TW201935829A - 直流-直流轉換控制器 - Google Patents

直流-直流轉換控制器 Download PDF

Info

Publication number
TW201935829A
TW201935829A TW107103890A TW107103890A TW201935829A TW 201935829 A TW201935829 A TW 201935829A TW 107103890 A TW107103890 A TW 107103890A TW 107103890 A TW107103890 A TW 107103890A TW 201935829 A TW201935829 A TW 201935829A
Authority
TW
Taiwan
Prior art keywords
current
voltage
pin
coupled
circuit
Prior art date
Application number
TW107103890A
Other languages
English (en)
Other versions
TWI798200B (zh
Inventor
張志廉
賴敏瑞
Original Assignee
力智電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力智電子股份有限公司 filed Critical 力智電子股份有限公司
Priority to TW107103890A priority Critical patent/TWI798200B/zh
Priority to CN201810213447.5A priority patent/CN110138208B/zh
Priority to US16/259,707 priority patent/US10511228B2/en
Publication of TW201935829A publication Critical patent/TW201935829A/zh
Application granted granted Critical
Publication of TWI798200B publication Critical patent/TWI798200B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Air Bags (AREA)
  • Details Of Television Scanning (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

一種直流-直流轉換控制器,耦接輸出級與外部電阻網路,且提供脈寬調變訊號控制輸出級提供輸出電壓。直流-直流轉換控制器包括感測電路、下降電流電路、第一接腳及脈寬調變訊號控制迴路。感測電路耦接輸出級,且提供感測電流。下降電流電路耦接感測電路並依據感測電流提供下降電流。第一接腳耦接下降電流電路與外部電阻網路並接收下降電流與第一參考電壓。第一接腳提供下降電流以使外部電阻網路提供第二參考電壓。脈寬調變訊號控制迴路耦接外部電阻網路並依據輸出電壓與第二參考電壓產生脈寬調變訊號。下降電流隨預設時間而降低至預設值。

