所示。
例如,希望執行全雙工TXOP的AP 1010可以將MU-RTS發送到一個或多個DL WTRU(例如,WTRU2 1030)。由AP 1010傳輸的MU-RTS定址的WTRU可以用CTS訊框/同時CTS訊框進行回應。AP 1010可以在(預期的)CTS訊框的開始時或之後開始傳輸TF,使得TF與(預期的)CTS訊框在時間上重疊並且TF在(預期的)CTS訊框的結束的同時或者之後結束。AP 1010可以發送具有比MU-RTS或接收的CTS的更高的調變和編碼方案(MCS)的TF,使得TF的最小接收靈敏度增加,以確保在經歷來自DL STA(例如,WTRU2 1030)的CTS訊框的干擾的情況下在UL WTRU(例如,WTRU1 1020)處的TF的衝突。TF可以具有MAC或PHY填充,使得它在(預期的)CTS訊框結束時或之後結束。
基於TF的正確接收(且可以在該TF之後的IFS之後額外感測媒體繁忙狀態),UL WTRU可以確定是否執行由TF排程的UL TB PPDU傳輸。TF的正確接收可以被互換地稱為TF衝突測試。例如,如果WTRU11020已經正確地接收到TF,且該TF可能具有高於臨界值的特定訊噪比(SNR),則WTRU1 1020 可以執行TB PPDU傳輸。否則,WTRU1 1020可以不執行TB PPDU的傳輸。AP 1010可以配置UL WTRU以在波束成形天線模式而不是全向佈置中執行TF接收。相同的波束成形天線模式可以用於UL TB PPDU傳輸。基於通道相互性和TF衝突測試,如果WTRU1 1020的DL接收不受WTRU2 1030干擾,則WTRU1 1020的UL傳輸不干擾WTRU2 1030的DL接收。
AP 1010可以執行DL資料傳輸(TF傳輸之後的ISF(例如,SIFS))。AP 1010可以接收UL TB PPDU。在接收CTS之後,DL資料傳輸可能不需要是SIFS間隔,因為對於MU-RTS,不存在網路分配向量(NAV)重置。如果AP 1010接收到TB PPDU,則它可以執行DL ACK/BA/MBA傳輸。DL WTRU可以同時執行UL ACK/BA。UL WTRU(例如,WTRU1 1020)從AP 1010接收BA可以不干擾UL ACK/BA。這可以基於TF衝突測試,使得WTRU1 1020不會體驗來自WTRU2 1030的干擾。
在上述實施例中,DL WTRU(例如,WTRU2 1030)可以是傳統WTRU。UL WTRU(例如,WTRU1 1020)也可以是傳統WTRU。AP 1010可以要求UL WTRU(例如,WTRU1 1020)執行載波感測(TF之後的SIFS)。上述實施例中的RTS/MU-RTS可以是觸發來自DL WTRU(一個或多個)的回應的另一訊息。上述實施例中的CTS可以是回應來自AP的觸發訊息的另一訊息。
第11圖示出了用於廣播請求發送(B-RTS)訊框1110以及廣播清除發送/否定清除發送(B-CTS/NCTS)訊框1120的範例訊框結構。為了避免干擾第二WTRU的接收器,多播/廣播RTS/CTS和否定CTS(NCTS)協定可用於在第一WTRU與AP的傳輸時段期間管理第二WTRU的接收器的行為。在範例中,可以假設存在被定義用於與AP的全雙工操作的WTRU群組。還可以假設傳統WTRU群組與支援全雙工操作的AP相關聯。
在另一範例中,WTRU ID的欄位可以被包括在B-RTS中而不是WTRU點陣圖欄位中(或還有被包括在WTRU點陣圖欄位中之外)。WTRU ID欄位可以包括WTRU的ID,諸如關聯ID(AID)、MAC位址或WTRU的其他類型的ID。在AID或其他類型的ID的情況下,不論AP的基本服務集ID(BSSID)是否被包括在B-RTS中,WTRU可能能夠識別其是否正在被定址。
