CN110138208A - 直流-直流转换控制器 - Google Patents

直流-直流转换控制器 Download PDF

Info

Publication number
CN110138208A
CN110138208A CN201810213447.5A CN201810213447A CN110138208A CN 110138208 A CN110138208 A CN 110138208A CN 201810213447 A CN201810213447 A CN 201810213447A CN 110138208 A CN110138208 A CN 110138208A
Authority
CN
China
Prior art keywords
mentioned
drop
out current
voltage
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810213447.5A
Other languages
English (en)
Other versions
CN110138208B (zh
Inventor
张志廉
赖敏瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UPI Semiconductor Corp
Original Assignee
UPI Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UPI Semiconductor Corp filed Critical UPI Semiconductor Corp
Publication of CN110138208A publication Critical patent/CN110138208A/zh
Application granted granted Critical
Publication of CN110138208B publication Critical patent/CN110138208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Abstract

本发明提供一种直流‑直流转换控制器,耦接输出级与外部电阻网络,且提供脉宽调变信号控制输出级提供输出电压。直流‑直流转换控制器包括感测电路、下降电流电路、第一接脚与脉宽调变信号控制回路。感测电路耦接输出级,且提供感测电流。下降电流电路耦接感测电路并依据感测电流提供下降电流。第一接脚耦接下降电流电路与外部电阻网络并接收下降电流与第一参考电压。第一接脚提供下降电流以使外部电阻网络提供第二参考电压。脉宽调变信号控制回路耦接外部电阻网络并依据输出电压与第二参考电压产生脉宽调变信号。下降电流随预设时间而降低至预设值。本发明可提升输出电压的稳定性。