Description

直流-直流轉換控制器
本發明係與電源轉換有關,尤其是關於一種直流-直流轉換控制器。
一般而言,為了避免負載由輕載切換至重載(亦即抽載)時,瞬間的大電流造成負載損壞,傳統的直流-直流轉換控制器通常會在此時提供直流電(DC)型式的負載掉壓(Load line droop)功能,例如在回授電路中的參考電壓供應回路上提供固定值的下降電流(Droop current),透過外部電阻改變回授信號的參考電壓,進而實現負載掉壓之功能。
然而,在某些特定的使用情況下,例如中央處理器(Central Processing Unit,CPU)超頻,輸出電壓的穩定性會特別受到重視,此時若在重載發生時出現掉壓的現象,將會導致輸出電壓不穩定而影響負載之正常工作。此外,在某些特定的應用中,例如圖形處理器(Graphics Processing Unit,GPU),常會出現輕載與重載快速切換的情況,因而導致輸出電壓在快速切換期間容易出現過衝(Over shoot)與欠衝(Under shoot)的現象,造成過衝峰值與欠衝峰值之間的峰值間電壓差(Peak-to-peak voltage difference)過大,亦導致輸出電壓不穩定而嚴重影響負載之正常工作。
有鑑於此,本發明提出一種直流-直流轉換控制器,以有效解決先前技術所遭遇到之上述種種問題。
依據本發明之一具體實施例為一種直流-直流轉換控制器。於此實施例中,直流-直流轉換控制器耦接輸出級與外部電阻網路,且提供脈寬調變訊號控制輸出級提供輸出電壓。直流-直流轉換控制器包括感測電路、下降電流電路、第一接腳及脈寬調變訊號控制迴路。感測電路耦接輸出級並提供感測電流。下降電流電路耦接感測電路並依據感測電流提供下降電流。第一接腳耦接下降電流電路與外部電阻網路並接收下降電流與第一參考電壓。第一接腳提供下降電流以使得外部電阻網路提供第二參考電壓。脈寬調變訊號控制迴路耦接外部電阻網路並依據第二參考電壓及與輸出電壓相關之回饋電壓產生脈寬調變訊號。下降電流隨預設時間而降低至預設值。
於一實施例中,直流-直流轉換控制器還包括第二接腳。第二接腳透過外部電阻網路與第一接腳耦接,下降電流透過外部電阻網路於第二接腳產生第二參考電壓。
於一實施例中,直流-直流轉換控制器還包括第三接腳。第三接腳耦接輸出級並用以接收回饋電壓。
於一實施例中,脈寬調變訊號控制迴路包含比較器,比較器之兩接收端分別耦接第二接腳及第三接腳且接收第二參考電壓及回饋電壓,比較器依據第二參考電壓及回饋電壓產生 脈寬調變訊號。
於一實施例中,下降電流電路還耦接至第二接腳與脈寬調變訊號控制迴路之間,且下降電流電路亦產生下降電流至第二接腳與脈寬調變訊號控制迴路之間。
於一實施例中,下降電流電路先依據感測電流產生隨時間遞增的上升電壓,再依據上升電壓產生下降電流。
於一實施例中,下降電流電路包括內部電容,且下降電流電路透過感測電流對內部電容充電以產生隨時間遞增的上升電壓。
於一實施例中,下降電流電路依據感測電流產生固定電壓,再依據固定電壓及隨時間遞增的上升電壓產生下降電流。
於一實施例中,調整電路包括電流鏡。電流鏡包括兩電晶體且兩電晶體之閘極彼此對接。下降電流電路透過電流鏡複製多個下降電流後輸出。
相較於先前技術,依據本發明之直流-直流轉換控制器透過下降電流電路將其感測到的總輸出電流轉換成隨時間而遞減的下降電流,並使此下降電流通過設置於DAC接腳與EAP接腳之間的外部電阻而於EAP接腳產生隨時間而遞減的參考電壓,不僅可改善直流-直流轉換控制器的輸出電壓在短期間內抽載及卸載快速切換時所出現的過衝及欠衝現象,有效減少輸出電壓曲線的過衝峰值與欠衝峰值之間的峰值間電壓差,亦可避免正常運作時的負載掉壓,以提升輸出電壓的穩定性。
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。