附加地或替代地,B-RTS和/或B-CTS/NCTS可以包括指示符,該指示符指示為全雙工TXOP,訊框交換或進行NAV。
B-RTS 1110可以包括訊框控制元素1111、持續時間欄位1112、接收器地址(RA)欄位1113、傳輸器地址(TA)欄位1114、WTRU點陣圖欄位1115、和訊框控制序列(FCS)欄位1116。B-CTS/NCTS元素1120可以包括訊框控制欄位1121、持續時間欄位1122、接收位址(RA)欄位1123、和訊框控制序列(FCS)欄位1124。
第12圖是示出了來自站的範例性B-CTS回應的示圖,其可以在本文描述的其他實施例的任何組合中使用。如第12圖中所示,AP 1210可以發送B-RTS訊框以爭用無線媒體上的共用TXOP。點陣圖控制和/或WTRU ID欄位可用於識別群組內用於B-RTS訊息的WTRU。接收B-RTS的WTRU可以發送B-CTS,這可以在B-RTS點陣圖和/或WTRU ID欄位中識別的清單之開始的WTRU開始。B-RTS和/或B-CTS可以包含指示符,該指示符指示為全雙工TXOP,交換請求或保留NAV。
B-CTS傳輸時段可以由AP 1210藉由用於到WTRU的這些傳輸的定時的信標配置訊息而與WTRU(1220、1230、1240和1250)協調。如果WTRU由於全雙工操作引起的干擾而不能回覆,則WTRU可以在B-CTS傳輸週期期間以B-NCTS回應進行回應。該B-NCTS可以包括不傳輸CTS訊框的原因的指示。例如,該原因的指示可以指示目前媒體繁忙、WTRU目前處於NAV下及/或等等。 B-NCTS還可以包括留在WTRU處的NAV計數器的指示。B-RTS的傳輸器可以等待並稍後重發B-RTS(例如,在NAV計數器應該到期的時間)。
附加地或替代地,如果WTRU在接收到訊框(例如,B-RTS、B-CTS和/或B-NCTS)(其可以包括該訊框用於為全雙工TXOP和/或傳輸保留媒體的指示)之後已經設置了其NAV計時器,則WTRU可以忽略在該訊框(例如,接收到B-RTS、B-CTS和/或B-NCTS)之後接收的訊框。例如,它可以等待直至全雙工TXOP結束並且進行正常媒體存取,而不在存取媒體之前等待EIFS,即使它不能解碼可能以全雙工方式傳輸的訊框。
雖然這裡描述的實施例考慮了電氣和電子工程師協會(IEEE)802.11特定協定,但是應該理解,這裡描述的實施例不限於這種場景,並且也可應用於其他無線系統。
雖然在上述中描述了採用特別組合的特徵和元件,但是本領域普通技術人員將會認識到,每一個特徵或元件既可以單獨使用,也可以與其他特徵和元件進行任何組合。另外,在此該的方法可以在併入電腦可讀媒體中的電腦程式、軟體或韌體中實施,以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(藉由有線或無線連接傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁媒體(例如,內部硬碟和可移磁片)、磁光媒體和光學媒體(例如CD-ROM碟片和數位通用碟片(DVD))。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC或任何主機電腦中用途的射頻收發器。
AP:存取點
FD TxOP:全雙工傳輸機會
NDP:空資料封包
WTRU:無線傳輸/接收單元