Description

直流-直流转换控制器
技术领域
本发明是与电源转换有关,尤其是关于一种直流-直流转换控制器。
背景技术
一般而言,为了避免负载由轻载切换至重载(亦即抽载)时,瞬间的大电流造成负载损坏,传统的直流-直流转换控制器通常会在此时提供直流电(DC)型式的负载掉压(Loadline droop)功能,例如在回授电路中的参考电压供应回路上提供固定值的下降电流(Droop current),通过外部电阻改变回授信号的参考电压,进而实现负载掉压的功能。
然而,在某些特定的使用情况下,例如中央处理器(Central Processing Unit,CPU)超频,输出电压的稳定性会特别受到重视,此时若在重载发生时出现掉压的现象,将会导致输出电压不稳定而影响负载的正常工作。此外,在某些特定的应用中,例如图形处理器(Graphics Processing Unit,GPU),常会出现轻载与重载快速切换的情况,因而导致输出电压在快速切换期间容易出现过冲(Over shoot)与欠冲(Under shoot)的现象,造成过冲峰值与欠冲峰值之间的峰值间电压差(Peak-to-peak voltage difference)过大,亦导致输出电压不稳定而严重影响负载的正常工作。
发明内容
有鉴于此,本发明提出一种直流-直流转换控制器,以有效解决现有技术所遭遇到的上述种种问题。
依据本发明的一具体实施例为一种直流-直流转换控制器。在此实施例中,直流-直流转换控制器耦接输出级与外部电阻网络,且提供脉宽调变信号控制输出级提供输出电压。直流-直流转换控制器包括感测电路、下降电流电路、第一接脚与脉宽调变信号控制回路。感测电路耦接输出级并提供感测电流。下降电流电路耦接感测电路并依据感测电流提供下降电流。第一接脚耦接下降电流电路与外部电阻网络并接收下降电流与第一参考电压。第一接脚提供下降电流以使得外部电阻网络提供第二参考电压。脉宽调变信号控制回路耦接外部电阻网络并依据第二参考电压及与输出电压相关的回馈电压产生脉宽调变信号。下降电流随预设时间而降低至预设值。
在一实施例中,直流-直流转换控制器还包括第二接脚。第二接脚通过外部电阻网络与第一接脚耦接,下降电流通过外部电阻网络在第二接脚产生第二参考电压。
在一实施例中,直流-直流转换控制器还包括第三接脚。第三接脚耦接输出级并用以接收回馈电压。
在一实施例中,脉宽调变信号控制回路包含比较器,比较器的两接收端分别耦接第二接脚与第三接脚且接收第二参考电压与回馈电压,比较器依据第二参考电压与回馈电压产生脉宽调变信号。
在一实施例中,下降电流电路还耦接至第二接脚与脉宽调变信号控制回路之间,且下降电流电路亦产生下降电流至第二接脚与脉宽调变信号控制回路之间。
在一实施例中,下降电流电路先依据感测电流产生随时间递增的上升电压,再依据上升电压产生下降电流。
在一实施例中,下降电流电路包括内部电容,且下降电流电路通过感测电流对内部电容充电以产生随时间递增的上升电压。
在一实施例中,下降电流电路依据感测电流产生固定电压,再依据固定电压与随时间递增的上升电压产生下降电流。
在一实施例中,调整电路包括电流镜。电流镜包括两晶体管且两晶体管的闸极彼此对接。下降电流电路通过电流镜复制多个下降电流后输出。
相较于现有技术,依据本发明的直流-直流转换控制器通过下降电流电路将其感测到的总输出电流转换成随时间而递减的下降电流,并使此下降电流通过设置在DAC接脚与EAP接脚之间的外部电阻而在EAP接脚产生随时间而递减的参考电压,不仅可改善直流-直流转换控制器的输出电压在短期间内抽载与卸载快速切换时所出现的过冲与欠冲现象,有效减少输出电压曲线的过冲峰值与欠冲峰值之间的峰值间电压差,亦可避免正常运作时的负载掉压,以提升输出电压的稳定性。
关于本发明的优点与精神可以通过以下的发明详述与所附图式得到进一步的了解。
附图说明
图1是依据本发明的一具体实施例中的直流-直流转换控制器的示意图。
图2是图1中的下降电流电路12依据感测电流ISEN产生下降电流IDP的一实施例。
图3是图2中的感测电流ISEN、第一节点电压VN1~第四节点电压VN4与下降电流IDP在第一时间由轻载转为重载且在第二时间由重载转为轻载的情况下的时序图。
图4是本发明的第二输出电压曲线VOUT2与现有技术的第一输出电压曲线VOUT1的时序图。
主要元件符号说明:
1:直流-直流转换控制器
10:感测电路
12:下降电流电路
14:脉宽调变信号控制回路
141:脉宽调变信号产生器
DAC:第一接脚
EAP:第二接脚
FB:第三接脚
REF:第四接脚
PWM:第五接脚
OS:输出级
ERN:外部电阻网络
CP1:比较器
CP2:电压随耦器
SPWM:脉宽调变信号
VOUT:输出电压
ISEN:感测电流
ISEN1:感测结果
IDP:下降电流
VFB:回馈电压
VREF1:第一参考电压
VREF2:第二参考电压
+:正输入端
-:负输入端
CINT:内部电容
R1~R3:电阻
N1~N4:第一节点~第四节点