1‧‧‧直流-直流轉換控制器
10‧‧‧感測電路
12‧‧‧下降電流電路
14‧‧‧脈寬調變訊號控制迴路
141‧‧‧脈寬調變訊號產生器
DAC‧‧‧第一接腳
EAP‧‧‧第二接腳
FB‧‧‧第三接腳
REF‧‧‧第四接腳
PWM‧‧‧第五接腳
OS‧‧‧輸出級
ERN‧‧‧外部電阻網路
CP1‧‧‧比較器
CP2‧‧‧電壓隨耦器
SPWM‧‧‧脈寬調變訊號
VOUT‧‧‧輸出電壓
ISEN‧‧‧感測電流
ISEN1‧‧‧感測結果
IDP‧‧‧下降電流
VFB‧‧‧回饋電壓
VREF1‧‧‧第一參考電壓
VREF2‧‧‧第二參考電壓
+‧‧‧正輸入端
-‧‧‧負輸入端
CINT‧‧‧內部電容
R1~R3‧‧‧電阻
N1~N4‧‧‧第一節點~第四節點
VN1~VN4‧‧‧第一節點電壓~第四節點電壓
CM‧‧‧電流鏡
M1~M3‧‧‧電晶體
CP3‧‧‧電壓隨耦器
CP4‧‧‧比較器
T1‧‧‧第一時間
T2‧‧‧第二時間
T3‧‧‧第三時間
T4‧‧‧第四時間
VOUT1‧‧‧第一輸出電壓曲線
VOUT2‧‧‧第二輸出電壓曲線
VL‧‧‧欠衝峰值
VH1~VH2‧‧‧過衝峰值
圖1繪示依據本發明之一具體實施例中之直流-直流轉換控制器的示意圖。
圖2繪示圖1中之下降電流電路12依據感測電流ISEN產生下降電流IDP之一實施例。
圖3繪示圖2中之感測電流ISEN、第一節點電壓VN1~第四節點電壓VN4及下降電流IDP於第一時間由輕載轉為重載且於第二時間由重載轉為輕載之情況下的時序圖。
圖4繪示本發明之第二輸出電壓曲線VOUT2與先前技術之第一輸出電壓曲線VOUT1的時序圖。
現在將詳細參考本發明的示範性實施例,並在附圖中說明所述示範性實施例的實例。在圖式及實施方式中所使用相同或類似標號的元件/構件是用來代表相同或類似部分。
依據本發明之一具體實施例為一種直流-直流轉換控制器。於此實施例中,直流-直流轉換控制器感測輸出級之輸出電流並透過下降電流電路將其轉換為隨時間而遞減的下降電流,使得在短期間內抽載及卸載快速切換時輸出電壓曲線的峰值之間(Peak-to-peak)的電壓差能夠變小,藉以維持輸出電壓之穩定。
請參照圖1,圖1繪示此實施例中之直流-直流轉換控 制器的示意圖。如圖1所示,直流-直流轉換控制器1耦接輸出級OS與外部電阻網路ERN。直流-直流轉換控制器1提供脈寬調變訊號SPWM至輸出級OS,以控制輸出級OS提供輸出電壓VOUT。於實際應用中,外部電阻網路ERN可包括至少一外部電阻且輸出級OS可包括彼此串接的兩電晶體開關及其驅動積體電路,但不以此為限。
於此實施例中,直流-直流轉換控制器1包括感測電路10、下降電流電路12、脈寬調變訊號控制迴路14、第一接腳DAC、第二接腳EAP、第三接腳FB、第四接腳REF、第五接腳PWM及電壓隨耦器CP2。感測電路10耦接於輸出級OS與下降電流電路12之間;下降電流電路12可耦接第一接腳DAC、電壓隨耦器CP2、第二接腳EAP及脈寬調變訊號控制迴路14;脈寬調變訊號控制迴路14分別耦接第二接腳EAP、第三接腳FB及第五接腳PWM,且脈寬調變訊號控制迴路14可包括比較器CP1及脈寬調變訊號產生器141,但不以此為限;電壓隨耦器CP2分別耦接第一接腳DAC及第四接腳REF;外部電阻網路ERN耦接於第一接腳DAC與第二接腳EAP之間;輸出級OS分別耦接第三接腳FB、第五接腳PWM及感測電路10;第一接腳DAC分別耦接外部電阻網路ERN及電壓隨耦器CP2;第二接腳EAP分別耦接外部電阻網路ERN及脈寬調變訊號控制迴路14;第三接腳FB分別耦接輸出級OS及脈寬調變訊號控制迴路14;第四接腳REF耦接電壓隨耦器CP2;第五接腳PWM分別耦接輸出級OS及脈寬調變訊號控制迴路14。