Claims (14)

  1. 一種用於在一IEEE 802.11存取點(AP)中使用的方法,該方法包括:將一全雙工(FD)傳輸機會(TxOP)建立訊框傳輸到多個無線傳輸/接收單元(WTRU),其中該FD TxOP建立訊框包括該多個WTRU的一識別以及至少一干擾臨界值,以賦能該多個WTRU中的每一個傳輸一測量訊框,該測量訊框用於由其他WTRU中的該每一個進行干擾測量以確定哪些WTRU可參與FD通訊;接收來自該多個WTRU中的每一個的回饋;根據該回饋,確定該AP能夠與該多個WTRU中的哪一個進行FD通訊;傳輸一觸發訊框到該所確定的WTRU以執行全雙工通訊;開始與該所選WTRU的該全雙工通訊。
  2. 如申請專利範圍第1項所述的方法,其中該傳輸一觸發訊框到該所確定的WTRU賦能該所確定的WTRU中的每一個傳輸一清除發送(CTS)訊框,該清除發送(CTS)訊框賦能該所確定的WTRU中的每一個執行每個CTS的一干擾測量以確認FD通訊是可接受的。
  3. 如申請專利範圍第1項所述的方法,還包括:將一輪詢訊框傳輸到該多個WTRU以引起該多個WTRU傳輸回饋。
  4. 如申請專利範圍第3項所述的方法,其中從該多個WTRU中的每一個接收的該回饋是按順序被接收。
  5. 如申請專利範圍第1項所述的方法,還包括:將一多使用者(MU)觸發訊框傳輸到該多個WTRU以引起該多個WTRU傳輸回饋。
  6. 如申請專利範圍第5項所述的方法,其中從該多個WTRU中的每一個接收的該回饋是在來自該多個WTRU的MU傳輸中被接收的。
  7. 如申請專利範圍第1項所述的方法,其中開始該全雙工通訊包括:將下鏈資料傳輸到該多個WTRU中的一第一WTRU,而同時從該多個WTRU中的一第二WTRU接收上鏈資料。
  8. 一種IEEE 802.11存取點(AP),包括:一傳輸器,被配置為將一全雙工(FD)傳輸機會(TxOP)建立訊框傳輸到多個無線傳輸/接收單元(WTRU),其中該FD TxOP建立訊框包括該多個WTRU的一識別以及至少一干擾臨界值,以賦能該多個WTRU中的每一個傳輸一測量訊框,該測量訊框用於由其他WTRU中的每一個進行干擾測量以確定哪些WTRU可參與FD通訊;一接收器,被配置為接收來自該多個WTRU中的每一個的回饋;以及一處理器,被配置為基於該回饋確定該AP能夠與該多個WTRU中的哪一個進行FD通訊;其中該傳輸器還被配置為將一觸發訊框傳輸到該所確定的WTRU以執行全雙工通訊;以及其中該傳輸器和該接收器均被配置為開始與該所選WTRU的該全雙工通訊。
  9. 如申請專利範圍第8項所述的AP,其中該傳輸器被配置為向該所確定的WTRU傳輸一觸發訊框,以賦能該所確定的WTRU中的每一個傳輸一清除發送(CTS)訊框,該清除發送(CTS)訊框賦能該所確定的WTRU中的每一個執行每個CTS的一干擾測量以確認FD通訊是可接受的。
  10. 如申請專利範圍第8項所述的AP,其中該傳輸器被配置為向該多個WTRU傳輸一輪詢訊框以引起該多個WTRU傳輸回饋。
  11. 如申請專利範圍第10項所述的AP,其中從該多個WTRU中的每一個接收的該回饋是按順序被接收。
  12. 如申請專利範圍第8項所述的AP,其中該傳輸器被配置為向該多個WTRU傳輸一多使用者(MU)觸發訊框以引起該多個WTRU傳輸回饋。
  13. 如申請專利範圍第12項所述的AP,其中從該多個WTRU中的每一個接收的該回饋是在來自該多個WTRU的MU傳輸中被接收。
  14. 如申請專利範圍第8項所述的AP,其中該傳輸器和該接收器均被配置為藉由以下方式來開始該全雙工通訊:將下鏈資料傳輸到該多個WTRU中的一第一WTRU而同時從該多個WTRU中的一第二WTRU接收上鏈資料。
TW108115354A 2018-05-03 2019-05-03 Ieee 802.11存取點(ap)及在其中使用的方法 TWI746969B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862666523P 2018-05-03 2018-05-03
US62/666523 2018-05-03

Publications (2)

Publication Number Publication Date
TW201947958A TW201947958A (zh) 2019-12-16
TWI746969B true TWI746969B (zh) 2021-11-21

Family

ID=66625268

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108115354A TWI746969B (zh) 2018-05-03 2019-05-03 Ieee 802.11存取點(ap)及在其中使用的方法

Country Status (5)