VN1~VN4:第一节点电压~第四节点电压
CM:电流镜
M1~M3:晶体管
CP3:电压随耦器
CP4:比较器
T1:第一时间
T2:第二时间
T3:第三时间
T4:第四时间
VOUT1:第一输出电压曲线
VOUT2:第二输出电压曲线
VL:欠冲峰值
VH1~VH2:过冲峰值
具体实施方式
现在将详细参考本发明的示范性实施例,并在附图中说明所述示范性实施例的实例。在图式与实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
依据本发明的一具体实施例为一种直流-直流转换控制器。在此实施例中,直流-直流转换控制器感测输出级的输出电流并通过下降电流电路将其转换为随时间而递减的下降电流,使得在短期间内抽载与卸载快速切换时输出电压曲线的峰值之间(Peak-to-peak)的电压差能够变小,由以维持输出电压的稳定。
请参照图1,图1为此实施例中之直流-直流转换控制器的示意图。如图1所示,直流-直流转换控制器1耦接输出级OS与外部电阻网络ERN。直流-直流转换控制器1提供脉宽调变信号SPWM至输出级OS,以控制输出级OS提供输出电压VOUT。在实际应用中,外部电阻网络ERN可包括至少一外部电阻且输出级OS可包括彼此串接的两晶体管开关与其驱动积体电路,但不以此为限。
在此实施例中,直流-直流转换控制器1包括感测电路10、下降电流电路12、脉宽调变信号控制回路14、第一接脚DAC、第二接脚EAP、第三接脚FB、第四接脚REF、第五接脚PWM与电压随耦器CP2。感测电路10耦接在输出级OS与下降电流电路12之间;下降电流电路12可耦接第一接脚DAC、电压随耦器CP2、第二接脚EAP与脉宽调变信号控制回路14;脉宽调变信号控制回路14分别耦接第二接脚EAP、第三接脚FB与第五接脚PWM,且脉宽调变信号控制回路14可包括比较器CP1与脉宽调变信号产生器141,但不以此为限;电压随耦器CP2分别耦接第一接脚DAC与第四接脚REF;外部电阻网络ERN耦接在第一接脚DAC与第二接脚EAP之间;输出级OS分别耦接第三接脚FB、第五接脚PWM与感测电路10;第一接脚DAC分别耦接外部电阻网络ERN与电压随耦器CP2;第二接脚EAP分别耦接外部电阻网络ERN与脉宽调变信号控制回路14;第三接脚FB分别耦接输出级OS与脉宽调变信号控制回路14;第四接脚REF耦接电压随耦器CP2;第五接脚PWM分别耦接输出级OS与脉宽调变信号控制回路14。
感测电路10用以感测输出级OS所输出的电流并依据感测结果ISEN1提供感测电流ISEN给下降电流电路12。当下降电流电路12接收到感测电流ISEN时,下降电流电路12会依据感测电流ISEN产生下降电流IDP,且下降电流IDP会随预设时间而降低至预设值,例如下降电流IDP可随时间而递减至零,但不以此为限。
接着,下降电流电路12将随时间递减的下降电流IDP提供给第一接脚DAC。电压随耦器CP2的负输入端-与输出端彼此耦接,电压随耦器CP2的正输入端+接收来自第四接脚REF的第一参考电压VREF1并通过输出端将第一参考电压VREF1输出至第一接脚DAC。因此,第一接脚DAC会分别接收到随时间递减的下降电流IDP与具有固定电压值的第一参考电压VREF1。
然后,第一接脚DAC所输出的下降电流IDP会流经外部电阻网络ERN并通过外部电阻网络ERN在第二接脚EAP产生第二参考电压VREF2。需说明的是,由于通过外部电阻网络ERN的下降电流IDP会随时间而递减,所以下降电流IDP流经外部电阻网络ERN而在第二接脚EAP产生的第二参考电压VREF2亦会随时间而递减。由于下降电流IDP为渐变值,故可视为交流电(AC)型式的负载掉压(Load line droop),通过逐步回复的第二参考电压VREF2有效维持输出电压VOUT的准位。
接着,脉宽调变信号控制回路14中的比较器CP1的负输入端-与正输入端+分别接收来自第三接脚FB的回馈电压VFB与来自第二接脚EAP的第二参考电压VREF2并由脉宽调变信号产生器141产生脉宽调变信号SPWM,并通过第五接脚PWM将脉宽调变信号SPWM提供至输出级OS,以控制输出级OS提供输出电压VOUT。此外,下降电流电路12亦会提供下降电流IDP至第二接脚EAP与比较器CP1的正输入端+之间。
需说明的是,第三接脚FB是从输出级OS接收回馈电压VFB,且回馈电压VFB与输出电压VOUT相关,而第二参考电压VREF2则会随时间而递减。
接下来,请参照图2,图2为图1中的下降电流电路12依据感测电流ISEN产生下降电流IDP的一实施例。如图2所示,下降电流电路12包括内部电容CINT、电阻R1~R3、第一节点N1~第四节点N4、电流镜CM、晶体管M3、电压随耦器CP3与比较器CP4。在实际应用中,电流镜CM可包括两晶体管M1及M2且两晶体管M1及M2的闸极彼此对接;电阻R3的阻值可为电阻R1的阻值的两倍;电阻R2的阻值可为2MΩ且内部电容CINT的电容值可为40pF,但不以此为限。