感測電路10用以感測輸出級OS所輸出的電流並依據 感測結果ISEN1提供感測電流ISEN給下降電流電路12。當下降電流電路12接收到感測電流ISEN時,下降電流電路12會依據感測電流ISEN產生下降電流IDP,且下降電流IDP會隨預設時間而降低至預設值,例如下降電流IDP可隨時間而遞減至零,但不以此為限。
接著,下降電流電路12將隨時間遞減的下降電流IDP提供給第一接腳DAC。電壓隨耦器CP2的負輸入端-與輸出端彼此耦接,電壓隨耦器CP2的正輸入端+接收來自第四接腳REF的第一參考電壓VREF1並透過輸出端將第一參考電壓VREF1輸出至第一接腳DAC。因此,第一接腳DAC會分別接收到隨時間遞減的下降電流IDP與具有固定電壓值的第一參考電壓VREF1。
然後,第一接腳DAC所輸出的下降電流IDP會流經外部電阻網路ERN並透過外部電阻網路ERN於第二接腳EAP產生第二參考電壓VREF2。需說明的是,由於通過外部電阻網路ERN的下降電流IDP會隨時間而遞減,所以下降電流IDP流經外部電阻網路ERN而於第二接腳EAP產生的第二參考電壓VREF2亦會隨時間而遞減。由於下降電流IDP為漸變值,故可視為交流電(AC)型式的負載掉壓(Load line droop),藉由逐步回復的第二參考電壓VREF2有效維持輸出電壓VOUT的準位。
接著,脈寬調變訊號控制迴路14中之比較器CP1的負輸入端-與正輸入端+分別接收來自第三接腳FB的回饋電壓VFB與來自第二接腳EAP的第二參考電壓VREF2並由脈寬調變訊號產生器141產生脈寬調變訊號SPWM,並透過第五接腳PWM將脈寬調 變訊號SPWM提供至輸出級OS,以控制輸出級OS提供輸出電壓VOUT。此外,下降電流電路12亦會提供下降電流IDP至第二接腳EAP與比較器CP1的正輸入端+之間。
需說明的是,第三接腳FB係從輸出級OS接收回饋電壓VFB,且回饋電壓VFB與輸出電壓VOUT相關,而第二參考電壓VREF2則會隨時間而遞減。
接下來,請參照圖2,圖2繪示圖1中之下降電流電路12依據感測電流ISEN產生下降電流IDP之一實施例。如圖2所示,下降電流電路12包括內部電容CINT、電阻R1~R3、第一節點N1~第四節點N4、電流鏡CM、電晶體M3、電壓隨耦器CP3及比較器CP4。於實際應用中,電流鏡CM可包括兩電晶體M1及M2且兩電晶體M1及M2之閘極彼此對接;電阻R3之阻值可為電阻R1之阻值的兩倍;電阻R2之阻值可為2M Ω且內部電容CINT之電容值可為40pF,但不以此為限。
電阻R1耦接於感測電流ISEN與接地端之間;第一節點N1位於感測電流ISEN與電阻R1之間;電阻R2耦接於第一節點N1與第二節點N2之間;內部電容CINT耦接於第二節點N2與接地端之間;電壓隨耦器CP3耦接於第二節點N2與第三節點N3之間,電壓隨耦器CP3的正輸入端+及輸出端均耦接第三節點N3且電壓隨耦器CP3的負輸入端-耦接第二節點N2;電阻R3耦接於第三節點N3與第四節點N4之間;比較器CP4的負輸入端-及正輸入端+分別耦接第一節點N1及第四節點N4,且比較器CP4的輸出端耦接電晶體 M3的閘極;電晶體M3耦接於電流鏡CM與第四節點N4之間,且電晶體M3的閘極耦接比較器CP4的輸出端;電流鏡CM耦接電晶體M3並輸出下降電流IDP。
請同時參照圖3,圖3繪示圖2中之感測電流ISEN、第一節點電壓VN1~第四節點電壓VN4及下降電流IDP於第一時間T1由輕載轉為重載(亦即抽載)且於第二時間T2由重載轉為輕載(亦即卸載)之情況下的時序圖。