Country Link
US (3) US11445545B2 (zh)
EP (1) EP3788831A1 (zh)
CN (1) CN112075116B (zh)
TW (1) TWI746969B (zh)
WO (1) WO2019213565A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213565A1 (en) * 2018-05-03 2019-11-07 Interdigital Patent Holdings, Inc. Full duplex opportunity discovery and transmission for asymmetric full duplex wireless local area networks (wlans)
US11477730B2 (en) * 2019-11-01 2022-10-18 Qualcomm Incorporated Coordinated access point spatial reuse
CN113395148B (zh) * 2021-05-28 2022-07-26 西北工业大学 一种基于非对称全双工无线电网络的mac层通信方法
CN118104377A (zh) * 2021-10-22 2024-05-28 索尼集团公司 用于双向发送机会的通信设备和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050135318A1 (en) * 2003-10-15 2005-06-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US20060062181A1 (en) * 2004-09-23 2006-03-23 Institute For Information Industry Medium access control methods with quality of service and power management for wireless local area networks
US20150078215A1 (en) * 2013-09-16 2015-03-19 Qualcomm Incorporated Systems and methods for full duplex communication over a wireless network
US20170310386A1 (en) * 2013-04-15 2017-10-26 Avago Technologies General IP (Singapore) Pte. Ltd . Multiple narrow bandwidth channel access and MAC operation within wireless communications
US20180091283A1 (en) * 2016-09-28 2018-03-29 Ping Wang Full-duplex transmission modes for wireless networks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028074A1 (en) 2005-06-22 2009-01-29 Knox Michael E Antenna feed network for full duplex communication
US8305948B2 (en) * 2006-11-15 2012-11-06 Qualcomm Incorporated Transmissions to multiple stations in wireless communication systems
TWI552635B (zh) * 2010-04-13 2016-10-01 內數位專利控股公司 在無線區域網路中群傳輸
CN104272605B (zh) * 2012-05-09 2017-09-29 交互数字专利控股公司 无线局域网和无线发射和接收单元中的多用户多输入多输出通信
US9608789B2 (en) * 2012-05-11 2017-03-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting acknowledgements in response to received frames
EP3761518A1 (en) * 2013-07-11 2021-01-06 Interdigital Patent Holdings, Inc. Method and apparatus for supporting sectorization coordination
US9419777B2 (en) * 2013-07-15 2016-08-16 Zte Corporation Full duplex operation in a wireless network
US9912463B2 (en) * 2013-12-13 2018-03-06 Zte Corporation Full duplex transmission setup and release mechanism
CN113595600A (zh) * 2015-03-06 2021-11-02 交互数字专利控股公司 Wlan系统中的短分组优化
US9788317B2 (en) * 2015-03-30 2017-10-10 Intel IP Corporation Access point (AP), user station (STA) and method for channel sounding using sounding trigger frames
CN114978453A (zh) * 2015-08-25 2022-08-30 Idac控股公司 无线系统中的成帧、调度和同步
US10218487B2 (en) * 2015-12-21 2019-02-26 Intel Corporation Radio configuration optimization for full-duplex communications
US10277383B2 (en) * 2016-09-23 2019-04-30 Intel Corporation Access point (AP), station (STA) and method for allocation of resources for full-duplex (FD) communication in high-efficiency (HE) arrangements
WO2019213565A1 (en) * 2018-05-03 2019-11-07 Interdigital Patent Holdings, Inc. Full duplex opportunity discovery and transmission for asymmetric full duplex wireless local area networks (wlans)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050135318A1 (en) * 2003-10-15 2005-06-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US20060062181A1 (en) * 2004-09-23 2006-03-23 Institute For Information Industry Medium access control methods with quality of service and power management for wireless local area networks
US20170310386A1 (en) * 2013-04-15 2017-10-26 Avago Technologies General IP (Singapore) Pte. Ltd . Multiple narrow bandwidth channel access and MAC operation within wireless communications
US20150078215A1 (en) * 2013-09-16 2015-03-19 Qualcomm Incorporated Systems and methods for full duplex communication over a wireless network
US20180091283A1 (en) * 2016-09-28 2018-03-29 Ping Wang Full-duplex transmission modes for wireless networks

Also Published As

Publication number Publication date
US20210243806A1 (en) 2021-08-05
US20230007691A1 (en) 2023-01-05
EP3788831A1 (en) 2021-03-10
US11445545B2 (en) 2022-09-13
TW201947958A (zh) 2019-12-16
CN112075116A (zh) 2020-12-11
WO2019213565A1 (en) 2019-11-07
US20240023166A1 (en) 2024-01-18
US11770854B2 (en) 2023-09-26
CN112075116B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN110800220B (zh) Mimo信道接入
US10880835B2 (en) Methods for efficient medium access for wake up radios
TWI746970B (zh) 存取點及於其中使用的方法
TW201937956A (zh) 在無需特許頻段中新無線電(nr)操作使用多天線技術方法、裝置及系統
US20200178171A1 (en) Procedures and mechanisms for narrowband multi-channel transmission for wake up radios
TWI746969B (zh) Ieee 802.11存取點(ap)及在其中使用的方法
TW202025657A (zh) 可靠側鏈資料傳輸
JP2023522593A (ja) サイドリンク無線送信/受信ユニット(wtru)間連携のための方法及び装置
KR20200138727A (ko) 채널 액세스 및 웨이크업 라디오 복구를 위한 방법 및 장치
TW202143674A (zh) 下鏈小資料接收方法及裝置
CN112753194A (zh) Nr-u中的csi反馈
CN113853825A (zh) 用于支持bss边缘用户传输的方法
CN112292831A (zh) 用于具有全双工无线电的wlan的干扰发现和消除
JP2024502443A (ja) 低減された能力のwtruのための低減された帯域幅のための方法、装置、及びシステム
JP2024515101A (ja) Wlanシステムのためのマルチapチャネルサウンディングフィードバック手順
WO2023023250A1 (en) Systems, apparatus and methods for enhancing broadcast services in wireless local area networks
WO2023205077A1 (en) Methods for beam failure detection and recovery
WO2023196597A1 (en) Spatial reuse transmissions in wireless local area networks
WO2024112584A1 (en) Methods for enabling multi-link millimeter wave beam training