电阻R1耦接在感测电流ISEN与接地端之间;第一节点N1位在感测电流ISEN与电阻R1之间;电阻R2耦接在第一节点N1与第二节点N2之间;内部电容CINT耦接在第二节点N2与接地端之间;电压随耦器CP3耦接在第二节点N2与第三节点N3之间,电压随耦器CP3的正输入端+与输出端均耦接第三节点N3且电压随耦器CP3的负输入端-耦接第二节点N2;电阻R3耦接在第三节点N3与第四节点N4之间;比较器CP4的负输入端-与正输入端+分别耦接第一节点N1与第四节点N4,且比较器CP4的输出端耦接晶体管M3的闸极;晶体管M3耦接在电流镜CM与第四节点N4之间,且晶体管M3的闸极耦接比较器CP4的输出端;电流镜CM耦接晶体管M3并输出下降电流IDP。
请同时参照图3,图3为图2中的感测电流ISEN、第一节点电压VN1~第四节点电压VN4与下降电流IDP在第一时间T1由轻载转为重载(亦即抽载)且在第二时间T2由重载转为轻载(亦即卸载)的情况下的时序图。
当下降电流电路12接收到具有固定电压值的感测电流ISEN(或与其相关的电流信号,例如负载电流)时,感测电流ISEN会通过电阻R1而在第一节点N1产生第一节点电压VN1,且第一节点电压VN1为固定电压值。同时,感测电流ISEN会对内部电容CINT充电而在第二节点N2产生随时间递增的第二节点电压VN2,并通过电压随耦器CP3锁定第三节点N3的第三节点电压VN3,使其与第二节点电压VN2相等,亦即第三节点电压VN3亦会随时间而递增。此时,第四节点N4的第四节点电压VN4将会等于第一节点N1的第一节点电压VN1,亦即第四节点电压VN4为固定电压值。由于第三节点电压VN3会随时间递增且第四节点电压VN4具有固定电压值,第四节点电压VN4与第三节点电压VN3之间的电压差会在电阻R3上产生随时间递减的下降电流IDP,并通过晶体管M3将下降电流IDP输入至电流镜CM,再由电流镜CM复制多个下降电流IDP后输出。
需说明的是,本发明的下降电流IDP会随预设时间而降低至预设值,由以消除负载掉压的现象。在此实施例中,下降电流IDP从第一时间T1开始线性递减,直至第二时间T2降低至零为止,亦即此实施例中的预设时间为第二时间T2减去第一时间T1且预设值为零,但不以此为限。
亦请参照图4,图4为本发明的第二输出电压曲线VOUT2与现有技术的第一输出电压曲线VOUT1的时序图。
如图4所示,当负载在第一时间T1由轻载切换为重载(亦即抽载)时会出现欠冲(Under shoot)现象,此时本发明的第二输出电压曲线VOUT2与现有技术的第一输出电压曲线VOUT1的欠冲峰值均为VL,但下降电流IDP会随预设时间而降低至预设值;经过预设时间之后,第二输出电压曲线VOUT2即恢复接近第一输出电压曲线VOUT1的水平,故能有效减轻负载掉压对输出电压的影响。
在负载连续抽卸载时,负载在第三时间T3由轻载切换为重载(亦即抽载)时会出现欠冲(Under shoot)现象,此时本发明的第二输出电压曲线VOUT2与现有技术的第一输出电压曲线VOUT1的欠冲峰值均为VL;当负载在第四时间T4由重载切换为轻载(亦即卸载)时会出现过冲(Over shoot)现象,此时本发明的第二输出电压曲线VOUT2的过冲峰值VH2明显低于现有技术的第一输出电压曲线VOUT1的过冲峰值VH1,进而使本发明的第二输出电压曲线VOUT2的峰值间电压差小于现有技术的第一输出电压曲线VOUT1的峰值间电压差,故能有效提升输出电压的稳定性。
根据实际的模拟结果可知:假设负载电流为200安培,且在第一时间T1抽载瞬间的负载掉压使输出电压降至0.93伏特,第一时间T1至卸载的第二时间T2之间的时间间隔为100微秒,在此期间第二输出电压曲线VOUT2随时间间隔逐渐恢复;在第二时间T2时,本发明的第二输出电压曲线VOUT2回复至约0.985伏特,接近原本的输出电压水平(1伏特)。
若抽载的第三时间T3至卸载的第四时间T4之间的时间间隔为10微秒,根据实际的模拟结果可知:本发明的第二输出电压曲线VOUT2与现有技术的第一输出电压曲线VOUT1的欠冲峰值VL仍均为0.803伏特,而本发明的第二输出电压曲线VOUT2的过冲峰值VH2为1.157伏特且现有技术的第一输出电压曲线VOUT1的过冲峰值VH1为1.217伏特,使得本发明的第二输出电压曲线VOUT2的峰值间电压差(1.157-0.803=0.354伏特)小于现有技术的第一输出电压曲线VOUT1的峰值间电压差(1.217-0.803=0.414伏特)。其余可依此类推,故在此不另行赘述。
相较于现有技术,依据本发明的直流-直流转换控制器通过下降电流电路将其感测到的总输出电流转换成随时间而递减的下降电流,并使此下降电流通过设置在DAC接脚与EAP接脚之间的外部电阻而在EAP接脚产生随时间而递减的参考电压,不仅可改善直流-直流转换控制器的输出电压在短期间内抽载与卸载快速切换时所出现的过冲与欠冲现象,有效减少输出电压曲线的过冲峰值与欠冲峰值之间的峰值间电压差,亦可避免正常运作时的负载掉压,以提升输出电压的稳定性。