當下降電流電路12接收到具有固定電壓值的感測電流ISEN(或與其相關的電流信號,例如負載電流)時,感測電流ISEN會通過電阻R1而於第一節點N1產生第一節點電壓VN1,且第一節點電壓VN1為固定電壓值。同時,感測電流ISEN會對內部電容CINT充電而於第二節點N2產生隨時間遞增的第二節點電壓VN2,並透過電壓隨耦器CP3鎖定第三節點N3的第三節點電壓VN3,使其與第二節點電壓VN2相等,亦即第三節點電壓VN3亦會隨時間而遞增。此時,第四節點N4的第四節點電壓VN4將會等於第一節點N1的第一節點電壓VN1,亦即第四節點電壓VN4為固定電壓值。由於第三節點電壓VN3會隨時間遞增且第四節點電壓VN4具有固定電壓值,第四節點電壓VN4與第三節點電壓VN3之間的電壓差會於電阻R3上產生隨時間遞減的下降電流IDP,並透過電晶體M3將下降電流IDP輸入至電流鏡CM,再由電流鏡CM複製多個下降電流IDP後輸出。
需說明的是,本發明的下降電流IDP會隨預設時間而 降低至預設值,藉以消除負載掉壓的現象。於此實施例中,下降電流IDP從第一時間T1開始線性遞減,直至第二時間T2降低至零為止,亦即此實施例中之預設時間為第二時間T2減去第一時間T1且預設值為零,但不以此為限。
亦請參照圖4,圖4繪示本發明之第二輸出電壓曲線VOUT2與先前技術之第一輸出電壓曲線VOUT1的時序圖。
如圖4所示,當負載於第一時間T1由輕載切換為重載(亦即抽載)時會出現欠衝(Under shoot)現象,此時本發明之第二輸出電壓曲線VOUT2與先前技術之第一輸出電壓曲線VOUT1的欠衝峰值均為VL,但下降電流IDP會隨預設時間而降低至預設值;經過預設時間之後,第二輸出電壓曲線VOUT2即恢復接近第一輸出電壓曲線VOUT1的水平,故能有效減輕負載掉壓對輸出電壓的影響。
於負載連續抽卸載時,負載於第三時間T3由輕載切換為重載(亦即抽載)時會出現欠衝(Under shoot)現象,此時本發明之第二輸出電壓曲線VOUT2與先前技術之第一輸出電壓曲線VOUT1的欠衝峰值均為VL;當負載於第四時間T4由重載切換為輕載(亦即卸載)時會出現過衝(Over shoot)現象,此時本發明之第二輸出電壓曲線VOUT2的過衝峰值VH2明顯低於先前技術之第一輸出電壓曲線VOUT1的過衝峰值VH1,進而使本發明之第二輸出電壓曲線VOUT2的峰值間電壓差小於先前技術之第一輸出電壓曲線VOUT1的峰值間電壓差,故能有效提升輸出電壓的穩定性。
根據實際的模擬結果可知:假設負載電流為200安 培,且於第一時間T1抽載瞬間的負載掉壓使輸出電壓降至0.93伏特,第一時間T1至卸載的第二時間T2之間的時間間隔為100微秒,於此期間第二輸出電壓曲線VOUT2隨時間間隔逐漸恢復;於第二時間T2時,本發明之第二輸出電壓曲線VOUT2回復至約0.985伏特,接近原本的輸出電壓水平(1伏特)。
若抽載的第三時間T3至卸載的第四時間T4之間的時間間隔為10微秒,根據實際的模擬結果可知:本發明之第二輸出電壓曲線VOUT2與先前技術之第一輸出電壓曲線VOUT1的欠衝峰值VL仍均為0.803伏特,而本發明之第二輸出電壓曲線VOUT2的過衝峰值VH2為1.157伏特且先前技術之第一輸出電壓曲線VOUT1的過衝峰值VH1為1.217伏特,使得本發明之第二輸出電壓曲線VOUT2的峰值間電壓差(1.157-0.803=0.354伏特)小於先前技術之第一輸出電壓曲線VOUT1的峰值間電壓差(1.217-0.803=0.414伏特)。其餘可依此類推,故於此不另行贅述。
相較於先前技術,依據本發明之直流-直流轉換控制器透過下降電流電路將其感測到的總輸出電流轉換成隨時間而遞減的下降電流,並使此下降電流通過設置於DAC接腳與EAP接腳之間的外部電阻而於EAP接腳產生隨時間而遞減的參考電壓,不僅可改善直流-直流轉換控制器的輸出電壓在短期間內抽載及卸載快速切換時所出現的過衝及欠衝現象,有效減少輸出電壓曲線的過衝峰值與欠衝峰值之間的峰值間電壓差,亦可避免正常運作時的負載掉壓,以提升輸出電壓的穩定性。

Claims (9)

  1. 一種直流-直流轉換控制器,耦接一輸出級與一外部電阻網路,且提供一脈寬調變訊號控制該輸出級提供一輸出電壓,該直流-直流轉換控制器包括:一感測電路,耦接該輸出級,且提供一感測電流;一下降電流電路,耦接該感測電路,且依據該感測電流提供一下降電流;一第一接腳,耦接該下降電流電路與該外部電阻網路,且接收該下降電流與一第一參考電壓,其中該第一接腳提供該下降電流至該外部電阻網路,使得該外部電阻網路提供一第二參考電壓;以及一脈寬調變訊號控制迴路,耦接該外部電阻網路,且依據該第二參考電壓及與該輸出電壓相關之一回饋電壓來產生該脈寬調變訊號,其中,該下降電流隨一預設時間而降低至一預設值。
  2. 如申請專利範圍第1項所述之直流-直流轉換控制器,還包括:一第二接腳,透過該外部電阻網路與該第一接腳耦接,其中該下降電流透過該外部電阻網路於該第二接腳產生該第二參考電壓。
  3. 如申請專利範圍第2項所述之直流-直流轉換控制器,還包括:一第三接腳,耦接該輸出級,用以接收該回饋電壓。
  4. 如申請專利範圍第3項所述之直流-直流轉換控制器,其中該脈 寬調變訊號控制迴路包含一比較器,該比較器之兩接收端分別耦接該第二接腳及該第三接腳且接收該第二參考電壓及該回饋電壓,該比較器依據該第二參考電壓及該回饋電壓產生該脈寬調變訊號。
  5. 如申請專利範圍第2項所述之直流-直流轉換控制器,其中該下降電流電路還耦接至該第二接腳與該脈寬調變訊號控制迴路之間,且該下降電流電路亦產生該下降電流至該第二接腳與該脈寬調變訊號控制迴路之間。
  6. 如申請專利範圍第1項所述之直流-直流轉換控制器,其中該下降電流電路先依據該感測電流產生隨時間遞增的一上升電壓,再依據該上升電壓產生該下降電流。
  7. 如申請專利範圍第6項所述之直流-直流轉換控制器,其中該下降電流電路包括一內部電容,且該下降電流電路透過該感測電流對該內部電容充電以產生隨時間遞增的該上升電壓。
  8. 如申請專利範圍第6項所述之直流-直流轉換控制器,其中該下降電流電路依據該感測電流產生一固定電壓,再依據該固定電壓及隨時間遞增的該上升電壓產生該下降電流。
  9. 如申請專利範圍第8項所述之直流-直流轉換控制器,其中該下降電流電路還包括一電流鏡,該電流鏡包括兩電晶體且該兩電晶體之閘極彼此對接,該下降電流電路透過該電流鏡複製多個該下降電流後輸出。
TW107103890A 2018-02-02 2018-02-02 直流-直流轉換控制器 TWI798200B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107103890A TWI798200B (zh) 2018-02-02 2018-02-02 直流-直流轉換控制器
CN201810213447.5A CN110138208B (zh) 2018-02-02 2018-03-15 直流-直流转换控制器
US16/259,707 US10511228B2 (en) 2018-02-02 2019-01-28 DC-DC converting controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107103890A TWI798200B (zh) 2018-02-02 2018-02-02 直流-直流轉換控制器