Claims (9)

1.一种直流-直流转换控制器,耦接一输出级与一外部电阻网络,且提供一脉宽调变信号控制上述输出级提供一输出电压,其特征在于,上述直流-直流转换控制器包括:
一感测电路,耦接上述输出级,且提供一感测电流;
一下降电流电路,耦接上述感测电路,且依据上述感测电流提供一下降电流;
一第一接脚,耦接上述下降电流电路与上述外部电阻网络,且接收上述下降电流与一第一参考电压,其中上述第一接脚提供上述下降电流至上述外部电阻网络,使得上述外部电阻网络提供一第二参考电压;以及
一脉宽调变信号控制回路,耦接上述外部电阻网络,且依据上述第二参考电压与上述该输出电压相关的一回馈电压来产生上述脉宽调变信号,
其中,上述下降电流随一预设时间而降低至一预设值。
2.如权利要求1所述的直流-直流转换控制器,其特征在于,上述直流-直流转换控制器还包括:
一第二接脚,通过上述外部电阻网络与上述第一接脚耦接,其中上述下降电流通过上述外部电阻网络在上述第二接脚产生上述第二参考电压。
3.如权利要求2所述的直流-直流转换控制器,其特征在于,上述直流-直流转换控制器还包括:
一第三接脚,耦接上述输出级,用以接收上述回馈电压。
4.如权利要求3所述的直流-直流转换控制器,其特征在于,上述脉宽调变信号控制回路包含一比较器,上述比较器的两接收端分别耦接上述第二接脚与上述第三接脚且接收上述第二参考电压与上述回馈电压,上述比较器依据上述第二参考电压与上述回馈电压产生上述脉宽调变信号。
5.如权利要求2所述的直流-直流转换控制器,其特征在于,上述下降电流电路还耦接至上述第二接脚与上述脉宽调变信号控制回路之间,且上述下降电流电路亦产生上述下降电流至上述第二接脚与上述脉宽调变信号控制回路之间。
6.如权利要求1所述的直流-直流转换控制器,其特征在于,上述下降电流电路先依据上述感测电流产生随时间递增的一上升电压,再依据上述上升电压产生上述下降电流。
7.如权利要求6所述的直流-直流转换控制器,其特征在于,上述下降电流电路包括一内部电容,且上述下降电流电路通过上述感测电流对上述内部电容充电以产生随时间递增的上述上升电压。
8.如权利要求6所述的直流-直流转换控制器,其特征在于,上述下降电流电路依据上述感测电流产生一固定电压,再依据上述固定电压与随时间递增的上述上升电压产生上述下降电流。
9.如权利要求8所述的直流-直流转换控制器,其特征在于,上述下降电流电路还包括一电流镜,上述电流镜包括两晶体管且上述两晶体管的闸极彼此对接,上述下降电流电路通过上述电流镜复制多个上述下降电流后输出。
CN201810213447.5A 2018-02-02 2018-03-15 直流-直流转换控制器 Active CN110138208B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107103890 2018-02-02
TW107103890A TWI798200B (zh) 2018-02-02 2018-02-02 直流-直流轉換控制器

Publications (2)

Publication Number Publication Date
CN110138208A true CN110138208A (zh) 2019-08-16
CN110138208B CN110138208B (zh) 2022-03-08

Family

ID=67477061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810213447.5A Active CN110138208B (zh) 2018-02-02 2018-03-15 直流-直流转换控制器

Country Status (3)