Publications (2)

Publication Number Publication Date
TW201935829A true TW201935829A (zh) 2019-09-01
TWI798200B TWI798200B (zh) 2023-04-11

Family

ID=67477061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107103890A TWI798200B (zh) 2018-02-02 2018-02-02 直流-直流轉換控制器

Country Status (3)

Country Link
US (1) US10511228B2 (zh)
CN (1) CN110138208B (zh)
TW (1) TWI798200B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782951B (zh) * 2018-02-12 2022-11-11 力智電子股份有限公司 直流-直流轉換控制器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246220B1 (en) * 1999-09-01 2001-06-12 Intersil Corporation Synchronous-rectified DC to DC converter with improved current sensing
US6680604B2 (en) 2000-03-27 2004-01-20 Intersil Corporation Methods to control the droop when powering dual mode processors and associated circuits
US6683441B2 (en) * 2001-11-26 2004-01-27 Analog Devices, Inc. Multi-phase switching regulator
TWI259273B (en) 2004-09-22 2006-08-01 Richtek Technology Corp Temperature compensation device applied to voltage regulator and method thereof
JP2008131776A (ja) * 2006-11-22 2008-06-05 Nec Electronics Corp Dc−dcコンバータ
US7902800B2 (en) 2007-07-13 2011-03-08 Chil Semiconductor Corporation Adaptive power supply and related circuitry
US7928704B2 (en) * 2007-08-24 2011-04-19 Upi Semiconductor Corporation Droop circuits and multi-phase DC-DC converters
US8988902B2 (en) * 2011-11-15 2015-03-24 Dialog Semiconductor, Inc. Power converter controller IC having pins with multiple functions
TWI669890B (zh) * 2014-12-19 2019-08-21 力智電子股份有限公司 電源轉換裝置的電流感測電路與方法
JP6594199B2 (ja) * 2015-12-28 2019-10-23 ローム株式会社 スイッチングレギュレータ
CN107302308B (zh) * 2016-04-15 2019-09-13 上海贝岭股份有限公司 开关电源输出幅度的调节电路
TWM541151U (zh) * 2016-09-14 2017-05-01 力智電子股份有限公司 直流對直流控制器
CN206442299U (zh) * 2016-12-09 2017-08-25 力智电子股份有限公司 直流对直流控制器的集成电路及其直流对直流转换电路

Also Published As

Publication number Publication date
US10511228B2 (en) 2019-12-17
CN110138208A (zh) 2019-08-16
US20190245447A1 (en) 2019-08-08
TWI798200B (zh) 2023-04-11
CN110138208B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US9595869B2 (en) Multi-level switching regulator circuits and methods with finite state machine control
US7276886B2 (en) Dual buck-boost converter with single inductor
US10447154B2 (en) PWM control scheme for providing minimum on time
US20090153114A1 (en) DC-DC converters with transient response control
US20170201175A1 (en) Adaptive feedback control system and method for voltage regulators
US6801026B2 (en) Hysteretic DC-DC converters
US9397559B2 (en) Switching regulator current mode feedback circuits and methods
TWI679835B (zh) 直流-直流轉換器
JP6257363B2 (ja) スイッチングレギュレータ制御回路及びスイッチングレギュレータ
KR20130066266A (ko) 부하변동 특성 향상을 위한 전압공급 회로 및 출력전압 공급 방법
US9000735B2 (en) DC-DC controller and operation method thereof
KR102216799B1 (ko) 벅 컨버터
US20200366194A1 (en) Switched-capacitor power converting apparatus and operating method thereof
TWI470908B (zh) 控制電路、時間計算單元及控制電路操作方法
KR102068843B1 (ko) Dc-dc 컨버터
US8390263B2 (en) Soft-start circuit having a ramp-up voltage and method thereof
US20140340066A1 (en) Timing generator and timing signal generation method for power converter
TWI798200B (zh) 直流-直流轉換控制器
US11183977B2 (en) Recovery control for power converter
WO2023280328A1 (zh) 开关变换器及其控制电路
TWI425755B (zh) 可減緩電源突波的脈波寬度調變降壓轉化器及其相關方法
US11394293B2 (en) Soft-start circuit for converters, corresponding converter device and method
TW202219684A (zh) 電源轉換器的控制電路
WO2020146970A1 (en) Power converter with multi-mode timing control
TW201941015A (zh) 電流鏡校正電路及電流鏡校正方法