Country Link
US (1) US10511228B2 (zh)
CN (1) CN110138208B (zh)
TW (1) TWI798200B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782951B (zh) * 2018-02-12 2022-11-11 力智電子股份有限公司 直流-直流轉換控制器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188381A (zh) * 2006-11-22 2008-05-28 恩益禧电子股份有限公司 Dc-dc转换器
TW200910741A (en) * 2007-08-24 2009-03-01 Upi Semiconductor Corp Droop circuits and multi-phase DC-DC converters
CN105991026A (zh) * 2014-12-19 2016-10-05 力智电子股份有限公司 电源转换装置的电流感测电路与方法
CN206133347U (zh) * 2016-09-14 2017-04-26 力智电子股份有限公司 直流对直流控制器
US20170182894A1 (en) * 2015-12-28 2017-06-29 Rohm Co., Ltd. Switching regulator
CN206442299U (zh) * 2016-12-09 2017-08-25 力智电子股份有限公司 直流对直流控制器的集成电路及其直流对直流转换电路
CN107302308A (zh) * 2016-04-15 2017-10-27 上海贝岭股份有限公司 开关电源输出幅度的调节电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246220B1 (en) * 1999-09-01 2001-06-12 Intersil Corporation Synchronous-rectified DC to DC converter with improved current sensing
US6680604B2 (en) 2000-03-27 2004-01-20 Intersil Corporation Methods to control the droop when powering dual mode processors and associated circuits
US6683441B2 (en) * 2001-11-26 2004-01-27 Analog Devices, Inc. Multi-phase switching regulator
TWI259273B (en) 2004-09-22 2006-08-01 Richtek Technology Corp Temperature compensation device applied to voltage regulator and method thereof
US7902800B2 (en) 2007-07-13 2011-03-08 Chil Semiconductor Corporation Adaptive power supply and related circuitry
US8988902B2 (en) * 2011-11-15 2015-03-24 Dialog Semiconductor, Inc. Power converter controller IC having pins with multiple functions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188381A (zh) * 2006-11-22 2008-05-28 恩益禧电子股份有限公司 Dc-dc转换器
TW200910741A (en) * 2007-08-24 2009-03-01 Upi Semiconductor Corp Droop circuits and multi-phase DC-DC converters
CN105991026A (zh) * 2014-12-19 2016-10-05 力智电子股份有限公司 电源转换装置的电流感测电路与方法
US20170182894A1 (en) * 2015-12-28 2017-06-29 Rohm Co., Ltd. Switching regulator
CN107302308A (zh) * 2016-04-15 2017-10-27 上海贝岭股份有限公司 开关电源输出幅度的调节电路
CN206133347U (zh) * 2016-09-14 2017-04-26 力智电子股份有限公司 直流对直流控制器
CN206442299U (zh) * 2016-12-09 2017-08-25 力智电子股份有限公司 直流对直流控制器的集成电路及其直流对直流转换电路

Also Published As

Publication number Publication date
TW201935829A (zh) 2019-09-01
US10511228B2 (en) 2019-12-17
US20190245447A1 (en) 2019-08-08
CN110138208B (zh) 2022-03-08
TWI798200B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
US11251700B2 (en) Voltage regulation circuit of single inductor and multiple outputs and control method
US10250122B2 (en) Multi-phase control for pulse width modulation power converters
TWI441434B (zh) 穩定轉換脈波調變模式之電流式升壓轉換器
US8749213B2 (en) Mixed mode control for switching regulator with fast transient responses
TWI410033B (zh) 穩定轉換脈波調變模式之電流式降壓轉換器
US8836307B2 (en) Voltage regulator and pulse width modulation signal generation method thereof
US11183930B2 (en) Power-save mode pulse gating control for switching converter
TW201325053A (zh) 開關模式電源及其斜率補償信號產生電路和控制方法
EP2905886B1 (en) Switching regulator control circuit and switching regulator
TW201351861A (zh) 控制電源轉換裝置的方法及其相關電路
US8378584B2 (en) Power factor converter and method
TWI470392B (zh) 直流對直流控制器與其操作方法
US20170302172A1 (en) A voltage regulator module using a load-side auxiliary gyrator circuit
US20190020274A1 (en) Pwm control scheme for providing minimum on time
US7423415B2 (en) DC-DC converter and its control method, and switching regulator and its control method
US10284089B2 (en) Integrated bi-directional driver with modulated signals
US8854021B2 (en) DC-DC converter and DC-DC conversion method
US9673701B2 (en) Slew rate enhancement for transient load step response
US10243458B2 (en) Method and apparatus for hysteresis regulation of the output voltage of a DC-to-DC converter
WO2018024052A1 (zh) 直流-直流变换器、升压单元、电动汽车和电池备份系统
KR20130032844A (ko) 집적 회로를 위한 적응형 바이어싱
CN110138208A (zh) 直流-直流转换控制器
TW201806300A (zh) 直流對直流電源轉換器電路及使用其控制輸出電壓之方法
TWI425755B (zh) 可減緩電源突波的脈波寬度調變降壓轉化器及其相關方法
US9812957B2 (en) DC/DC converter and method of driving DC/DC converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant